research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of caesium tetra­methyl­di­thio­imidodiphosphinate

crossmark logo

aCentro de Investigaciónes Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, CP 62209, Cuernavaca, Mor., Mexico, bCentro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, 50200, Estado de México, Mexico, and cInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, 10810, Ciudad de México, Mexico
*Correspondence e-mail: cea@unam.mx

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 24 June 2021; accepted 20 September 2021; online 30 September 2021)

In the title crystal, the salt [CsMe2P(S)NP(S)Me2] is self-assembled as an undulating supra­molecular two-dimensional polymeric structure, poly[(μ4-tetra­methyl­dithio­imidodiphosphinato)caesium], [Cs(C4H12NP2S2)]n, which is parallel to the bc plane. The Cs cations are hexa­coordinated, being chelated by two thio­imidophosphinate groups and two sulfur atoms from neighboring ligands. The anions are linked to the Cs cations by Cs⋯S and Cs⋯N electrostatic inter­actions.

1. Chemical context

Dichalcogenoimidodiphosphinate anions [R2P(E)NP(E)R2] (E = O, S, Se, Te) are versatile complexing reagents with a strong tendency to form inorganic (carbon-free) chelate rings (Haiduc & Silaghi-Dumitrescu, 1986[Haiduc, I. & Silaghi-Dumitrescu, I. (1986). Coord. Chem. Rev. 74, 127-270.]; Cea-Olivares & Muñoz, 1993[Cea-Olivares, R. & Muñoz, M. A. (1993). Monats. Chem. 124, 471-476.]; Hernández-Arganis et al., 2004[Hernández-Arganis, M., Hernández-Ortega, S., Toscano, R. A., García-Montalvo, V. & Cea-Olivares, R. (2004). Chem. Commun. pp. 310-311.]; Slawin et al., 1994[Slawin, A. M. Z., Ward, J., Williams, D. J. & Woollins, J. D. (1994). J. Chem. Soc. Chem. Commun. pp. 421-422.]). The monoanionic ligands have been investigated as ligands for both main-group elements (Silvestru & Drake, 2001[Silvestru, S. & Drake, J. E. (2001). Coord. Chem. Rev. 223, 117-216.]; Woollins, 1996[Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 2893-2901.]) and transition metals (Rudler et al., 1997[Rudler, H., Denise, B. & Gregorio, J. R. (1997). Chem. Commun. pp. 2299-2300.]). The widespread inter­est in dichalcogenoimidodiphosphinates stems from their potential uses as lanthanide shift reagents (Rudler et al., 1997[Rudler, H., Denise, B. & Gregorio, J. R. (1997). Chem. Commun. pp. 2299-2300.]), industrial catalysts (Leung et al., 2000[Leung, W. H., Zheng, H., Chim, J. L. C., Chan, J., Wong, W. T. & Williams, I. D. (2000). J. Chem. Soc. Dalton Trans. pp. 423-430.]; Yamazaki et al., 2020[Yamazaki, Y., Tsukuda, T., Furukawa, S., Dairiki, A., Sawamura, S. & Tsubomura, T. (2020). Inorg. Chem. 59, 12375-12384.]), luminescent materials (Ma et al., 2019[Ma, X. F., Luo, X. F., Yan, Z. P., Wu, Z. G., Zhao, Y., Zheng, Y. X. & Zuo, J. L. (2019). Organometallics, 38, 3553-3559.]) as well as in metal extraction processes (du Preez et al., 1992[Preez, J. G. H. du, Knabl, K. U., Krüger, L. & van Brecht, B. J. A. M. (1992). Solvent Extr. Ion Exch. 10, 729-748.]). As part of our ongoing research on dichalcogenoimidodiphosphinate anions, we report herein the synthesis and crystallographic study of the title compound (I).

[Scheme 1]

2. Structural commentary

In the asymmetric unit of the title compound (I) (Fig. 1[link]), the tetra­methyl­dithio­imidodiphosphinate anion is bent with a P—N—P angle of 132.16 (6)°, and chelates the Cs cation through S⋯Cs⋯N electrostatic inter­actions [S⋯Cs⋯N = 53.074 (17)°; S⋯Cs = 3.4377 (3) Å; N⋯Cs = 3.2054 (9) Å]. The bond distances of 2.0003 (4), 1.6075 (10), 1.6179 (10) and 1.9869 (4) Å for S1—P1, P1—N1, N1—P2 and P2—S2, respectively, suggest that the anion is a delocalized system (Cea-Olivares & Nöth, 1987[Cea-Olivares, R. & Nöth, H. (1987). Z. Naturforsch. Teil B, 42, 1507-1509.]; Churchill et al., 1971[Churchill, M. R., Cooke, J., Fennessey, J. P. & Wormald, J. (1971). Inorg. Chem. 10, 1031-1035.]). The phospho­rus atoms are in an approximately tetra­hedral environment, the average bond angles being S—P—N = 113.9°, S—P—C = 109.4°, and C—P—C = 103.4°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound (I), showing the atom-labeling scheme.

3. Supra­molecular features

In the crystal, the salt [CsMe2P(S)NP(S)Me2] (I) is self-assembled as an undulating supra­molecular 2D polymeric structure, which is parallel to the bc plane (Figs. 2[link] and 3[link]). The Cs cations are hexa­coordinated and linked to four different anions by Cs⋯S and Cs⋯N electrostatic inter­actions (Fig. 4[link]). Analysis of this CsS4N2 polyhedron with the SHAPE 2.1 program (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Universitat de Barcelona, Barcelona.]) gave CShM values of 9.50434 and 8.43874 for a regular octa­hedron and a trigonal prism, respectively, meaning that the coordination environment of the cesium atom is highly irregular. These polyhedra inter­connect either by sharing vertices or an edge. The Cs⋯S ionic bond distances vary from 3.4377 (3) to 3.4726 (3) Å, which are close to the value of 3.51Å predicted from the ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). Regarding the N—Cs bond distances, two different distances were determined. One of them is 3.2054 (9) Å, which is close to the value of 3.13 Å predicted from the ionic radii, and the other is 3.651 Å, which is less than the value of 4.4 Å predicted from the van der Waals radii (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mat. 37, 871-885.]). Furthermore, five methyl groups are located in a close vicinity of the Cs+ cation with the Cs⋯H distance shorter than 4 Å, but only the shortest Cs1⋯H2C(1 – x, 1 – y, 1 – z) distance of 3.269 Å is similar to those observed in [LiCs(HMDS)2] and can be labeled as an agostic inter­action (Ojeda-Amador et al., 2016[Ojeda-Amador, A. I., Martínez-Martínez, A. J., Kennedy, A. R. & O'Hara, C. T. (2016). Inorg. Chem. 55, 5719-5728.]). The cyclic motifs Cs2S2, Cs2N2, Cs2N2P2S2 in this arrangement possess crystallographic inversion symmetry.

[Figure 2]
Figure 2
A view along the c axis, showing the undulating two-dimensional polymer structure. Hydrogen atoms were omitted for clarity.
[Figure 3]
Figure 3
A view along the a axis of the supra­molecular two-dimensional polymer structure parallel to the bc plane. Hydrogen atoms were omitted for clarity.
[Figure 4]
Figure 4
A view of the hexa­coordination of the caesium cation. Atoms with the suffix A, B or C are at the symmetry positions A: 1 − x, 1 − y, 1 − z; B: 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; C: 1 − x, 1 − y, −z. Hydrogen atoms were omitted for clarity.

4. Database survey

The current version of the Cambridge Structural Database (Version 2021.1, updated August 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains only three cesium dichalcogenoimidodiphosphinates, (18C6)CsPh2P(E)NP(E)Ph2 (BENSAP, BENSET and BENSIX for E = O, S and Se; Hernández-Arganis et al., 2004[Hernández-Arganis, M., Hernández-Ortega, S., Toscano, R. A., García-Montalvo, V. & Cea-Olivares, R. (2004). Chem. Commun. pp. 310-311.]). Furthermore, only five compounds each containing two [Me2P(S)NP(S)Me2] ligands and one M2+ cation (M = Fe, Ni, Pd, Cd, Co) are included in the database: IMSPFE10, IMSPNI10, OCANEL, TASXAN and ZACZAE (Churchill & Wormald, 1971[Churchill, M. R. & Wormald, J. (1971). Inorg. Chem. 10, 1778-1782.]; Churchill et al., 1971[Churchill, M. R., Cooke, J., Fennessey, J. P. & Wormald, J. (1971). Inorg. Chem. 10, 1031-1035.]; Bilic et al., 2000[Bilic, D., Silvestru, A., Silvestru, C., Haiduc, I. & Drake, J. E. (2000). Rev. Soc. Quim. Mex. 44, 116-121.]; Ghesner et al., 2005[Ghesner, M., Silvestru, A., Silvestru, C., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2005). Inorg. Chim. Acta, 358, 3724-3734.] and Silvestru et al., 1995[Silvestru, C., Roesler, R., Haiduc, I., Cea-Olivares, R. & Espinosa-Perez, G. (1995). Inorg. Chem. 34, 3352-3354.]). The dinuclear species MIWYUM with two [Mn(CO)3]+ cations (Zuniga-Villarreal et al., 2001[Zúñiga-Villarreal, N., Reyes-Lezama, M. & Espinosa, G. (2001). J. Organomet. Chem. 626, 113-117.]) is also noteworthy. No compound with [Me2P(E)NP(E)Me2] (E = O or Se) is included in the database.

5. Synthesis and crystallization

Cs[Me2P(S)]2N (I) was obtained by the reaction of [Me2P(S)NHP(S)(Me2)] with Cs2CO3, according to a method previously described (Schmidpeter & Ebeling, 1968[Schmidpeter, A. & Ebeling, J. (1968). Chem. Ber. 101, 815-823.]) and isolated solvent-free. The salt Cs[Me2P(S)]2N was recrystallized by slow evaporation from methanol. The spectroscopic data of the received sample (vide infra) coincided with the published ones and are therefore not reported; however, they can be consulted in the above-mentioned reference.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were positioned geometrically (C—H = 0.98 Å) and constrained using the riding-model approximation with Uiso(H) = 1.5 Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Cs(C4H12NP2S2)]
Mr 333.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.0320 (2), 12.4326 (3), 8.2173 (2)
β (°) 93.8752 (4)
V3) 1124.48 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.89
Crystal size (mm) 0.18 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.100, 0.147
No. of measured, independent and observed [I > 2σ(I)] reflections 15582, 5097, 4791
Rint 0.017
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.035, 1.08
No. of reflections 5097
No. of parameters 95
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.76
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(µ4-tetramethyldithioimidodiphosphinato)caesium] top
Crystal data top
[Cs(C4H12NP2S2)]F(000) = 640
Mr = 333.12Dx = 1.968 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0320 (2) ÅCell parameters from 4791 reflections
b = 12.4326 (3) Åθ = 2.4–25.2°
c = 8.2173 (2) ŵ = 3.89 mm1
β = 93.8752 (4)°T = 100 K
V = 1124.48 (4) Å3Plate, clear light white
Z = 40.18 × 0.15 × 0.12 mm
Data collection top
Bruker SMART APEXII DUO
diffractometer
5097 independent reflections
Radiation source: Incoatec ImuS with multilayer mirrors4791 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.017
ω scansθmax = 36.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1717
Tmin = 0.100, Tmax = 0.147k = 1920
15582 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0129P)2 + 0.2359P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.004
5097 reflectionsΔρmax = 0.58 e Å3
95 parametersΔρmin = 0.76 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.56629 (2)0.59017 (2)0.27106 (2)0.01538 (2)
S10.40180 (2)0.36434 (2)0.15753 (4)0.01505 (5)
S20.16545 (3)0.55491 (2)0.67865 (3)0.01535 (5)
P10.25673 (2)0.42906 (2)0.25349 (3)0.01072 (5)
P20.21826 (2)0.61338 (2)0.46982 (3)0.01115 (5)
N10.29485 (8)0.53396 (8)0.35928 (11)0.01287 (16)
C10.14280 (11)0.45999 (10)0.09220 (14)0.0180 (2)
H1A0.17130.51930.02610.027*
H1B0.06720.48110.13970.027*
H1C0.12800.39640.02320.027*
C20.18262 (11)0.32802 (10)0.37023 (15)0.0181 (2)
H2A0.15740.26780.29880.027*
H2B0.11110.35950.41650.027*
H2C0.23920.30210.45860.027*
C30.08798 (10)0.67113 (10)0.35577 (14)0.0165 (2)
H3A0.11280.69880.25140.025*
H3B0.05510.73010.41850.025*
H3C0.02550.61580.33560.025*
C40.31966 (11)0.72634 (9)0.50889 (15)0.0169 (2)
H4A0.33790.75960.40520.025*
H4B0.39520.70120.56610.025*
H4C0.28070.77940.57660.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.01350 (3)0.01249 (3)0.02027 (4)0.00100 (2)0.00205 (2)0.00067 (2)
S10.01356 (11)0.01225 (11)0.01975 (12)0.00045 (9)0.00416 (9)0.00285 (9)
S20.01700 (12)0.01704 (12)0.01254 (11)0.00079 (10)0.00488 (9)0.00192 (9)
P10.01031 (10)0.01168 (11)0.01021 (11)0.00022 (9)0.00089 (8)0.00053 (8)
P20.01079 (11)0.01129 (11)0.01158 (11)0.00056 (9)0.00243 (9)0.00048 (9)
N10.0121 (4)0.0131 (4)0.0136 (4)0.0001 (3)0.0023 (3)0.0024 (3)
C10.0179 (5)0.0217 (5)0.0138 (5)0.0031 (4)0.0035 (4)0.0002 (4)
C20.0184 (5)0.0178 (5)0.0182 (5)0.0051 (4)0.0030 (4)0.0026 (4)
C30.0139 (4)0.0177 (5)0.0180 (5)0.0024 (4)0.0024 (4)0.0046 (4)
C40.0167 (5)0.0149 (5)0.0193 (5)0.0021 (4)0.0040 (4)0.0031 (4)
Geometric parameters (Å, º) top
Cs1—S13.4377 (3)P1—C21.8090 (12)
Cs1—S1i3.4726 (3)P2—Cs1iii3.9879 (3)
Cs1—S1ii3.6077 (3)P2—N11.6179 (10)
Cs1—S2iii3.4667 (3)P2—C31.8103 (11)
Cs1—N1iii3.6506 (9)P2—C41.8107 (12)
Cs1—N13.2054 (9)N1—Cs1iii3.6506 (9)
Cs1—H2Ai3.8388C1—H1A0.9800
Cs1—H2Ciii3.2692C1—H1B0.9800
Cs1—H4A3.5176C1—H1C0.9800
Cs1—H4Biv3.5628C2—H2A0.9800
Cs1—H4B3.4588C2—H2B0.9800
Cs1—H4Civ3.7984C2—H2C0.9800
S1—Cs1v3.4726 (3)C3—H3A0.9800
S1—Cs1ii3.6077 (3)C3—H3B0.9800
S1—P12.0003 (4)C3—H3C0.9800
S2—Cs1iii3.4667 (3)C4—H4A0.9800
S2—P21.9869 (4)C4—H4B0.9800
P1—N11.6075 (10)C4—H4C0.9800
P1—C11.8052 (11)
S1—Cs1—S1i153.276 (4)H4B—Cs1—H4Civ69.4
S1—Cs1—S1ii86.999 (7)H4Civ—Cs1—H2Ai109.6
S1i—Cs1—S1ii89.749 (6)Cs1v—S1—Cs1ii107.659 (7)
S1—Cs1—S2iii92.185 (7)Cs1—S1—Cs1v135.252 (9)
S1ii—Cs1—N1iii144.629 (15)Cs1—S1—Cs1ii93.001 (7)
S1i—Cs1—N1iii104.024 (15)P1—S1—Cs1ii117.081 (14)
S1—Cs1—N1iii93.707 (15)P1—S1—Cs189.211 (12)
S1i—Cs1—H2Ai52.3P1—S1—Cs1v113.760 (14)
S1—Cs1—H2Ai147.1P2—S2—Cs1iii89.743 (12)
S1ii—Cs1—H2Ai68.5S1—P1—Cs160.397 (11)
S1—Cs1—H4A101.4N1—P1—Cs151.35 (3)
S1i—Cs1—H4A55.0N1—P1—S1110.64 (4)
S1—Cs1—H4Biv102.3N1—P1—C1111.59 (5)
S1—Cs1—H4B102.3N1—P1—C2112.81 (5)
S1i—Cs1—H4Biv53.8C1—P1—Cs1118.41 (4)
S1ii—Cs1—H4Civ69.8C1—P1—S1109.40 (4)
S1i—Cs1—H4Civ74.0C1—P1—C2102.71 (6)
S1—Cs1—H4Civ80.0C2—P1—Cs1138.82 (4)
S2iii—Cs1—S1i114.494 (7)C2—P1—S1109.39 (4)
S2iii—Cs1—S1ii93.387 (7)S2—P2—Cs1iii60.375 (11)
S2iii—Cs1—N1iii51.243 (15)N1—P2—Cs1iii66.26 (3)
S2iii—Cs1—H2Ai68.7N1—P2—S2117.15 (4)
S2iii—Cs1—H4A153.9N1—P2—C3112.20 (5)
S2iii—Cs1—H4Biv148.8N1—P2—C4103.48 (5)
S2iii—Cs1—H4Civ161.7C3—P2—Cs1iii162.13 (4)
N1—Cs1—S153.074 (17)C3—P2—S2108.87 (4)
N1—Cs1—S1i105.154 (17)C3—P2—C4104.09 (6)
N1—Cs1—S1ii114.158 (17)C4—P2—Cs1iii93.37 (4)
N1—Cs1—S2iii131.503 (18)C4—P2—S2110.14 (4)
N1—Cs1—N1iii93.76 (2)Cs1—N1—Cs1iii86.24 (2)
N1iii—Cs1—H2Ai94.3P1—N1—Cs1iii100.76 (4)
N1—Cs1—H2Ai157.3P1—N1—Cs1105.60 (4)
N1—Cs1—H2Ciii121.1P1—N1—P2132.16 (6)
N1—Cs1—H4A50.2P2—N1—Cs1121.68 (4)
N1—Cs1—H4Biv78.0P2—N1—Cs1iii89.80 (4)
N1—Cs1—H4B50.7P1—C1—H1A109.5
N1iii—Cs1—H4Civ145.1P1—C1—H1B109.5
N1—Cs1—H4Civ55.1P1—C1—H1C109.5
H2Ciii—Cs1—S1i55.1H1A—C1—H1B109.5
H2Ciii—Cs1—S1ii119.8H1A—C1—H1C109.5
H2Ciii—Cs1—S1146.0H1B—C1—H1C109.5
H2Ciii—Cs1—S2iii67.4P1—C2—H2A109.5
H2Ciii—Cs1—N1iii52.3P1—C2—H2B109.5
H2Ciii—Cs1—H2Ai51.3P1—C2—H2C109.5
H2Ciii—Cs1—H4A89.6H2A—C2—H2B109.5
H2Ciii—Cs1—H4B74.0H2A—C2—H2C109.5
H2Ciii—Cs1—H4Biv109.0H2B—C2—H2C109.5
H2Ciii—Cs1—H4Civ126.8P2—C3—H3A109.5
H4A—Cs1—S1ii109.3P2—C3—H3B109.5
H4A—Cs1—N1iii105.2P2—C3—H3C109.5
H4A—Cs1—H2Ai107.2H3A—C3—H3B109.5
H4A—Cs1—H4Biv49.1H3A—C3—H3C109.5
H4A—Cs1—H4Civ44.4H3B—C3—H3C109.5
H4B—Cs1—S1ii135.7Cs1—C4—H4A63.3
H4B—Cs1—S1i62.8Cs1—C4—H4B59.7
H4Biv—Cs1—S1ii60.5Cs1—C4—H4C159.4
H4B—Cs1—S2iii128.8P2—C4—Cs191.05 (4)
H4B—Cs1—N1iii78.7P2—C4—H4A109.5
H4Biv—Cs1—N1iii151.7P2—C4—H4B109.5
H4B—Cs1—H2Ai110.6P2—C4—H4C109.5
H4Biv—Cs1—H2Ai84.9H4A—C4—H4B109.5
H4B—Cs1—H4A26.5H4A—C4—H4C109.5
H4B—Cs1—H4Biv75.2H4B—C4—H4C109.5
H4Biv—Cs1—H4Civ24.8
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank Professor A. Schmidpeter for providing a sample of the salt (I).

References

First citationBatsanov, S. S. (2001). Inorg. Mat. 37, 871–885.  Web of Science CrossRef CAS Google Scholar
First citationBilic, D., Silvestru, A., Silvestru, C., Haiduc, I. & Drake, J. E. (2000). Rev. Soc. Quim. Mex. 44, 116–121.  Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCea-Olivares, R. & Muñoz, M. A. (1993). Monats. Chem. 124, 471–476.  CAS Google Scholar
First citationCea-Olivares, R. & Nöth, H. (1987). Z. Naturforsch. Teil B, 42, 1507–1509.  CAS Google Scholar
First citationChurchill, M. R., Cooke, J., Fennessey, J. P. & Wormald, J. (1971). Inorg. Chem. 10, 1031–1035.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Wormald, J. (1971). Inorg. Chem. 10, 1778–1782.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhesner, M., Silvestru, A., Silvestru, C., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2005). Inorg. Chim. Acta, 358, 3724–3734.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaiduc, I. & Silaghi-Dumitrescu, I. (1986). Coord. Chem. Rev. 74, 127–270.  CrossRef CAS Google Scholar
First citationHernández-Arganis, M., Hernández-Ortega, S., Toscano, R. A., García-Montalvo, V. & Cea-Olivares, R. (2004). Chem. Commun. pp. 310–311.  Google Scholar
First citationLeung, W. H., Zheng, H., Chim, J. L. C., Chan, J., Wong, W. T. & Williams, I. D. (2000). J. Chem. Soc. Dalton Trans. pp. 423–430.  CrossRef Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Universitat de Barcelona, Barcelona.  Google Scholar
First citationMa, X. F., Luo, X. F., Yan, Z. P., Wu, Z. G., Zhao, Y., Zheng, Y. X. & Zuo, J. L. (2019). Organometallics, 38, 3553–3559.  CrossRef CAS Google Scholar
First citationOjeda-Amador, A. I., Martínez-Martínez, A. J., Kennedy, A. R. & O'Hara, C. T. (2016). Inorg. Chem. 55, 5719–5728.  CAS PubMed Google Scholar
First citationPreez, J. G. H. du, Knabl, K. U., Krüger, L. & van Brecht, B. J. A. M. (1992). Solvent Extr. Ion Exch. 10, 729–748.  Google Scholar
First citationRudler, H., Denise, B. & Gregorio, J. R. (1997). Chem. Commun. pp. 2299–2300.  CrossRef Google Scholar
First citationSchmidpeter, A. & Ebeling, J. (1968). Chem. Ber. 101, 815–823.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilvestru, C., Roesler, R., Haiduc, I., Cea-Olivares, R. & Espinosa-Perez, G. (1995). Inorg. Chem. 34, 3352–3354.  CrossRef CAS Google Scholar
First citationSilvestru, S. & Drake, J. E. (2001). Coord. Chem. Rev. 223, 117–216.  CrossRef CAS Google Scholar
First citationSlawin, A. M. Z., Ward, J., Williams, D. J. & Woollins, J. D. (1994). J. Chem. Soc. Chem. Commun. pp. 421–422.  CrossRef Google Scholar
First citationWoollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 2893–2901.  CrossRef Web of Science Google Scholar
First citationYamazaki, Y., Tsukuda, T., Furukawa, S., Dairiki, A., Sawamura, S. & Tsubomura, T. (2020). Inorg. Chem. 59, 12375–12384.  CrossRef CAS PubMed Google Scholar
First citationZúñiga-Villarreal, N., Reyes-Lezama, M. & Espinosa, G. (2001). J. Organomet. Chem. 626, 113–117.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds