research communications
E)-4-({2,2-dichloro-1-[4-(dimethylamino)phenyl]ethenyl}diazenyl)benzonitrile
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the title compound, C17H14Cl2N4, the dihedral angle between the aromatic rings is 50.09 (9)°. The central –N=N– unit shows an E configuration. In the crystal, C—H⋯N interactions, C—Cl⋯π and π–π stacking interactions [centroid-to-centroid distance = 3.7719 (14) Å] link the molecules, forming molecular layers approximately parallel to the (002) plane. Additional weak van der Waals interactions between the layers consolidate the three-dimensional packing. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (33.6%), N⋯H/ H⋯N (17.2%), Cl⋯H/H⋯Cl (14.1%) and C⋯H/H⋯C (14.1%) contacts.
Keywords: crystal structure; C—H⋯N interactions; C—Cl⋯π interactions; π–π stacking interactions; Hirshfeld surface analysis.
CCDC reference: 2107472
1. Chemical context
Azo dyes find numerous applications in a diversity of areas, including in molecular recognition, optical data storage, non-linear optics and as molecular switches, antimicrobial agents, colour-changing materials, liquid crystals, dye-sensitized solar cells, mainly because of the ability for cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018; Viswanathan et al., 2019). Not only isomerization, but azo-hydrazone tautomerisim is also an important phenomenon in the coordination chemistry of azo dyes (Mahmoudi et al., 2018a,b). Modification of azo dyes with functional groups leads to multifunctional ligands, of which the corresponding metal complexes are effective catalysts in oxidation and in C—C coupling reactions (Ma et al., 2020, 2021; Mahmudov et al., 2013; Mizar et al., 2012). Moreover, the functional properties of azo dyes are dependent on non-covalent bond-donor or -acceptor site(s) attached to the –N=N– synthon (Gurbanov et al., 2020a,b; Kopylovich et al., 2011; Mahmudov et al., 2020; Shixaliyev et al., 2014). Thus, we have introduced halogen-bond-donor centres to the –N=N– moiety, leading to a new azo dye, (E)-4-({2,2-dichloro-1-[4-(dimethylamino)phenyl]ethenyl}diazenyl)benzonitrile, which provides multiple intermolecular non-covalent interactions.
2. Structural commentary
The aromatic rings C3–C8 and C11–C16 of the title compound (Fig. 1) form a dihedral angle of 50.09 (9)°. In the dimethylamino group, the sum of bond angles about N3 is 357.02° and the nitrogen atom has a flattened trigonal–pyramidal conformation. The atoms of the dimethylamino group and those of its attached benzene ring (C3–C8) are nearly coplanar, with maximum deviations of −0.058 (2), 0.179 (2), and 0.087 (2) Å for N3, C9 and C10, respectively. The title molecule adopts an E configuration with respect to the N1=N2 bond. The N1/N2/C1–C3/Cl1/Cl2 unit is approximately planar with a maximum deviation of 0.102 (2) Å, and makes dihedral angles of 55.44 (9) and 5.36 (9)°, respectively, with the C3–C8 and C11–C16 benzene rings.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by C—H⋯N interactions (Table 1), C—H⋯π [Cl2⋯Cg2ii = 3.3910 (12) Å, C2⋯Cg2ii = 3.858 (2) Å, C2—Cl2⋯Cg2ii = 92.07 (7)°; symmetry code: (ii) x, 1 + y, z; where Cg2 is the centroid of the C11–C16 benzene ring] and π–π stacking interactions [Cg2⋯Cg1iii = 3.7719 (14) Å, slippage = 1.741 Å; Cg1⋯Cg2iv = 3.7719 (14) Å, slippage = 1.336 Å; symmetry codes: (iii) − x, − + y, − z; (iv) − x, + y, − z; where Cg1 and Cg2 are the centroids of the C3—C8 and C11–C16 benzene rings, respectively], forming molecular layers approximately parallel to the (002) plane with the molecules having a bellows-like shape when viewed along the a axis (Figs. 2 and 3). Weak van der Waals interactions between these layers increase the stability of the crystal structure.
To visualize the intermolecular interactions in the title molecule, CrystalExplorer17 (Turner et al., 2017) was used to compute Hirshfeld surfaces (McKinnon et al., 2007) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) is shown in Fig. 4. The positive electrostatic potential (blue region) over the surface indicates hydrogen-bond donors, whereas the hydrogen-bond acceptors are represented by a negative electrostatic potential (red region). In the Hirshfeld surface mapped over dnorm (Fig. 5), the bright-red spots near atoms H7, H13, N4 and Cl1 indicate the short C—H⋯N and C—H⋯Cl contacts (Table 2). Other contacts are equal to or longer than the sum of van der Waals radii. The most important interaction is H⋯H, contributing 33.6% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.15 Å. The reciprocal N⋯H/H⋯N interactions appear as two symmetrical broad wings with de + di = 2.3 Å and contribute 17.2% to the Hirshfeld surface (Fig. 6c). The reciprocal Cl⋯H/H⋯Cl interactions (14.1% contribution) are present as two symmetrical broad wings with de + di = 2.7 (Fig. 6d). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6e; 14.1% contribution) have the tips at de + di = 2.8 Å. The smaller percentage contributions to the Hirshfeld surface from the various other interatomic contact are comparatively listed in Table 3.
|
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016) for structures having an (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit gave 25 hits. Six compounds closely resemble the title compound, viz. 4-{2,2-dichloro-1-[(E)-2-(4-methylphenyl)diazen-1-yl]ethenyl}-N,N-dimethylaniline [(I); Özkaraca et al., 2020], 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline [(II); Özkaraca et al., 2020], 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene [(III); Shikhaliyev et al., 2019], 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene [(IV); Akkurt et al., 2019], 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene [(V); Akkurt et al., 2019] and 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene [(VI); Atioğlu et al., 2019].
In the crystal of (I), molecules are linked by pairs of C—Cl⋯π interactions, forming inversion dimers. A short intermolecular Cl⋯Cl contact [3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The of (II) is stabilized by C—Cl⋯π and van der Waals interactions. In (III), molecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In the crystals of (IV) and (V), molecules are linked through weak X⋯Cl contacts [X = Br for (IV) and Cl for (V)] and C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. In (VI), molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions.
5. Synthesis and crystallization
The title compound was synthesized according to a reported method (Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-4-{2-[4-(dimethylamino)benzylidene]hydrazinyl}benzonitrile (264 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (69%); m.p. 395 K. Analysis calculated for C17H14Cl2N4: C 59.15, H 4.09, N 16.23%; found: C 59.05, H 4.02, N 16.19%. 1H NMR (300 MHz, CDCl3) δ 3.04 (6H, NMe2), 6.75–7.89 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 162.08, 154.31, 152.59, 146.76, 135.98, 132.50, 131.25, 128.75, 120.90, 117.76, 115.52 and 38.42. ESI–MS: m/z: 346.18 [M + H]+.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and treated as riding atoms, C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 4Supporting information
CCDC reference: 2107472
https://doi.org/10.1107/S2056989021009154/vm2253sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021009154/vm2253Isup2.hkl
Data collection: Marccd(Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C17H14Cl2N4 | F(000) = 712 |
Mr = 345.22 | Dx = 1.409 Mg m−3 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.79475 Å |
a = 12.396 (3) Å | Cell parameters from 600 reflections |
b = 6.5280 (7) Å | θ = 2.0–28.0° |
c = 20.758 (3) Å | µ = 0.54 mm−1 |
β = 104.39 (2)° | T = 100 K |
V = 1627.1 (5) Å3 | Prism, colourless |
Z = 4 | 0.10 × 0.08 × 0.05 mm |
Rayonix SX165 CCD diffractometer | 2913 reflections with I > 2σ(I) |
/f scan | Rint = 0.066 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 31.0°, θmin = 2.0° |
Tmin = 0.939, Tmax = 0.966 | h = −16→16 |
21540 measured reflections | k = −8→8 |
3712 independent reflections | l = −25→26 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.5596P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3712 reflections | Δρmax = 0.34 e Å−3 |
211 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0082 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.88106 (4) | 1.32286 (7) | 0.48668 (2) | 0.03392 (14) | |
Cl2 | 1.05932 (4) | 1.18867 (7) | 0.43125 (2) | 0.03201 (14) | |
N1 | 0.91524 (13) | 0.8624 (3) | 0.37007 (8) | 0.0292 (3) | |
N2 | 0.85729 (13) | 0.7167 (3) | 0.33932 (8) | 0.0300 (3) | |
N3 | 0.40040 (13) | 0.8913 (3) | 0.40216 (9) | 0.0380 (4) | |
N4 | 1.13398 (14) | −0.0162 (3) | 0.21331 (9) | 0.0398 (4) | |
C1 | 0.85825 (15) | 0.9987 (3) | 0.40327 (9) | 0.0284 (4) | |
C2 | 0.92392 (15) | 1.1508 (3) | 0.43572 (9) | 0.0295 (4) | |
C3 | 0.73981 (15) | 0.9728 (3) | 0.40425 (9) | 0.0291 (4) | |
C4 | 0.70143 (15) | 0.7904 (3) | 0.42580 (9) | 0.0310 (4) | |
H4 | 0.7525 | 0.6816 | 0.4404 | 0.037* | |
C5 | 0.59082 (16) | 0.7638 (3) | 0.42649 (10) | 0.0330 (4) | |
H5 | 0.5678 | 0.6384 | 0.4421 | 0.040* | |
C6 | 0.51174 (15) | 0.9206 (3) | 0.40439 (9) | 0.0310 (4) | |
C7 | 0.55024 (15) | 1.1054 (3) | 0.38262 (9) | 0.0312 (4) | |
H7 | 0.4994 | 1.2145 | 0.3678 | 0.037* | |
C8 | 0.66197 (15) | 1.1295 (3) | 0.38267 (9) | 0.0294 (4) | |
H8 | 0.6859 | 1.2551 | 0.3677 | 0.035* | |
C9 | 0.36642 (18) | 0.7158 (4) | 0.43561 (12) | 0.0434 (5) | |
H9A | 0.3835 | 0.5892 | 0.4148 | 0.065* | |
H9B | 0.2862 | 0.7231 | 0.4319 | 0.065* | |
H9C | 0.4067 | 0.7169 | 0.4826 | 0.065* | |
C10 | 0.32281 (16) | 1.0620 (4) | 0.38642 (11) | 0.0410 (5) | |
H10A | 0.3390 | 1.1609 | 0.4231 | 0.061* | |
H10B | 0.2465 | 1.0113 | 0.3800 | 0.061* | |
H10C | 0.3307 | 1.1290 | 0.3456 | 0.061* | |
C11 | 0.92081 (15) | 0.5780 (3) | 0.30993 (9) | 0.0291 (4) | |
C12 | 1.03445 (15) | 0.6030 (3) | 0.31285 (9) | 0.0315 (4) | |
H12 | 1.0731 | 0.7214 | 0.3330 | 0.038* | |
C13 | 1.08971 (15) | 0.4540 (3) | 0.28610 (9) | 0.0318 (4) | |
H13 | 1.1666 | 0.4692 | 0.2878 | 0.038* | |
C14 | 1.03148 (15) | 0.2803 (3) | 0.25645 (9) | 0.0297 (4) | |
C15 | 0.91773 (15) | 0.2583 (3) | 0.25146 (9) | 0.0308 (4) | |
H15 | 0.8784 | 0.1423 | 0.2299 | 0.037* | |
C16 | 0.86290 (15) | 0.4084 (3) | 0.27846 (9) | 0.0308 (4) | |
H16 | 0.7855 | 0.3952 | 0.2754 | 0.037* | |
C17 | 1.08914 (15) | 0.1179 (3) | 0.23155 (10) | 0.0329 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0306 (2) | 0.0350 (3) | 0.0359 (3) | 0.00155 (18) | 0.00763 (19) | −0.00490 (19) |
Cl2 | 0.0255 (2) | 0.0375 (3) | 0.0326 (2) | −0.00150 (18) | 0.00657 (17) | 0.00029 (19) |
N1 | 0.0276 (7) | 0.0326 (9) | 0.0261 (8) | 0.0018 (6) | 0.0045 (6) | 0.0004 (6) |
N2 | 0.0254 (7) | 0.0358 (9) | 0.0275 (8) | 0.0029 (6) | 0.0043 (6) | −0.0011 (7) |
N3 | 0.0275 (8) | 0.0428 (10) | 0.0457 (10) | 0.0004 (7) | 0.0126 (7) | 0.0039 (8) |
N4 | 0.0316 (8) | 0.0444 (11) | 0.0441 (10) | 0.0004 (8) | 0.0109 (7) | −0.0063 (8) |
C1 | 0.0270 (9) | 0.0323 (10) | 0.0254 (9) | 0.0026 (7) | 0.0055 (7) | 0.0026 (7) |
C2 | 0.0257 (9) | 0.0348 (10) | 0.0272 (9) | 0.0036 (7) | 0.0052 (7) | 0.0033 (7) |
C3 | 0.0271 (9) | 0.0333 (10) | 0.0261 (9) | 0.0017 (7) | 0.0051 (7) | −0.0007 (7) |
C4 | 0.0284 (9) | 0.0334 (11) | 0.0300 (9) | 0.0034 (7) | 0.0049 (7) | 0.0010 (8) |
C5 | 0.0313 (9) | 0.0375 (11) | 0.0304 (10) | −0.0013 (8) | 0.0081 (8) | 0.0007 (8) |
C6 | 0.0258 (9) | 0.0384 (11) | 0.0289 (9) | −0.0008 (8) | 0.0071 (7) | −0.0017 (8) |
C7 | 0.0276 (9) | 0.0352 (10) | 0.0301 (9) | 0.0048 (8) | 0.0062 (7) | −0.0010 (8) |
C8 | 0.0269 (9) | 0.0326 (10) | 0.0277 (9) | 0.0013 (7) | 0.0053 (7) | 0.0000 (8) |
C9 | 0.0360 (11) | 0.0539 (14) | 0.0430 (12) | −0.0065 (10) | 0.0153 (9) | 0.0035 (10) |
C10 | 0.0251 (9) | 0.0503 (13) | 0.0475 (12) | 0.0022 (9) | 0.0089 (8) | −0.0047 (10) |
C11 | 0.0258 (9) | 0.0345 (11) | 0.0264 (9) | 0.0030 (7) | 0.0052 (7) | 0.0024 (8) |
C12 | 0.0266 (9) | 0.0347 (10) | 0.0326 (10) | −0.0018 (8) | 0.0064 (7) | 0.0001 (8) |
C13 | 0.0255 (9) | 0.0388 (11) | 0.0317 (10) | −0.0001 (8) | 0.0085 (7) | 0.0016 (8) |
C14 | 0.0271 (9) | 0.0364 (11) | 0.0258 (9) | 0.0020 (7) | 0.0069 (7) | 0.0010 (8) |
C15 | 0.0274 (9) | 0.0355 (10) | 0.0287 (9) | −0.0008 (8) | 0.0057 (7) | 0.0000 (8) |
C16 | 0.0231 (8) | 0.0403 (11) | 0.0283 (9) | −0.0002 (8) | 0.0052 (7) | −0.0014 (8) |
C17 | 0.0267 (9) | 0.0405 (11) | 0.0311 (9) | −0.0009 (8) | 0.0064 (7) | −0.0002 (9) |
Cl1—C2 | 1.715 (2) | C7—H7 | 0.9500 |
Cl2—C2 | 1.7217 (19) | C8—H8 | 0.9500 |
N1—N2 | 1.265 (2) | C9—H9A | 0.9800 |
N1—C1 | 1.417 (2) | C9—H9B | 0.9800 |
N2—C11 | 1.432 (2) | C9—H9C | 0.9800 |
N3—C6 | 1.383 (2) | C10—H10A | 0.9800 |
N3—C10 | 1.456 (3) | C10—H10B | 0.9800 |
N3—C9 | 1.455 (3) | C10—H10C | 0.9800 |
N4—C17 | 1.150 (3) | C11—C16 | 1.391 (3) |
C1—C2 | 1.353 (3) | C11—C12 | 1.404 (2) |
C1—C3 | 1.483 (2) | C12—C13 | 1.383 (3) |
C3—C4 | 1.396 (3) | C12—H12 | 0.9500 |
C3—C8 | 1.401 (3) | C13—C14 | 1.402 (3) |
C4—C5 | 1.386 (3) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—C15 | 1.395 (3) |
C5—C6 | 1.412 (3) | C14—C17 | 1.444 (3) |
C5—H5 | 0.9500 | C15—C16 | 1.388 (3) |
C6—C7 | 1.412 (3) | C15—H15 | 0.9500 |
C7—C8 | 1.394 (3) | C16—H16 | 0.9500 |
N2—N1—C1 | 115.36 (15) | N3—C9—H9B | 109.5 |
N1—N2—C11 | 112.77 (15) | H9A—C9—H9B | 109.5 |
C6—N3—C10 | 120.00 (18) | N3—C9—H9C | 109.5 |
C6—N3—C9 | 119.85 (18) | H9A—C9—H9C | 109.5 |
C10—N3—C9 | 117.17 (17) | H9B—C9—H9C | 109.5 |
C2—C1—N1 | 113.08 (16) | N3—C10—H10A | 109.5 |
C2—C1—C3 | 123.52 (17) | N3—C10—H10B | 109.5 |
N1—C1—C3 | 123.36 (17) | H10A—C10—H10B | 109.5 |
C1—C2—Cl1 | 123.19 (15) | N3—C10—H10C | 109.5 |
C1—C2—Cl2 | 123.55 (15) | H10A—C10—H10C | 109.5 |
Cl1—C2—Cl2 | 113.26 (11) | H10B—C10—H10C | 109.5 |
C4—C3—C8 | 117.53 (17) | C16—C11—C12 | 120.54 (17) |
C4—C3—C1 | 121.25 (17) | C16—C11—N2 | 115.41 (16) |
C8—C3—C1 | 121.21 (18) | C12—C11—N2 | 124.03 (17) |
C5—C4—C3 | 121.80 (18) | C13—C12—C11 | 119.48 (18) |
C5—C4—H4 | 119.1 | C13—C12—H12 | 120.3 |
C3—C4—H4 | 119.1 | C11—C12—H12 | 120.3 |
C4—C5—C6 | 120.97 (19) | C12—C13—C14 | 119.54 (17) |
C4—C5—H5 | 119.5 | C12—C13—H13 | 120.2 |
C6—C5—H5 | 119.5 | C14—C13—H13 | 120.2 |
N3—C6—C5 | 121.14 (18) | C15—C14—C13 | 121.10 (18) |
N3—C6—C7 | 121.41 (18) | C15—C14—C17 | 118.60 (18) |
C5—C6—C7 | 117.41 (17) | C13—C14—C17 | 120.29 (17) |
C8—C7—C6 | 120.71 (18) | C16—C15—C14 | 118.99 (18) |
C8—C7—H7 | 119.6 | C16—C15—H15 | 120.5 |
C6—C7—H7 | 119.6 | C14—C15—H15 | 120.5 |
C7—C8—C3 | 121.57 (19) | C15—C16—C11 | 120.29 (17) |
C7—C8—H8 | 119.2 | C15—C16—H16 | 119.9 |
C3—C8—H8 | 119.2 | C11—C16—H16 | 119.9 |
N3—C9—H9A | 109.5 | N4—C17—C14 | 177.5 (2) |
C1—N1—N2—C11 | −176.74 (15) | C4—C5—C6—C7 | −0.9 (3) |
N2—N1—C1—C2 | 179.58 (16) | N3—C6—C7—C8 | −177.38 (18) |
N2—N1—C1—C3 | 1.6 (3) | C5—C6—C7—C8 | 0.5 (3) |
N1—C1—C2—Cl1 | −173.44 (13) | C6—C7—C8—C3 | −0.1 (3) |
C3—C1—C2—Cl1 | 4.5 (3) | C4—C3—C8—C7 | 0.1 (3) |
N1—C1—C2—Cl2 | 5.4 (2) | C1—C3—C8—C7 | 179.17 (17) |
C3—C1—C2—Cl2 | −176.62 (14) | N1—N2—C11—C16 | 176.66 (16) |
C2—C1—C3—C4 | −123.2 (2) | N1—N2—C11—C12 | −1.9 (3) |
N1—C1—C3—C4 | 54.5 (3) | C16—C11—C12—C13 | −2.2 (3) |
C2—C1—C3—C8 | 57.7 (3) | N2—C11—C12—C13 | 176.31 (17) |
N1—C1—C3—C8 | −124.5 (2) | C11—C12—C13—C14 | 0.0 (3) |
C8—C3—C4—C5 | −0.4 (3) | C12—C13—C14—C15 | 2.2 (3) |
C1—C3—C4—C5 | −179.54 (18) | C12—C13—C14—C17 | −176.58 (18) |
C3—C4—C5—C6 | 0.9 (3) | C13—C14—C15—C16 | −2.2 (3) |
C10—N3—C6—C5 | 173.06 (19) | C17—C14—C15—C16 | 176.56 (18) |
C9—N3—C6—C5 | 13.1 (3) | C14—C15—C16—C11 | 0.0 (3) |
C10—N3—C6—C7 | −9.1 (3) | C12—C11—C16—C15 | 2.1 (3) |
C9—N3—C6—C7 | −169.03 (19) | N2—C11—C16—C15 | −176.47 (17) |
C4—C5—C6—N3 | 177.02 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N4i | 0.95 | 2.48 | 3.428 (3) | 175 |
Symmetry code: (i) −x+5/2, y+1/2, −z+1/2. |
Contact | Distance | Symmetry operation |
Cl1···H4 | 2.86 | x, 1 + y, z |
Cl2···Cl1 | 3.60 | 2 - x, 3 - y, 1 - z |
H9C···C7 | 2.95 | 1 - x, 2 - y, 1 - z |
Cl2···H10B | 3.01 | 1 + x, y, z |
C2···C2 | 3.47 | 2 - x, 2 - y, 1 - z |
N4···H13 | 2.48 | 5/2 - x, -1/2 + y, 1/2 - z |
N4···H7 | 2.70 | 3/2 - x, -3/2 + y, 1/2 - z |
Contact | Percentage contribution |
H···H | 33.6 |
N···H/H···N | 17.2 |
Cl···H/H···Cl | 14.1 |
C···H/H···C | 14.1 |
C···C | 6.7 |
Cl···C/C···Cl | 6.3 |
Cl···Cl | 3.5 |
Cl···N/N···Cl | 2.5 |
N···C/C···N | 1.9 |
N···N | 0.1 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, GTS and GVB; X-ray analysis, ZA and MA; writing (review and editing of the manuscript), funding acquisition, NQS, GTS and GVB; supervision, NQS, MA and SM.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).
References
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.