research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the new palladium complexes tetra­kis­(1,3-di­methyl­imidazolium-2-yl­­idene)palladium(II) hexa­deca­carbonyl­tetra­rhenium di­ethyl ether disolvate and octa-μ-carbonyl-di­carbonyl­tetra­kis­(tri­phenyl­phosphane)palladium­dirhenium (unknown solvate)

crossmark logo

aKurnakov Institute of General and Inorganic Chemistry, 119991, Leninskii pr. 31, Moscow, Russian Federation
*Correspondence e-mail: schss@yandex.ru

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 27 August 2021; accepted 7 September 2021; online 14 September 2021)

The investigation of the coordination chemistry of heterometallic transition-metal complexes of palladium (Pd) and rhenium (Re) led to the isolation and crystallographic characterization of tetra­kis­(1,3-di­methyl­imidazolium-2-yl­idene)palladium(II) hexa­deca­carbonyl­tetra­rhenium diethyl ether disolvate, [Pd(C5H8N2)4][Re4(CO)16]·2C4H10O or [Pd(IMe)4][Re4(CO)16]·2C4H10O, (1), and octa-μ-carbonyl-di­carbonyl­tetra­kis­(tri­phenyl­phosphane)palladium­dirhenium, [Pd4Re2(C18H15P)4(CO)10] or Pd4Re2(PPh3)4(μ-CO)8(CO)2, (2), from the reaction of Pd(PPh3)4 with 1,3-di­methyl­imidazolium-2-carboxyl­ate and Re2(CO)10 in a toluene–aceto­nitrile mixture. In complex 1 the Re—Re bond lengths [2.9767 (3)–3.0133 (2) Å] are close to double the covalent Re radii (1.51 Å). The palladium–rhenium carbonyl cluster 2 has not been structurally characterized previously; the Pd—Re bond lengths [2.7582 (2)–2.7796 (2) Å] are about 0.1 Å shorter than the sum of the covalent Pd and Re radii (1.39 + 1.51 = 2.90 Å). One carbene ligand and a diethyl ether mol­ecule are disordered over two positions with occupancy ratios of 0.5:0.5 and 0.625 (15):0.375 (15) in 1. An unidentified solvent is present in compound 2. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s). The SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] in PLATON was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The cavity with a volume of ca 311 Å3 contains approximately 98 electrons.

1. Chemical context

Bimetallic catalysts comprising palladium (Pd) and rhenium (Re) have important applications in alkane reforming, industrial chemical production, hydro­dechlorination and biomass conversion (Thompson & Lamb, 2016[Thompson, S. T. & Lamb, H. H. (2016). ACS Catal. 6, 7438-7447.]; Bonarowska et al., 1999[Bonarowska, M., Malinowski, A. & Karpiński, Z. (1999). Appl. Catal. Gen. 188, 145-154.]; Malinowski et al., 1998[Malinowski, A., Juszczyk, W., Bonarowska, M., Pielaszek, J. & Karpinski, Z. (1998). J. Catal. 177, 153-163.]; Juszczyk & Karpiński, 2001[Juszczyk, W. & Karpiński, Z. (2001). Appl. Catal. Gen. 206, 67-78.]). Heterometallic Pd–Re clusters are suitable precursors for such a catalytic system. We found that the reaction of Pd(PPh3)4 with 1,3-di­methyl­imidazolium-2-carboxyl­ate and Re2(CO)10 in a toluene–aceto­nitrile mixture produces a mixture of two compounds: [Pd(IMe)4][Re4(CO)16]·2C4H10O (1) and Pd4Re2(PPh3)4(μ-CO)8(CO)2 (2) where IMe is 1,3-di­methyl­imidazolium-2-yl­idene. Two other products, tri­phenyl­phosphine oxide and the known complex Re2(CO)8(PPh3)2 (Adams et al., 2013[Adams, R. D., Wong, Y. O. & Zhang, Q. (2013). Organometallics, 32, 7540-7546.]) were isolated from the reaction mixture.

[Scheme 1]

2. Structural commentary

The displacement ellipsoid plot of 1 is depicted in Fig. 1[link]. The mol­ecular unit of 1 comprises a palladium(II) cation with four coordinated N-heterocyclic carbenes (NHC) lying on a twofold rotoinversion axis, and one [Re4(CO)16] anion. The geometry around the Pd atom is square-planar with one carbene unit being disordered. The C—Pd—C angles range from 86.9 (4) to 97.7 (4)°. The cluster anion lying on the inversion center has a perfectly flat rhombus geometry with the shortest Re—Re bond [2.9767 (3) Å] corresponding to the short diagonal. The other four Re—Re bond lengths [3.001 (2)–3.0132 (2) Å] are also close to double the covalent Re radii (1.51 Å; Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]). The Re—Re—Re angles are 59.330 (6)–60.542 (6)°.

[Figure 1]
Figure 1
Displacement ellipsoid plot of Pd(IMe)4Re4(CO)16·2C4H10O (1), drawn at the 30% probability level. All hydrogen atoms and solvent mol­ecules are omitted for clarity.

The displacement ellipsoid plot of 2 is depicted in Fig. 2[link]. The geometry of the Re2Pd4 core is found to be slightly distorted from that of a D4h-symmetric tetra­gonal–bipyramidal prism. In complex 2, the Pd—Re bond lengths [2.7582 (2)–2.7796 (2) Å] are close to the sum of the covalent Pd and Re radii (1.39 + 1.51 = 2.90 Å). In comparison, the Pd—Re bond lengths in the PdRe4(CO)16(μ-SbPh2)2(μ-H)2 cluster (Adams et al., 2015[Adams, R. D., Pearl, W. C., Wong, Y. O., Hall, M. B. & Walensky, J. R. (2015). Inorg. Chem. 54, 3536-3544.]) are in the range 2.9348 (18)–2.9823 (19) Å. The Pd4 fragment has an almost square geometry [the Pd—Pd—Pd angles are 89.865 (6)–90.135 (6)° and the Pd—Pd bond lengths are 2.9678 (2)–2.99 (2) Å].

[Figure 2]
Figure 2
Displacement ellipsoid plot of Pd4Re2(PPh3)4(μ-CO)8(CO)2 (2), drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the ionic crystal of 1, each cation is surrounded by six anions and vice versa (Fig. 3[link]). No classical hydrogen-bonding inter­actions are observed between cations and anions, but many carbonyl-O⋯H3C and carbonyl-O⋯HC inter­molecular contacts (Table 1[link]) are present. The diethyl ether mol­ecule resides in voids between four adjacent cations and anions featuring an O⋯HC contact (2.32 Å) with one of the carbenes at the palladium atom. No ππ stacking is observed in structure 2, but several weak C—H⋯π and C—H⋯OC contacts (Fig. 4[link] and Table 2[link]) are present. The axial CO groups of the Re(CO)5 fragments point towards voids filled with an unidentified solvent (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O4i 0.98 2.49 3.436 (6) 161
C13—H13⋯O9ii 0.95 2.44 3.36 (3) 165
C13—H13⋯O9Aii 0.95 2.32 3.25 (5) 163
C15—H15A⋯O6iii 0.98 2.44 3.326 (5) 150
C16—H16B⋯O9 0.98 2.57 3.49 (3) 158
C18—H18⋯O7iv 0.95 2.43 3.230 (9) 141
C19—H19⋯O7iii 0.95 2.56 3.483 (16) 163
C20—H20C⋯O5v 0.98 2.35 3.203 (12) 145
C21—H21A⋯O2vi 0.98 2.54 3.413 (11) 149
C21—H21C⋯O5 0.98 2.59 3.494 (12) 153
C24—H24B⋯O8vii 0.99 2.58 3.473 (12) 150
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) [-x, -y+2, -z]; (v) [-x, y, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg1 and Cg3 are the centroids of the C6–C11 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O5i 0.95 2.49 3.188 (3) 130
C39—H39⋯O2ii 0.95 2.60 3.491 (4) 157
C20—H20⋯Cg1iii 0.95 2.84 3.635 (3) 142
C34—H34⋯Cg3iv 0.95 2.90 3.683 (3) 140
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+2]; (iii) [-x+1, -y+2, -z+1]; (iv) [x, y-1, z].
[Figure 3]
Figure 3
A view of the packing of compound 1.
[Figure 4]
Figure 4
A view of the packing of compound 2.
[Figure 5]
Figure 5
The axial CO groups of the Re(CO)5 fragments in 2 point towards voids filled with an unidentified solvent.

4. Database survey

A search for related structures of palladium cations in the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 27 hits. Of the structures found, the closest structures considering the connectivity of the atoms are tetra­kis­(N-methyl­imidazolin-2-yl­idene)palladium(II) diiodide (JOKCIV; Fehlhammer et al., 1992[Fehlhammer, W. P., Bliss, T., Fuchs, J. & Holzmann, G. (1992). Z. Naturforsch. Teil B, 47, 79-89.]) and bis­[methyl­enebis(3-methyl­imidazol-2-yl­idene)]palladium(II) diiodide di­methyl­sulfoxide solvate (REFQID; Heckenroth et al., 2006[Heckenroth, M., Neels, A., Stoeckli-Evans, H. & Albrecht, M. (2006). Inorg. Chim. Acta, 359, 1929-1938.]). The cation in 1 is the first structurally characterized palladium complex ion containing four NHC ligands with substituents at the 1,3 positions of the imidazole ring. There are a number of compounds containing the tetra­nuclear [Re4(CO)16]2− anion, which is also found in the compound reported here. A search of the CSD found two closely related cluster compounds, viz. bis­(tetra­ethyl­ammo­nium) hexa­deca­carbonyl-tetra­rhenium (EAMCRE; Ciani et al., 1978[Ciani, G., D'Alfonso, G., Freni, M., Romiti, P. & Sironi, A. (1978). J. Organomet. Chem. 157, 199-208.]) and bis­(tetra-n-butyl­ammonium)­hexa­deca­carbonyl­tetra­rhenium (BATCRE10; Churchill & Bau, 1968[Churchill, M. R. & Bau, R. (1968). Inorg. Chem. 7, 2606-2614.]). The palladium–rhenium carbonyl cluster in 2 has not been structurally characterized previously.

5. Synthesis and crystallization

Under a nitro­gen atmosphere, Pd(PPh3)4 (241 mg, 0.185 mmol) was added to a toluene–aceto­nitrile mixture (8 and 6 mL, respectively) and 1,3-di­methyl­imidazolium-2-carboxyl­ate (104 mg, 0.704 mmol). The reaction mixture was refluxed for 1.5 h, then Re2(CO)10 (242 mg, 0.141 mmol) was added, the solution turned dark red and the solvents were removed in vacuo. The solid was washed with benzene (3 × 5 ml) and recrystallized from an aceto­nitrile–di­ethyl­ether mixture. X-ray quality crystals of Pd(IMe)4Re4(CO)16·2C4H10O (37 mg, 13%) were grown from a di­chloro­methane–di­ethyl­ether mixture at 277 K. 1HNMR (300.13 MHz, DMSO-d6, ppm): 3.41 (s, 24H, 8Me), 7.37 (s, 8H, 8CH). 13C{H} NMR (75.4 MHz, DMSO-d6, ppm): 36.9 (Me, IMe), 123.5 (CH, IMe), 168.0 (C, IMe), 197.7 (CO), 198.7 (CO), 201.1 (CO), 218.6 (CO) IR (ATR, ν, cm−1): 3152 (w, br), 1998 (vw), 1974 (vw), 1955 (m), 1927 (vw), 1912 (vw), 1881 (vs, br), 1858 (vw), 1575 (vw), 1465 (w), 1400 (vw), 1332 (vw), 1229 (m), 1131 (vw), 1083 (vw), 1013 (vw), 845 (vw), 736 (s), 701 (vw), 681 (m), 600 (w), 577 (s), 560 (vw), 508 (vw), 496 (vw), 464 (w), 436 (vw), 411 (w).

A few crystals of Pd4Re2(PPh3)4(m-CO)8(CO)2 suitable for X-ray diffraction analysis were obtained from a yellow benzene solution, after several days, by slow ether diffusion into a concentrated solution of benzene at 277 K. IR (ATR, ν, cm−1): 3850 (vw), 3054 (vw, br), 2955 (vw, br), 1986 (s), 1821 (vs, br), 1585 (vw), 1571 (vw), 1515 (vw), 1477 (w), 1434 (m), 1307 (vw), 1263 (vw), 1236 (vw, br), 1182 (vw), 1159 (vw), 1119 (vw), 1092 (m), 1071 (vw), 1026 (vw), 997 (w), 907 (vw), 846 (vw), 741 (m), 690 (vs), 618 (vw), 565 (w), 541 (vw), 496 (m), 412 (vw).

Tri­phenyl­phosphine oxide (14 mg, 28%) and Re2(CO)8(PPh3)2 (29 mg, 14%) were also isolated from this crystallization.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å (sp2), 0.98 Å (meth­yl) and 0.99 Å (methyl­ene), with common isotropic temperature factors for all hydrogen atoms of the aromatic rings and methyl groups. SADI restraints on bond lengths and DELU restraints on anisotropic thermal parameters were used to model the disordered carbene ligand and diethyl ether mol­ecule over two positions. For the refinement of 2, four reflections (100, 010, 200, 0[\overline{2}]1) were omitted because they showed a significantly lower intensity than calculated, most probably caused by obstruction from the beam stop. The residual electron density in 2 was difficult to model and therefore, the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The cavity with a volume of ca 311 Å3 contains approximately 98 electrons.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Pd(C5H8N2)4][Re4(CO)16]·2C4H10O [Pd4Re2(C18H15P)4(CO)10]
Mr 1832.13 2127.18
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 21.1079 (9), 14.0026 (6), 19.4346 (8) 12.9278 (4), 13.5132 (5), 14.1184 (5)
α, β, γ (°) 90, 109.342 (1), 90 105.983 (1), 108.510 (1), 106.129 (1)
V3) 5420.0 (4) 2060.09 (12)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 9.30 3.91
Crystal size (mm) 0.17 × 0.11 × 0.03 0.23 × 0.18 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.285, 0.746 0.515, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 128368, 9046, 7392 151194, 11588, 10906
Rint 0.087 0.042
(sin θ/λ)max−1) 0.736 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.06 0.018, 0.042, 1.10
No. of reflections 9046 11588
No. of parameters 427 461
No. of restraints 45 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.43, −1.83 0.95, −0.70
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker. (2015). APEX2 and SAINT, v8, 37A. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1) top
Crystal data top
[Pd(C5H8N2)4][Re4(CO)16]·2C4H10OF(000) = 3448
Mr = 1832.13Dx = 2.245 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.1079 (9) ÅCell parameters from 9678 reflections
b = 14.0026 (6) Åθ = 2.9–31.5°
c = 19.4346 (8) ŵ = 9.30 mm1
β = 109.342 (1)°T = 100 K
V = 5420.0 (4) Å3Plate, brownish yellow
Z = 40.17 × 0.11 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
7392 reflections with I > 2σ(I)
φ and ω scansRint = 0.087
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 31.5°, θmin = 1.8°
Tmin = 0.285, Tmax = 0.746h = 3131
128368 measured reflectionsk = 2020
9046 independent reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0239P)2 + 18.7547P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.002
S = 1.06Δρmax = 1.43 e Å3
9046 reflectionsΔρmin = 1.83 e Å3
427 parametersExtinction correction: SHELXL-2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
45 restraintsExtinction coefficient: 0.000167 (12)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.24123 (2)0.64550 (2)0.00757 (2)0.01933 (4)
Re20.12119 (2)0.77460 (2)0.02794 (2)0.01862 (4)
O10.26345 (18)0.6591 (2)0.17414 (18)0.0402 (8)
O20.33004 (14)0.4665 (2)0.04457 (16)0.0282 (6)
O30.21798 (18)0.6155 (2)0.15832 (16)0.0395 (8)
O40.12446 (17)0.5083 (3)0.0062 (3)0.0723 (15)
O50.14525 (17)0.7926 (3)0.13868 (17)0.0467 (9)
O60.02877 (15)0.9489 (2)0.05934 (19)0.0360 (7)
O70.09872 (16)0.7518 (2)0.19407 (16)0.0298 (6)
O80.00308 (15)0.6418 (2)0.03953 (18)0.0344 (7)
C10.2553 (2)0.6594 (3)0.1126 (2)0.0259 (8)
C20.30013 (19)0.5380 (3)0.0300 (2)0.0222 (7)
C30.2273 (2)0.6311 (3)0.0977 (2)0.0265 (8)
C40.1656 (2)0.5633 (3)0.0026 (3)0.0436 (13)
C50.1390 (2)0.7867 (3)0.0783 (2)0.0284 (8)
C60.06388 (19)0.8834 (3)0.0472 (2)0.0265 (8)
C70.10950 (19)0.7595 (3)0.1328 (2)0.0203 (7)
C80.0477 (2)0.6912 (3)0.0359 (2)0.0240 (7)
Pd10.00000.73266 (3)0.25000.01708 (8)
N10.01104 (15)0.5294 (2)0.20006 (16)0.0208 (6)
N20.08671 (16)0.7599 (2)0.40944 (16)0.0207 (6)
N30.14126 (16)0.6837 (3)0.35200 (18)0.0264 (7)
C90.00000.5885 (3)0.25000.0163 (9)
C100.0072 (2)0.4355 (3)0.2188 (2)0.0291 (8)
H100.01350.38100.19270.035*
C110.0244 (2)0.5602 (3)0.1342 (2)0.0280 (8)
H11A0.01690.55530.09210.042*
H11B0.05910.51940.12640.042*
H11C0.03990.62660.14000.042*
C120.08194 (18)0.7269 (3)0.34247 (19)0.0197 (7)
C130.1480 (2)0.7374 (3)0.4598 (2)0.0272 (8)
H130.16300.75290.51020.033*
C140.1825 (2)0.6895 (3)0.4242 (2)0.0306 (9)
H140.22650.66430.44450.037*
C150.0357 (2)0.8150 (3)0.4261 (2)0.0263 (8)
H15A0.05150.88070.43810.040*
H15B0.02650.78640.46780.040*
H15C0.00550.81540.38370.040*
C160.1617 (2)0.6371 (4)0.2951 (3)0.0372 (11)
H16A0.15780.56770.29880.056*
H16B0.20840.65380.30150.056*
H16C0.13270.65870.24710.056*
N40.0689 (5)0.9322 (6)0.2333 (5)0.0253 (17)0.5
N50.0364 (4)0.9444 (6)0.2548 (5)0.0250 (16)0.5
C170.0127 (4)0.8789 (5)0.2461 (10)0.0184 (18)0.5
C180.0558 (5)1.0282 (6)0.2331 (5)0.038 (2)0.5
H180.08751.07880.22390.045*0.5
C190.0112 (8)1.0359 (6)0.2485 (19)0.037 (4)0.5
H190.03611.09350.25410.044*0.5
C200.1373 (5)0.8957 (8)0.2173 (6)0.034 (2)0.5
H20A0.15500.87550.16620.051*0.5
H20B0.16590.94620.22610.051*0.5
H20C0.13670.84110.24910.051*0.5
C210.1067 (6)0.9243 (7)0.2723 (6)0.030 (2)0.5
H21A0.12610.90910.32430.045*0.5
H21B0.12950.98030.26120.045*0.5
H21C0.11260.86980.24330.045*0.5
O90.3252 (14)0.7269 (9)0.3616 (17)0.034 (3)0.625 (15)
C230.3548 (9)0.5629 (10)0.3719 (8)0.038 (3)0.625 (15)
H23A0.31320.54570.33300.057*0.625 (15)
H23B0.34730.56040.41910.057*0.625 (15)
H23C0.39030.51770.37210.057*0.625 (15)
C220.3752 (7)0.6610 (9)0.3592 (8)0.027 (3)0.625 (15)
H22A0.41840.67740.39700.033*0.625 (15)
H22B0.38150.66420.31100.033*0.625 (15)
C240.3390 (5)0.8233 (8)0.3464 (6)0.032 (2)0.625 (15)
H24A0.35230.82500.30210.038*0.625 (15)
H24B0.37660.84900.38770.038*0.625 (15)
C250.2780 (5)0.8827 (7)0.3352 (5)0.045 (2)0.625 (15)
H25A0.24180.85940.29240.068*0.625 (15)
H25B0.28810.94930.32740.068*0.625 (15)
H25C0.26390.87840.37830.068*0.625 (15)
O9A0.333 (3)0.7156 (16)0.371 (3)0.033 (6)0.375 (15)
C22A0.3655 (13)0.6404 (13)0.3477 (13)0.029 (5)0.375 (15)
H22C0.41230.65920.35400.035*0.375 (15)
H22D0.34220.62800.29520.035*0.375 (15)
C24A0.3289 (11)0.8017 (10)0.3296 (9)0.027 (4)0.375 (15)
H24C0.29160.79660.28270.032*0.375 (15)
H24D0.37120.81080.31880.032*0.375 (15)
C23A0.3655 (13)0.5520 (12)0.3901 (11)0.020 (3)0.375 (15)
H23D0.39390.50370.37830.030*0.375 (15)
H23E0.31950.52770.37760.030*0.375 (15)
H23F0.38310.56650.44240.030*0.375 (15)
C25A0.3175 (8)0.8841 (9)0.3715 (8)0.037 (4)0.375 (15)
H25D0.31180.94210.34190.056*0.375 (15)
H25E0.35620.89180.41610.056*0.375 (15)
H25F0.27700.87310.38440.056*0.375 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01832 (7)0.01206 (7)0.02740 (8)0.00109 (5)0.00727 (5)0.00045 (5)
Re20.01763 (7)0.01595 (7)0.02291 (7)0.00130 (5)0.00757 (5)0.00270 (5)
O10.053 (2)0.039 (2)0.0373 (17)0.0041 (16)0.0264 (16)0.0060 (14)
O20.0337 (15)0.0177 (14)0.0362 (15)0.0062 (12)0.0156 (12)0.0079 (12)
O30.052 (2)0.0295 (17)0.0295 (16)0.0116 (15)0.0032 (14)0.0019 (13)
O40.0295 (17)0.0229 (19)0.163 (5)0.0023 (14)0.029 (2)0.004 (2)
O50.0373 (18)0.075 (3)0.0284 (16)0.0133 (18)0.0116 (14)0.0083 (17)
O60.0276 (14)0.0205 (15)0.059 (2)0.0059 (12)0.0128 (14)0.0041 (14)
O70.0361 (16)0.0266 (16)0.0279 (15)0.0001 (12)0.0122 (12)0.0020 (12)
O80.0324 (15)0.0296 (17)0.0465 (18)0.0084 (13)0.0202 (14)0.0073 (14)
C10.0295 (19)0.0196 (19)0.035 (2)0.0015 (15)0.0191 (17)0.0027 (16)
C20.0258 (17)0.0211 (19)0.0217 (16)0.0004 (14)0.0107 (14)0.0010 (14)
C30.0299 (19)0.0134 (18)0.032 (2)0.0042 (15)0.0052 (16)0.0015 (15)
C40.026 (2)0.016 (2)0.088 (4)0.0035 (17)0.018 (2)0.001 (2)
C50.0239 (18)0.030 (2)0.032 (2)0.0046 (16)0.0101 (16)0.0061 (17)
C60.0214 (17)0.023 (2)0.036 (2)0.0010 (15)0.0117 (16)0.0049 (17)
C70.0233 (17)0.0119 (16)0.0270 (18)0.0007 (13)0.0099 (14)0.0018 (13)
C80.0289 (18)0.0175 (18)0.0281 (19)0.0023 (15)0.0127 (15)0.0021 (15)
Pd10.02756 (18)0.00932 (17)0.01613 (16)0.0000.00962 (14)0.000
N10.0257 (15)0.0122 (14)0.0230 (14)0.0005 (12)0.0062 (12)0.0024 (12)
N20.0265 (15)0.0175 (16)0.0190 (14)0.0068 (12)0.0085 (12)0.0013 (11)
N30.0223 (15)0.0286 (19)0.0294 (17)0.0082 (13)0.0101 (13)0.0123 (14)
C90.015 (2)0.012 (2)0.020 (2)0.0000.0026 (17)0.000
C100.042 (2)0.0100 (17)0.033 (2)0.0016 (16)0.0093 (18)0.0034 (15)
C110.036 (2)0.022 (2)0.0274 (19)0.0000 (17)0.0123 (17)0.0041 (16)
C120.0253 (17)0.0152 (17)0.0201 (16)0.0068 (14)0.0096 (14)0.0023 (13)
C130.031 (2)0.026 (2)0.0219 (17)0.0112 (16)0.0042 (15)0.0039 (15)
C140.0220 (18)0.031 (2)0.034 (2)0.0065 (16)0.0023 (16)0.0061 (18)
C150.033 (2)0.026 (2)0.0236 (18)0.0035 (17)0.0148 (16)0.0063 (16)
C160.025 (2)0.047 (3)0.041 (2)0.0039 (19)0.0137 (18)0.019 (2)
N40.035 (4)0.023 (4)0.021 (4)0.014 (4)0.012 (5)0.004 (3)
N50.041 (4)0.020 (4)0.019 (4)0.005 (3)0.017 (4)0.004 (3)
C170.030 (6)0.015 (3)0.013 (4)0.004 (3)0.011 (7)0.000 (3)
C180.074 (6)0.019 (4)0.026 (5)0.018 (4)0.024 (5)0.010 (3)
C190.068 (9)0.016 (3)0.029 (4)0.001 (5)0.020 (12)0.001 (5)
C200.039 (5)0.041 (7)0.027 (5)0.018 (4)0.017 (5)0.009 (5)
C210.043 (5)0.020 (5)0.032 (5)0.017 (5)0.018 (6)0.003 (4)
O90.038 (5)0.033 (5)0.037 (9)0.011 (5)0.021 (6)0.010 (5)
C230.043 (8)0.046 (5)0.022 (7)0.000 (5)0.008 (6)0.001 (4)
C220.021 (4)0.036 (5)0.026 (5)0.005 (4)0.010 (4)0.005 (4)
C240.035 (4)0.036 (5)0.023 (5)0.008 (4)0.006 (4)0.006 (4)
C250.050 (6)0.043 (5)0.038 (5)0.002 (4)0.008 (4)0.006 (4)
O9A0.055 (15)0.022 (5)0.028 (9)0.000 (6)0.022 (10)0.002 (5)
C22A0.037 (11)0.028 (8)0.019 (8)0.001 (7)0.005 (7)0.003 (7)
C24A0.044 (9)0.016 (6)0.015 (7)0.005 (6)0.002 (6)0.006 (4)
C23A0.023 (7)0.023 (6)0.009 (8)0.007 (5)0.001 (6)0.005 (5)
C25A0.044 (8)0.024 (6)0.046 (8)0.005 (5)0.016 (7)0.006 (5)
Geometric parameters (Å, º) top
Re1—Re1i2.9767 (3)C16—H16B0.9800
Re1—Re2i3.0133 (2)C16—H16C0.9800
Re1—Re23.0011 (2)N4—C171.353 (9)
Re1—C11.973 (4)N4—C181.373 (11)
Re1—C21.909 (4)N4—C201.464 (11)
Re1—C31.978 (4)N5—C171.352 (9)
Re1—C41.925 (5)N5—C191.378 (11)
Re2—Re1i3.0134 (2)N5—C211.436 (11)
Re2—C51.980 (4)C18—H180.9500
Re2—C61.904 (4)C18—C191.349 (15)
Re2—C71.982 (4)C19—H190.9500
Re2—C81.908 (4)C20—H20A0.9800
O1—C11.150 (5)C20—H20B0.9800
O2—C21.167 (5)C20—H20C0.9800
O3—C31.150 (5)C21—H21A0.9800
O4—C41.145 (6)C21—H21B0.9800
O5—C51.139 (5)C21—H21C0.9800
O6—C61.153 (5)O9—C221.415 (12)
O7—C71.140 (5)O9—C241.431 (12)
O8—C81.151 (5)C23—H23A0.9800
Pd1—C92.019 (5)C23—H23B0.9800
Pd1—C12ii2.042 (4)C23—H23C0.9800
Pd1—C122.042 (4)C23—C221.486 (12)
Pd1—C172.064 (6)C22—H22A0.9900
N1—C91.353 (4)C22—H22B0.9900
N1—C101.375 (5)C24—H24A0.9900
N1—C111.464 (5)C24—H24B0.9900
N2—C121.353 (4)C24—C251.488 (12)
N2—C131.375 (5)C25—H25A0.9800
N2—C151.446 (5)C25—H25B0.9800
N3—C121.347 (5)C25—H25C0.9800
N3—C141.387 (5)O9A—C22A1.413 (16)
N3—C161.467 (5)O9A—C24A1.439 (16)
C9—N1ii1.353 (4)C22A—H22C0.9900
C10—C10ii1.343 (8)C22A—H22D0.9900
C10—H100.9500C22A—C23A1.487 (15)
C11—H11A0.9800C24A—H24C0.9900
C11—H11B0.9800C24A—H24D0.9900
C11—H11C0.9800C24A—C25A1.479 (14)
C13—H130.9500C23A—H23D0.9800
C13—C141.338 (6)C23A—H23E0.9800
C14—H140.9500C23A—H23F0.9800
C15—H15A0.9800C25A—H25D0.9800
C15—H15B0.9800C25A—H25E0.9800
C15—H15C0.9800C25A—H25F0.9800
C16—H16A0.9800
Re1i—Re1—Re260.542 (6)H15B—C15—H15C109.5
Re1i—Re1—Re2i60.127 (5)N3—C16—H16A109.5
Re2—Re1—Re2i120.669 (6)N3—C16—H16B109.5
C1—Re1—Re1i91.41 (12)N3—C16—H16C109.5
C1—Re1—Re2i91.11 (12)H16A—C16—H16B109.5
C1—Re1—Re290.28 (12)H16A—C16—H16C109.5
C1—Re1—C3179.77 (18)H16B—C16—H16C109.5
C2—Re1—Re1i134.85 (11)C17—N4—C18112.1 (9)
C2—Re1—Re2164.59 (11)C17—N4—C20126.2 (8)
C2—Re1—Re2i74.73 (11)C18—N4—C20121.7 (9)
C2—Re1—C188.73 (16)C17—N5—C19111.2 (8)
C2—Re1—C391.05 (15)C17—N5—C21125.8 (8)
C2—Re1—C490.39 (17)C19—N5—C21122.9 (9)
C3—Re1—Re1i88.79 (11)N4—C17—Pd1130.5 (6)
C3—Re1—Re289.91 (11)N5—C17—Pd1125.7 (6)
C3—Re1—Re2i88.89 (12)N5—C17—N4103.8 (8)
C4—Re1—Re1i134.75 (13)N4—C18—H18127.0
C4—Re1—Re2i165.04 (13)C19—C18—N4105.9 (9)
C4—Re1—Re274.23 (13)C19—C18—H18127.0
C4—Re1—C190.0 (2)N5—C19—H19126.5
C4—Re1—C389.9 (2)C18—C19—N5107.0 (9)
Re1—Re2—Re1i59.330 (6)C18—C19—H19126.5
C5—Re2—Re1i89.40 (12)N4—C20—H20A109.5
C5—Re2—Re187.57 (12)N4—C20—H20B109.5
C5—Re2—C7176.24 (15)N4—C20—H20C109.5
C6—Re2—Re1163.81 (12)H20A—C20—H20B109.5
C6—Re2—Re1i104.51 (12)H20A—C20—H20C109.5
C6—Re2—C591.43 (17)H20B—C20—H20C109.5
C6—Re2—C791.67 (16)N5—C21—H21A109.5
C6—Re2—C891.55 (16)N5—C21—H21B109.5
C7—Re2—Re188.86 (10)N5—C21—H21C109.5
C7—Re2—Re1i87.76 (11)H21A—C21—H21B109.5
C8—Re2—Re1i163.93 (12)H21A—C21—H21C109.5
C8—Re2—Re1104.61 (12)H21B—C21—H21C109.5
C8—Re2—C590.28 (17)C22—O9—C24113.7 (13)
C8—Re2—C791.76 (15)H23A—C23—H23B109.5
O1—C1—Re1174.2 (4)H23A—C23—H23C109.5
O2—C2—Re1172.3 (3)H23B—C23—H23C109.5
O3—C3—Re1174.7 (4)C22—C23—H23A109.5
O4—C4—Re1174.2 (4)C22—C23—H23B109.5
O5—C5—Re2175.9 (4)C22—C23—H23C109.5
O6—C6—Re2179.4 (4)O9—C22—C23109.7 (11)
O7—C7—Re2175.8 (3)O9—C22—H22A109.7
O8—C8—Re2178.7 (4)O9—C22—H22B109.7
C9—Pd1—C1287.72 (10)C23—C22—H22A109.7
C9—Pd1—C12ii87.72 (10)C23—C22—H22B109.7
C9—Pd1—C17173.0 (2)H22A—C22—H22B108.2
C12ii—Pd1—C12175.4 (2)O9—C24—H24A109.8
C12ii—Pd1—C1786.9 (4)O9—C24—H24B109.8
C12—Pd1—C1797.7 (4)O9—C24—C25109.4 (11)
C9—N1—C10110.8 (3)H24A—C24—H24B108.2
C9—N1—C11125.2 (3)C25—C24—H24A109.8
C10—N1—C11124.0 (3)C25—C24—H24B109.8
C12—N2—C13111.0 (3)C24—C25—H25A109.5
C12—N2—C15125.0 (3)C24—C25—H25B109.5
C13—N2—C15123.9 (3)C24—C25—H25C109.5
C12—N3—C14110.9 (3)H25A—C25—H25B109.5
C12—N3—C16126.1 (3)H25A—C25—H25C109.5
C14—N3—C16123.1 (4)H25B—C25—H25C109.5
N1ii—C9—Pd1127.7 (2)C22A—O9A—C24A113 (2)
N1—C9—Pd1127.7 (2)O9A—C22A—H22C109.5
N1—C9—N1ii104.6 (4)O9A—C22A—H22D109.5
N1—C10—H10126.6O9A—C22A—C23A110.6 (16)
C10ii—C10—N1106.9 (2)H22C—C22A—H22D108.1
C10ii—C10—H10126.6C23A—C22A—H22C109.5
N1—C11—H11A109.5C23A—C22A—H22D109.5
N1—C11—H11B109.5O9A—C24A—H24C109.8
N1—C11—H11C109.5O9A—C24A—H24D109.8
H11A—C11—H11B109.5O9A—C24A—C25A109.5 (18)
H11A—C11—H11C109.5H24C—C24A—H24D108.2
H11B—C11—H11C109.5C25A—C24A—H24C109.8
N2—C12—Pd1127.2 (3)C25A—C24A—H24D109.8
N3—C12—Pd1128.1 (3)C22A—C23A—H23D109.5
N3—C12—N2104.6 (3)C22A—C23A—H23E109.5
N2—C13—H13126.5C22A—C23A—H23F109.5
C14—C13—N2107.0 (3)H23D—C23A—H23E109.5
C14—C13—H13126.5H23D—C23A—H23F109.5
N3—C14—H14126.7H23E—C23A—H23F109.5
C13—C14—N3106.6 (4)C24A—C25A—H25D109.5
C13—C14—H14126.7C24A—C25A—H25E109.5
N2—C15—H15A109.5C24A—C25A—H25F109.5
N2—C15—H15B109.5H25D—C25A—H25E109.5
N2—C15—H15C109.5H25D—C25A—H25F109.5
H15A—C15—H15B109.5H25E—C25A—H25F109.5
H15A—C15—H15C109.5
N2—C13—C14—N30.1 (5)C16—N3—C14—C13179.1 (4)
C9—N1—C10—C10ii0.6 (6)N4—C18—C19—N52 (3)
C10—N1—C9—Pd1179.8 (2)C17—N4—C18—C192 (2)
C10—N1—C9—N1ii0.2 (2)C17—N5—C19—C182 (3)
C11—N1—C9—Pd11.0 (4)C18—N4—C17—Pd1178.0 (11)
C11—N1—C9—N1ii179.0 (4)C18—N4—C17—N50.7 (17)
C11—N1—C10—C10ii178.6 (4)C19—N5—C17—Pd1179.6 (18)
C12—N2—C13—C140.0 (5)C19—N5—C17—N41 (2)
C12—N3—C14—C130.3 (5)C20—N4—C17—Pd11 (2)
C13—N2—C12—Pd1175.6 (3)C20—N4—C17—N5177.6 (9)
C13—N2—C12—N30.2 (4)C20—N4—C18—C19179.0 (17)
C14—N3—C12—Pd1175.4 (3)C21—N5—C17—Pd14 (2)
C14—N3—C12—N20.3 (4)C21—N5—C17—N4177.6 (9)
C15—N2—C12—Pd16.8 (5)C21—N5—C19—C18179.0 (14)
C15—N2—C12—N3177.5 (3)C22—O9—C24—C25168.3 (18)
C15—N2—C13—C14177.7 (4)C24—O9—C22—C23177.2 (18)
C16—N3—C12—Pd15.2 (6)C22A—O9A—C24A—C25A160 (3)
C16—N3—C12—N2179.1 (4)C24A—O9A—C22A—C23A177 (3)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O4iii0.982.493.436 (6)161
C13—H13···O9iv0.952.443.36 (3)165
C13—H13···O9Aiv0.952.323.25 (5)163
C15—H15A···O6v0.982.443.326 (5)150
C16—H16B···O90.982.573.49 (3)158
C18—H18···O7vi0.952.433.230 (9)141
C19—H19···O7v0.952.563.483 (16)163
C20—H20C···O5ii0.982.353.203 (12)145
C21—H21A···O2vii0.982.543.413 (11)149
C21—H21C···O50.982.593.494 (12)153
C24—H24B···O8viii0.992.583.473 (12)150
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+3/2, z+1; (v) x, y+2, z+1/2; (vi) x, y+2, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+3/2, z+1/2.
Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2) top
Crystal data top
[Pd4Re2(C18H15P)4(CO)10]Z = 1
Mr = 2127.18F(000) = 1026
Triclinic, P1Dx = 1.715 Mg m3
a = 12.9278 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5132 (5) ÅCell parameters from 9325 reflections
c = 14.1184 (5) Åθ = 2.8–29.6°
α = 105.983 (1)°µ = 3.91 mm1
β = 108.510 (1)°T = 100 K
γ = 106.129 (1)°Block, red
V = 2060.09 (12) Å30.23 × 0.18 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
10906 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 29.7°, θmin = 2.8°
Tmin = 0.515, Tmax = 0.746h = 1717
151194 measured reflectionsk = 1818
11588 independent reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0148P)2 + 2.1161P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.005
S = 1.10Δρmax = 0.95 e Å3
11588 reflectionsΔρmin = 0.70 e Å3
461 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00119 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.03789 (2)0.58284 (2)0.59592 (2)0.01288 (3)
Pd10.11939 (2)0.64837 (2)0.50923 (2)0.01377 (3)
Pd20.13798 (2)0.50124 (2)0.63029 (2)0.01360 (3)
P10.27753 (4)0.79978 (4)0.52970 (4)0.01537 (9)
P20.27280 (5)0.48255 (4)0.77255 (4)0.01634 (10)
O10.11990 (18)0.71938 (18)0.74578 (16)0.0433 (5)
O20.12746 (15)0.42760 (14)0.70708 (13)0.0266 (3)
O30.18975 (14)0.70585 (13)0.81880 (12)0.0236 (3)
O40.03880 (14)0.82425 (13)0.59258 (13)0.0240 (3)
O50.30356 (13)0.45945 (14)0.53745 (13)0.0236 (3)
C10.0874 (2)0.66930 (19)0.69145 (18)0.0246 (4)
C20.10429 (18)0.45891 (18)0.64488 (17)0.0198 (4)
C30.12010 (18)0.64157 (17)0.73175 (16)0.0178 (4)
C40.03254 (17)0.73328 (17)0.57964 (16)0.0175 (4)
C50.20750 (18)0.45438 (17)0.51815 (16)0.0174 (4)
C60.37893 (17)0.75557 (17)0.48099 (17)0.0188 (4)
C70.4316 (2)0.69504 (19)0.53169 (19)0.0242 (4)
H70.41560.68220.58940.029*
C80.5067 (2)0.65387 (19)0.4984 (2)0.0270 (5)
H80.54090.61180.53220.032*
C90.5315 (2)0.6744 (2)0.41544 (19)0.0283 (5)
H90.58300.64640.39240.034*
C100.4819 (2)0.7353 (2)0.36630 (19)0.0278 (5)
H100.50080.75040.31060.033*
C110.40389 (18)0.77520 (18)0.39750 (17)0.0215 (4)
H110.36830.81540.36190.026*
C120.38172 (18)0.90224 (17)0.66794 (16)0.0180 (4)
C130.34659 (19)0.91169 (18)0.75257 (17)0.0216 (4)
H130.26860.86490.73810.026*
C140.4253 (2)0.9896 (2)0.85853 (18)0.0264 (5)
H140.40040.99560.91560.032*
C150.5392 (2)1.0578 (2)0.88081 (19)0.0299 (5)
H150.59221.11130.95270.036*
C160.5758 (2)1.0476 (2)0.7971 (2)0.0292 (5)
H160.65441.09350.81220.035*
C170.49795 (19)0.97081 (18)0.69209 (18)0.0230 (4)
H170.52370.96450.63560.028*
C180.22924 (18)0.88071 (17)0.45395 (16)0.0184 (4)
C190.3060 (2)0.98359 (18)0.46489 (18)0.0229 (4)
H190.38751.01520.51480.027*
C200.2634 (2)1.0399 (2)0.4029 (2)0.0281 (5)
H200.31621.10930.41020.034*
C210.1449 (2)0.9955 (2)0.3312 (2)0.0347 (6)
H210.11611.03460.28970.042*
C220.0676 (2)0.8933 (3)0.3198 (2)0.0387 (6)
H220.01390.86220.26990.046*
C230.1098 (2)0.8368 (2)0.3815 (2)0.0282 (5)
H230.05660.76760.37420.034*
C240.42622 (18)0.57138 (19)0.80973 (17)0.0208 (4)
C250.5207 (2)0.5376 (2)0.8357 (2)0.0294 (5)
H250.50700.46510.83660.035*
C260.6346 (2)0.6093 (2)0.8602 (2)0.0401 (6)
H260.69820.58550.87740.048*
C270.6561 (2)0.7155 (3)0.8598 (2)0.0409 (6)
H270.73420.76420.87650.049*
C280.5630 (2)0.7502 (3)0.8347 (3)0.0415 (7)
H280.57760.82330.83530.050*
C290.4486 (2)0.6779 (2)0.8087 (2)0.0326 (5)
H290.38500.70150.79010.039*
C300.26705 (19)0.34177 (18)0.75156 (17)0.0199 (4)
C310.3181 (2)0.3138 (2)0.83814 (19)0.0296 (5)
H310.36040.36990.91030.036*
C320.3073 (3)0.2043 (2)0.8192 (2)0.0365 (6)
H320.34250.18600.87840.044*
C330.2453 (2)0.1214 (2)0.7143 (2)0.0335 (5)
H330.23820.04650.70180.040*
C340.1937 (2)0.1477 (2)0.6279 (2)0.0280 (5)
H340.15060.09090.55610.034*
C350.20507 (19)0.25749 (18)0.64649 (17)0.0213 (4)
H350.17020.27540.58690.026*
C360.25498 (19)0.52324 (18)0.89861 (16)0.0201 (4)
C370.1507 (2)0.4569 (2)0.8988 (2)0.0303 (5)
H370.09430.39130.83590.036*
C380.1295 (3)0.4865 (3)0.9907 (2)0.0414 (7)
H380.05920.44030.99100.050*
C390.2099 (3)0.5825 (3)1.0819 (2)0.0443 (7)
H390.19480.60301.14460.053*
C400.3120 (3)0.6484 (2)1.0815 (2)0.0407 (7)
H400.36710.71481.14410.049*
C410.3356 (2)0.6192 (2)0.99088 (18)0.0277 (5)
H410.40700.66490.99200.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01245 (4)0.01357 (4)0.01647 (4)0.00659 (3)0.00863 (3)0.00710 (3)
Pd10.01249 (7)0.01311 (7)0.01861 (7)0.00468 (5)0.00858 (5)0.00854 (5)
Pd20.01236 (7)0.01464 (7)0.01648 (7)0.00662 (5)0.00670 (5)0.00807 (5)
P10.0134 (2)0.0141 (2)0.0215 (2)0.00506 (18)0.00935 (18)0.00943 (19)
P20.0163 (2)0.0175 (2)0.0174 (2)0.00879 (19)0.00679 (18)0.00836 (19)
O10.0443 (11)0.0454 (11)0.0439 (11)0.0246 (9)0.0282 (9)0.0054 (9)
O20.0308 (8)0.0263 (8)0.0236 (7)0.0053 (7)0.0156 (7)0.0124 (6)
O30.0248 (8)0.0196 (7)0.0221 (7)0.0100 (6)0.0058 (6)0.0062 (6)
O40.0241 (8)0.0162 (7)0.0341 (8)0.0097 (6)0.0128 (7)0.0111 (6)
O50.0180 (7)0.0314 (8)0.0300 (8)0.0145 (6)0.0135 (6)0.0156 (7)
C10.0216 (10)0.0260 (11)0.0263 (10)0.0104 (9)0.0120 (9)0.0075 (9)
C20.0168 (9)0.0221 (10)0.0220 (9)0.0069 (8)0.0104 (8)0.0090 (8)
C30.0190 (9)0.0182 (9)0.0213 (9)0.0089 (8)0.0109 (8)0.0109 (8)
C40.0138 (8)0.0190 (9)0.0199 (9)0.0070 (7)0.0074 (7)0.0073 (7)
C50.0190 (9)0.0161 (9)0.0218 (9)0.0082 (7)0.0109 (8)0.0101 (7)
C60.0142 (9)0.0151 (9)0.0270 (10)0.0041 (7)0.0108 (8)0.0079 (8)
C70.0234 (10)0.0231 (10)0.0361 (12)0.0112 (9)0.0180 (9)0.0177 (9)
C80.0252 (11)0.0224 (11)0.0411 (13)0.0132 (9)0.0172 (10)0.0163 (10)
C90.0222 (11)0.0284 (12)0.0331 (12)0.0127 (9)0.0131 (9)0.0063 (9)
C100.0257 (11)0.0367 (13)0.0256 (10)0.0144 (10)0.0157 (9)0.0113 (9)
C110.0174 (9)0.0242 (10)0.0233 (10)0.0077 (8)0.0092 (8)0.0104 (8)
C120.0175 (9)0.0154 (9)0.0226 (9)0.0069 (7)0.0079 (8)0.0100 (7)
C130.0216 (10)0.0218 (10)0.0255 (10)0.0108 (8)0.0098 (8)0.0132 (8)
C140.0305 (12)0.0291 (11)0.0236 (10)0.0146 (10)0.0112 (9)0.0139 (9)
C150.0316 (12)0.0213 (11)0.0251 (11)0.0071 (9)0.0031 (9)0.0071 (9)
C160.0219 (11)0.0220 (11)0.0326 (12)0.0024 (9)0.0058 (9)0.0089 (9)
C170.0201 (10)0.0196 (10)0.0287 (10)0.0060 (8)0.0104 (8)0.0110 (8)
C180.0200 (9)0.0191 (9)0.0228 (9)0.0097 (8)0.0122 (8)0.0120 (8)
C190.0243 (10)0.0201 (10)0.0284 (10)0.0082 (8)0.0143 (9)0.0126 (8)
C200.0370 (13)0.0227 (11)0.0358 (12)0.0133 (10)0.0215 (10)0.0190 (10)
C210.0403 (14)0.0394 (14)0.0441 (14)0.0236 (12)0.0217 (12)0.0318 (12)
C220.0243 (12)0.0525 (17)0.0478 (15)0.0158 (12)0.0116 (11)0.0357 (14)
C230.0199 (10)0.0316 (12)0.0356 (12)0.0069 (9)0.0106 (9)0.0219 (10)
C240.0159 (9)0.0252 (10)0.0209 (9)0.0081 (8)0.0070 (8)0.0097 (8)
C250.0229 (11)0.0282 (12)0.0347 (12)0.0144 (9)0.0076 (9)0.0103 (10)
C260.0217 (12)0.0435 (15)0.0497 (16)0.0166 (11)0.0105 (11)0.0130 (13)
C270.0200 (11)0.0465 (16)0.0527 (16)0.0072 (11)0.0150 (11)0.0218 (14)
C280.0262 (13)0.0395 (15)0.0630 (18)0.0097 (11)0.0167 (12)0.0322 (14)
C290.0216 (11)0.0350 (13)0.0496 (15)0.0127 (10)0.0150 (11)0.0278 (12)
C300.0208 (10)0.0204 (10)0.0236 (10)0.0118 (8)0.0100 (8)0.0115 (8)
C310.0352 (13)0.0260 (11)0.0273 (11)0.0163 (10)0.0071 (10)0.0134 (9)
C320.0438 (15)0.0329 (13)0.0403 (14)0.0248 (12)0.0120 (12)0.0223 (11)
C330.0376 (13)0.0249 (12)0.0465 (14)0.0204 (11)0.0179 (12)0.0183 (11)
C340.0304 (12)0.0219 (11)0.0335 (12)0.0132 (9)0.0152 (10)0.0087 (9)
C350.0213 (10)0.0202 (10)0.0238 (10)0.0097 (8)0.0098 (8)0.0093 (8)
C360.0226 (10)0.0250 (10)0.0195 (9)0.0154 (8)0.0091 (8)0.0120 (8)
C370.0246 (11)0.0393 (14)0.0319 (12)0.0155 (10)0.0143 (10)0.0157 (10)
C380.0430 (16)0.0624 (19)0.0491 (16)0.0326 (15)0.0350 (14)0.0348 (15)
C390.076 (2)0.0585 (19)0.0360 (14)0.0490 (18)0.0393 (15)0.0307 (14)
C400.068 (2)0.0340 (14)0.0219 (11)0.0274 (14)0.0168 (12)0.0101 (10)
C410.0364 (13)0.0240 (11)0.0215 (10)0.0124 (10)0.0105 (9)0.0094 (9)
Geometric parameters (Å, º) top
Re1—Pd1i2.7748 (2)C15—H150.9500
Re1—Pd12.7555 (2)C15—C161.394 (4)
Re1—Pd2i2.7796 (2)C16—H160.9500
Re1—Pd22.7582 (2)C16—C171.383 (3)
Re1—C11.921 (2)C17—H170.9500
Re1—C22.058 (2)C18—C191.400 (3)
Re1—C32.062 (2)C18—C231.391 (3)
Re1—C42.092 (2)C19—H190.9500
Re1—C5i2.087 (2)C19—C201.393 (3)
Pd1—Re1i2.7747 (2)C20—H200.9500
Pd1—Pd22.9678 (2)C20—C211.379 (4)
Pd1—Pd2i2.9909 (2)C21—H210.9500
Pd1—P12.3291 (5)C21—C221.393 (4)
Pd1—C2i2.170 (2)C22—H220.9500
Pd1—C42.088 (2)C22—C231.392 (3)
Pd2—Re1i2.7796 (2)C23—H230.9500
Pd2—Pd1i2.9910 (2)C24—C251.398 (3)
Pd2—P22.3317 (5)C24—C291.393 (3)
Pd2—C32.158 (2)C25—H250.9500
Pd2—C52.094 (2)C25—C261.387 (4)
P1—C61.825 (2)C26—H260.9500
P1—C121.830 (2)C26—C271.385 (4)
P1—C181.825 (2)C27—H270.9500
P2—C241.822 (2)C27—C281.389 (4)
P2—C301.819 (2)C28—H280.9500
P2—C361.821 (2)C28—C291.390 (3)
O1—C11.140 (3)C29—H290.9500
O2—C21.158 (3)C30—C311.398 (3)
O3—C31.162 (2)C30—C351.396 (3)
O4—C41.167 (3)C31—H310.9500
O5—C51.161 (2)C31—C321.386 (3)
C2—Pd1i2.170 (2)C32—H320.9500
C5—Re1i2.087 (2)C32—C331.387 (4)
C6—C71.403 (3)C33—H330.9500
C6—C111.389 (3)C33—C341.383 (4)
C7—H70.9500C34—H340.9500
C7—C81.385 (3)C34—C351.390 (3)
C8—H80.9500C35—H350.9500
C8—C91.385 (3)C36—C371.398 (3)
C9—H90.9500C36—C411.386 (3)
C9—C101.376 (3)C37—H370.9500
C10—H100.9500C37—C381.386 (4)
C10—C111.398 (3)C38—H380.9500
C11—H110.9500C38—C391.379 (5)
C12—C131.394 (3)C39—H390.9500
C12—C171.400 (3)C39—C401.374 (5)
C13—H130.9500C40—H400.9500
C13—C141.397 (3)C40—C411.386 (3)
C14—H140.9500C41—H410.9500
C14—C151.381 (3)
Pd1—Re1—Pd1i99.105 (5)C6—C7—H7119.7
Pd1—Re1—Pd2i65.413 (5)C8—C7—C6120.6 (2)
Pd1i—Re1—Pd2i64.596 (5)C8—C7—H7119.7
Pd1—Re1—Pd265.131 (5)C7—C8—H8120.2
Pd2—Re1—Pd1i65.445 (5)C7—C8—C9119.6 (2)
Pd2—Re1—Pd2i99.238 (5)C9—C8—H8120.2
C1—Re1—Pd1131.04 (7)C8—C9—H9119.9
C1—Re1—Pd1i129.69 (7)C10—C9—C8120.3 (2)
C1—Re1—Pd2133.48 (7)C10—C9—H9119.9
C1—Re1—Pd2i127.28 (7)C9—C10—H10119.7
C1—Re1—C283.99 (9)C9—C10—C11120.7 (2)
C1—Re1—C385.84 (9)C11—C10—H10119.7
C1—Re1—C483.85 (9)C6—C11—C10119.5 (2)
C1—Re1—C5i81.63 (9)C6—C11—H11120.3
C2—Re1—Pd1141.37 (6)C10—C11—H11120.3
C2—Re1—Pd1i50.76 (6)C13—C12—P1119.88 (16)
C2—Re1—Pd278.91 (6)C13—C12—C17118.49 (19)
C2—Re1—Pd2i109.51 (6)C17—C12—P1121.62 (16)
C2—Re1—C387.43 (8)C12—C13—H13119.8
C2—Re1—C4166.84 (8)C12—C13—C14120.4 (2)
C2—Re1—C5i91.78 (8)C14—C13—H13119.8
C3—Re1—Pd1i109.34 (6)C13—C14—H14119.8
C3—Re1—Pd180.75 (6)C15—C14—C13120.4 (2)
C3—Re1—Pd250.73 (6)C15—C14—H14119.8
C3—Re1—Pd2i143.08 (6)C14—C15—H15120.2
C3—Re1—C486.69 (8)C14—C15—C16119.6 (2)
C3—Re1—C5i167.46 (8)C16—C15—H15120.2
C4—Re1—Pd148.71 (5)C15—C16—H16119.9
C4—Re1—Pd1i142.40 (5)C17—C16—C15120.2 (2)
C4—Re1—Pd2i82.00 (5)C17—C16—H16119.9
C4—Re1—Pd2106.14 (5)C12—C17—H17119.5
C5i—Re1—Pd1107.18 (6)C16—C17—C12120.9 (2)
C5i—Re1—Pd1i79.46 (5)C16—C17—H17119.5
C5i—Re1—Pd2141.24 (5)C19—C18—P1123.40 (16)
C5i—Re1—Pd2i48.43 (5)C23—C18—P1117.73 (16)
C5i—Re1—C491.42 (8)C23—C18—C19118.9 (2)
Re1—Pd1—Re1i80.894 (5)C18—C19—H19119.8
Re1i—Pd1—Pd257.781 (5)C20—C19—C18120.3 (2)
Re1i—Pd1—Pd2i57.011 (4)C20—C19—H19119.8
Re1—Pd1—Pd257.477 (4)C19—C20—H20119.8
Re1—Pd1—Pd2i57.681 (5)C21—C20—C19120.3 (2)
Pd2—Pd1—Pd2i90.135 (6)C21—C20—H20119.8
P1—Pd1—Re1i133.608 (14)C20—C21—H21120.0
P1—Pd1—Re1143.861 (14)C20—C21—C22119.9 (2)
P1—Pd1—Pd2i143.699 (14)C22—C21—H21120.0
P1—Pd1—Pd2125.624 (14)C21—C22—H22120.0
C2i—Pd1—Re1i47.26 (6)C23—C22—C21119.9 (2)
C2i—Pd1—Re1122.58 (6)C23—C22—H22120.0
C2i—Pd1—Pd2i72.07 (5)C18—C23—C22120.6 (2)
C2i—Pd1—Pd2100.12 (6)C18—C23—H23119.7
C2i—Pd1—P193.27 (6)C22—C23—H23119.7
C4—Pd1—Re148.82 (6)C25—C24—P2123.95 (18)
C4—Pd1—Re1i125.79 (6)C29—C24—P2117.27 (17)
C4—Pd1—Pd299.39 (6)C29—C24—C25118.8 (2)
C4—Pd1—Pd2i76.94 (5)C24—C25—H25119.8
C4—Pd1—P1100.27 (6)C26—C25—C24120.3 (2)
C4—Pd1—C2i143.15 (8)C26—C25—H25119.8
Re1—Pd2—Re1i80.762 (5)C25—C26—H26119.8
Re1—Pd2—Pd1i57.545 (5)C27—C26—C25120.5 (2)
Re1i—Pd2—Pd157.623 (5)C27—C26—H26119.8
Re1—Pd2—Pd157.392 (5)C26—C27—H27120.2
Re1i—Pd2—Pd1i56.904 (4)C26—C27—C28119.7 (2)
Pd1—Pd2—Pd1i89.865 (6)C28—C27—H27120.2
P2—Pd2—Re1i139.454 (14)C27—C28—H28120.0
P2—Pd2—Re1138.742 (14)C27—C28—C29119.9 (3)
P2—Pd2—Pd1i128.138 (15)C29—C28—H28120.0
P2—Pd2—Pd1141.995 (15)C24—C29—H29119.6
C3—Pd2—Re147.70 (5)C28—C29—C24120.8 (2)
C3—Pd2—Re1i123.96 (5)C28—C29—H29119.6
C3—Pd2—Pd1i99.53 (5)C31—C30—P2122.07 (17)
C3—Pd2—Pd174.39 (5)C35—C30—P2119.19 (16)
C3—Pd2—P296.08 (6)C35—C30—C31118.7 (2)
C5—Pd2—Re1124.34 (6)C30—C31—H31119.9
C5—Pd2—Re1i48.21 (6)C32—C31—C30120.3 (2)
C5—Pd2—Pd1i99.26 (6)C32—C31—H31119.9
C5—Pd2—Pd174.81 (6)C31—C32—H32119.8
C5—Pd2—P296.36 (6)C31—C32—C33120.5 (2)
C5—Pd2—C3143.64 (8)C33—C32—H32119.8
C6—P1—Pd1112.32 (7)C32—C33—H33120.0
C6—P1—C12100.69 (9)C34—C33—C32119.9 (2)
C12—P1—Pd1117.97 (7)C34—C33—H33120.0
C18—P1—Pd1112.89 (7)C33—C34—H34120.1
C18—P1—C6105.65 (10)C33—C34—C35119.8 (2)
C18—P1—C12105.98 (9)C35—C34—H34120.1
C24—P2—Pd2111.89 (7)C30—C35—H35119.6
C30—P2—Pd2116.83 (7)C34—C35—C30120.9 (2)
C30—P2—C24106.51 (10)C34—C35—H35119.6
C30—P2—C36101.65 (10)C37—C36—P2117.43 (17)
C36—P2—Pd2114.10 (7)C41—C36—P2123.41 (18)
C36—P2—C24104.65 (10)C41—C36—C37119.1 (2)
O1—C1—Re1178.1 (2)C36—C37—H37119.9
Re1—C2—Pd1i81.98 (7)C38—C37—C36120.1 (2)
O2—C2—Re1152.98 (18)C38—C37—H37119.9
O2—C2—Pd1i124.90 (17)C37—C38—H38119.8
Re1—C3—Pd281.57 (7)C39—C38—C37120.4 (3)
O3—C3—Re1152.27 (17)C39—C38—H38119.8
O3—C3—Pd2126.08 (16)C38—C39—H39120.2
Pd1—C4—Re182.47 (7)C40—C39—C38119.6 (2)
O4—C4—Re1149.43 (17)C40—C39—H39120.2
O4—C4—Pd1128.10 (16)C39—C40—H40119.6
Re1i—C5—Pd283.36 (7)C39—C40—C41120.8 (3)
O5—C5—Re1i149.52 (17)C41—C40—H40119.6
O5—C5—Pd2127.10 (16)C36—C41—C40120.0 (3)
C7—C6—P1115.78 (16)C36—C41—H41120.0
C11—C6—P1124.87 (17)C40—C41—H41120.0
C11—C6—C7119.32 (19)
Pd1—P1—C6—C758.98 (17)C15—C16—C17—C120.0 (4)
Pd1—P1—C6—C11119.34 (17)C17—C12—C13—C141.2 (3)
Pd1—P1—C12—C1321.58 (19)C18—P1—C6—C7177.54 (16)
Pd1—P1—C12—C17157.12 (15)C18—P1—C6—C114.1 (2)
Pd1—P1—C18—C19171.11 (16)C18—P1—C12—C13106.03 (18)
Pd1—P1—C18—C239.1 (2)C18—P1—C12—C1775.28 (19)
Pd2—P2—C24—C25139.46 (18)C18—C19—C20—C210.8 (4)
Pd2—P2—C24—C2938.6 (2)C19—C18—C23—C220.9 (4)
Pd2—P2—C30—C31162.18 (17)C19—C20—C21—C220.6 (4)
Pd2—P2—C30—C3514.8 (2)C20—C21—C22—C230.6 (4)
Pd2—P2—C36—C3766.91 (19)C21—C22—C23—C180.8 (4)
Pd2—P2—C36—C41109.26 (18)C23—C18—C19—C200.9 (3)
P1—C6—C7—C8177.66 (18)C24—P2—C30—C3172.0 (2)
P1—C6—C11—C10178.91 (17)C24—P2—C30—C35111.09 (18)
P1—C12—C13—C14179.96 (17)C24—P2—C36—C37170.48 (18)
P1—C12—C17—C16179.77 (18)C24—P2—C36—C4113.4 (2)
P1—C18—C19—C20178.85 (17)C24—C25—C26—C270.3 (4)
P1—C18—C23—C22178.9 (2)C25—C24—C29—C281.0 (4)
P2—C24—C25—C26178.2 (2)C25—C26—C27—C280.1 (5)
P2—C24—C29—C28179.2 (2)C26—C27—C28—C290.9 (5)
P2—C30—C31—C32177.2 (2)C27—C28—C29—C241.4 (5)
P2—C30—C35—C34176.80 (17)C29—C24—C25—C260.1 (4)
P2—C36—C37—C38177.0 (2)C30—P2—C24—C2510.7 (2)
P2—C36—C41—C40175.83 (19)C30—P2—C24—C29167.39 (19)
C6—P1—C12—C13144.12 (17)C30—P2—C36—C3759.76 (19)
C6—P1—C12—C1734.58 (19)C30—P2—C36—C41124.07 (19)
C6—P1—C18—C1965.8 (2)C30—C31—C32—C330.3 (4)
C6—P1—C18—C23114.00 (18)C31—C30—C35—C340.2 (3)
C6—C7—C8—C91.1 (4)C31—C32—C33—C340.1 (4)
C7—C6—C11—C100.6 (3)C32—C33—C34—C350.5 (4)
C7—C8—C9—C100.0 (4)C33—C34—C35—C300.6 (4)
C8—C9—C10—C111.4 (4)C35—C30—C31—C320.2 (4)
C9—C10—C11—C61.7 (3)C36—P2—C24—C2596.5 (2)
C11—C6—C7—C80.8 (3)C36—P2—C24—C2985.4 (2)
C12—P1—C6—C767.42 (18)C36—P2—C30—C3137.3 (2)
C12—P1—C6—C11114.25 (19)C36—P2—C30—C35139.62 (18)
C12—P1—C18—C1940.5 (2)C36—C37—C38—C391.1 (4)
C12—P1—C18—C23139.70 (18)C37—C36—C41—C400.3 (3)
C12—C13—C14—C150.3 (3)C37—C38—C39—C400.6 (4)
C13—C12—C17—C161.1 (3)C38—C39—C40—C410.4 (4)
C13—C14—C15—C160.8 (4)C39—C40—C41—C360.8 (4)
C14—C15—C16—C171.0 (4)C41—C36—C37—C380.7 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C6–C11 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O5ii0.952.493.188 (3)130
C39—H39···O2iii0.952.603.491 (4)157
C20—H20···Cg1iv0.952.843.635 (3)142
C34—H34···Cg3v0.952.903.683 (3)140
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+2, z+1; (v) x, y1, z.
 

Acknowledgements

This work was carried out on equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research (grant No. 19-33-90199 to RFBR).

References

First citationAdams, R. D., Pearl, W. C., Wong, Y. O., Hall, M. B. & Walensky, J. R. (2015). Inorg. Chem. 54, 3536–3544.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAdams, R. D., Wong, Y. O. & Zhang, Q. (2013). Organometallics, 32, 7540–7546.  Web of Science CSD CrossRef CAS Google Scholar
First citationBonarowska, M., Malinowski, A. & Karpiński, Z. (1999). Appl. Catal. Gen. 188, 145–154.  Web of Science CrossRef CAS Google Scholar
First citationBruker. (2015). APEX2 and SAINT, v8, 37A. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChurchill, M. R. & Bau, R. (1968). Inorg. Chem. 7, 2606–2614.  CSD CrossRef CAS Web of Science Google Scholar
First citationCiani, G., D'Alfonso, G., Freni, M., Romiti, P. & Sironi, A. (1978). J. Organomet. Chem. 157, 199–208.  CSD CrossRef CAS Web of Science Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFehlhammer, W. P., Bliss, T., Fuchs, J. & Holzmann, G. (1992). Z. Naturforsch. Teil B, 47, 79–89.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeckenroth, M., Neels, A., Stoeckli-Evans, H. & Albrecht, M. (2006). Inorg. Chim. Acta, 359, 1929–1938.  Web of Science CSD CrossRef CAS Google Scholar
First citationJuszczyk, W. & Karpiński, Z. (2001). Appl. Catal. Gen. 206, 67–78.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMalinowski, A., Juszczyk, W., Bonarowska, M., Pielaszek, J. & Karpinski, Z. (1998). J. Catal. 177, 153–163.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, S. T. & Lamb, H. H. (2016). ACS Catal. 6, 7438–7447.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds