research communications
Hirshfeld surface analysis and density functional theory study of 1-nonyl-3-phenylquinoxalin-2-one
aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Biochemistry, Faculty of Education & Science, AlBaydha University, Yemen, cKU Leuven, Chemistry Department, Celestijnenlaan 200F box 2404, Leuven (Heverlee), B-3001, Belgium, and dLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of, Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: faresalostoot@gmail.com
In the title molecule, C23H28N2O, the phenyl ring is inclined to the quinoxaline ring system at a dihedral angle of 20.40 (9)°. In the crystal, C—H⋯O interactions between neighbouring molecules form chains along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (70.6%), H⋯C/C⋯H (15.5%) and H⋯O/O⋯H (4.6%) interactions. The optimized structure calculated using density functional theory at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap is 3.8904 eV. Part of the n-nonyl chain attached to one of the nitrogen atoms of the quinoxaline ring system shows disorder and was refined with a double conformation with occupancies of 0.604 (11) and 0.396 (11).
Keywords: crystal structure; density functional theory; quinoxaline; hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 2110486
1. Chemical context
Nitrogen-based structures have attracted increased attention in structural and inorganic chemistry in recent years because of their interesting properties (Chkirate et al., 2019, 2020a,b, 2021, 2022; Bouzian et al., 2021). The family of quinoxalines, particularly those containing the quinoxalin-2-one moiety, is important in medicinal chemistry because of their wide range of pharmacological applications, including their use as anti-tumor active agents (Galal et al., 2014), and their antimicrobial (Carta et al., 2003) and biological (Carta et al., 2002) activity. In particular, 3-phenylquinoxaline derivatives are used as anti-cancer drugs (Abad, Sallam et al., 2021). They also have anti-folate activities (Corona et al., 2008). Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out on the synthesis of compounds resulting from quinoxalin-2-one (Al Ati et al., 2021), a similar approach gave the title compound, 1-nonyl-3-phenylquinoxalin-2-one C23H28N2O, (I). Besides the synthesis, we also report the molecular and crystal structures along with a Hirshfeld surface analysis and a density functional theory computational calculation carried out at the B3LYP/6–311G(d,p) level.
2. Structural commentary
The title compound crystallizes in the triclinic P with one molecule in the (Fig. 1). The molecule is not planar, as indicated by the torsion angles C1—C2—C18—C23 [−18.6 (3)°] and N2—C2—C18—C19 [−17.3 (3)°]. The best plane of the phenyl ring C18–C23 (r.m.s. deviation = 0.006 Å) makes a dihedral angle of 20.40 (9)° with the best plane of the quinoxaline ring system N1/C1/C2/N2/C3–C8 (r.m.s. deviation = 0.029 Å). This allows two intramolecular interactions C23—H23⋯O1 and C19—H19⋯N2 (Table 1). The n-nonyl chain attached to one of the nitrogen atoms of the quinoxaline ring system shows disorder and was refined with a double conformation for atoms C13 to C16 with occupancies of 0.604 (11) for C12A–C16A and 0.396 (11) for C12B–C16B. The n-nonyl chain of set A (starting from C9) has a ap, ap, ap, +sc, ap, ap, ap conformation, while for set B the conformation can be describes as ap, ap, ap, −sc, ap, −sc, ap.
|
3. Supramolecular features and Hirshfeld surface analysis
The crystal packing is characterized by C9—H9B⋯O1 interactions [Fig. 2; H9B⋯O1i = 2.772 Å; symmetry code: (i) 1 + x, y, z] resulting in ribbon formation in the a-axis direction. Parallel ribbons show short C9—H9A⋯O1 contacts [Fig. 3; H9A⋯O1ii = 2.899 Å; symmetry code: (ii) 1 − x, 1 − y, 1 − z]. The crystal packing shows layers of n-nonyl chains parallel to the (110) plane with layers of rings in between. Despite the presence of aromatic rings, the packing shows no C—H⋯π or π–π interactions [the shortest centroid–centroid distance is 3.8945 (15) Å for rings N1/N2/C1–C3/C8 and C18–C23]. The contains no residual solvent-accessible voids.
The CrystalExplorer program (Turner et al., 2017) was used to further investigate and visualize the intermolecular interactions of (I). The Hirshfeld surfaces for the major and minor occupancy components plotted over dnorm are shown in Fig. 4. The Hirshfeld surface of the major component (Fig. 4a) is dominated by white regions representing contacts equal to the van der Waals separation and shows only one red spot (close contacts with a negative dnorm value) indicative of a H16B⋯H16Biii contact [1.995 Å; symmetry code: (iii) 2 − x, 2 − y, 2 − z]. A similar observation is made for the minor component (Fig. 4b) where the tiny red spot represents a H15B⋯H13Bi contact (2.316 Å).
The overall two-dimensional fingerprint plots (McKinnon et al., 2007) for the two components are shown in Fig. 5a and b, while those delineated into H⋯H and H⋯C/C⋯H contacts are illustrated in Fig. 5c–f, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 70.6% (major component) or 70.5% (minor component) to the overall crystal packing, which is reflected in Fig. 5c and d as widely scattered points of high density due to the large hydrogen content of the molecule, with a sharp tip at de = di = 0.87 Å in the case of the major component. The second most important are C—H interactions, contributing 15.5% (major component) or 15.6% (minor component), for which the fingerprint plot (Fig. 5e and f) shows characteristic wings with tips at de + di ≃ 2.80 Å. Other contacts contribute only 4.6% (H⋯O/O⋯H), 4.3% (C⋯C), 2.4% (H⋯N/N⋯H), 2.2% (N⋯C/C⋯N), 0.3% (O⋯O) and 0.1% (O⋯C/C⋯O) to the Hirshfeld surface.
4. Density functional theory calculations
The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis-set, which is based on Becke's model (Becke, 1993) and considers a mixture of the exact (Hartree–Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the GAUSSIAN 09 program (Frisch et al., 2009). Theoretical and experimental results related to bond lengths and angles, which are in good agreement, are summarized in Table 2. Calculated numerical values for the title compound, including (χ), hardness (η), (I), (μ), (A), (ω) and softness (σ), are collated in Table 3. The electron transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending over the whole 1-nonyl-3-phenylquinoxalin-2-one system. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 3.8904 eV, and the frontier molecular orbital energies, EHOMO and ELUMO, are −6.1155 and −2.2251 eV, respectively.
|
|
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.42, updated May 2021; Groom et al., 2016) for the quinoxalin-2(1H)-one fragment yielded multiple matches (180 hits). Of these, three compounds had an alkyl substituent on N1 and a phenyl ring on C2 comparable to (I) and are shown in Fig. 7. The first two compounds carry an ethyl [(II), refcode MAGBIJ; Al Ati et al., 2021] or methyl [(III), refcode BUDMAP; Benzeid et al., 2009] on N1. The third one [(IV), refcode ASAZEC; Abad, Ferfra et al., 2021] has an n-octyl chain on N1 instead of a n-nonyl chain. The phenyl ring in MAGBIJ is inclined to the quinoxaline ring system by 25.81 (12)°. For BUDMAP, the dihedral angles are 19.3 (1) and 30.4 (1)° for the two molecules present in the For ASAZEC, the dihedral angle is 12.90 (4)° and no disorder is observed in the n-octyl chain, which could be the consequence of the data collection being undertaken at 150 (2) K. Despite the similarity to the title compound, ASAZEC crystallizes in C2/c and the molecules are linked by C—H⋯π interactions and form stacks in the b-axis direction.
6. Synthesis and crystallization
To a solution of 3-phenylquinoxalin-2(1H)-one (0.5 g, 2.25 mmol) in dichloromethane (20 ml) were added 1-chlorononane (0.2 ml, 2.25 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic quantity of tetra-n-butylammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was chromatographed on a silica gel column using a hexane/ethyl acetate 9:1 mixture as The solid obtained was recrystallized from ethanol to afford colourless crystals (yield: 70%). 1H NMR (300 MHz, CDCl3) δ ppm: 0.89 (t, 3H, CH3, J = 6 Hz); 1.19–1.42 (m, 12H, CH2); 1.65–1.76 (quin, 2H, N—CH2—CH2); 4.20 (t, 2H, N—CH2, J = 6 Hz); 7.22–8.24 (m, 9H, CHarom); 13C NMR (75 MHz, CDCl3) δ ppm: 14.12 (CH3); 22.67, 27.11, 27.32, 29.24, 29.36, 29.51, 31.85 (CH2); 42.68 (N—CH2); 113.59, 123.49, 128.05, 129.63, 130.22, 130.28, 130.72 (CHarom); 132.61, 133.42, 136.14, 154.11 (Cq); 154.40 (C=O).
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2 times Ueq of the parent atoms (1.5 for methyl groups). During the the difference-Fourier map revealed disorder for atoms C13, C14 and C15 of the nonyl chain and two conformations were refined with distance restraints (1.512 Å) for the C—C bonds involved and RIGU restraints for the nonyl chain C11–C17. At the end of the the occupancy factors of the two components converged to 0.604 (11) and 0.396 (11) and the final difference-Fourier map showed no residual peaks of chemical significance.
details are given in Table 4Supporting information
CCDC reference: 2110486
https://doi.org/10.1107/S2056989021009737/dj2034sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021009737/dj2034Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021009737/dj2034Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C23H28N2O | Z = 2 |
Mr = 348.47 | F(000) = 376 |
Triclinic, P1 | Dx = 1.168 Mg m−3 |
a = 5.2353 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.5065 (5) Å | Cell parameters from 6605 reflections |
c = 14.3158 (5) Å | θ = 3.0–26.4° |
α = 98.045 (3)° | µ = 0.07 mm−1 |
β = 98.327 (3)° | T = 293 K |
γ = 91.255 (3)° | Block, colourless |
V = 990.83 (6) Å3 | 0.45 × 0.3 × 0.15 mm |
SuperNova, Single source at offset/far, Eos diffractometer | 4058 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2864 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.022 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.9° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −16→16 |
Tmin = 0.686, Tmax = 1.000 | l = −17→17 |
20242 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.240 | w = 1/[σ2(Fo2) + (0.1119P)2 + 0.4832P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4058 reflections | Δρmax = 0.37 e Å−3 |
264 parameters | Δρmin = −0.45 e Å−3 |
70 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.3177 (4) | 0.43358 (13) | 0.55347 (14) | 0.0685 (5) | |
N1 | 0.6712 (4) | 0.35716 (13) | 0.61382 (14) | 0.0498 (5) | |
C1 | 0.4408 (5) | 0.35784 (17) | 0.55355 (17) | 0.0510 (5) | |
N2 | 0.4810 (4) | 0.17973 (14) | 0.50005 (14) | 0.0527 (5) | |
C2 | 0.3592 (4) | 0.26106 (16) | 0.49062 (16) | 0.0489 (5) | |
C3 | 0.6998 (5) | 0.18102 (17) | 0.56737 (17) | 0.0516 (6) | |
C4 | 0.8245 (5) | 0.09152 (19) | 0.5763 (2) | 0.0625 (7) | |
H4 | 0.755288 | 0.032153 | 0.539594 | 0.075* | |
C5 | 1.0489 (6) | 0.0911 (2) | 0.6392 (2) | 0.0698 (7) | |
H5 | 1.131744 | 0.031553 | 0.644889 | 0.084* | |
C6 | 1.1516 (5) | 0.1794 (2) | 0.6940 (2) | 0.0672 (7) | |
H6 | 1.305232 | 0.178777 | 0.735651 | 0.081* | |
C7 | 1.0310 (5) | 0.2677 (2) | 0.68807 (18) | 0.0594 (6) | |
H7 | 1.100928 | 0.326025 | 0.726530 | 0.071* | |
C8 | 0.8032 (4) | 0.27050 (17) | 0.62436 (16) | 0.0497 (5) | |
C9 | 0.7704 (5) | 0.45374 (17) | 0.66992 (17) | 0.0547 (6) | |
H9A | 0.711702 | 0.507452 | 0.634775 | 0.066* | |
H9B | 0.957721 | 0.455955 | 0.678226 | 0.066* | |
C10 | 0.6832 (5) | 0.47073 (19) | 0.76690 (18) | 0.0606 (6) | |
H10A | 0.498084 | 0.479028 | 0.758694 | 0.073* | |
H10B | 0.717777 | 0.412121 | 0.798120 | 0.073* | |
C11 | 0.8169 (6) | 0.5614 (2) | 0.8298 (2) | 0.0745 (8) | |
H11A | 0.798334 | 0.618437 | 0.795459 | 0.089* | |
H11B | 0.999863 | 0.549819 | 0.843410 | 0.089* | |
C12 | 0.7119 (8) | 0.5865 (3) | 0.9237 (2) | 0.0978 (11) | |
H12C | 0.774577 | 0.539337 | 0.966060 | 0.117* | 0.396 (11) |
H12D | 0.524815 | 0.579172 | 0.911703 | 0.117* | 0.396 (11) |
H12A | 0.555095 | 0.622546 | 0.911469 | 0.117* | 0.604 (11) |
H12B | 0.663609 | 0.524143 | 0.944183 | 0.117* | 0.604 (11) |
C13B | 0.791 (3) | 0.6928 (9) | 0.9730 (12) | 0.143 (6) | 0.396 (11) |
H13A | 0.733512 | 0.738151 | 0.928155 | 0.172* | 0.396 (11) |
H13B | 0.694988 | 0.706615 | 1.026028 | 0.172* | 0.396 (11) |
C14B | 1.067 (3) | 0.7193 (11) | 1.0101 (13) | 0.178 (8) | 0.396 (11) |
H14A | 1.144535 | 0.724151 | 0.953271 | 0.214* | 0.396 (11) |
H14B | 1.131999 | 0.659083 | 1.033095 | 0.214* | 0.396 (11) |
C15B | 1.203 (5) | 0.8041 (10) | 1.0834 (14) | 0.213 (9) | 0.396 (11) |
H15A | 1.115971 | 0.809553 | 1.139137 | 0.255* | 0.396 (11) |
H15B | 1.377951 | 0.784635 | 1.103084 | 0.255* | 0.396 (11) |
C13A | 0.8860 (18) | 0.6470 (6) | 1.0052 (4) | 0.108 (3) | 0.604 (11) |
H13C | 0.803887 | 0.653364 | 1.062129 | 0.129* | 0.604 (11) |
H13D | 1.046676 | 0.613550 | 1.018024 | 0.129* | 0.604 (11) |
C14A | 0.9394 (19) | 0.7469 (5) | 0.9806 (5) | 0.109 (3) | 0.604 (11) |
H14C | 0.778583 | 0.778877 | 0.963392 | 0.130* | 0.604 (11) |
H14D | 1.033828 | 0.741313 | 0.926736 | 0.130* | 0.604 (11) |
C15A | 1.095 (3) | 0.8071 (7) | 1.0650 (5) | 0.151 (4) | 0.604 (11) |
H15C | 0.983493 | 0.820608 | 1.113487 | 0.182* | 0.604 (11) |
H15D | 1.229528 | 0.765333 | 1.089666 | 0.182* | 0.604 (11) |
C16 | 1.2192 (15) | 0.9031 (5) | 1.0549 (5) | 0.208 (3) | |
H16C | 1.047455 | 0.927886 | 1.040740 | 0.250* | 0.396 (11) |
H16D | 1.302078 | 0.900230 | 0.998269 | 0.250* | 0.396 (11) |
H16A | 1.331550 | 0.888114 | 1.006973 | 0.250* | 0.604 (11) |
H16B | 1.083193 | 0.942764 | 1.027665 | 0.250* | 0.604 (11) |
C17 | 1.3710 (9) | 0.9691 (3) | 1.1345 (4) | 0.1294 (16) | |
H17A | 1.353016 | 1.037431 | 1.124155 | 0.194* | |
H17B | 1.549689 | 0.953042 | 1.138569 | 0.194* | |
H17C | 1.309895 | 0.959940 | 1.192911 | 0.194* | |
C18 | 0.1379 (5) | 0.25620 (17) | 0.41263 (17) | 0.0517 (6) | |
C19 | 0.1175 (6) | 0.1751 (2) | 0.33936 (19) | 0.0663 (7) | |
H19 | 0.242243 | 0.127165 | 0.340750 | 0.080* | |
C20 | −0.0844 (6) | 0.1652 (2) | 0.2653 (2) | 0.0780 (8) | |
H20 | −0.094842 | 0.110612 | 0.217213 | 0.094* | |
C21 | −0.2709 (6) | 0.2351 (2) | 0.2615 (2) | 0.0749 (8) | |
H21 | −0.408785 | 0.227544 | 0.211843 | 0.090* | |
C22 | −0.2513 (5) | 0.3164 (2) | 0.3319 (2) | 0.0680 (7) | |
H22 | −0.375143 | 0.364646 | 0.328908 | 0.082* | |
C23 | −0.0503 (5) | 0.32754 (19) | 0.40714 (19) | 0.0574 (6) | |
H23 | −0.040380 | 0.382880 | 0.454350 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0726 (11) | 0.0453 (9) | 0.0818 (13) | 0.0079 (8) | 0.0004 (9) | −0.0005 (8) |
N1 | 0.0560 (11) | 0.0410 (10) | 0.0511 (11) | −0.0013 (8) | 0.0092 (9) | 0.0018 (8) |
C1 | 0.0567 (13) | 0.0449 (12) | 0.0511 (13) | 0.0017 (10) | 0.0094 (10) | 0.0046 (10) |
N2 | 0.0590 (11) | 0.0431 (10) | 0.0556 (11) | 0.0006 (8) | 0.0100 (9) | 0.0046 (8) |
C2 | 0.0544 (12) | 0.0427 (11) | 0.0506 (12) | −0.0014 (9) | 0.0124 (10) | 0.0058 (9) |
C3 | 0.0596 (13) | 0.0458 (12) | 0.0503 (13) | 0.0015 (10) | 0.0110 (10) | 0.0071 (10) |
C4 | 0.0740 (16) | 0.0466 (13) | 0.0672 (16) | 0.0068 (12) | 0.0115 (13) | 0.0079 (11) |
C5 | 0.0749 (17) | 0.0602 (16) | 0.0772 (18) | 0.0160 (13) | 0.0096 (14) | 0.0203 (14) |
C6 | 0.0635 (15) | 0.0762 (18) | 0.0627 (16) | 0.0087 (13) | 0.0034 (12) | 0.0179 (13) |
C7 | 0.0627 (14) | 0.0593 (15) | 0.0545 (14) | 0.0002 (11) | 0.0060 (11) | 0.0058 (11) |
C8 | 0.0567 (13) | 0.0466 (12) | 0.0480 (12) | 0.0014 (10) | 0.0143 (10) | 0.0083 (9) |
C9 | 0.0591 (13) | 0.0446 (12) | 0.0574 (14) | −0.0047 (10) | 0.0057 (11) | 0.0014 (10) |
C10 | 0.0643 (15) | 0.0564 (14) | 0.0583 (15) | −0.0017 (11) | 0.0083 (12) | 0.0000 (11) |
C11 | 0.0707 (17) | 0.0774 (18) | 0.0667 (16) | −0.0048 (14) | 0.0051 (13) | −0.0135 (14) |
C12 | 0.110 (3) | 0.101 (2) | 0.075 (2) | 0.001 (2) | 0.0198 (18) | −0.0184 (18) |
C13B | 0.185 (12) | 0.124 (9) | 0.100 (11) | −0.017 (9) | 0.017 (8) | −0.049 (8) |
C14B | 0.234 (15) | 0.157 (11) | 0.116 (11) | −0.097 (12) | −0.048 (11) | 0.019 (9) |
C15B | 0.204 (19) | 0.152 (8) | 0.249 (18) | −0.094 (11) | 0.037 (13) | −0.073 (8) |
C13A | 0.143 (6) | 0.120 (5) | 0.054 (3) | −0.002 (4) | 0.009 (3) | −0.004 (3) |
C14A | 0.128 (7) | 0.119 (5) | 0.067 (4) | −0.024 (4) | 0.009 (4) | −0.015 (3) |
C15A | 0.192 (11) | 0.174 (7) | 0.070 (4) | −0.062 (6) | 0.028 (5) | −0.047 (4) |
C16 | 0.213 (7) | 0.174 (5) | 0.206 (7) | −0.081 (5) | 0.012 (5) | −0.051 (5) |
C17 | 0.123 (3) | 0.099 (3) | 0.146 (4) | −0.008 (2) | −0.013 (3) | −0.015 (3) |
C18 | 0.0560 (13) | 0.0455 (12) | 0.0544 (13) | −0.0054 (10) | 0.0102 (10) | 0.0089 (10) |
C19 | 0.0733 (17) | 0.0538 (14) | 0.0655 (16) | 0.0023 (12) | −0.0016 (13) | −0.0008 (12) |
C20 | 0.086 (2) | 0.0679 (18) | 0.0694 (18) | −0.0039 (15) | −0.0073 (15) | −0.0054 (14) |
C21 | 0.0684 (17) | 0.081 (2) | 0.0702 (18) | −0.0068 (15) | −0.0100 (14) | 0.0153 (15) |
C22 | 0.0617 (15) | 0.0711 (17) | 0.0718 (17) | 0.0044 (13) | 0.0051 (13) | 0.0174 (14) |
C23 | 0.0570 (13) | 0.0554 (13) | 0.0616 (14) | −0.0001 (11) | 0.0122 (11) | 0.0114 (11) |
O1—C1 | 1.221 (3) | C7—C8 | 1.397 (3) |
C13Bb—H13A | 0.9700 | C9—H9A | 0.9700 |
C13Bb—H13B | 0.9700 | C9—H9B | 0.9700 |
C13Bb—C14B | 1.482 (10) | C9—C10 | 1.512 (3) |
C14Bb—H14A | 0.9700 | C10—H10A | 0.9700 |
C14Bb—H14B | 0.9700 | C10—H10B | 0.9700 |
C14Bb—C15B | 1.527 (9) | C10—C11 | 1.507 (4) |
C15Bb—H15A | 0.9700 | C11—H11A | 0.9700 |
C15Bb—H15B | 0.9700 | C11—H11B | 0.9700 |
C13Aa—H13C | 0.9700 | C11—C12 | 1.523 (4) |
C13Aa—H13D | 0.9700 | C12—H12C | 0.9700 |
C13Aa—C14A | 1.472 (8) | C12—H12D | 0.9700 |
C14Aa—H14C | 0.9700 | C12—H12A | 0.9700 |
C14Aa—H14D | 0.9700 | C12—H12B | 0.9700 |
C14Aa—C15A | 1.481 (7) | C12—C13B | 1.528 (9) |
C15Aa—H15C | 0.9700 | C12—C13A | 1.500 (6) |
C15Aa—H15D | 0.9700 | C16—H16C | 0.9700 |
C15Bb—C16 | 1.456 (10) | C16—H16D | 0.9700 |
C15Aa—C16 | 1.473 (5) | C16—H16A | 0.9700 |
N1—C1 | 1.379 (3) | C16—H16B | 0.9700 |
N1—C8 | 1.387 (3) | C16—C17 | 1.466 (7) |
N1—C9 | 1.474 (3) | C17—H17A | 0.9600 |
C1—C2 | 1.496 (3) | C17—H17B | 0.9600 |
N2—C2 | 1.296 (3) | C17—H17C | 0.9600 |
N2—C3 | 1.384 (3) | C18—C19 | 1.397 (3) |
C2—C18 | 1.481 (3) | C18—C23 | 1.395 (3) |
C3—C4 | 1.399 (3) | C19—H19 | 0.9300 |
C3—C8 | 1.410 (3) | C19—C20 | 1.375 (4) |
C4—H4 | 0.9300 | C20—H20 | 0.9300 |
C4—C5 | 1.373 (4) | C20—C21 | 1.374 (4) |
C5—H5 | 0.9300 | C21—H21 | 0.9300 |
C5—C6 | 1.385 (4) | C21—C22 | 1.374 (4) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C6—C7 | 1.369 (4) | C22—C23 | 1.382 (4) |
C7—H7 | 0.9300 | C23—H23 | 0.9300 |
C1—N1—C8 | 122.74 (19) | C15Bb—C16—C17 | 107.4 (8) |
C14Aa—C13Aa—C12 | 109.4 (6) | N1—C8—C7 | 123.5 (2) |
C14Bb—C13Bb—C12 | 119.6 (10) | C7—C8—C3 | 118.9 (2) |
C14Bb—C13Bb—H13A | 107.4 | N1—C9—H9A | 109.1 |
H13Ab—C13Bb—H13B | 106.9 | N1—C9—H9B | 109.1 |
C14Bb—C13Bb—H13B | 107.4 | N1—C9—C10 | 112.61 (19) |
C13Bb—C14Bb—H14A | 104.0 | H9A—C9—H9B | 107.8 |
C1—N1—C9 | 116.64 (19) | C10—C9—H9A | 109.1 |
C8—N1—C9 | 120.60 (19) | C10—C9—H9B | 109.1 |
O1—C1—N1 | 120.6 (2) | C9—C10—H10A | 109.1 |
O1—C1—C2 | 124.1 (2) | C9—C10—H10B | 109.1 |
C15Bb—C14Bb—H14A | 104.0 | H10A—C10—H10B | 107.8 |
H14Ab—C14Bb—H14B | 105.4 | C11—C10—C9 | 112.5 (2) |
C13Bb—C14Bb—H14B | 104.0 | C11—C10—H10A | 109.1 |
C15Bb—C14Bb—H14B | 104.0 | C11—C10—H10B | 109.1 |
C13Bb—C14Bb—C15B | 133.0 (17) | C10—C11—H11A | 108.9 |
C14Bb—C15Bb—H15A | 107.9 | C10—C11—H11B | 108.9 |
C14Bb—C15Bb—H15B | 107.9 | C10—C11—C12 | 113.5 (3) |
H15Ab—C15Bb—H15B | 107.2 | H11A—C11—H11B | 107.7 |
N1—C1—C2 | 115.22 (19) | C12—C11—H11A | 108.9 |
C2—N2—C3 | 120.3 (2) | C12—C11—H11B | 108.9 |
N2—C2—C1 | 122.0 (2) | C11—C12—H12C | 109.1 |
N2—C2—C18 | 117.6 (2) | C11—C12—H12D | 109.1 |
C18—C2—C1 | 120.4 (2) | C11—C12—H12A | 107.9 |
N2—C3—C4 | 118.7 (2) | C11—C12—H12B | 107.9 |
N2—C3—C8 | 121.6 (2) | C11—C12—C13B | 112.6 (8) |
C4—C3—C8 | 119.7 (2) | C17—C16—C15A | 123.6 (7) |
C3—C4—H4 | 119.9 | C17—C16—H16C | 110.2 |
C5—C4—C3 | 120.2 (2) | C12—C13Bb—H13A | 107.4 |
C5—C4—H4 | 119.9 | C12—C13Bb—H13B | 107.4 |
C14Aa—C13Aa—H13C | 109.8 | C12—C13Aa—H13C | 109.8 |
C14Aa—C13Aa—H13D | 109.8 | C12—C13Aa—H13D | 109.8 |
H13Ca—C13Aa—H13D | 108.2 | C16—C15Bb—C14B | 117.8 (12) |
C13Aa—C14Aa—H14C | 110.1 | C17—C16—H16D | 110.2 |
C15Aa—C14Aa—H14C | 110.1 | C17—C16—H16A | 106.4 |
C15Aa—C14Aa—H14D | 110.1 | C17—C16—H16B | 106.4 |
H14Ca—C14Aa—H14D | 108.4 | C16—C17—H17A | 109.5 |
C13Aa—C14Aa—H14D | 110.1 | C16—C17—H17B | 109.5 |
C13Aa—C14Aa—C15A | 108.0 (6) | C16—C17—H17C | 109.5 |
C14Aa—C15Aa—H15C | 107.4 | H17A—C17—H17B | 109.5 |
C14Aa—C15Aa—H15D | 107.4 | H17A—C17—H17C | 109.5 |
C4—C5—H5 | 120.1 | H17B—C17—H17C | 109.5 |
C4—C5—C6 | 119.9 (2) | C19—C18—C2 | 117.8 (2) |
C6—C5—H5 | 120.1 | C23—C18—C2 | 124.4 (2) |
C5—C6—H6 | 119.4 | C23—C18—C19 | 117.9 (2) |
C7—C6—C5 | 121.2 (3) | C18—C19—H19 | 119.5 |
C7—C6—H6 | 119.4 | C20—C19—C18 | 120.9 (3) |
C6—C7—H7 | 119.9 | C20—C19—H19 | 119.5 |
C6—C7—C8 | 120.2 (2) | C19—C20—H20 | 119.7 |
C8—C7—H7 | 119.9 | C21—C20—C19 | 120.6 (3) |
N1—C8—C3 | 117.6 (2) | C21—C20—H20 | 119.7 |
H15Ca—C15Aa—H15D | 107.0 | C20—C21—H21 | 120.4 |
C13Aa—C12—C11 | 117.4 (5) | C22—C21—C20 | 119.3 (3) |
C13Bb—C12—H12C | 109.1 | C22—C21—H21 | 120.4 |
H12Cb—C12—H12D | 107.8 | C21—C22—H22 | 119.5 |
C13Bb—C12—H12D | 109.1 | C21—C22—C23 | 121.0 (3) |
C13Aa—C12—H12A | 107.9 | C23—C22—H22 | 119.5 |
C13Aa—C12—H12B | 107.9 | C18—C23—H23 | 119.8 |
H12Aa—C12—H12B | 107.2 | C22—C23—C18 | 120.3 (3) |
C15Bb—C16—H16C | 110.2 | C22—C23—H23 | 119.8 |
C15Bb—C16—H16D | 110.2 | C16—C15Bb—H15A | 107.9 |
H16Cb—C16—H16D | 108.5 | C16—C15Bb—H15B | 107.9 |
C15Aa—C16—H16A | 106.4 | C16—C15Aa—C14A | 119.5 (7) |
H16Aa—C16—H16B | 106.5 | C16—C15Aa—H15C | 107.4 |
C15Aa—C16—H16B | 106.4 | C16—C15Aa—H15D | 107.4 |
C13Aa—C14Aa—C15Aa—C16 | 168.0 (12) | C4—C3—C8—C7 | 0.7 (4) |
C13Bb—C14Bb—C15Bb—C16 | −76 (3) | C4—C5—C6—C7 | 1.1 (4) |
C14Bb—C15Bb—C16—C17 | −176.5 (18) | C5—C6—C7—C8 | −1.4 (4) |
C14Aa—C15Aa—C16—C17 | 178.4 (9) | C6—C7—C8—N1 | −179.5 (2) |
O1—C1—C2—N2 | −172.5 (2) | C6—C7—C8—C3 | 0.5 (4) |
O1—C1—C2—C18 | 9.4 (4) | C8—N1—C1—O1 | 172.5 (2) |
N1—C1—C2—N2 | 7.6 (3) | C8—N1—C1—C2 | −7.6 (3) |
N1—C1—C2—C18 | −170.52 (19) | C8—N1—C9—C10 | −86.1 (3) |
N1—C9—C10—C11 | 171.1 (2) | C8—C3—C4—C5 | −1.1 (4) |
C1—N1—C8—C3 | 2.8 (3) | C9—N1—C1—O1 | −5.8 (3) |
C1—N1—C8—C7 | −177.2 (2) | C9—N1—C1—C2 | 174.13 (19) |
C1—N1—C9—C10 | 92.3 (3) | C9—N1—C8—C3 | −179.0 (2) |
C1—C2—C18—C19 | 160.9 (2) | C9—N1—C8—C7 | 1.0 (3) |
C1—C2—C18—C23 | −18.6 (3) | C9—C10—C11—C12 | 173.8 (3) |
N2—C2—C18—C19 | −17.3 (3) | C10—C11—C12—C13Aa | 157.2 (5) |
N2—C2—C18—C23 | 163.2 (2) | C10—C11—C12—C13Bb | −163.5 (7) |
N2—C3—C4—C5 | 176.9 (2) | C11—C12—C13Bb—C14Bb | −66.5 (19) |
N2—C3—C8—N1 | 2.9 (3) | C11—C12—C13Aa—C14Aa | 64.2 (9) |
N2—C3—C8—C7 | −177.2 (2) | C12—C13Aa—C14Aa—C15Aa | 175.8 (8) |
C2—N2—C3—C4 | 179.2 (2) | C12—C13Bb—C14Bb—C15Bb | −160.7 (14) |
C2—N2—C3—C8 | −2.8 (3) | C18—C19—C20—C21 | 0.1 (5) |
C2—C18—C19—C20 | 179.3 (3) | C19—C18—C23—C22 | 1.0 (4) |
C2—C18—C23—C22 | −179.5 (2) | C19—C20—C21—C22 | 1.1 (5) |
C3—N2—C2—C1 | −2.5 (3) | C20—C21—C22—C23 | −1.3 (5) |
C3—N2—C2—C18 | 175.63 (19) | C21—C22—C23—C18 | 0.3 (4) |
C3—C4—C5—C6 | 0.2 (4) | C23—C18—C19—C20 | −1.2 (4) |
C4—C3—C8—N1 | −179.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···N2 | 0.93 | 2.44 | 2.758 (3) | 100 |
C23—H23···O1 | 0.93 | 2.21 | 2.832 (3) | 123 |
X-ray | B3LYP/6–311G(d,p) | |
O1—C1 | 1.221 (3) | 1.2236 |
N1—C1 | 1.379 (3) | 1.3975 |
N1—C8 | 1.387 (3) | 1.3892 |
N1—C9 | 1.474 (3) | 1.4735 |
N2—C2 | 1.296 (3) | 1.299 |
N2—C3 | 1.384 (3) | 1.3723 |
C2—C18 | 1.481 (3) | 1.4862 |
C1—N1—C8 | 122.74 (19) | 122.5778 |
C1—N1—C9 | 116.64 (19) | 116.1328 |
C8—N1—C9 | 120.60 (19) | 121.2682 |
O1—C1—N1 | 120.6 (2) | 120.2255 |
O1—C1—C2 | 124.1 (2) | 124.5602 |
N1—C1—C2 | 115.22 (19) | 115.2104 |
C2—N2—C3 | 120.3 (2) | 120.949 |
N2—C2—C1 | 122.0 (2) | 121.844 |
N2—C2—C18 | 117.6 (2) | 117.4937 |
N2—C3—C4 | 118.7 (2) | 118.5343 |
N2—C3—C8 | 121.6 (2) | 121.9008 |
N1—C8—C3 | 117.6 (2) | 117.4153 |
N1—C8—C7 | 123.5 (2) | 123.4308 |
N1—C9—C10 | 112.61 (19) | 112.9655 |
Molecular Energy | Compound (I) |
Total Energy, TE (eV) | -29343.5617 |
EHOMO (eV) | -6,1155 |
ELUMO (eV) | -2,2251 |
Gap, ΔE (eV) | 3.8904 |
Dipole moment, µ (Debye) | 3.0783 |
Ionization potential, I (eV) | 6.1155 |
Electron affinity, A | 2.2251 |
Electronegativity, χ | 4.1703 |
Hardness, η | 1.9452 |
Electrophilicity index, ω | 4.4703 |
Softness, σ | 0.5141 |
Fraction of electron transferred, ΔN | 0.7274 |
Acknowledgements
Authors' contributions are as follows. Conceptualization, NA; methodology, NA and YR; investigation, KC and NA; theoretical calculations, KC; writing (original draft), KC and LVM; writing (review and editing of the manuscript), FHAO; formal analysis, SL and SF; supervision, EME; crystal-structure determination and validation, LVM.
Funding information
LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
References
Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 173–175. CSD CrossRef CAS Google Scholar
Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021). J. Mol. Struct. 1232, 130004. CSD CrossRef Google Scholar
Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Benzeid, H., Essassi, E. M., Saffon, N., Garrigues, B. & Ng, S. W. (2009). Acta Cryst. E65, o2323. CSD CrossRef IUCr Journals Google Scholar
Bouzian, Y., Sert, Y., Khalid, K., Van Meervelt, L., Chkirate, K., Mahi, L., Ahabchane, N. H., Talbaoui, A. & Essassi, E. M. (2021). J. Mol. Struct. 1246, 131217. CSD CrossRef Google Scholar
Carta, A., Loriga, M., Zanetti, S. & Sechi, L. A. (2003). Farmaco, 58, 1251–1255. CrossRef PubMed CAS Google Scholar
Carta, A., Sanna, P., Loriga, M., Setzu, M. G., La Colla, P. & Loddo, R. (2002). Farmaco, 57, 19–25. CrossRef PubMed CAS Google Scholar
Chkirate, K., Akachar, J., Hni, B., Hökelek, T., Anouar, E. H., Talbaoui, A., Mague, J. T., Sebbar, N. K., Ibrahimi, A. & Essassi, E. M. (2022). J. Mol. Struct. 1247, 131188. CSD CrossRef Google Scholar
Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750. Web of Science CrossRef Google Scholar
Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21–28. Web of Science CSD CrossRef Google Scholar
Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., El Abbes Faouzi, M., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28. CSD CrossRef CAS PubMed Google Scholar
Chkirate, K., Karrouchi, K., Dege, N., Kheira Sebbar, N., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221. CSD CrossRef CAS Google Scholar
Corona, P., Loriga, M., Costi, M. P., Ferrari, S. & Paglietti, G. (2008). Eur. J. Med. Chem. 43, 189–203. CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. pp. A02 Gaussian Inc, Wallingford, CT, USA. Google Scholar
Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122–132. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.