research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and density functional theory study of 1-nonyl-3-phenyl­quinoxalin-2-one

crossmark logo

aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Biochemistry, Faculty of Education & Science, AlBaydha University, Yemen, cKU Leuven, Chemistry Department, Celestijnenlaan 200F box 2404, Leuven (Heverlee), B-3001, Belgium, and dLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of, Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: faresalostoot@gmail.com

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 8 July 2021; accepted 17 September 2021; online 24 September 2021)

In the title mol­ecule, C23H28N2O, the phenyl ring is inclined to the quinoxaline ring system at a dihedral angle of 20.40 (9)°. In the crystal, C—H⋯O inter­actions between neighbouring mol­ecules form chains along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (70.6%), H⋯C/C⋯H (15.5%) and H⋯O/O⋯H (4.6%) inter­actions. The optimized structure calculated using density functional theory at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated highest occupied mol­ecular orbital (HOMO) and lowest unoccupied mol­ecular orbital (LUMO) energy gap is 3.8904 eV. Part of the n-nonyl chain attached to one of the nitro­gen atoms of the quinoxaline ring system shows disorder and was refined with a double conformation with occupancies of 0.604 (11) and 0.396 (11).

1. Chemical context

Nitro­gen-based structures have attracted increased attention in structural and inorganic chemistry in recent years because of their inter­esting properties (Chkirate et al., 2019[Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., El Abbes Faouzi, M., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21-28.], 2020a[Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21-28.],b[Chkirate, K., Karrouchi, K., Dege, N., Kheira Sebbar, N., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210-2221.], 2021[Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750.], 2022[Chkirate, K., Akachar, J., Hni, B., Hökelek, T., Anouar, E. H., Talbaoui, A., Mague, J. T., Sebbar, N. K., Ibrahimi, A. & Essassi, E. M. (2022). J. Mol. Struct. 1247, 131188.]; Bouzian et al., 2021[Bouzian, Y., Sert, Y., Khalid, K., Van Meervelt, L., Chkirate, K., Mahi, L., Ahabchane, N. H., Talbaoui, A. & Essassi, E. M. (2021). J. Mol. Struct. 1246, 131217.]). The family of quinoxalines, particularly those containing the quinoxalin-2-one moiety, is important in medicinal chemistry because of their wide range of pharmacological applications, including their use as anti-tumor active agents (Galal et al., 2014[Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122-132.]), and their anti­microbial (Carta et al., 2003[Carta, A., Loriga, M., Zanetti, S. & Sechi, L. A. (2003). Farmaco, 58, 1251-1255.]) and biological (Carta et al., 2002[Carta, A., Sanna, P., Loriga, M., Setzu, M. G., La Colla, P. & Loddo, R. (2002). Farmaco, 57, 19-25.]) activity. In particular, 3-phenyl­quinoxaline derivatives are used as anti-cancer drugs (Abad, Sallam et al., 2021[Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021). J. Mol. Struct. 1232, 130004.]). They also have anti-folate activities (Corona et al., 2008[Corona, P., Loriga, M., Costi, M. P., Ferrari, S. & Paglietti, G. (2008). Eur. J. Med. Chem. 43, 189-203.]). Given the wide range of therapeutic applications for such compounds, and in a contin­uation of the work already carried out on the synthesis of compounds resulting from quinoxalin-2-one (Al Ati et al., 2021[Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18-22.]), a similar approach gave the title compound, 1-nonyl-3-phenyl­quinoxalin-2-one C23H28N2O, (I)[link]. Besides the synthesis, we also report the mol­ecular and crystal structures along with a Hirshfeld surface analysis and a density functional theory computational calculation carried out at the B3LYP/6–311G(d,p) level.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit (Fig. 1[link]). The mol­ecule is not planar, as indicated by the torsion angles C1—C2—C18—C23 [−18.6 (3)°] and N2—C2—C18—C19 [−17.3 (3)°]. The best plane of the phenyl ring C18–C23 (r.m.s. deviation = 0.006 Å) makes a dihedral angle of 20.40 (9)° with the best plane of the quinoxaline ring system N1/C1/C2/N2/C3–C8 (r.m.s. deviation = 0.029 Å). This allows two intra­molecular inter­actions C23—H23⋯O1 and C19—H19⋯N2 (Table 1[link]). The n-nonyl chain attached to one of the nitro­gen atoms of the quinoxaline ring system shows disorder and was refined with a double conformation for atoms C13 to C16 with occupancies of 0.604 (11) for C12A–C16A and 0.396 (11) for C12B–C16B. The n-nonyl chain of set A (starting from C9) has a ap, ap, ap, +sc, ap, ap, ap conformation, while for set B the conformation can be describes as ap, ap, ap, −sc, ap, −sc, ap.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N2 0.93 2.44 2.758 (3) 100
C23—H23⋯O1 0.93 2.21 2.832 (3) 123
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom-labelling scheme and ellipsoids drawn at the 50% probability level. The disordered component of the n-nonyl chain with occupancy 0.396 (11) is shown in green.

3. Supra­molecular features and Hirshfeld surface analysis

The crystal packing is characterized by C9—H9B⋯O1 inter­actions [Fig. 2[link]; H9B⋯O1i = 2.772 Å; symmetry code: (i) 1 + x, y, z] resulting in ribbon formation in the a-axis direction. Parallel ribbons show short C9—H9A⋯O1 contacts [Fig. 3[link]; H9A⋯O1ii = 2.899 Å; symmetry code: (ii) 1 − x, 1 − y, 1 − z]. The crystal packing shows layers of n-nonyl chains parallel to the (110) plane with layers of rings in between. Despite the presence of aromatic rings, the packing shows no C—H⋯π or ππ inter­actions [the shortest centroid–centroid distance is 3.8945 (15) Å for rings N1/N2/C1–C3/C8 and C18–C23]. The unit cell contains no residual solvent-accessible voids.

[Figure 2]
Figure 2
Partial view of the crystal packing of the title compound showing the C—H⋯O inter­action (red dashed lines) and chain formation in the a-axis direction. Only the major component of the n-nonyl chain is shown. Symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z.
[Figure 3]
Figure 3
A view down the a axis of the crystal packing of the title compound showing the alternating layers of n-octyl chains and aromatic rings. Only the major disorder component of the n-nonyl chain is shown.

The CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to further investigate and visualize the inter­molecular inter­actions of (I)[link]. The Hirshfeld surfaces for the major and minor occupancy components plotted over dnorm are shown in Fig. 4[link]. The Hirshfeld surface of the major component (Fig. 4[link]a) is dominated by white regions representing contacts equal to the van der Waals separation and shows only one red spot (close contacts with a negative dnorm value) indicative of a H16B⋯H16Biii contact [1.995 Å; symmetry code: (iii) 2 − x, 2 − y, 2 − z]. A similar observation is made for the minor component (Fig. 4[link]b) where the tiny red spot represents a H15B⋯H13Bi contact (2.316 Å).

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface plotted over dnorm for (a) the major component (range −0.3582 to 1.3718 a.u.) and (b) the minor component (range −0.0395 to 1.5398 a.u.) of the title compound.

The overall two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) for the two components are shown in Fig. 5[link]a and b, while those delineated into H⋯H and H⋯C/C⋯H contacts are illustrated in Fig. 5[link]cf, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 70.6% (major component) or 70.5% (minor component) to the overall crystal packing, which is reflected in Fig. 5[link]c and d as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with a sharp tip at de = di = 0.87 Å in the case of the major component. The second most important are C—H inter­actions, contributing 15.5% (major component) or 15.6% (minor component), for which the fingerprint plot (Fig. 5[link]e and f) shows characteristic wings with tips at de + di ≃ 2.80 Å. Other contacts contribute only 4.6% (H⋯O/O⋯H), 4.3% (C⋯C), 2.4% (H⋯N/N⋯H), 2.2% (N⋯C/C⋯N), 0.3% (O⋯O) and 0.1% (O⋯C/C⋯O) to the Hirshfeld surface.

[Figure 5]
Figure 5
The full two-dimensional fingerprint plots showing (a,b) all inter­actions, and delineated into (c,d) H⋯H and (e,f) H⋯C/C⋯H inter­actions for the major (left) and minor (right) component of the title compound. The di and de values are the closest inter­nal and external distances (in Å) from points on the Hirshfeld surface.

4. Density functional theory calculations

The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis-set, which is based on Becke's model (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) and considers a mixture of the exact (Hartree–Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the GAUSSIAN 09 program (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. pp. A02 Gaussian Inc, Wallingford, CT, USA.]). Theoretical and experimental results related to bond lengths and angles, which are in good agreement, are summarized in Table 2[link]. Calculated numerical values for the title compound, including electronegativity (χ), hardness (η), ionization potential (I), dipole moment (μ), electron affinity (A), electrophilicity (ω) and softness (σ), are collated in Table 3[link]. The electron transition from the highest occupied mol­ecular orbital (HOMO) to the lowest unoccupied mol­ecular orbital (LUMO) energy level is shown in Fig. 6[link]. The HOMO and LUMO are localized in the plane extending over the whole 1-nonyl-3-phenyl­quinoxalin-2-one system. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 3.8904 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO, are −6.1155 and −2.2251 eV, respectively.

Table 2
Comparison (X-ray and density functional theory) of selected bond lengths and angles (Å, °)

  X-ray B3LYP/6–311G(d,p)
O1—C1 1.221 (3) 1.2236
N1—C1 1.379 (3) 1.3975
N1—C8 1.387 (3) 1.3892
N1—C9 1.474 (3) 1.4735
N2—C2 1.296 (3) 1.299
N2—C3 1.384 (3) 1.3723
C2—C18 1.481 (3) 1.4862
C1—N1—C8 122.74 (19) 122.5778
C1—N1—C9 116.64 (19) 116.1328
C8—N1—C9 120.60 (19) 121.2682
O1—C1—N1 120.6 (2) 120.2255
O1—C1—C2 124.1 (2) 124.5602
N1—C1—C2 115.22 (19) 115.2104
C2—N2—C3 120.3 (2) 120.949
N2—C2—C1 122.0 (2) 121.844
N2—C2—C18 117.6 (2) 117.4937
N2—C3—C4 118.7 (2) 118.5343
N2—C3—C8 121.6 (2) 121.9008
N1—C8—C3 117.6 (2) 117.4153
N1—C8—C7 123.5 (2) 123.4308
N1—C9—C10 112.61 (19) 112.9655

Table 3
Calculated energies

Mol­ecular Energy Compound (I)
Total Energy, TE (eV) −29343.5617
EHOMO (eV) −6.1155
ELUMO (eV) −2.2251
Gap, ΔE (eV) 3.8904
Dipole moment, μ (Debye) 3.0783
Ionization potential, I (eV) 6.1155
Electron affinity, A 2.2251
Electronegativity, χ 4.1703
Hardness, η 1.9452
Electrophilicity index, ω 4.4703
Softness, σ 0.5141
Fraction of electron transferred, ΔN 0.7274
[Figure 6]
Figure 6
HOMO-LUMO and the energy band gap of the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the quinoxalin-2(1H)-one fragment yielded multiple matches (180 hits). Of these, three compounds had an alkyl substituent on N1 and a phenyl ring on C2 comparable to (I)[link] and are shown in Fig. 7[link]. The first two compounds carry an ethyl [(II), refcode MAGBIJ; Al Ati et al., 2021[Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18-22.]] or methyl [(III), refcode BUDMAP; Benzeid et al., 2009[Benzeid, H., Essassi, E. M., Saffon, N., Garrigues, B. & Ng, S. W. (2009). Acta Cryst. E65, o2323.]] on N1. The third one [(IV), refcode ASAZEC; Abad, Ferfra et al., 2021[Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 173-175.]] has an n-octyl chain on N1 instead of a n-nonyl chain. The phenyl ring in MAGBIJ is inclined to the quinoxaline ring system by 25.81 (12)°. For BUDMAP, the dihedral angles are 19.3 (1) and 30.4 (1)° for the two mol­ecules present in the asymmetric unit. For ASAZEC, the dihedral angle is 12.90 (4)° and no disorder is observed in the n-octyl chain, which could be the consequence of the data collection being undertaken at 150 (2) K. Despite the similarity to the title compound, ASAZEC crystallizes in space group C2/c and the mol­ecules are linked by C—H⋯π inter­actions and form stacks in the b-axis direction.

[Figure 7]
Figure 7
Structures similar to (I)[link]: (II) (CSD refcode MAGBIJ), (III) (CSD refcode BUDMAP) and (IV) (CSD refcode ASAZEC) obtained during the database search. The search fragment is indicated in blue.

6. Synthesis and crystallization

To a solution of 3-phenyl­quinoxalin-2(1H)-one (0.5 g, 2.25 mmol) in di­chloro­methane (20 ml) were added 1-chloro­nonane (0.2 ml, 2.25 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent. The solid obtained was recrystallized from ethanol to afford colourless crystals (yield: 70%). 1H NMR (300 MHz, CDCl3) δ ppm: 0.89 (t, 3H, CH3, J = 6 Hz); 1.19–1.42 (m, 12H, CH2); 1.65–1.76 (quin, 2H, N—CH2—CH2); 4.20 (t, 2H, N—CH2, J = 6 Hz); 7.22–8.24 (m, 9H, CHarom); 13C NMR (75 MHz, CDCl3) δ ppm: 14.12 (CH3); 22.67, 27.11, 27.32, 29.24, 29.36, 29.51, 31.85 (CH2); 42.68 (N—CH2); 113.59, 123.49, 128.05, 129.63, 130.22, 130.28, 130.72 (CHarom); 132.61, 133.42, 136.14, 154.11 (Cq); 154.40 (C=O).

7. Refinement

Crystal data, data collection and structure refinement details are given in Table 4[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2 times Ueq of the parent atoms (1.5 for methyl groups). During the refinement, the difference-Fourier map revealed disorder for atoms C13, C14 and C15 of the nonyl chain and two conformations were refined with distance restraints (1.512 Å) for the C—C bonds involved and RIGU restraints for the nonyl chain C11–C17. At the end of the refinement, the occupancy factors of the two components converged to 0.604 (11) and 0.396 (11) and the final difference-Fourier map showed no residual peaks of chemical significance.

Table 4
Experimental details

Crystal data
Chemical formula C23H28N2O
Mr 348.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.2353 (2), 13.5065 (5), 14.3158 (5)
α, β, γ (°) 98.045 (3), 98.327 (3), 91.255 (3)
V3) 990.83 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.45 × 0.3 × 0.15
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.686, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20242, 4058, 2864
Rint 0.022
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.240, 1.05
No. of reflections 4058
No. of parameters 264
No. of restraints 70
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.45
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-Nonyl-3-phenylquinoxalin-2-one top
Crystal data top
C23H28N2OZ = 2
Mr = 348.47F(000) = 376
Triclinic, P1Dx = 1.168 Mg m3
a = 5.2353 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5065 (5) ÅCell parameters from 6605 reflections
c = 14.3158 (5) Åθ = 3.0–26.4°
α = 98.045 (3)°µ = 0.07 mm1
β = 98.327 (3)°T = 293 K
γ = 91.255 (3)°Block, colourless
V = 990.83 (6) Å30.45 × 0.3 × 0.15 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
4058 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2864 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1616
Tmin = 0.686, Tmax = 1.000l = 1717
20242 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.240 w = 1/[σ2(Fo2) + (0.1119P)2 + 0.4832P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4058 reflectionsΔρmax = 0.37 e Å3
264 parametersΔρmin = 0.45 e Å3
70 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3177 (4)0.43358 (13)0.55347 (14)0.0685 (5)
N10.6712 (4)0.35716 (13)0.61382 (14)0.0498 (5)
C10.4408 (5)0.35784 (17)0.55355 (17)0.0510 (5)
N20.4810 (4)0.17973 (14)0.50005 (14)0.0527 (5)
C20.3592 (4)0.26106 (16)0.49062 (16)0.0489 (5)
C30.6998 (5)0.18102 (17)0.56737 (17)0.0516 (6)
C40.8245 (5)0.09152 (19)0.5763 (2)0.0625 (7)
H40.7552880.0321530.5395940.075*
C51.0489 (6)0.0911 (2)0.6392 (2)0.0698 (7)
H51.1317440.0315530.6448890.084*
C61.1516 (5)0.1794 (2)0.6940 (2)0.0672 (7)
H61.3052320.1787770.7356510.081*
C71.0310 (5)0.2677 (2)0.68807 (18)0.0594 (6)
H71.1009280.3260250.7265300.071*
C80.8032 (4)0.27050 (17)0.62436 (16)0.0497 (5)
C90.7704 (5)0.45374 (17)0.66992 (17)0.0547 (6)
H9A0.7117020.5074520.6347750.066*
H9B0.9577210.4559550.6782260.066*
C100.6832 (5)0.47073 (19)0.76690 (18)0.0606 (6)
H10A0.4980840.4790280.7586940.073*
H10B0.7177770.4121210.7981200.073*
C110.8169 (6)0.5614 (2)0.8298 (2)0.0745 (8)
H11A0.7983340.6184370.7954590.089*
H11B0.9998630.5498190.8434100.089*
C120.7119 (8)0.5865 (3)0.9237 (2)0.0978 (11)
H12C0.7745770.5393370.9660600.117*0.396 (11)
H12D0.5248150.5791720.9117030.117*0.396 (11)
H12A0.5550950.6225460.9114690.117*0.604 (11)
H12B0.6636090.5241430.9441830.117*0.604 (11)
C13B0.791 (3)0.6928 (9)0.9730 (12)0.143 (6)0.396 (11)
H13A0.7335120.7381510.9281550.172*0.396 (11)
H13B0.6949880.7066151.0260280.172*0.396 (11)
C14B1.067 (3)0.7193 (11)1.0101 (13)0.178 (8)0.396 (11)
H14A1.1445350.7241510.9532710.214*0.396 (11)
H14B1.1319990.6590831.0330950.214*0.396 (11)
C15B1.203 (5)0.8041 (10)1.0834 (14)0.213 (9)0.396 (11)
H15A1.1159710.8095531.1391370.255*0.396 (11)
H15B1.3779510.7846351.1030840.255*0.396 (11)
C13A0.8860 (18)0.6470 (6)1.0052 (4)0.108 (3)0.604 (11)
H13C0.8038870.6533641.0621290.129*0.604 (11)
H13D1.0466760.6135501.0180240.129*0.604 (11)
C14A0.9394 (19)0.7469 (5)0.9806 (5)0.109 (3)0.604 (11)
H14C0.7785830.7788770.9633920.130*0.604 (11)
H14D1.0338280.7413130.9267360.130*0.604 (11)
C15A1.095 (3)0.8071 (7)1.0650 (5)0.151 (4)0.604 (11)
H15C0.9834930.8206081.1134870.182*0.604 (11)
H15D1.2295280.7653331.0896660.182*0.604 (11)
C161.2192 (15)0.9031 (5)1.0549 (5)0.208 (3)
H16C1.0474550.9278861.0407400.250*0.396 (11)
H16D1.3020780.9002300.9982690.250*0.396 (11)
H16A1.3315500.8881141.0069730.250*0.604 (11)
H16B1.0831930.9427641.0276650.250*0.604 (11)
C171.3710 (9)0.9691 (3)1.1345 (4)0.1294 (16)
H17A1.3530161.0374311.1241550.194*
H17B1.5496890.9530421.1385690.194*
H17C1.3098950.9599401.1929110.194*
C180.1379 (5)0.25620 (17)0.41263 (17)0.0517 (6)
C190.1175 (6)0.1751 (2)0.33936 (19)0.0663 (7)
H190.2422430.1271650.3407500.080*
C200.0844 (6)0.1652 (2)0.2653 (2)0.0780 (8)
H200.0948420.1106120.2172130.094*
C210.2709 (6)0.2351 (2)0.2615 (2)0.0749 (8)
H210.4087850.2275440.2118430.090*
C220.2513 (5)0.3164 (2)0.3319 (2)0.0680 (7)
H220.3751430.3646460.3289080.082*
C230.0503 (5)0.32754 (19)0.40714 (19)0.0574 (6)
H230.0403800.3828800.4543500.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0726 (11)0.0453 (9)0.0818 (13)0.0079 (8)0.0004 (9)0.0005 (8)
N10.0560 (11)0.0410 (10)0.0511 (11)0.0013 (8)0.0092 (9)0.0018 (8)
C10.0567 (13)0.0449 (12)0.0511 (13)0.0017 (10)0.0094 (10)0.0046 (10)
N20.0590 (11)0.0431 (10)0.0556 (11)0.0006 (8)0.0100 (9)0.0046 (8)
C20.0544 (12)0.0427 (11)0.0506 (12)0.0014 (9)0.0124 (10)0.0058 (9)
C30.0596 (13)0.0458 (12)0.0503 (13)0.0015 (10)0.0110 (10)0.0071 (10)
C40.0740 (16)0.0466 (13)0.0672 (16)0.0068 (12)0.0115 (13)0.0079 (11)
C50.0749 (17)0.0602 (16)0.0772 (18)0.0160 (13)0.0096 (14)0.0203 (14)
C60.0635 (15)0.0762 (18)0.0627 (16)0.0087 (13)0.0034 (12)0.0179 (13)
C70.0627 (14)0.0593 (15)0.0545 (14)0.0002 (11)0.0060 (11)0.0058 (11)
C80.0567 (13)0.0466 (12)0.0480 (12)0.0014 (10)0.0143 (10)0.0083 (9)
C90.0591 (13)0.0446 (12)0.0574 (14)0.0047 (10)0.0057 (11)0.0014 (10)
C100.0643 (15)0.0564 (14)0.0583 (15)0.0017 (11)0.0083 (12)0.0000 (11)
C110.0707 (17)0.0774 (18)0.0667 (16)0.0048 (14)0.0051 (13)0.0135 (14)
C120.110 (3)0.101 (2)0.075 (2)0.001 (2)0.0198 (18)0.0184 (18)
C13B0.185 (12)0.124 (9)0.100 (11)0.017 (9)0.017 (8)0.049 (8)
C14B0.234 (15)0.157 (11)0.116 (11)0.097 (12)0.048 (11)0.019 (9)
C15B0.204 (19)0.152 (8)0.249 (18)0.094 (11)0.037 (13)0.073 (8)
C13A0.143 (6)0.120 (5)0.054 (3)0.002 (4)0.009 (3)0.004 (3)
C14A0.128 (7)0.119 (5)0.067 (4)0.024 (4)0.009 (4)0.015 (3)
C15A0.192 (11)0.174 (7)0.070 (4)0.062 (6)0.028 (5)0.047 (4)
C160.213 (7)0.174 (5)0.206 (7)0.081 (5)0.012 (5)0.051 (5)
C170.123 (3)0.099 (3)0.146 (4)0.008 (2)0.013 (3)0.015 (3)
C180.0560 (13)0.0455 (12)0.0544 (13)0.0054 (10)0.0102 (10)0.0089 (10)
C190.0733 (17)0.0538 (14)0.0655 (16)0.0023 (12)0.0016 (13)0.0008 (12)
C200.086 (2)0.0679 (18)0.0694 (18)0.0039 (15)0.0073 (15)0.0054 (14)
C210.0684 (17)0.081 (2)0.0702 (18)0.0068 (15)0.0100 (14)0.0153 (15)
C220.0617 (15)0.0711 (17)0.0718 (17)0.0044 (13)0.0051 (13)0.0174 (14)
C230.0570 (13)0.0554 (13)0.0616 (14)0.0001 (11)0.0122 (11)0.0114 (11)
Geometric parameters (Å, º) top
O1—C11.221 (3)C7—C81.397 (3)
C13Bb—H13A0.9700C9—H9A0.9700
C13Bb—H13B0.9700C9—H9B0.9700
C13Bb—C14B1.482 (10)C9—C101.512 (3)
C14Bb—H14A0.9700C10—H10A0.9700
C14Bb—H14B0.9700C10—H10B0.9700
C14Bb—C15B1.527 (9)C10—C111.507 (4)
C15Bb—H15A0.9700C11—H11A0.9700
C15Bb—H15B0.9700C11—H11B0.9700
C13Aa—H13C0.9700C11—C121.523 (4)
C13Aa—H13D0.9700C12—H12C0.9700
C13Aa—C14A1.472 (8)C12—H12D0.9700
C14Aa—H14C0.9700C12—H12A0.9700
C14Aa—H14D0.9700C12—H12B0.9700
C14Aa—C15A1.481 (7)C12—C13B1.528 (9)
C15Aa—H15C0.9700C12—C13A1.500 (6)
C15Aa—H15D0.9700C16—H16C0.9700
C15Bb—C161.456 (10)C16—H16D0.9700
C15Aa—C161.473 (5)C16—H16A0.9700
N1—C11.379 (3)C16—H16B0.9700
N1—C81.387 (3)C16—C171.466 (7)
N1—C91.474 (3)C17—H17A0.9600
C1—C21.496 (3)C17—H17B0.9600
N2—C21.296 (3)C17—H17C0.9600
N2—C31.384 (3)C18—C191.397 (3)
C2—C181.481 (3)C18—C231.395 (3)
C3—C41.399 (3)C19—H190.9300
C3—C81.410 (3)C19—C201.375 (4)
C4—H40.9300C20—H200.9300
C4—C51.373 (4)C20—C211.374 (4)
C5—H50.9300C21—H210.9300
C5—C61.385 (4)C21—C221.374 (4)
C6—H60.9300C22—H220.9300
C6—C71.369 (4)C22—C231.382 (4)
C7—H70.9300C23—H230.9300
C1—N1—C8122.74 (19)C15Bb—C16—C17107.4 (8)
C14Aa—C13Aa—C12109.4 (6)N1—C8—C7123.5 (2)
C14Bb—C13Bb—C12119.6 (10)C7—C8—C3118.9 (2)
C14Bb—C13Bb—H13A107.4N1—C9—H9A109.1
H13Ab—C13Bb—H13B106.9N1—C9—H9B109.1
C14Bb—C13Bb—H13B107.4N1—C9—C10112.61 (19)
C13Bb—C14Bb—H14A104.0H9A—C9—H9B107.8
C1—N1—C9116.64 (19)C10—C9—H9A109.1
C8—N1—C9120.60 (19)C10—C9—H9B109.1
O1—C1—N1120.6 (2)C9—C10—H10A109.1
O1—C1—C2124.1 (2)C9—C10—H10B109.1
C15Bb—C14Bb—H14A104.0H10A—C10—H10B107.8
H14Ab—C14Bb—H14B105.4C11—C10—C9112.5 (2)
C13Bb—C14Bb—H14B104.0C11—C10—H10A109.1
C15Bb—C14Bb—H14B104.0C11—C10—H10B109.1
C13Bb—C14Bb—C15B133.0 (17)C10—C11—H11A108.9
C14Bb—C15Bb—H15A107.9C10—C11—H11B108.9
C14Bb—C15Bb—H15B107.9C10—C11—C12113.5 (3)
H15Ab—C15Bb—H15B107.2H11A—C11—H11B107.7
N1—C1—C2115.22 (19)C12—C11—H11A108.9
C2—N2—C3120.3 (2)C12—C11—H11B108.9
N2—C2—C1122.0 (2)C11—C12—H12C109.1
N2—C2—C18117.6 (2)C11—C12—H12D109.1
C18—C2—C1120.4 (2)C11—C12—H12A107.9
N2—C3—C4118.7 (2)C11—C12—H12B107.9
N2—C3—C8121.6 (2)C11—C12—C13B112.6 (8)
C4—C3—C8119.7 (2)C17—C16—C15A123.6 (7)
C3—C4—H4119.9C17—C16—H16C110.2
C5—C4—C3120.2 (2)C12—C13Bb—H13A107.4
C5—C4—H4119.9C12—C13Bb—H13B107.4
C14Aa—C13Aa—H13C109.8C12—C13Aa—H13C109.8
C14Aa—C13Aa—H13D109.8C12—C13Aa—H13D109.8
H13Ca—C13Aa—H13D108.2C16—C15Bb—C14B117.8 (12)
C13Aa—C14Aa—H14C110.1C17—C16—H16D110.2
C15Aa—C14Aa—H14C110.1C17—C16—H16A106.4
C15Aa—C14Aa—H14D110.1C17—C16—H16B106.4
H14Ca—C14Aa—H14D108.4C16—C17—H17A109.5
C13Aa—C14Aa—H14D110.1C16—C17—H17B109.5
C13Aa—C14Aa—C15A108.0 (6)C16—C17—H17C109.5
C14Aa—C15Aa—H15C107.4H17A—C17—H17B109.5
C14Aa—C15Aa—H15D107.4H17A—C17—H17C109.5
C4—C5—H5120.1H17B—C17—H17C109.5
C4—C5—C6119.9 (2)C19—C18—C2117.8 (2)
C6—C5—H5120.1C23—C18—C2124.4 (2)
C5—C6—H6119.4C23—C18—C19117.9 (2)
C7—C6—C5121.2 (3)C18—C19—H19119.5
C7—C6—H6119.4C20—C19—C18120.9 (3)
C6—C7—H7119.9C20—C19—H19119.5
C6—C7—C8120.2 (2)C19—C20—H20119.7
C8—C7—H7119.9C21—C20—C19120.6 (3)
N1—C8—C3117.6 (2)C21—C20—H20119.7
H15Ca—C15Aa—H15D107.0C20—C21—H21120.4
C13Aa—C12—C11117.4 (5)C22—C21—C20119.3 (3)
C13Bb—C12—H12C109.1C22—C21—H21120.4
H12Cb—C12—H12D107.8C21—C22—H22119.5
C13Bb—C12—H12D109.1C21—C22—C23121.0 (3)
C13Aa—C12—H12A107.9C23—C22—H22119.5
C13Aa—C12—H12B107.9C18—C23—H23119.8
H12Aa—C12—H12B107.2C22—C23—C18120.3 (3)
C15Bb—C16—H16C110.2C22—C23—H23119.8
C15Bb—C16—H16D110.2C16—C15Bb—H15A107.9
H16Cb—C16—H16D108.5C16—C15Bb—H15B107.9
C15Aa—C16—H16A106.4C16—C15Aa—C14A119.5 (7)
H16Aa—C16—H16B106.5C16—C15Aa—H15C107.4
C15Aa—C16—H16B106.4C16—C15Aa—H15D107.4
C13Aa—C14Aa—C15Aa—C16168.0 (12)C4—C3—C8—C70.7 (4)
C13Bb—C14Bb—C15Bb—C1676 (3)C4—C5—C6—C71.1 (4)
C14Bb—C15Bb—C16—C17176.5 (18)C5—C6—C7—C81.4 (4)
C14Aa—C15Aa—C16—C17178.4 (9)C6—C7—C8—N1179.5 (2)
O1—C1—C2—N2172.5 (2)C6—C7—C8—C30.5 (4)
O1—C1—C2—C189.4 (4)C8—N1—C1—O1172.5 (2)
N1—C1—C2—N27.6 (3)C8—N1—C1—C27.6 (3)
N1—C1—C2—C18170.52 (19)C8—N1—C9—C1086.1 (3)
N1—C9—C10—C11171.1 (2)C8—C3—C4—C51.1 (4)
C1—N1—C8—C32.8 (3)C9—N1—C1—O15.8 (3)
C1—N1—C8—C7177.2 (2)C9—N1—C1—C2174.13 (19)
C1—N1—C9—C1092.3 (3)C9—N1—C8—C3179.0 (2)
C1—C2—C18—C19160.9 (2)C9—N1—C8—C71.0 (3)
C1—C2—C18—C2318.6 (3)C9—C10—C11—C12173.8 (3)
N2—C2—C18—C1917.3 (3)C10—C11—C12—C13Aa157.2 (5)
N2—C2—C18—C23163.2 (2)C10—C11—C12—C13Bb163.5 (7)
N2—C3—C4—C5176.9 (2)C11—C12—C13Bb—C14Bb66.5 (19)
N2—C3—C8—N12.9 (3)C11—C12—C13Aa—C14Aa64.2 (9)
N2—C3—C8—C7177.2 (2)C12—C13Aa—C14Aa—C15Aa175.8 (8)
C2—N2—C3—C4179.2 (2)C12—C13Bb—C14Bb—C15Bb160.7 (14)
C2—N2—C3—C82.8 (3)C18—C19—C20—C210.1 (5)
C2—C18—C19—C20179.3 (3)C19—C18—C23—C221.0 (4)
C2—C18—C23—C22179.5 (2)C19—C20—C21—C221.1 (5)
C3—N2—C2—C12.5 (3)C20—C21—C22—C231.3 (5)
C3—N2—C2—C18175.63 (19)C21—C22—C23—C180.3 (4)
C3—C4—C5—C60.2 (4)C23—C18—C19—C201.2 (4)
C4—C3—C8—N1179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N20.932.442.758 (3)100
C23—H23···O10.932.212.832 (3)123
Comparison (X-ray and density functional theory) of selected bond lengths and angles (Å, °) top
X-rayB3LYP/6–311G(d,p)
O1—C11.221 (3)1.2236
N1—C11.379 (3)1.3975
N1—C81.387 (3)1.3892
N1—C91.474 (3)1.4735
N2—C21.296 (3)1.299
N2—C31.384 (3)1.3723
C2—C181.481 (3)1.4862
C1—N1—C8122.74 (19)122.5778
C1—N1—C9116.64 (19)116.1328
C8—N1—C9120.60 (19)121.2682
O1—C1—N1120.6 (2)120.2255
O1—C1—C2124.1 (2)124.5602
N1—C1—C2115.22 (19)115.2104
C2—N2—C3120.3 (2)120.949
N2—C2—C1122.0 (2)121.844
N2—C2—C18117.6 (2)117.4937
N2—C3—C4118.7 (2)118.5343
N2—C3—C8121.6 (2)121.9008
N1—C8—C3117.6 (2)117.4153
N1—C8—C7123.5 (2)123.4308
N1—C9—C10112.61 (19)112.9655
Calculated energies top
Molecular EnergyCompound (I)
Total Energy, TE (eV)-29343.5617
EHOMO (eV)-6,1155
ELUMO (eV)-2,2251
Gap, ΔE (eV)3.8904
Dipole moment, µ (Debye)3.0783
Ionization potential, I (eV)6.1155
Electron affinity, A2.2251
Electronegativity, χ4.1703
Hardness, η1.9452
Electrophilicity index, ω4.4703
Softness, σ0.5141
Fraction of electron transferred, ΔN0.7274
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, NA; methodology, NA and YR; investigation, KC and NA; theoretical calculations, KC; writing (original draft), KC and LVM; writing (review and editing of the manuscript), FHAO; formal analysis, SL and SF; supervision, EME; crystal-structure determination and validation, LVM.

Funding information

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAbad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 173–175.  CSD CrossRef CAS Google Scholar
First citationAbad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021). J. Mol. Struct. 1232, 130004.  CSD CrossRef Google Scholar
First citationAl Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBenzeid, H., Essassi, E. M., Saffon, N., Garrigues, B. & Ng, S. W. (2009). Acta Cryst. E65, o2323.  CSD CrossRef IUCr Journals Google Scholar
First citationBouzian, Y., Sert, Y., Khalid, K., Van Meervelt, L., Chkirate, K., Mahi, L., Ahabchane, N. H., Talbaoui, A. & Essassi, E. M. (2021). J. Mol. Struct. 1246, 131217.  CSD CrossRef Google Scholar
First citationCarta, A., Loriga, M., Zanetti, S. & Sechi, L. A. (2003). Farmaco, 58, 1251–1255.  CrossRef PubMed CAS Google Scholar
First citationCarta, A., Sanna, P., Loriga, M., Setzu, M. G., La Colla, P. & Loddo, R. (2002). Farmaco, 57, 19–25.  CrossRef PubMed CAS Google Scholar
First citationChkirate, K., Akachar, J., Hni, B., Hökelek, T., Anouar, E. H., Talbaoui, A., Mague, J. T., Sebbar, N. K., Ibrahimi, A. & Essassi, E. M. (2022). J. Mol. Struct. 1247, 131188.  CSD CrossRef Google Scholar
First citationChkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750.  Web of Science CrossRef Google Scholar
First citationChkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21–28.  Web of Science CSD CrossRef Google Scholar
First citationChkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., El Abbes Faouzi, M., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28.  CSD CrossRef CAS PubMed Google Scholar
First citationChkirate, K., Karrouchi, K., Dege, N., Kheira Sebbar, N., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221.  CSD CrossRef CAS Google Scholar
First citationCorona, P., Loriga, M., Costi, M. P., Ferrari, S. & Paglietti, G. (2008). Eur. J. Med. Chem. 43, 189–203.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. pp. A02 Gaussian Inc, Wallingford, CT, USA.  Google Scholar
First citationGalal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122–132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds