research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 5-cyclo­propyl-N-(2-hy­dr­oxy­eth­yl)-1-(4-methyl­phen­yl)-1H-1,2,3-triazole-4-carboxamide

crossmark logo

aDepartment of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine, and bDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine
*Correspondence e-mail: pokhodylo@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 September 2021; accepted 20 September 2021; online 28 September 2021)

The title compound, C15H18N4O2, was obtained via a two-step synthesis (Dimroth reaction and amidation) for anti­cancer activity screening and was selected from a 1H-1,2,3-triazole-4-carboxamide library. The cyclo­propyl ring is oriented almost perpendicular to the benzene ring [dihedral angle = 87.9 (1)°], while the dihedral angle between the mean plane of the cyclo­propyl ring and that of the triazole ring is 55.6 (1)°. In the crystal, the mol­ecules are linked by O—H⋯O and C—H⋯N inter­actions into infinite ribbons propagating in the [001] direction, which are inter­connected by weak C—H⋯O inter­actions into layers. The inter­molecular inter­actions were characterized via Hirshfeld surface analysis, which indicated that the largest fingerprint contact percentages are H⋯H (55.5%), N⋯H/H⋯N (15.4%), C⋯H/H⋯C (13.2%) and O⋯H/H⋯O (12.9%).

1. Chemical context

The 1,2,3-triazolyl-4-carboxamide motif is of great inter­est in drug discovery, especially in relation to anti­cancer and anti­microbial research. Besides the well-known drugs rufinamide and carb­oxy­amido­triazole, several preclinical studies are ongoing. As an example of anti­tumour activity evaluations, libraries of 1,2,3-triazole-4-carboxamides containing podophyllotoxin (Reddy et al., 2018[Reddy, V. G., Bonam, S. R., Reddy, T. S., Akunuri, R., Naidu, V. G. M., Nayak, V. L., Bhargava, S. K., Kumar, H. S., Srihari, P. & Kamal, A. (2018). Eur. J. Med. Chem. 144, 595-611.]), 1-R-N-[(1-R-1H-1,2,3-triazol-4-yl)meth­yl]-1H-1,2,3-triazole-4-carboxamides (Elamari et al., 2013[Elamari, H., Slimi, R., Chabot, G. G., Quentin, L., Scherman, D. & Girard, C. (2013). Eur. J. Med. Chem. 60, 360-364.]), 5-(tri­fluoro­meth­yl)-1H-1,2,3-triazole-4-carboxamides (Wang et al., 2018[Wang, L., Xu, S., Liu, X., Chen, X., Xiong, H., Hou, S., Zou, W., Tang, Q., Zheng, P. & Zhu, W. (2018). Bioorg. Chem. 77, 370-380.]; Zhou et al., 2014[Zhou, S., Liao, H., Liu, M., Feng, G., Fu, B., Li, R., Cheng, M., Zhao, Y. & Gong, P. (2014). Bioorg. Med. Chem. 22, 6438-6452.]) and 1-benz­yl-N-[2-(phenyl­amino)­pyridin-3-yl]-1H-1,2,3-triazole-4-carboxamides (Prasad et al., 2019[Prasad, B., Lakshma Nayak, V., Srikanth, P. S., Baig, M. F., Subba Reddy, N. V., Babu, K. S. & Kamal, A. (2019). Bioorg. Chem. 83, 535-548.]) have been tested. Several 1,4,5-tri­substituted 1,2,3-triazole-4-carboxamides showed high affinity in the nanomolar concentration range toward Hsp90 associated with cell proliferation inhibition (Taddei et al., 2014[Taddei, M., Ferrini, S., Giannotti, L., Corsi, M., Manetti, F., Giannini, G., Vesci, L., Milazzo, F. M., Alloatti, D., Guglielmi, M. B., Castorina, M., Cervoni, M. L., Barbarino, M., Foderà, R., Carollo, V., Pisano, C., Armaroli, S. & Cabri, W. (2014). J. Med. Chem. 57, 2258-2274.]; Giannini et al., 2015[Giannini, G. & Battistuzzi, G. (2015). Bioorg. Med. Chem. Lett. 25, 462-465.]). Moreover, 4-[4-(hydrazinecarbon­yl)-5-methyl-1H-1,2,3-triazol-1-yl]benzene­sulfonamide was found to act as a COX-2 inhibitor (Bekheit et al., 2021[Bekheit, M. S., Mohamed, H. A., Abdel-Wahab, B. F. & Fouad, M. A. (2021). Med. Chem. Res. 30, 1125-1138.]).

In our previous studies, new active compounds with a 1,2,3-triazolyl-4-carboxamide motif were reported (Shyyka et al., 2019[Shyyka, O. Ya., Pokhodylo, N. T. & Finiuk, N. S. (2019). Biopolym. Cell, 35, 321-330.]; Pokhodylo, Shyyka, Finiuk & Stoika, 2020[Pokhodylo, N., Shyyka, O., Finiuk, N. & Stoika, R. (2020). Ukr. Biochem. J. 92, 23-32.]; Pokhodylo, Slyvka & Pavlyuk, 2020[Pokhodylo, N., Slyvka, Y. & Pavlyuk, V. (2020). Acta Cryst. E76, 756-760.]). Additionally, 1,2,3-triazolyl-4-carboxamide derivatives were found to be inhibitors of the Wnt/β-catenin signalling pathway (Obianom et al., 2019[Obianom, O. N., Ai, Y., Li, Y., Yang, W., Guo, D., Yang, H., Sakamuru, S., Xia, M., Xue, F. & Shu, Y. (2019). J. Med. Chem. 62, 727-741.]). In addition, compounds with this motif exhibited fungicidal (Wang et al., 2014[Wang, Z., Gao, Y., Hou, Y., Zhang, C., Yu, S. J., Bian, Q., Li, Z. M. & Zhao, W. G. (2014). Eur. J. Med. Chem. 86, 87-94.]), anti­viral (Krajczyk et al., 2014[Krajczyk, A., Kulinska, K., Kulinski, T., Hurst, B. L., Day, C. W., Smee, D. F., Ostrowski, T., Januszczyk, P. & Zeidler, J. (2014). Antivir. Chem. Chemother. 23, 161-171.]) and anti­microbial (Pokhodylo et al., 2021[Pokhodylo, N., Manko, N., Finiuk, N., Klyuchivska, O., Matiychuk, V., Obushak, M. & Stoika, R. (2021). J. Mol. Struct. 2021 Art. 131146.]; Jadhav et al., 2017[Jadhav, R. P., Raundal, H. N., Patil, A. A. & Bobade, V. D. (2017). J. Saudi Chem. Soc. 21, 152-159.]) activities. The most convenient synthetic path to diverse 1H-1,2,3-triazole-4-carboxamides is a two-step synthesis involving the Dimroth reaction of organic azides with β-ketoesters (Pokhodylo & Obushak, 2019[Pokhodylo, N. T. & Obushak, M. D. (2019). Russ. J. Org. Chem. 55, 1241-1243.]) followed by amidation of the resulting 1H-1,2,3-triazole-4-carb­oxy­lic acids.

Given the practical inter­est of 1-aryl-1H-1,2,3-triazole-4-carboxamides in anti­cancer and anti­microbial research, in the present paper, we report the mol­ecular and crystal structure of the title compound C15H18N4O2, highlighting its mol­ecular conformation and analysing the inter­molecular inter­actions. The cyclo­propyl substituent was selected as it meets the criteria of lead-oriented synthesis, increasing the number of sp3-carbon atoms, but at the same time is conformationally restricted and occupies minimal volume among other C3-alkyl substituents. Moreover, the 5-cyclo­propyl­triazole fragment could appear as a bis­ected or perpendicular conformer.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic centrosymmetric space group P21/c, with one mol­ecule in the asymmetric unit as shown in Fig. 1[link]. The mol­ecular structure possesses three conformational degrees of freedom due to free rotation about the C9—C10, C8—C11 and N1—C1 single bonds. The C10/N4/O1 amide group is turned slightly relative to the N1/N2/N3/C8/C9 triazole ring by 11.71 (4)°. Within the C11/C12/C13 cyclo­propyl ring, the C—C bond lengths differ by an insignificant amount [C11—C12 = 1.488 (3), C11—C13 = 1.492 (3), C12—C13 = 1.471 (3) Å]. The cyclo­propyl ring is oriented almost perpendicular to the C1–C6 benzene ring and the dihedral angle between these planes is 87.9 (1)°. The dihedral angle between the mean plane of the cyclo­propyl ring and that of the triazole ring is 55.6 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

A similar location of the cyclo­propyl ring relative to the 1,2,3-triazole ring was also observed in 5-cyclo­propyl-1-(3-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carb­oxy­lic acid (Pokhodylo et al., 2017[Pokhodylo, N. T., Shyyka, O. Ya., Matiychuk, V. S., Obushak, M. D. & Pavlyuk, V. V. (2017). ChemistrySelect, 2, 5871-5876.]), but in the structure of the related compound N-(4-chloro­phen­yl)-5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carboxamide (Pokhodylo & Slyvka et al., 2020[Pokhodylo, N., Slyvka, Y. & Pavlyuk, V. (2020). Acta Cryst. E76, 756-760.]), the cyclo­propyl ring is close to coplanar with the aryl substituent. An intra­molecular N4—H4⋯N3 close contact (H⋯N = 2.37 Å; N—H⋯N = 106°) is observed.

The dihedral angle between the tolyl and 1,2,3-triazole rings in the title compound is 32.75 (7)°, which is comparable with the corresponding angle in 5-cyclo­propyl-1-(3-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carb­oxy­lic acid [39.1 (2)°] but lower than in the structure of 5-methyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl­phospho­nate [45.36 (6)°] (Pokhodylo, Shykka, Goreshnik et al., 2020[Pokhodylo, N. T., Shyyka, O. Ya., Goreshnik, E. A. & Obushak, M. D. (2020). ChemistrySelect, 5, 260-264.]). Conversely, in the triazoles unsubstituted at the 5-position, [1-(3-bromo- or 4-fluoro­phen­yl)-1H-1,2,3-triazol-4-yl]methyl methyl­phospho­nate, these angle are 22.9 (3) and 15.7 (2)°, respectively (Pokhodylo, Shyyka et al., 2019[Pokhodylo, N. T., Shyyka, O. Ya., Tupychak, M. A., Slyvka, Yu. I. & Obushak, M. D. (2019). Chem. Heterocycl. Compd, 55, 374-378.]).

3. Supra­molecular features

As shown in Fig. 2[link] and Table 1[link], the extended structure of the title compound features a number of directional inter­molecular inter­actions. The mol­ecules are linked by O2—H2⋯O1i and C11—H11⋯N3ii (see Table 1[link] for symmetry codes) inter­actions into an infinite ribbon propagating in the [001] direction. The ribbons are inter­connected by a weak C5—H5⋯O2iii inter­action into layers (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.95 (3) 1.78 (3) 2.734 (2) 177 (3)
C11—H11⋯N3ii 0.98 2.61 3.391 (2) 137
C5—H5⋯O2iii 0.93 2.66 3.564 (3) 164
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The hydrogen-bonded ribbon in the title compound. Hydrogen bonds are shown as dashed lines. The symmetry codes are as in Table 1[link].
[Figure 3]
Figure 3
A view along the b-axis direction of the crystal packing of the title compound.

4. Hirshfeld surface analysis

The significant inter­actions among the mol­ecules of the title compound can be visualized qualitatively through Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The mapping of the normalized contact distance (dnorm) was performed using the CrystalExplorer software (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. https://hirshfeldsurface.net]). The most prominent inter­actions (short contact areas) are indicated on the Hirshfeld surfaces in red, whereas long contacts are shown in blue. Fingerprint plots were produced to show the inter­molecular surface bond distances with the regions highlighted for O⋯H/H⋯O and N⋯H/H⋯N inter­actions (Fig. 4[link]). The contributions to the surface area for such contacts are 12.9% and 15.4%, respectively. The relatively low percentage of C⋯H/H⋯C contacts (13.2%) indicates the small contribution of C—H⋯π inter­actions for consolidating the crystal packing. The contribution to the surface area for H⋯H contacts is 55.5%.

[Figure 4]
Figure 4
(a) Hirshfeld surface for the title compound mapped with dnorm over the range −0.68 to 1.46 showing the O—H⋯O, C—H⋯N and C—H⋯O hydrogen-bonded contacts. Fingerprint plots resolved into (b) O⋯H/H⋯O and (c) N⋯H/H⋯N contacts. Neighbouring mol­ecules associated with close contacts are also shown.

5. Database survey

The most closest related compounds containing a similar 1-aryl-1H-1,2,3-triazole-4-carboxamide skeleton to the title compound but with different substituents on the amide are: N-(4-chloro­phen­yl)-5-cyclo­propyl-1-(4-meth­oxy­phen­yl)-1H-1,2,3-triazole-4-carboxamide (Pokhodylo & Slyvka et al., 2020[Pokhodylo, N., Slyvka, Y. & Pavlyuk, V. (2020). Acta Cryst. E76, 756-760.]), (S)-1-(4-chloro­phen­yl)-N-(1-hy­droxy-3-phenyl­prop­an-2-yl)-5-methyl-1H-1,2,3-triazole-4-carboxamide (I)[link] [Cambridge Structural Database (Version 2021.1; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode ZIPSEY; Shen et al., 2013[Shen, G.-L., Chen, Z.-B., Wu, Z.-F. & Dong, H.-S. (2013). J. Heterocycl. Chem. 50, 781-786.]], 1-(4-chloro­phen­yl)-5-meth­yl-N-[(3-phenyl-1,2-oxazol-5-yl)meth­yl]-1H-1,2,3-triazole-4-carb­oxamide (II) (LELHOB; Niu et al., 2013[Niu, T.-F., Lv, M.-F., Wang, L., Yi, W.-B. & Cai, C. (2013). Org. Biomol. Chem. 11, 1040-1048.]), (5-methyl-1-[8-(tri­fluoro­meth­yl)quinolin-4-yl]-1H-1,2,3-tri­az­ol-4-yl)morph­o­lino)­methanone (III) (LOHWIP; Anuradha et al., 2008[Anuradha, N., Thiruvalluvar, A., Mahalinga, M. & Butcher, R. J. (2008). Acta Cryst. E64, o2375.]) and 1-(3-amino-5-(3-hy­droxy-3-meth­yl­but-1-yn-1-yl)phen­yl)-N-butyl-1H-1,2,3-triazole-4-carb­ox­amide (IV) (BEBJEZ; Li et al., 2012[Li, Y.-J., Xu, L., Yang, W.-L., Liu, H.-B., Lai, S.-W., Che, C.-M. & Li, Y.-L. (2012). Chem. Eur. J. 18, 4782-4790.]).

Compounds (I)[link] and (II) crystallize in the monoclinic crystal system with space groups P21 and P21/c, respectively, while compounds (III) and (IV) crystallize in the triclinic space group P[\overline{1}]. Structure (I)[link] contains two crystallographically independent mol­ecules, the hydroxyl groups of which part­icipate in inter­molecular O—H⋯O hydrogen bonds. In contrast to the mol­ecular structure of title compound, the torsion angles between the phenyl rings and triazole rings in (I)[link] are −45.2 (6)° (C5—C6—N1—N2) and 39.9 (6)° (C1′—C6′—N1′—N2′); the analogous value in (II) is 19.2 (2)°. In structure (II), the carboxamide groups connect neighbouring mol­ecules into infinite chains by means of N—H⋯O hydrogen bonds. The mol­ecules in structures (III) and (IV) are connected by N—H⋯O(oxazol) contacts. Similarly to (I)[link] and (II), structure (III) contains a 5-methyl substituent at the triazole ring; as a result of the significant steric hindrance of 8-(tri­fluoro­meth­yl)quinoline, the dihedral angle between the rings is 54.7°. The phenyl and triazole rings in (IV) are close to coplanar (7.5°), while the hydroxyl, carboxamide and amino groups participate in O—H⋯O and N—H⋯O hydrogen bonds. Finally, two copper(I) π-complexes of compositions [Cu(C12H13N5O)(NO3)]·0.5H2O and [Cu(C12H13N5O)(CF3COO)](C12H13N5O is N-allyl-5-amino-1-phenyl-1H-1,2,3-tri­azole-4-carboxamide) were obtained by electrochemical synthesis (ZEQTOG and ZEQTUM; Slyvka et al., 2012[Slyvka, Yu. I., Pavlyuk, A. V., Ardan, B. R., Pokhodilo, N. T., Goreshnik, E. A. & Demchenko, P. Yu. (2012). Russ. J. Inorg. Chem. 57, 815-821.]). Crystals of these compounds are monoclinic, space group C2/c: in both structures, the N-allyl-1H-1,2,3-triazole-4-carboxamide motif acts as a bridging chelating ligand and forms with the copper(I) atoms infinite chains containing [CuC4NO] seven-membered rings.

6. Synthesis and crystallization

5-Cyclo­propyl-1-p-tolyl-1H-1,2,3-triazole-4-carb­oxy­lic acid (Pokhodylo et al., 2017[Pokhodylo, N. T., Shyyka, O. Ya., Matiychuk, V. S., Obushak, M. D. & Pavlyuk, V. V. (2017). ChemistrySelect, 2, 5871-5876.]) (1.22 g, 5.00 mmol) was added to a solution of 1,1′-carbonyl­diimidazole (CDI, 0.81 g, 5.0 mmol) in dry aceto­nitrile (5 ml) and the mixture was kept for 30 min at 323 K. Then, 0.3 ml of 2-amino­ethanol (0.31 g, 5.00 mmol) was added, and the mixture was heated at 343 K for 1 h. After cooling to room temperature, water (30 ml) was added. The precipitate was filtered off, washed with water on a filter, crystallized from diluted ethanol solution, and dried in air to give the title compound as colourless crystals, m.p. 396–397 K. The reaction scheme is shown in Fig. 5[link]. IR (KBr, ν, cm−1): 1685 (C=O); 3370 (N—H). 1H NMR: (400 MHz, DMSO-d6): δ = 0.85–0.91 (m, 2H, CH2), 0.98–1.02 (m, 2H, CH2), 1.95–1.99 (m, 1H, CH), 2.46 (c, 3H, CH3), 3.37 (q, J = 5.8 Hz, 2H, CH2N), 3.54 (q, J = 5.8 Hz, 2H, CH2O), 4.58 (t, J = 6.0, Hz, 1H, OH), 7.37 (d, J = 7.6 Hz, 2H, HAr-3,5), 7.43 (d, J = 7.6 Hz, 2H, HAr-2,6), 8.14 (t, J = 5.4 Hz, 1H, NH). 13C NMR: (101 MHz, DMSO-d6): δ = 5.3 (CH), 8.2 (2 × CH2), 21.1 (CH3), 42.3 (CH2N), 59.5 (CH2O), 126.5 (2 × CHAr-2,6), 130.1 (2 × CHAr-3,5), 133.7 (CAr-1), 137.2 (CTriazole-4), 139.2 (CAr-4), 144.6 (CTriazole-5), 161.8 (C=O). MS, m/z = 287 (M++1). Calculated for C15H18N4O2, (%): C 62.92; H 6.34, N 19.57. Found (%): C 62.83; H 6.57, N 19.32.

[Figure 5]
Figure 5
Synthesis of 5-cyclo­propyl-N-(2-hy­droxy­eth­yl)-1-(p-tol­yl)-1H-1,2,3-triazole-4-carboxamide.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. N-bound and O-bound H atoms were located in difference-Fourier maps and refined isotrop­ically. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å andUiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C15H18N4O2
Mr 286.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.3158 (6), 8.3972 (3), 13.0871 (4)
β (°) 108.040 (4)
V3) 1495.90 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.5 × 0.4 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcalibur3 CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.935, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 8400, 2632, 1621
Rint 0.032
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.099, 1.05
No. of reflections 2632
No. of parameters 199
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.20
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD (Oxford Diffraction, 2004); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-Cyclopropyl-N-(2-hydroxyethyl)-1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxamide top
Crystal data top
C15H18N4O2F(000) = 608
Mr = 286.33Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3158 (6) ÅCell parameters from 1679 reflections
b = 8.3972 (3) Åθ = 2.9–26.4°
c = 13.0871 (4) ŵ = 0.09 mm1
β = 108.040 (4)°T = 293 K
V = 1495.90 (10) Å3Lamina, clear colourless
Z = 40.5 × 0.4 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
1621 reflections with I > 2σ(I)
ω scansRint = 0.032
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2004)
θmax = 25.0°, θmin = 2.9°
Tmin = 0.935, Tmax = 0.988h = 1717
8400 measured reflectionsk = 99
2632 independent reflectionsl = 158
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.035P)2 + 0.180P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2632 reflectionsΔρmax = 0.14 e Å3
199 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Ternary CH refined with riding coordinates: C11(H11) 2.b Secondary CH2 refined with riding coordinates: C12(H12A,H12B), C13(H13A,H13B), C14(H14A,H14B), C15(H15A,H15B) 2.c Aromatic/amide H refined with riding coordinates: C2(H2A), C3(H3), C5(H5), C6(H6) 2.d Idealised Me refined as rotating group: C7(H7A,H7B,H7C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13456 (11)0.3294 (2)0.60427 (12)0.0974 (5)
O20.06831 (14)0.3928 (2)0.21808 (14)0.1042 (6)
H20.092 (2)0.318 (4)0.177 (3)0.171 (14)*
N10.44653 (12)0.35154 (18)0.67420 (11)0.0570 (4)
N20.43955 (13)0.3492 (2)0.56776 (12)0.0687 (5)
N30.34622 (13)0.3512 (2)0.51377 (12)0.0680 (5)
N40.14491 (15)0.3789 (3)0.44072 (15)0.0846 (6)
H40.1840 (16)0.397 (3)0.4005 (17)0.090 (7)*
C10.54283 (14)0.3518 (2)0.75104 (14)0.0573 (5)
C20.56125 (17)0.2755 (2)0.84840 (16)0.0660 (6)
H2A0.5109650.2237010.8661450.079*
C30.65554 (19)0.2771 (3)0.91933 (17)0.0755 (6)
H30.6678510.2269650.9855700.091*
C40.73224 (17)0.3510 (3)0.89461 (18)0.0754 (6)
C50.71121 (17)0.4244 (3)0.79535 (19)0.0768 (6)
H50.7615570.4742070.7765510.092*
C60.61784 (16)0.4254 (2)0.72389 (17)0.0658 (5)
H60.6053610.4754650.6576110.079*
C70.83533 (18)0.3513 (4)0.9729 (2)0.1156 (10)
H7A0.8533950.4579280.9975590.173*
H7B0.8803420.3116630.9377250.173*
H7C0.8376300.2843231.0331100.173*
C80.35570 (14)0.3551 (2)0.68719 (14)0.0546 (5)
C90.29293 (14)0.3532 (2)0.58406 (14)0.0583 (5)
C100.18463 (16)0.3519 (2)0.54485 (16)0.0671 (5)
C110.33673 (14)0.3634 (2)0.79130 (14)0.0616 (5)
H110.3299550.2600320.8230680.074*
C120.27363 (19)0.4924 (3)0.81202 (17)0.0882 (7)
H12A0.2490690.5720200.7564960.106*
H12B0.2289960.4651290.8519790.106*
C130.37951 (19)0.4924 (3)0.87037 (17)0.0791 (7)
H13A0.3998590.4649950.9460920.095*
H13B0.4199360.5719060.8505920.095*
C140.03984 (18)0.3804 (3)0.38523 (18)0.0979 (8)
H14A0.0160310.4892580.3780870.117*
H14B0.0059720.3217590.4270250.117*
C150.01844 (17)0.3080 (3)0.27817 (18)0.0946 (8)
H15A0.0394840.1976350.2851110.114*
H15B0.0517220.3107690.2415850.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0884 (11)0.1413 (16)0.0775 (10)0.0021 (10)0.0476 (9)0.0143 (9)
O20.1267 (15)0.1162 (15)0.0851 (12)0.0073 (11)0.0552 (11)0.0083 (10)
N10.0729 (11)0.0568 (10)0.0487 (9)0.0034 (8)0.0296 (8)0.0040 (8)
N20.0769 (13)0.0840 (13)0.0532 (10)0.0042 (10)0.0317 (9)0.0090 (9)
N30.0760 (13)0.0828 (13)0.0525 (9)0.0047 (10)0.0302 (9)0.0081 (8)
N40.0674 (13)0.1313 (18)0.0594 (12)0.0073 (11)0.0258 (10)0.0050 (11)
C10.0700 (14)0.0492 (12)0.0575 (12)0.0002 (10)0.0271 (11)0.0064 (10)
C20.0834 (17)0.0572 (13)0.0609 (13)0.0025 (11)0.0273 (12)0.0031 (10)
C30.0962 (19)0.0669 (15)0.0621 (13)0.0136 (13)0.0228 (14)0.0030 (11)
C40.0750 (16)0.0746 (15)0.0752 (15)0.0140 (13)0.0209 (12)0.0165 (13)
C50.0738 (17)0.0738 (16)0.0895 (17)0.0014 (12)0.0349 (14)0.0096 (13)
C60.0758 (15)0.0599 (13)0.0684 (13)0.0026 (11)0.0322 (12)0.0003 (10)
C70.0830 (19)0.155 (3)0.1007 (19)0.0267 (17)0.0160 (15)0.0231 (18)
C80.0729 (13)0.0448 (11)0.0535 (11)0.0021 (10)0.0304 (10)0.0007 (9)
C90.0719 (14)0.0575 (13)0.0538 (12)0.0048 (10)0.0315 (10)0.0014 (10)
C100.0796 (15)0.0702 (14)0.0591 (13)0.0042 (12)0.0328 (12)0.0001 (11)
C110.0893 (15)0.0516 (12)0.0536 (11)0.0055 (11)0.0364 (10)0.0003 (10)
C120.116 (2)0.0920 (18)0.0739 (15)0.0236 (15)0.0541 (15)0.0002 (12)
C130.116 (2)0.0663 (15)0.0657 (13)0.0099 (13)0.0447 (14)0.0104 (11)
C140.0787 (18)0.147 (2)0.0738 (15)0.0057 (15)0.0315 (13)0.0002 (15)
C150.0722 (16)0.125 (2)0.0884 (18)0.0097 (14)0.0268 (14)0.0072 (15)
Geometric parameters (Å, º) top
O1—C101.224 (2)C6—H60.9300
O2—H20.95 (3)C7—H7A0.9600
O2—C151.408 (3)C7—H7B0.9600
N1—N21.3655 (19)C7—H7C0.9600
N1—C11.433 (2)C8—C91.370 (2)
N1—C81.363 (2)C8—C111.471 (2)
N2—N31.304 (2)C9—C101.475 (3)
N3—C91.365 (2)C11—H110.9800
N4—H40.89 (2)C11—C121.488 (3)
N4—C101.324 (3)C11—C131.492 (3)
N4—C141.454 (3)C12—H12A0.9700
C1—C21.377 (3)C12—H12B0.9700
C1—C61.378 (3)C12—C131.471 (3)
C2—H2A0.9300C13—H13A0.9700
C2—C31.381 (3)C13—H13B0.9700
C3—H30.9300C14—H14A0.9700
C3—C41.384 (3)C14—H14B0.9700
C4—C51.384 (3)C14—C151.470 (3)
C4—C71.514 (3)C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C5—C61.374 (3)
C15—O2—H2108 (2)N3—C9—C8109.33 (17)
N2—N1—C1117.80 (15)N3—C9—C10120.82 (17)
C8—N1—N2110.87 (15)C8—C9—C10129.85 (16)
C8—N1—C1131.32 (15)O1—C10—N4122.1 (2)
N3—N2—N1106.95 (14)O1—C10—C9122.64 (19)
N2—N3—C9109.13 (15)N4—C10—C9115.29 (17)
C10—N4—H4119.3 (14)C8—C11—H11115.0
C10—N4—C14124.32 (19)C8—C11—C12119.99 (17)
C14—N4—H4116.4 (14)C8—C11—C13121.51 (16)
C2—C1—N1121.04 (18)C12—C11—H11115.0
C2—C1—C6120.41 (19)C12—C11—C1359.16 (14)
C6—C1—N1118.51 (17)C13—C11—H11115.0
C1—C2—H2A120.5C11—C12—H12A117.7
C1—C2—C3119.0 (2)C11—C12—H12B117.7
C3—C2—H2A120.5H12A—C12—H12B114.8
C2—C3—H3119.1C13—C12—C1160.56 (14)
C2—C3—C4121.9 (2)C13—C12—H12A117.7
C4—C3—H3119.1C13—C12—H12B117.7
C3—C4—C7121.3 (2)C11—C13—H13A117.7
C5—C4—C3117.5 (2)C11—C13—H13B117.7
C5—C4—C7121.2 (2)C12—C13—C1160.28 (14)
C4—C5—H5119.2C12—C13—H13A117.7
C6—C5—C4121.7 (2)C12—C13—H13B117.7
C6—C5—H5119.2H13A—C13—H13B114.9
C1—C6—H6120.2N4—C14—H14A109.5
C5—C6—C1119.6 (2)N4—C14—H14B109.5
C5—C6—H6120.2N4—C14—C15110.52 (19)
C4—C7—H7A109.5H14A—C14—H14B108.1
C4—C7—H7B109.5C15—C14—H14A109.5
C4—C7—H7C109.5C15—C14—H14B109.5
H7A—C7—H7B109.5O2—C15—C14109.4 (2)
H7A—C7—H7C109.5O2—C15—H15A109.8
H7B—C7—H7C109.5O2—C15—H15B109.8
N1—C8—C9103.70 (15)C14—C15—H15A109.8
N1—C8—C11124.99 (17)C14—C15—H15B109.8
C9—C8—C11131.29 (17)H15A—C15—H15B108.3
N1—N2—N3—C90.6 (2)C2—C3—C4—C50.0 (3)
N1—C1—C2—C3179.09 (16)C2—C3—C4—C7179.8 (2)
N1—C1—C6—C5178.65 (17)C3—C4—C5—C60.5 (3)
N1—C8—C9—N31.0 (2)C4—C5—C6—C10.0 (3)
N1—C8—C9—C10178.57 (19)C6—C1—C2—C31.5 (3)
N1—C8—C11—C12125.2 (2)C7—C4—C5—C6179.7 (2)
N1—C8—C11—C1355.1 (3)C8—N1—N2—N30.0 (2)
N2—N1—C1—C2146.14 (17)C8—N1—C1—C234.7 (3)
N2—N1—C1—C631.5 (2)C8—N1—C1—C6147.61 (19)
N2—N1—C8—C90.61 (19)C8—C9—C10—O110.8 (3)
N2—N1—C8—C11177.98 (16)C8—C9—C10—N4168.3 (2)
N2—N3—C9—C81.0 (2)C8—C11—C12—C13111.0 (2)
N2—N3—C9—C10178.57 (17)C8—C11—C13—C12108.5 (2)
N3—C9—C10—O1168.7 (2)C9—C8—C11—C1253.0 (3)
N3—C9—C10—N412.2 (3)C9—C8—C11—C13123.1 (2)
N4—C14—C15—O258.8 (3)C10—N4—C14—C15141.9 (2)
C1—N1—N2—N3179.30 (16)C11—C8—C9—N3177.49 (18)
C1—N1—C8—C9179.77 (18)C11—C8—C9—C103.0 (3)
C1—N1—C8—C111.2 (3)C14—N4—C10—O11.9 (3)
C1—C2—C3—C41.0 (3)C14—N4—C10—C9179.0 (2)
C2—C1—C6—C51.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.95 (3)1.78 (3)2.734 (2)177 (3)
C11—H11···N3ii0.982.613.391 (2)137
C5—H5···O2iii0.932.663.564 (3)164
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Funding information

The authors are grateful to the Ministry of Education and Science of Ukraine for financial support of this project (grant No. 0121U107777).

References

First citationAnuradha, N., Thiruvalluvar, A., Mahalinga, M. & Butcher, R. J. (2008). Acta Cryst. E64, o2375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBekheit, M. S., Mohamed, H. A., Abdel-Wahab, B. F. & Fouad, M. A. (2021). Med. Chem. Res. 30, 1125–1138.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElamari, H., Slimi, R., Chabot, G. G., Quentin, L., Scherman, D. & Girard, C. (2013). Eur. J. Med. Chem. 60, 360–364.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGiannini, G. & Battistuzzi, G. (2015). Bioorg. Med. Chem. Lett. 25, 462–465.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJadhav, R. P., Raundal, H. N., Patil, A. A. & Bobade, V. D. (2017). J. Saudi Chem. Soc. 21, 152–159.  Web of Science CrossRef CAS Google Scholar
First citationKrajczyk, A., Kulinska, K., Kulinski, T., Hurst, B. L., Day, C. W., Smee, D. F., Ostrowski, T., Januszczyk, P. & Zeidler, J. (2014). Antivir. Chem. Chemother. 23, 161–171.  CrossRef PubMed Google Scholar
First citationLi, Y.-J., Xu, L., Yang, W.-L., Liu, H.-B., Lai, S.-W., Che, C.-M. & Li, Y.-L. (2012). Chem. Eur. J. 18, 4782–4790.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNiu, T.-F., Lv, M.-F., Wang, L., Yi, W.-B. & Cai, C. (2013). Org. Biomol. Chem. 11, 1040–1048.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationObianom, O. N., Ai, Y., Li, Y., Yang, W., Guo, D., Yang, H., Sakamuru, S., Xia, M., Xue, F. & Shu, Y. (2019). J. Med. Chem. 62, 727–741.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationPokhodylo, N., Manko, N., Finiuk, N., Klyuchivska, O., Matiychuk, V., Obushak, M. & Stoika, R. (2021). J. Mol. Struct. 2021 Art. 131146.  Google Scholar
First citationPokhodylo, N., Shyyka, O., Finiuk, N. & Stoika, R. (2020). Ukr. Biochem. J. 92, 23–32.  CrossRef CAS Google Scholar
First citationPokhodylo, N., Slyvka, Y. & Pavlyuk, V. (2020). Acta Cryst. E76, 756–760.  CrossRef IUCr Journals Google Scholar
First citationPokhodylo, N. T. & Obushak, M. D. (2019). Russ. J. Org. Chem. 55, 1241–1243.  Web of Science CrossRef CAS Google Scholar
First citationPokhodylo, N. T., Shyyka, O. Ya., Goreshnik, E. A. & Obushak, M. D. (2020). ChemistrySelect, 5, 260–264.  Web of Science CSD CrossRef CAS Google Scholar
First citationPokhodylo, N. T., Shyyka, O. Ya., Matiychuk, V. S., Obushak, M. D. & Pavlyuk, V. V. (2017). ChemistrySelect, 2, 5871–5876.  Web of Science CrossRef CAS Google Scholar
First citationPokhodylo, N. T., Shyyka, O. Ya., Tupychak, M. A., Slyvka, Yu. I. & Obushak, M. D. (2019). Chem. Heterocycl. Compd, 55, 374–378.  CSD CrossRef CAS Google Scholar
First citationPrasad, B., Lakshma Nayak, V., Srikanth, P. S., Baig, M. F., Subba Reddy, N. V., Babu, K. S. & Kamal, A. (2019). Bioorg. Chem. 83, 535–548.  Web of Science CrossRef CAS PubMed Google Scholar
First citationReddy, V. G., Bonam, S. R., Reddy, T. S., Akunuri, R., Naidu, V. G. M., Nayak, V. L., Bhargava, S. K., Kumar, H. S., Srihari, P. & Kamal, A. (2018). Eur. J. Med. Chem. 144, 595–611.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, G.-L., Chen, Z.-B., Wu, Z.-F. & Dong, H.-S. (2013). J. Heterocycl. Chem. 50, 781–786.  CSD CrossRef CAS Google Scholar
First citationShyyka, O. Ya., Pokhodylo, N. T. & Finiuk, N. S. (2019). Biopolym. Cell, 35, 321–330.  CrossRef Google Scholar
First citationSlyvka, Yu. I., Pavlyuk, A. V., Ardan, B. R., Pokhodilo, N. T., Goreshnik, E. A. & Demchenko, P. Yu. (2012). Russ. J. Inorg. Chem. 57, 815–821.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTaddei, M., Ferrini, S., Giannotti, L., Corsi, M., Manetti, F., Giannini, G., Vesci, L., Milazzo, F. M., Alloatti, D., Guglielmi, M. B., Castorina, M., Cervoni, M. L., Barbarino, M., Foderà, R., Carollo, V., Pisano, C., Armaroli, S. & Cabri, W. (2014). J. Med. Chem. 57, 2258–2274.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWang, L., Xu, S., Liu, X., Chen, X., Xiong, H., Hou, S., Zou, W., Tang, Q., Zheng, P. & Zhu, W. (2018). Bioorg. Chem. 77, 370–380.  CrossRef CAS PubMed Google Scholar
First citationWang, Z., Gao, Y., Hou, Y., Zhang, C., Yu, S. J., Bian, Q., Li, Z. M. & Zhao, W. G. (2014). Eur. J. Med. Chem. 86, 87–94.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhou, S., Liao, H., Liu, M., Feng, G., Fu, B., Li, R., Cheng, M., Zhao, Y. & Gong, P. (2014). Bioorg. Med. Chem. 22, 6438–6452.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds