research communications
of nafamostat dimesylate
aSTEM Education Center, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan
*Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp
Nafamostat dimesylate {systematic name: [amino({6-[(4-{[amino(iminiumyl)methyl]amino}phenyl)carbonyloxy]naphthalen-2-yl})methylidene]azanium bis(methanesulfonate)}, C19H19N5O22+·2CH3O3S−, is a broad-spectrum serine protease inhibitor and has been applied clinically as an anticoagulant agent during hemodialysis and for treatment of severe acute pancreatitis (SAP). Since nafamostat contains flexible moieties, it is necessary to determine the conformation to understand the structure–activity relationships. The divalent cation has a screw-like motif. The guanidinium group is approximately perpendicular to the naphthyl ring system, subtending a dihedral angle of 84.30 (14)°. In the crystal, the nafamostat molecules form columnar structures surrounded by a hydrophilic region.
Keywords: crystal structure; serine protease inhibitor; treatment of serve acute pancreatitis; anticoagulant agent.
CCDC reference: 2107852
1. Chemical context
Nafamostat mesylate (I) is the bismethanesulfonic salt of 6-amidino-2-naphthyl-4-guanidinobenzoate. It shows broad-spectrum serine protease inhibition effect, and is also a reversible competitive inhibitor as camostat mesylate (II) (Tamura et al., 1977; Fujii & Hitomi, 1981; Matsumoto et al., 1989). Although nafamostat mesylate has been applied clinically with success as an effective anticoagulant and anti-inflammatory agent during hemodialysis and for treatment of severe acute pancreatitis (Takeda et al., 1989), the has not previously been reported.
In addition, nafamostat has attracted attention as an inhibitor for the activity of transmembrane protease serine 2 (TMPRSS2), a host cell serine protease that mediates viral cell incursion for influenza virus and coronavirus, thereby inhibiting viral infection and replication (Yamamoto et al., 2016, 2020; Hoffmann et al., 2020). Since nafamostat contains flexible moieties, it is necessary to determine the conformation to understand the structure–activity relationships. The of nafamostat mesylate (I) is reported herein. From the crystallographic study, the phenylguanidine groups in nafamostat and camostat are essentially similar except for the direction of residual groups.
2. Structural commentary
The nafamostat moiety in the title compound (Fig. 1) shows a divalent cation with a screw-like motif, which consists of four planar parts: the amidino group, the naphthyl group (rings A and B), phenyl ring C and the guanidinium group (shown in Fig.1). The dihedral angles between the amidino and naphthyl groups, the naphthyl group and ring C, and ring C and guanidinium group are 11.35 (13), 44.66 (10) and 51.11 (15)°, respectively. The guanidinium group is approximately perpendicular to the naphthyl group, subtending a dihedral angle of 84.30 (14)°.
The C14—N15 and C14—N22 bond distances [1.319 (3) and 1.311 (3) Å, respectively] indicate a resonance structure in the protonated amidinium group (Table 1). On the other hand, the bond distances C24—N23 = 1.357 (3), C24—N25 = 1.302 (4) and C24—N26 = 1.325 (3) Å indicate a localized electron on the C24—N25 bond in the protonated guanidinium group.
|
The overlay of nafamostat (green) and camostat (red) is presented in Fig. 2, in which the r.m.s. deviation is 0.027 Å for phenylguanidinium groups. The partial structures are essentially similar, except for the direction of residual groups. Very recently, the of human TMPRSS2 in a covalent complex with nafamostat has been solved (Fraser et al., 2021). The nafamostat in the complex is hydrolysed, and results in phenylguanidino acylation of Ser441 (yellow) in the active site. It was considered that the nafamostat moiety may be easily nucleophilic-attacked, approaching from the O13 atom side without steric hindrance.
3. Supramolecular features
In the crystal, the naphthyl groups of nafamostat form hydrophobic columnar structures, shown in Fig. 3. The naphthyl groups correlated with the inversion center (yellow) are stacking along the b-axis direction, in which the perpendicular distances of the centroid of the naphthyl ring system and those at (−x, 1 − y, 1 − z) and (−x, 2 − y, 1 − z) are 3.4208 (8) and 3.5134 (8) Å, respectively.
The columnar structures are surrounded by a hydrophilic region consisting of the methanesulfonate ions and the guanidinium, imidamidium and ester groups. The two independent methanesulfonate ions play different roles. The columnar structure intercalates the methanesulfonate group (blue) containing the S27 atom, and is linked to three neighbouring guanidinium groups and one diamine group. Hydrogen bonds [N25—H25A⋯O28 = 2.827 (3) and N26—H26B⋯O29vii = 2.925 (3) Å; Table 2] link the molecules, forming an infinite C22(8) chain, with other hydrogen bonds [N25—H25B⋯O29vi = 2.931 (3) and N26—H26A⋯O31vi = 2.916 (3) Å] forming an R22(8) ring.
The columnar structures are also consolidated by the other methanesulfonate ion (red) containing the S32 atom, which is linked by two opposing amidino groups [N15—H15A⋯O33iii =2.854 (3) and N15—H15B⋯O34iv = 2.830 (3) Å], related by the inversion center, into an R44(12) ring. A weak C—H⋯π interaction is also observed (Table 2).
4. Database survey
The crystal structures of serine protease inhibitors have been reported for benzamidine (TEKTUY: Barker et al., 1996), benzamidine HCl (DOHHAJ: Thailambal et al., 1986) and camostat mesylate (JAMREU: Matsumoto et al., 1989). Moreover, a search of the Cambridge Structural Database (CSD version 5.42, last updated May 2021; Groom et al., 2016) yielded another comparable structure, 4-guanidiniobenzoic acid HCl dihydrate (NIQCEW: Light et al., 2007). Another database search (PDB; Berman et al., 2000) yielded the of human TMPRSS2 in a covalent complex with nafamostat (PDB7MEQ: Fraser et al., 2021).
5. Synthesis and crystallization
Nafamostat mesylate (CAS No. 82956-11-4) was purchased from Tokyo Chemical Industry Co. Ltd (TCI). A small portion (ca 10 mg) was dissolved in a small volume of hot water (ca 100 µL), and acetone (ca 900 µL) was added slowly until it became cloudy white. On slow cooling to ambient temperature, colourless octahedral crystals suitable for X-ray measurements were obtained.
6. Refinement
Crystal data, data collection and structure . All the H atoms were located in difference-Fourier maps. In the NH or NH2 groups, H atoms were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C).
details at a low temperature (95 K) are summarized in Table 3
|
Supporting information
CCDC reference: 2107852
https://doi.org/10.1107/S2056989021009245/tx2042sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021009245/tx2042Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021009245/tx2042Isup3.cml
Data collection: CrysAlis PRO (Rigaku, 2015); cell
CrysAlis PRO (Rigaku, 2015); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C19H19N5O22+·2CH3O3S− | F(000) = 1128 |
Mr = 539.58 | Dx = 1.53 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 17552 reflections |
a = 11.0631 (1) Å | θ = 5.0–73.5° |
b = 9.7215 (1) Å | µ = 2.59 mm−1 |
c = 21.9271 (3) Å | T = 95 K |
β = 96.746 (1)° | Octahedron, clear light colourless |
V = 2341.93 (5) Å3 | 0.4 × 0.3 × 0.3 mm |
Z = 4 |
A Rigaku XtaLAB P200 diffractometer | 4675 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 4457 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
φ or ω oscillation scans | θmax = 73.8°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku, 2015) | h = −13→13 |
Tmin = 0.46, Tmax = 1 | k = 0→11 |
4675 measured reflections | l = 0→27 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: dual |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: mixed |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0324P)2 + 4.9921P] where P = (Fo2 + 2Fc2)/3 |
4675 reflections | (Δ/σ)max = 0.001 |
363 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1422 (2) | 0.5583 (3) | 0.56523 (13) | 0.0225 (5) | |
C2 | 0.0580 (2) | 0.5892 (3) | 0.60620 (13) | 0.0237 (5) | |
H2 | 0.061778 | 0.544066 | 0.644799 | 0.028* | |
C3 | −0.0304 (2) | 0.6865 (3) | 0.58945 (12) | 0.0234 (5) | |
H3 | −0.086637 | 0.710328 | 0.617287 | 0.028* | |
C4 | −0.0384 (2) | 0.7505 (3) | 0.53201 (12) | 0.0225 (5) | |
C5 | −0.1241 (2) | 0.8550 (3) | 0.51578 (12) | 0.0229 (5) | |
H5 | −0.177017 | 0.883065 | 0.544597 | 0.027* | |
C6 | −0.1333 (2) | 0.9184 (3) | 0.45831 (13) | 0.0229 (5) | |
C7 | −0.0545 (2) | 0.8762 (3) | 0.41562 (12) | 0.0237 (5) | |
H7 | −0.060246 | 0.917718 | 0.376162 | 0.028* | |
C8 | 0.0302 (2) | 0.7756 (3) | 0.43105 (12) | 0.0228 (5) | |
H8 | 0.081746 | 0.747936 | 0.401556 | 0.027* | |
C9 | 0.0437 (2) | 0.7116 (3) | 0.48926 (12) | 0.0221 (5) | |
C10 | 0.1352 (2) | 0.6151 (3) | 0.50758 (12) | 0.0224 (5) | |
H10 | 0.191808 | 0.589251 | 0.480271 | 0.027* | |
C12 | 0.3080 (2) | 0.4764 (3) | 0.63457 (12) | 0.0205 (5) | |
C14 | −0.2214 (2) | 1.0326 (3) | 0.44424 (12) | 0.0203 (5) | |
C16 | 0.4005 (2) | 0.3658 (3) | 0.64313 (12) | 0.0206 (5) | |
C17 | 0.4753 (2) | 0.3600 (3) | 0.69882 (12) | 0.0223 (5) | |
H17 | 0.466534 | 0.426978 | 0.729554 | 0.027* | |
C18 | 0.5632 (2) | 0.2563 (3) | 0.70998 (12) | 0.0222 (5) | |
H18 | 0.61345 | 0.252049 | 0.748167 | 0.027* | |
C19 | 0.5758 (2) | 0.1599 (3) | 0.66434 (12) | 0.0217 (5) | |
C20 | 0.5019 (2) | 0.1658 (3) | 0.60820 (12) | 0.0237 (5) | |
H20 | 0.51147 | 0.100093 | 0.577062 | 0.028* | |
C21 | 0.4145 (2) | 0.2678 (3) | 0.59814 (12) | 0.0229 (5) | |
H21 | 0.363537 | 0.271047 | 0.560152 | 0.027* | |
C24 | 0.7756 (2) | 0.0499 (3) | 0.69864 (12) | 0.0212 (5) | |
C30 | 0.7107 (2) | 0.5832 (3) | 0.76962 (13) | 0.0245 (6) | |
H30A | 0.661242 | 0.637008 | 0.738122 | 0.037* | |
H30B | 0.734263 | 0.641357 | 0.805571 | 0.037* | |
H30C | 0.663287 | 0.504665 | 0.781635 | 0.037* | |
C35 | 0.6293 (2) | −0.4167 (3) | 0.57039 (13) | 0.0262 (6) | |
H35A | 0.717501 | −0.403331 | 0.578279 | 0.039* | |
H35B | 0.607172 | −0.441466 | 0.527188 | 0.039* | |
H35C | 0.604676 | −0.490755 | 0.596665 | 0.039* | |
N15 | −0.3033 (2) | 1.0565 (3) | 0.48204 (11) | 0.0238 (5) | |
N22 | −0.2175 (2) | 1.1128 (2) | 0.39642 (11) | 0.0214 (5) | |
N23 | 0.65733 (19) | 0.0475 (2) | 0.67377 (11) | 0.0242 (5) | |
N25 | 0.8365 (2) | 0.1631 (2) | 0.71094 (12) | 0.0242 (5) | |
N26 | 0.8283 (2) | −0.0718 (2) | 0.70825 (12) | 0.0252 (5) | |
O11 | 0.23387 (15) | 0.46189 (19) | 0.57993 (8) | 0.0217 (4) | |
O13 | 0.29656 (16) | 0.5684 (2) | 0.67019 (9) | 0.0255 (4) | |
O28 | 0.80155 (16) | 0.44602 (19) | 0.68474 (8) | 0.0234 (4) | |
O29 | 0.91327 (16) | 0.64512 (19) | 0.72854 (9) | 0.0252 (4) | |
O31 | 0.90733 (15) | 0.43603 (19) | 0.78786 (8) | 0.0221 (4) | |
O33 | 0.42506 (16) | −0.2921 (2) | 0.57331 (10) | 0.0308 (5) | |
O34 | 0.59193 (17) | −0.1572 (2) | 0.54595 (9) | 0.0282 (4) | |
O36 | 0.59191 (19) | −0.2314 (2) | 0.65057 (9) | 0.0308 (4) | |
S27 | 0.84252 (5) | 0.52334 (6) | 0.73995 (3) | 0.01897 (15) | |
S32 | 0.55448 (5) | −0.26334 (6) | 0.58663 (3) | 0.01882 (15) | |
H22A | −0.168 (3) | 1.102 (3) | 0.3710 (14) | 0.017 (7)* | |
H25B | 0.902 (3) | 0.162 (3) | 0.7333 (14) | 0.019 (7)* | |
H22B | −0.266 (3) | 1.177 (3) | 0.3897 (13) | 0.019 (7)* | |
H25A | 0.806 (3) | 0.244 (4) | 0.7016 (17) | 0.039 (10)* | |
H26B | 0.787 (3) | −0.150 (4) | 0.7025 (17) | 0.045 (10)* | |
H15A | −0.354 (3) | 1.132 (4) | 0.4725 (17) | 0.043 (10)* | |
H26A | 0.905 (4) | −0.078 (4) | 0.7167 (18) | 0.051 (11)* | |
H15B | −0.323 (3) | 0.994 (4) | 0.5063 (18) | 0.043 (10)* | |
H23 | 0.627 (4) | −0.042 (5) | 0.6577 (19) | 0.062 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0136 (11) | 0.0182 (13) | 0.0341 (14) | 0.0017 (9) | −0.0030 (10) | −0.0012 (10) |
C2 | 0.0163 (12) | 0.0241 (14) | 0.0307 (14) | −0.0010 (10) | 0.0023 (10) | 0.0018 (11) |
C3 | 0.0134 (11) | 0.0253 (14) | 0.0324 (14) | 0.0000 (10) | 0.0060 (10) | −0.0028 (11) |
C4 | 0.0129 (11) | 0.0224 (13) | 0.0319 (14) | −0.0016 (10) | 0.0021 (10) | −0.0035 (11) |
C5 | 0.0141 (11) | 0.0245 (14) | 0.0306 (13) | −0.0018 (10) | 0.0047 (10) | −0.0030 (11) |
C6 | 0.0126 (11) | 0.0194 (13) | 0.0359 (14) | −0.0009 (9) | 0.0002 (10) | −0.0011 (11) |
C7 | 0.0184 (12) | 0.0250 (14) | 0.0271 (13) | −0.0014 (10) | 0.0005 (10) | 0.0011 (10) |
C8 | 0.0160 (12) | 0.0217 (13) | 0.0301 (13) | 0.0023 (10) | 0.0008 (10) | −0.0031 (10) |
C9 | 0.0156 (11) | 0.0249 (14) | 0.0256 (13) | −0.0039 (10) | 0.0015 (10) | −0.0012 (10) |
C10 | 0.0177 (12) | 0.0224 (14) | 0.0277 (13) | −0.0004 (10) | 0.0051 (10) | −0.0012 (10) |
C12 | 0.0138 (11) | 0.0196 (13) | 0.0286 (13) | −0.0014 (9) | 0.0050 (10) | −0.0004 (10) |
C14 | 0.0114 (11) | 0.0187 (13) | 0.0303 (13) | −0.0028 (9) | 0.0000 (9) | −0.0012 (10) |
C16 | 0.0126 (11) | 0.0201 (13) | 0.0293 (13) | −0.0013 (9) | 0.0033 (9) | 0.0019 (10) |
C17 | 0.0170 (12) | 0.0255 (14) | 0.0244 (12) | −0.0037 (10) | 0.0018 (10) | 0.0002 (10) |
C18 | 0.0182 (12) | 0.0219 (13) | 0.0259 (13) | −0.0015 (10) | 0.0000 (10) | −0.0001 (10) |
C19 | 0.0144 (11) | 0.0218 (13) | 0.0290 (13) | −0.0016 (10) | 0.0029 (10) | 0.0020 (10) |
C20 | 0.0166 (12) | 0.0250 (14) | 0.0290 (13) | 0.0003 (10) | 0.0010 (10) | 0.0008 (11) |
C21 | 0.0209 (12) | 0.0217 (13) | 0.0270 (13) | −0.0021 (10) | 0.0069 (10) | 0.0000 (10) |
C24 | 0.0142 (11) | 0.0256 (14) | 0.0247 (12) | 0.0026 (10) | 0.0057 (9) | 0.0020 (10) |
C30 | 0.0151 (12) | 0.0286 (15) | 0.0301 (14) | 0.0051 (10) | 0.0035 (10) | 0.0020 (11) |
C35 | 0.0194 (12) | 0.0225 (14) | 0.0359 (15) | 0.0023 (10) | 0.0004 (11) | 0.0014 (11) |
N15 | 0.0169 (10) | 0.0226 (12) | 0.0324 (12) | 0.0037 (9) | 0.0054 (9) | 0.0062 (10) |
N22 | 0.0149 (10) | 0.0217 (12) | 0.0280 (12) | 0.0019 (9) | 0.0037 (9) | 0.0004 (9) |
N23 | 0.0137 (10) | 0.0245 (12) | 0.0334 (12) | 0.0027 (9) | −0.0012 (9) | −0.0001 (10) |
N25 | 0.0160 (11) | 0.0187 (12) | 0.0378 (13) | 0.0028 (9) | 0.0037 (10) | 0.0035 (10) |
N26 | 0.0146 (11) | 0.0202 (12) | 0.0409 (14) | 0.0014 (9) | 0.0034 (9) | 0.0005 (10) |
O11 | 0.0142 (8) | 0.0238 (10) | 0.0267 (9) | 0.0021 (7) | 0.0002 (7) | −0.0028 (7) |
O13 | 0.0184 (9) | 0.0270 (10) | 0.0310 (10) | 0.0029 (7) | 0.0019 (7) | −0.0023 (8) |
O28 | 0.0234 (9) | 0.0202 (9) | 0.0264 (9) | 0.0013 (7) | 0.0021 (7) | −0.0010 (7) |
O29 | 0.0202 (9) | 0.0200 (10) | 0.0358 (10) | −0.0005 (7) | 0.0059 (8) | 0.0036 (8) |
O31 | 0.0136 (8) | 0.0236 (10) | 0.0288 (9) | 0.0045 (7) | 0.0012 (7) | 0.0060 (7) |
O33 | 0.0126 (9) | 0.0248 (10) | 0.0547 (13) | 0.0006 (7) | 0.0027 (8) | 0.0066 (9) |
O34 | 0.0288 (10) | 0.0214 (10) | 0.0358 (11) | 0.0005 (8) | 0.0102 (8) | 0.0067 (8) |
O36 | 0.0398 (11) | 0.0225 (10) | 0.0282 (10) | 0.0011 (8) | −0.0038 (8) | 0.0013 (8) |
S27 | 0.0124 (3) | 0.0184 (3) | 0.0264 (3) | 0.0017 (2) | 0.0034 (2) | 0.0019 (2) |
S32 | 0.0117 (3) | 0.0167 (3) | 0.0281 (3) | 0.0007 (2) | 0.0021 (2) | 0.0025 (2) |
C1—O11 | 1.391 (3) | C35—S32 | 1.762 (3) |
C1—C2 | 1.401 (4) | C35—H35C | 0.98 |
C1—C10 | 1.373 (4) | C35—H35B | 0.98 |
C10—H10 | 0.95 | C35—H35A | 0.98 |
C12—O13 | 1.204 (3) | C4—C9 | 1.430 (4) |
C12—O11 | 1.377 (3) | C4—C5 | 1.407 (4) |
C12—C16 | 1.481 (3) | C5—H5 | 0.95 |
C14—N22 | 1.311 (3) | C5—C6 | 1.396 (4) |
C14—N15 | 1.319 (3) | C6—C7 | 1.413 (4) |
C16—C21 | 1.393 (4) | C6—C14 | 1.486 (3) |
C16—C17 | 1.393 (4) | C7—H7 | 0.95 |
C17—H17 | 0.95 | C7—C8 | 1.369 (4) |
C17—C18 | 1.402 (4) | C8—H8 | 0.95 |
C18—H18 | 0.95 | C8—C9 | 1.412 (4) |
C18—C19 | 1.390 (4) | C9—C10 | 1.403 (4) |
C19—N23 | 1.417 (3) | N15—H15B | 0.85 (4) |
C19—C20 | 1.397 (4) | N15—H15A | 0.93 (4) |
C2—H2 | 0.95 | N22—H22B | 0.83 (3) |
C2—C3 | 1.379 (4) | N22—H22A | 0.83 (3) |
C20—H20 | 0.95 | N23—H23 | 0.99 (4) |
C20—C21 | 1.384 (4) | N25—H25B | 0.83 (3) |
C21—H21 | 0.95 | N25—H25A | 0.87 (4) |
C24—N26 | 1.325 (3) | N26—H26B | 0.89 (4) |
C24—N25 | 1.302 (4) | N26—H26A | 0.85 (4) |
C24—N23 | 1.357 (3) | O28—S27 | 1.4515 (19) |
C3—H3 | 0.95 | O29—S27 | 1.4570 (19) |
C3—C4 | 1.398 (4) | O31—S27 | 1.4700 (18) |
C30—S27 | 1.764 (3) | O33—S32 | 1.4545 (18) |
C30—H30C | 0.98 | O34—S32 | 1.4553 (19) |
C30—H30B | 0.98 | O36—S32 | 1.448 (2) |
C30—H30A | 0.98 | ||
C10—C1—O11 | 116.5 (2) | C21—C20—H20 | 120.2 |
C10—C1—C2 | 122.3 (2) | C19—C20—H20 | 120.2 |
O11—C1—C2 | 121.2 (2) | C20—C21—C16 | 120.7 (3) |
C3—C2—C1 | 118.7 (2) | C20—C21—H21 | 119.6 |
C3—C2—H2 | 120.6 | C16—C21—H21 | 119.6 |
C1—C2—H2 | 120.6 | N25—C24—N26 | 121.0 (2) |
C2—C3—C4 | 120.8 (2) | N25—C24—N23 | 123.3 (2) |
C2—C3—H3 | 119.6 | N26—C24—N23 | 115.7 (2) |
C4—C3—H3 | 119.6 | S27—C30—H30A | 109.5 |
C3—C4—C5 | 121.2 (2) | S27—C30—H30B | 109.5 |
C3—C4—C9 | 119.7 (2) | H30A—C30—H30B | 109.5 |
C5—C4—C9 | 119.1 (2) | S27—C30—H30C | 109.5 |
C6—C5—C4 | 121.5 (2) | H30A—C30—H30C | 109.5 |
C6—C5—H5 | 119.3 | H30B—C30—H30C | 109.5 |
C4—C5—H5 | 119.3 | S32—C35—H35A | 109.5 |
C5—C6—C7 | 119.0 (2) | S32—C35—H35B | 109.5 |
C5—C6—C14 | 119.6 (2) | H35A—C35—H35B | 109.5 |
C7—C6—C14 | 121.3 (2) | S32—C35—H35C | 109.5 |
C8—C7—C6 | 120.1 (2) | H35A—C35—H35C | 109.5 |
C8—C7—H7 | 120 | H35B—C35—H35C | 109.5 |
C6—C7—H7 | 120 | C14—N15—H15A | 116 (2) |
C7—C8—C9 | 122.3 (2) | C14—N15—H15B | 120 (3) |
C7—C8—H8 | 118.8 | H15A—N15—H15B | 121 (3) |
C9—C8—H8 | 118.8 | C14—N22—H22A | 123 (2) |
C10—C9—C8 | 123.3 (2) | C14—N22—H22B | 121 (2) |
C10—C9—C4 | 118.7 (2) | H22A—N22—H22B | 116 (3) |
C8—C9—C4 | 117.9 (2) | C24—N23—C19 | 127.7 (2) |
C1—C10—C9 | 119.6 (2) | C24—N23—H23 | 115 (2) |
C1—C10—H10 | 120.2 | C19—N23—H23 | 117 (2) |
C9—C10—H10 | 120.2 | C24—N25—H25B | 121 (2) |
O13—C12—O11 | 122.9 (2) | C24—N25—H25A | 122 (2) |
O13—C12—C16 | 125.5 (2) | H25B—N25—H25A | 116 (3) |
O11—C12—C16 | 111.6 (2) | C24—N26—H26B | 122 (2) |
N22—C14—N15 | 119.1 (2) | C24—N26—H26A | 120 (3) |
N22—C14—C6 | 121.9 (2) | H26B—N26—H26A | 117 (4) |
N15—C14—C6 | 119.0 (2) | C12—O11—C1 | 118.4 (2) |
C17—C16—C21 | 119.3 (2) | O28—S27—O29 | 113.51 (11) |
C17—C16—C12 | 118.1 (2) | O28—S27—O31 | 112.04 (11) |
C21—C16—C12 | 122.6 (2) | O29—S27—O31 | 111.41 (11) |
C16—C17—C18 | 120.7 (2) | O28—S27—C30 | 106.72 (12) |
C16—C17—H17 | 119.7 | O29—S27—C30 | 106.21 (12) |
C18—C17—H17 | 119.7 | O31—S27—C30 | 106.39 (12) |
C19—C18—C17 | 119.0 (2) | O36—S32—O33 | 113.48 (13) |
C19—C18—H18 | 120.5 | O36—S32—O34 | 111.82 (12) |
C17—C18—H18 | 120.5 | O33—S32—O34 | 110.96 (12) |
C18—C19—C20 | 120.6 (2) | O36—S32—C35 | 106.84 (13) |
C18—C19—N23 | 122.1 (2) | O33—S32—C35 | 105.73 (12) |
C20—C19—N23 | 117.2 (2) | O34—S32—C35 | 107.57 (12) |
C21—C20—C19 | 119.7 (3) |
Cg(C) is the center of gravity of phenyl ring C. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···O13i | 0.95 | 2.64 | 3.419 (3) | 140 |
C30—H30A···O36ii | 0.98 | 2.36 | 3.314 (3) | 165 |
N15—H15A···O33iii | 0.93 (4) | 1.97 (4) | 2.854 (3) | 159 (3) |
N15—H15A···O34iii | 0.93 (4) | 2.63 (4) | 3.327 (3) | 132 (3) |
N15—H15A···S32iii | 0.93 (4) | 2.75 (4) | 3.612 (2) | 154 (3) |
N15—H15B···O34iv | 0.85 (4) | 2.00 (4) | 2.830 (3) | 164 (4) |
N22—H22A···O31v | 0.83 (3) | 2.12 (3) | 2.928 (3) | 162 (3) |
N22—H22B···O33iii | 0.83 (3) | 2.31 (3) | 3.018 (3) | 144 (3) |
N23—H23···O36 | 0.99 (4) | 1.88 (5) | 2.836 (3) | 163 (4) |
N23—H23···S32 | 0.99 (4) | 2.72 (4) | 3.683 (2) | 166 (3) |
N25—H25A···O28 | 0.87 (4) | 2.00 (4) | 2.827 (3) | 159 (3) |
N25—H25A···S27 | 0.87 (4) | 2.86 (4) | 3.558 (2) | 139 (3) |
N25—H25B···O29vi | 0.83 (3) | 2.12 (3) | 2.931 (3) | 167 (3) |
N26—H26A···O31vi | 0.85 (4) | 2.10 (4) | 2.916 (3) | 163 (4) |
N26—H26A···S27vi | 0.85 (4) | 3.01 (4) | 3.799 (2) | 156 (3) |
N26—H26B···O29vii | 0.89 (4) | 2.46 (4) | 2.925 (3) | 113 (3) |
N26—H26B···O36 | 0.89 (4) | 2.45 (4) | 3.174 (3) | 139 (3) |
C30—H30B···Cg(C)vii | 0.98 | 2.96 | 3.405 (3) | 109 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) x−1, y+1, z; (v) x−1, −y+3/2, z−1/2; (vi) −x+2, y−1/2, −z+3/2; (vii) x, y−1, z. |
Acknowledgements
The author thanks Tokai University for a research grant, which partially supported this work.
References
Barker, J., Phillips, P. R., Wallbridge, M. G. H. & Powell, H. R. (1996). Acta Cryst. C52, 2617–2619. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fraser, B., Beldar, S., Hutchinson, A., Li, Y., Seitova, A., Edwards, A. M., Benard, F., Arrowsmith, C. H. & Halabelian, L. (2021). doi: 10.2210/pdb7MEQ/pdb. Google Scholar
Fujii, S. & Hitomi, Y. (1981). Biochim. Biophys. Acta Enzymology, 661, 342–345. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hoffmann, M., Schroeder, S., Kleine-Weber, H., Müller, M. A., Drosten, C. & Pöhlmann, S. (2020). Antimicrob. Agents Chemother. 64, e00754–20. Web of Science CrossRef PubMed Google Scholar
Light, M. E., Martinez, J. C. & Gale, P. A. (2007). CSD Communication (refcode NIQCEW). CCDC, Cambridge, England. https://doi.org/10.5517/ccpw2h3 Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsumoto, O., Taga, T. & Machida, K. (1989). Acta Cryst. C45, 913–915. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku (2015). CrysAlis PRO. Rigaku, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Takeda, K., Kakugawa, Y., Kobari, M. & Matsuno, S. (1989). Gastroenterol. Jpn. 24, 340. CrossRef PubMed Google Scholar
Tamura, Y., Hirado, M., Okamura, K., Minato, Y. & Fujii, S. (1977). Biochim. Biophys. Acta Enzymology, 484, 417–422. CrossRef CAS Web of Science Google Scholar
Thailambal, V. G., Pattabhi, V. & Guru Row, T. N. (1986). Acta Cryst. C42, 587–589. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamamoto, M., Kiso, M., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., Takeda, M., Kinoshita, N., Ohmagari, N., Gohda, J., Semba, K., Matsuda, Z., Kawaguchi, Y., Kawaoka, Y. & Inoue, J. (2020). Viruses, 12, 629–638. Web of Science CrossRef CAS Google Scholar
Yamamoto, M., Matsuyama, S., Li, X., Takeda, M., Kawaguchi, Y., Inoue, J. & Matsuda, Z. (2016). Antimicrob. Agents Chemother. 60, 6532–6539. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.