research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure determination of racemic (Δ/Λ)-tris­­(ethyl­enedi­amine)­cobalt(III) trichloride hemi(hexa­aqua­sodium chloride)

crossmark logo

aDepartment of Chemistry, Harvey Mudd College, 301 Platt Avenue, Claremont, CA 91711-5990, USA, and bRigaku Americas Corporation, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: adam_johnson@hmc.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 July 2021; accepted 7 September 2021; online 14 September 2021)

The synthesis and crystal structure of the title racemic compound, [Co(C2H8N2)3]Cl3.{[Na(H2O)6]Cl}0.5, are reported. The trivalent cobalt atom, which resides on a crystallographic threefold axis, is chelated by a single ethyl­ene di­amine (en) ligand and yields the tris-chelate [Co(en)3]3+ cation with distorted octa­hedral geometry after the application of crystal symmetry. The sodium cation (site symmetry [\overline{3}]), has a single water mol­ecule bound to it in the asymmetric unit and yields a distorted, octa­hedrally coordinated hydrated [Na(H2O)6]+ cation after the application of symmetry. One of the chloride ions lies on a general position and the other has [\overline{3}] site symmetry. An extensive array of C—HO, N—HCl and O—HCl hydrogen bonds exists between the ethyl­ene di­amine ligands, the water mol­ecules of hydration, and the anions present, thereby furnishing solid-state stability.

1. Chemical context

The coordination complex-cation tris-ethyl­enedi­amine cobalt(III), [Co(en)3]3+, was influential in Werner's development of the structure of transition-metal complexes as it could be resolved into its two enanti­omers by selective crystallization using tartrate anions, thus helping to demonstrate the octa­hedral geometry of the metal ion (Werner, 1912[Werner, A. (1912). Ber. Dtsch. Chem. Ges. 45, 121-130.]). As such, the synthesis of members of this family of complexes is a common undergraduate laboratory experiment (Work & McReynolds, 1946[Work, J. B. & McReynolds, J. P. (1946). Inorg. Synth. pp. 221-222.]; Broomhead et al., 1960[Broomhead, J. A., Dwyer, F. P., Hogarth, J. W. & Sievers, R. E. (1960). Inorg. Synth. pp. 183-186.]; Girolami et al., 1999[Girolami, G. S., Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry, 3rd ed. Sausalito, California: University Science Books.]; McClellan & Cass, 2015[McClellan, M. J. & Cass, M. E. (2015). J. Chem. Educ. 92, 1766-1770.]).

The synthesis and structural characterization of many members of this family of complexes, both racemic and resolved, have been undertaken over the years. In all cases, the [Co(en)3]3+ complex cation was found to have trigonally distorted octa­hedral symmetry, as expected, and the structures usually have significant hydrogen-bonding inter­actions involving the ethyl­ene di­amine ligands, the water mol­ecules of hydration, and the anions present.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the centrosymmetric trigonal space group P[\overline{3}]c1 (Fig. 1[link]). The asymmetric unit consists of a trivalent cobalt atom residing on a threefold axis chelated by an ethyl­ene di­amine (en; C2H8N2) ligand. Two Cl anions, one occupying a general position and the other lying on a [\overline{3}] axis are also present. One Na cation, also positioned on a [\overline{3}] axis, with a water mol­ecule (general position) bound to it are also observed. After application of crystal symmetry, the [Co(en)3]3+ and [Na(H2O)6]+ cationic complexes that result each adopt distorted octa­hedral geometries.

[Figure 1]
Figure 1
Anisotropic displacement ellipsoid plot of 1 with ellipsoids set to the 50% probability level. Atoms in the asymmetric unit are labeled. Dashed lines represent hydrogen bonds.

Within the chelating en ligand, given the sp3-hybridization of the C atoms and an expected tetra­hedral coordination environment around those C atoms, bond angles around each should be near the expected 109.5°. The values obtained from the crystal structure [minimum = 106.33 (15)°; maximum = 111.2 (12)°] indicate a degree of distortion.

Solid-state integrity is maintained by an array of C—HO, N—HCl and O—HCl hydrogen bonds between the [Co(en)3]3+ and [Na(H2O)6]+cations and the chloride anions. Unlike the structure of enanti­opure Λ-[tris­(ethyl­enedi­amine)­cobalt(III) trichloride]·0.5NaCl·3H2O (Nakatsu et al., 1957[Nakatsu, K., Shiro, M., Saito, Y. & Kuroya, H. (1957). Bull. Chem. Soc. Jpn, 30, 158-164.]; Farrugia et al., 2000[Farrugia, L. J., Peacock, R. D. & Stewart, B. (2000). Acta Cryst. C56, 149-151.]), where the sodium cations and chloride anions showed signs of disorder, no features suggestive of disorder are observed in the structure of the racemate.

3. Supra­molecular features

The en-chelated, trivalent cobalt atom in the title compound lies on a threefold axis housed within the (021) plane. As a result of crystal symmetry, the full [Co(en)3]3+ cation is generated and shows both the Λδδδ and the Δλλλ configurations with distorted octa­hedral geometry (Jensen, 1970[Jensen, K. A. (1970). Inorg. Chem. 9, 1-5.]). By virtue of its residing on a threefold axis, the net +1 charge that results from the Co atom is balanced by a fully occupied Cl anion occupying a general position. Typically, changes in conformation of the en ligand can be attributed to hydrogen bonding; however, all en conformations in both Co(en)3 and Cr(en)3 cations demonstrate similar energies (Veal & Hodgson, 1972[Veal, J. T. & Hodgson, D. J. (1972). Inorg. Chem. 11, 597-600.]; Enemark et al., 1970[Enemark, J. H., Quinby, M. S., Reed, L. L., Steuck, M. J. & Walthers, K. K. (1970). Inorg. Chem. 9, 2397-2403.]; Raymond et al., 1968a[Raymond, K. N., Corfield, P. W. R. & Ibers, J. A. (1968a). Inorg. Chem. 7, 842-844.],b[Raymond, K. N., Corfield, P. W. R. & Ibers, J. A. (1968b). Inorg. Chem. 7, 1362-1372.]; Raymond & Ibers, 1968[Raymond, K. N. & Ibers, J. A. (1968). Inorg. Chem. 7, 2333-2338.]). Analogous to the many structures encompassing the [Co(en)3]3+ cation, hydrogen-bonded arrays are prevalent in the solid-state structure between the en ligands and both water mol­ecules and chloride anions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.84 (2) 2.57 (2) 3.3586 (13) 156.7 (18)
N1—H1B⋯Cl1ii 0.81 (2) 2.75 (2) 3.4317 (13) 142.0 (19)
N2—H2A⋯Cl1iii 0.84 (2) 2.50 (2) 3.3286 (14) 172 (2)
N2—H2B⋯Cl1 0.82 (2) 2.62 (2) 3.2925 (13) 140.6 (19)
O1—H1E⋯Cl2 0.88 2.35 3.1354 (18) 147
O1—H1F⋯Cl1 0.89 (4) 2.41 (4) 3.2787 (18) 164 (3)
C2—H2D⋯O1iv 0.92 (2) 2.59 (2) 3.361 (2) 142.1 (17)
Symmetry codes: (i) [x-y+1, -y+1, -z+{\script{3\over 2}}]; (ii) [x, x-y+1, z+{\script{1\over 2}}]; (iii) [-x, -x+y, -z+{\script{3\over 2}}]; (iv) [y-1, x, -z+{\script{3\over 2}}].

It is notable that Cl2 accepts six, symmetry-equivalent O1—H1E⋯Cl2 hydrogen bonds (Table 1[link]) and forms a distorted Cl(H2O)6 octa­hedron. Along the c-axis, the orientation of the sodium and Cl2 octa­hedra with respect to one another forms a herringbone-type pattern when looking into the ac plane (Fig. 2[link]). Collectively, the symmetry elements within the solid-state structure of the racemate make it an excellent illustration of the p6mm two-dimensional space group when looking towards the ab plane (Fig. 3[link]).

[Figure 2]
Figure 2
Face-sharing octa­hedra looking into the ac plane encompassing the Na(H2O)6+ cations and six water mol­ecules hydrogen bonded to Cl2 that form a herringbone pattern with respect to one another. Anisotropic displacement ellipsoids have been set to the 50% probability level. Dashed lines represent hydrogen bonds.
[Figure 3]
Figure 3
Packing of 1 relative to the ab plane. Collectively, the symmetry elements make the structure of 1 an excellent example of the p6mm two-dimensional space group. Anisotropic displacement ellipsoids have been set to the 50% probability level.

4. Database survey

The structure of racemic [Co(en)3]Cl3 was reported to have the trigonal space group P[\overline{3}]c1; however, no additional structural details were reported (Dingle & Ballhausen, 1967[Dingle, R. & Ballhausen, C. J. (1967). Mat. Fys. Medd. Dan. Vid. Selsk. 35, 3-26.]). This salt was later crystallized as the non-stoichiometric hydrate (2.8 water mol­ecules per cobalt center) with long chains of hydrogen-bonded water mol­ecules that precluded inter­actions between the incorporated water mol­ecules and the ethyl­ene di­amine ligands (Whuler et al., 1975[Whuler, A., Brouty, C., Spinat, P. & Herpin, P. (1975). Acta Cryst. B31, 2069-2076.]). This same salt was later crystallized as the tetra­hydrate and included a one-dimensional water chain perpendicular to the [001] direction. The solid was vacuum dried to form void channels that could incorporate guest mol­ecules (Takamizawa et al., 2008[Takamizawa, S., Akatsuka, T. & Ueda, T. (2008). Angew. Chem. Int. Ed. 47, 1689-1692.]).

Like racemic [Co(en)3]Cl3, other chemically-similar salts have been crystallized that demonstrate hydrogen-bonding arrays involving the ethyl­enedi­amine ligands, inter­stitial water mol­ecules, and the counter-ions. These included the Λ-enanti­omer of the monohydrate Cl and I salts, which crystallize in the tetra­gonal space group P43212, in 1969 and 2001, respectively (Iwata et al., 1969[Iwata, M., Nakatzu, K. & Saito, Y. (1969). Acta Cryst. B25, 2562-2571.]; Matsuki et al., 2001[Matsuki, R., Shiro, M., Asahi, T. & Asai, H. (2001). Acta Cryst. E57, m448-m450.]). The structure of the bromide salt of the Δ-enanti­omer, Δ-[Co(en)3]Br3·H2O, was carried out in 1962, though the absolute structure could not be determined by anomalous dispersion at that time (Nakatsu, 1962[Nakatsu, K. (1962). Bull. Chem. Soc. Jpn, 35, 832-839.]). The structure of the right-handed helical enanti­omer, Δ-[Co(en)3]I3·H2O was finally reported in 2019 and crystallizes in the ortho­rhom­bic space group P212121 (Grant et al., 2019[Grant, G. J., Noll, B. C. & Lee, J. P. (2019). Z. Anorg. Allg. Chem. 645, 1011-1014.]).

More complex counter-ions have also been utilized in racemic and purely enanti­omeric salts with [Co(en)3]3+. The structures of the nitrate salts, obtained both as a racemic crystal in the Pca21 space group (Oldenbourg, 1998[Oldenbourg, D. G. (1998). Z. Kristallogr. Krist. 213, 161-167.]) and as the Λ-enanti­omer in the P41212 space group (Witiak et al., 1972[Witiak, D., Clardy, J. C. & Martin, D. S. (1972). Acta Cryst. B28, 2694-2699.]) were reported. Racemic crystals [Co(en)3][Cr(CN)5(NO)]·2H2O (Enemark et al., 1970[Enemark, J. H., Quinby, M. S., Reed, L. L., Steuck, M. J. & Walthers, K. K. (1970). Inorg. Chem. 9, 2397-2403.]) and [Co(en)3]2[CdCl6]Cl2·2H2O (Veal & Hodgson, 1972[Veal, J. T. & Hodgson, D. J. (1972). Inorg. Chem. 11, 597-600.]) were also reported, which crystallize in the monoclinic space group P21/c. The complex racemic hydrogen phosphate salt [Co(en)3]2[HPO4]3·9H2O was determined to exist in the ortho­rhom­bic space group Pnma (Raymond & Duesler, 1971[Raymond, K. N. & Duesler, E. N. (1971). Inorg. Chem. 10, 1486-1492.]). In this latter-most structure, it has been proposed that the significant hydrogen bonding involving the en ligands, the counter-ion and the water mol­ecules of hydration is directly responsible for this material's circular dichroism spectrum (Raymond & Duesler, 1971[Raymond, K. N. & Duesler, E. N. (1971). Inorg. Chem. 10, 1486-1492.]).

As the student laboratory preparation usually involves the synthesis of the racemic double salt [Co(en)3]·Cl3·0.5NaCl·3H2O (McClellan & Cass, 2015[McClellan, M. J. & Cass, M. E. (2015). J. Chem. Educ. 92, 1766-1770.]; Girolami et al., 1999[Girolami, G. S., Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry, 3rd ed. Sausalito, California: University Science Books.]), we were surprised to not find its structure reported in the Cambridge Structural Database. As mentioned previously, the structure of the Λ-enanti­omer of the complex was first reported in 1957 (Nakatsu et al., 1957[Nakatsu, K., Shiro, M., Saito, Y. & Kuroya, H. (1957). Bull. Chem. Soc. Jpn, 30, 158-164.]) and later redetermined in 2000 (Farrugia et al., 2000[Farrugia, L. J., Peacock, R. D. & Stewart, B. (2000). Acta Cryst. C56, 149-151.]).

5. Synthesis and crystallization

The title complex 1 was prepared following the method of Girolami (Girolami et al., 1999[Girolami, G. S., Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry, 3rd ed. Sausalito, California: University Science Books.]) and later modified by Cass (McClellan & Cass, 2015[McClellan, M. J. & Cass, M. E. (2015). J. Chem. Educ. 92, 1766-1770.]). Into a 100 ml beaker, CoCl2·6H2O (6.0 g, 25 mmol, finely ground using a mortar and pestle) was dissolved in water (20 mL) with stirring. Upon addition of ethyl­enedi­amine di­hydro­chloride (13.3 g, 100 mmol), the solution became pink and cloudy. Sodium hydroxide pellets (6.75 g, 170 mmol) were next added slowly while the solution stirred. Each pellet initially turned blue and then completely dissolved within a few minutes. The pH was then tested using litmus paper and determined to be 8. Hydro­chloric acid (6 M) was added dropwise until the pH was approximately 7–7.5, which changed the color of the solution to rusty orange. A hydrogen peroxide solution (20 ml of 3% solution) was added dropwise over a couple of minutes and the solution became dark orange. The solution was slowly brought to a boil while stirring. The stir bar was removed and the beaker placed into an ice bath for 30 minutes to cool. The crystals were collected through filtration and washed with 95% ethanol (50 ml) and subsequently diethyl ether (20 ml) to yield a bright-orange powder (6.754 g, 18.6 mmol, 74.5%). Large single crystals (ca 3 × 3 ×3 mm) of 1 were grown by slow evaporation from water and cut to size using a razor blade.

6. Refinement

Crystal data, data collection and structure refinement details for 1 are summarized in Table 2[link]. With the exception of atom H1E, which was constrained to ride on the water O atom (O1), all other H atoms were located in the difference-Fourier map and freely refined with 0.91 < C—H < 0.99 Å, 0.81 < N—H < 0.84 Å, and O—H = 0.89 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C2H8N2)3]Cl3·{[Na(H2O)6]Cl}0.5
Mr 428.86
Crystal system, space group Trigonal, P[\overline{3}]c1
Temperature (K) 293
a, c (Å) 11.4290 (2), 15.5815 (2)
V3) 1762.61 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.53
Crystal size (mm) 0.39 × 0.29 × 0.22
 
Data collection
Diffractometer XtaLAB Mini II
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.664, 0.794
No. of measured, independent and observed [I > 2σ(I)] reflections 65362, 1860, 1643
Rint 0.027
(sin θ/λ)max−1) 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.06
No. of reflections 1860
No. of parameters 99
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.76
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Δ/Λ)-Tris(ethylenediamine)cobalt(III) trichloride hemi(hexaaquasodium chloride) top
Crystal data top
[Co(C2H8N2)3]Cl3·{[Na(H2O)6]Cl}0.5Dx = 1.616 Mg m3
Mr = 428.86Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3c1Cell parameters from 30262 reflections
a = 11.4290 (2) Åθ = 2.1–30.7°
c = 15.5815 (2) ŵ = 1.53 mm1
V = 1762.61 (7) Å3T = 293 K
Z = 4Block, clear light orange
F(000) = 8960.39 × 0.29 × 0.22 mm
Data collection top
XtaLAB Mini II
diffractometer
1860 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0000 pixels mm-1θmax = 30.9°, θmin = 2.6°
ω scansh = 1616
Absorption correction: analytical
(CrysalisPro; Rigaku OD, 2020)
k = 1616
Tmin = 0.664, Tmax = 0.794l = 2222
65362 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.9272P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1860 reflectionsΔρmax = 0.47 e Å3
99 parametersΔρmin = 0.76 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.33330.66670.88151 (2)0.01756 (9)
Cl10.10242 (4)0.61265 (4)0.62517 (2)0.03423 (11)
Cl20.00001.00000.50000.0546 (3)
Na10.00001.00000.75000.0543 (5)
N10.29983 (13)0.51120 (12)0.95321 (8)0.0244 (2)
N20.18593 (13)0.53380 (13)0.80958 (8)0.0273 (2)
O10.08849 (18)0.88917 (17)0.65619 (12)0.0592 (4)
H1E0.07580.90010.60150.089*
C10.17218 (16)0.39077 (15)0.92577 (10)0.0302 (3)
C20.16421 (17)0.39746 (16)0.82971 (10)0.0316 (3)
H2C0.235 (2)0.386 (2)0.8014 (13)0.036 (5)*
H1A0.363 (2)0.494 (2)0.9459 (13)0.036 (5)*
H1C0.171 (2)0.310 (2)0.9475 (15)0.042 (6)*
H1D0.103 (2)0.396 (2)0.9513 (13)0.033 (5)*
H2D0.081 (2)0.332 (2)0.8111 (13)0.040 (6)*
H2A0.114 (2)0.533 (2)0.8215 (14)0.038 (5)*
H1B0.291 (2)0.519 (2)1.0044 (14)0.038 (5)*
H2B0.198 (2)0.546 (2)0.7578 (14)0.042 (6)*
H1F0.105 (4)0.824 (4)0.639 (2)0.096 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01928 (11)0.01928 (11)0.01412 (13)0.00964 (5)0.0000.000
Cl10.03216 (19)0.0423 (2)0.02759 (18)0.01808 (16)0.00203 (13)0.00448 (14)
Cl20.0568 (5)0.0568 (5)0.0501 (7)0.0284 (2)0.0000.000
Na10.0515 (7)0.0515 (7)0.0598 (13)0.0258 (4)0.0000.000
N10.0287 (6)0.0247 (5)0.0207 (5)0.0141 (5)0.0015 (4)0.0011 (4)
N20.0278 (6)0.0296 (6)0.0222 (5)0.0126 (5)0.0053 (4)0.0026 (4)
O10.0636 (10)0.0485 (9)0.0674 (10)0.0295 (8)0.0137 (8)0.0076 (8)
C10.0318 (7)0.0225 (6)0.0299 (7)0.0088 (5)0.0024 (5)0.0017 (5)
C20.0340 (7)0.0246 (6)0.0289 (7)0.0092 (6)0.0045 (6)0.0067 (5)
Geometric parameters (Å, º) top
Co1—N1i1.9676 (12)N1—H1A0.84 (2)
Co1—N1ii1.9676 (12)N1—H1B0.81 (2)
Co1—N11.9677 (12)N2—C21.484 (2)
Co1—N2i1.9601 (12)N2—H2A0.84 (2)
Co1—N2ii1.9601 (12)N2—H2B0.82 (2)
Co1—N21.9600 (12)O1—H1E0.8837
Na1—O1iii2.4586 (19)O1—H1F0.89 (4)
Na1—O1iv2.4586 (19)C1—C21.504 (2)
Na1—O1v2.4587 (19)C1—H1C0.97 (2)
Na1—O12.4586 (19)C1—H1D0.91 (2)
Na1—O1vi2.4586 (19)C2—H2C0.99 (2)
Na1—O1vii2.4586 (19)C2—H2D0.92 (2)
N1—C11.4825 (19)
N1i—Co1—N1ii90.94 (5)O1iii—Na1—O1v96.03 (8)
N1i—Co1—N190.94 (5)Co1—N1—H1A109.1 (14)
N1ii—Co1—N190.94 (5)Co1—N1—H1B115.9 (15)
N2i—Co1—N1i85.48 (5)C1—N1—Co1109.36 (9)
N2—Co1—N1ii174.50 (5)C1—N1—H1A108.0 (14)
N2—Co1—N185.48 (5)C1—N1—H1B105.5 (16)
N2—Co1—N1i93.29 (6)H1A—N1—H1B109 (2)
N2i—Co1—N1174.50 (5)Co1—N2—H2A109.7 (15)
N2ii—Co1—N1i174.50 (6)Co1—N2—H2B115.3 (15)
N2ii—Co1—N193.29 (6)C2—N2—Co1108.69 (9)
N2i—Co1—N1ii93.29 (6)C2—N2—H2A107.2 (16)
N2ii—Co1—N1ii85.48 (5)C2—N2—H2B108.5 (15)
N2i—Co1—N2ii90.55 (6)H2A—N2—H2B107 (2)
N2i—Co1—N290.55 (6)Na1—O1—H1E111.2
N2—Co1—N2ii90.55 (6)Na1—O1—H1F156 (2)
O1iv—Na1—O1v88.27 (6)H1E—O1—H1F87.3
O1iv—Na1—O196.03 (8)N1—C1—C2107.24 (12)
O1—Na1—O1v174.05 (8)N1—C1—H1C108.8 (14)
O1vi—Na1—O1iv174.05 (8)N1—C1—H1D107.4 (13)
O1vi—Na1—O1v87.75 (8)C2—C1—H1C115.0 (13)
O1vii—Na1—O1iv88.27 (6)C2—C1—H1D110.8 (13)
O1vii—Na1—O187.75 (8)H1C—C1—H1D107.4 (18)
O1vi—Na1—O1iii88.27 (6)N2—C2—C1106.33 (12)
O1iii—Na1—O188.27 (6)N2—C2—H2C109.2 (13)
O1vii—Na1—O1iii174.05 (8)N2—C2—H2D110.3 (13)
O1vii—Na1—O1v88.27 (6)C1—C2—H2C111.2 (12)
O1iv—Na1—O1iii87.75 (9)C1—C2—H2D109.8 (13)
O1vi—Na1—O188.27 (6)H2C—C2—H2D110.0 (18)
O1vi—Na1—O1vii96.03 (8)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) y+1, xy+2, z; (iv) xy+1, y+2, z+3/2; (v) y1, x+1, z+3/2; (vi) x+y1, x+1, z; (vii) x, x+y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1viii0.84 (2)2.57 (2)3.3586 (13)156.7 (18)
N1—H1B···Cl1ix0.81 (2)2.75 (2)3.4317 (13)142.0 (19)
N2—H2A···Cl1vii0.84 (2)2.50 (2)3.3286 (14)172 (2)
N2—H2B···Cl10.82 (2)2.62 (2)3.2925 (13)140.6 (19)
O1—H1E···Cl20.882.353.1354 (18)147
O1—H1F···Cl10.89 (4)2.41 (4)3.2787 (18)164 (3)
C2—H2D···O1x0.92 (2)2.59 (2)3.361 (2)142.1 (17)
Symmetry codes: (vii) x, x+y, z+3/2; (viii) xy+1, y+1, z+3/2; (ix) x, xy+1, z+1/2; (x) y1, x, z+3/2.
 

Funding information

Funding for this research was provided by: Harvey Mudd College.

References

First citationBroomhead, J. A., Dwyer, F. P., Hogarth, J. W. & Sievers, R. E. (1960). Inorg. Synth. pp. 183–186.  CAS Google Scholar
First citationDingle, R. & Ballhausen, C. J. (1967). Mat. Fys. Medd. Dan. Vid. Selsk. 35, 3–26.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnemark, J. H., Quinby, M. S., Reed, L. L., Steuck, M. J. & Walthers, K. K. (1970). Inorg. Chem. 9, 2397–2403.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J., Peacock, R. D. & Stewart, B. (2000). Acta Cryst. C56, 149–151.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGirolami, G. S., Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry, 3rd ed. Sausalito, California: University Science Books.  Google Scholar
First citationGrant, G. J., Noll, B. C. & Lee, J. P. (2019). Z. Anorg. Allg. Chem. 645, 1011–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationIwata, M., Nakatzu, K. & Saito, Y. (1969). Acta Cryst. B25, 2562–2571.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationJensen, K. A. (1970). Inorg. Chem. 9, 1–5.  CrossRef CAS Google Scholar
First citationMatsuki, R., Shiro, M., Asahi, T. & Asai, H. (2001). Acta Cryst. E57, m448–m450.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcClellan, M. J. & Cass, M. E. (2015). J. Chem. Educ. 92, 1766–1770.  Web of Science CrossRef CAS Google Scholar
First citationNakatsu, K. (1962). Bull. Chem. Soc. Jpn, 35, 832–839.  CSD CrossRef CAS Web of Science Google Scholar
First citationNakatsu, K., Shiro, M., Saito, Y. & Kuroya, H. (1957). Bull. Chem. Soc. Jpn, 30, 158–164.  CSD CrossRef CAS Web of Science Google Scholar
First citationOldenbourg, D. G. (1998). Z. Kristallogr. Krist. 213, 161–167.  Google Scholar
First citationRaymond, K. N., Corfield, P. W. R. & Ibers, J. A. (1968a). Inorg. Chem. 7, 842–844.  CrossRef CAS Web of Science Google Scholar
First citationRaymond, K. N., Corfield, P. W. R. & Ibers, J. A. (1968b). Inorg. Chem. 7, 1362–1372.  CSD CrossRef CAS Web of Science Google Scholar
First citationRaymond, K. N. & Duesler, E. N. (1971). Inorg. Chem. 10, 1486–1492.  CSD CrossRef CAS Google Scholar
First citationRaymond, K. N. & Ibers, J. A. (1968). Inorg. Chem. 7, 2333–2338.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakamizawa, S., Akatsuka, T. & Ueda, T. (2008). Angew. Chem. Int. Ed. 47, 1689–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationVeal, J. T. & Hodgson, D. J. (1972). Inorg. Chem. 11, 597–600.  CSD CrossRef CAS Web of Science Google Scholar
First citationWerner, A. (1912). Ber. Dtsch. Chem. Ges. 45, 121–130.  CrossRef CAS Google Scholar
First citationWhuler, A., Brouty, C., Spinat, P. & Herpin, P. (1975). Acta Cryst. B31, 2069–2076.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWitiak, D., Clardy, J. C. & Martin, D. S. (1972). Acta Cryst. B28, 2694–2699.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWork, J. B. & McReynolds, J. P. (1946). Inorg. Synth. pp. 221–222.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds