research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-4-({2,2-di­chloro-1-[4-(di­methyl­amino)­phen­yl]ethenyl}diazen­yl)benzo­nitrile

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 August 2021; accepted 3 September 2021; online 7 September 2021)

In the title compound, C17H14Cl2N4, the dihedral angle between the aromatic rings is 50.09 (9)°. The central –N=N– unit shows an E configuration. In the crystal, C—H⋯N inter­actions, C—Cl⋯π and ππ stacking inter­actions [centroid-to-centroid distance = 3.7719 (14) Å] link the mol­ecules, forming mol­ecular layers approximately parallel to the (002) plane. Additional weak van der Waals inter­actions between the layers consolidate the three-dimensional packing. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (33.6%), N⋯H/ H⋯N (17.2%), Cl⋯H/H⋯Cl (14.1%) and C⋯H/H⋯C (14.1%) contacts.

1. Chemical context

Azo dyes find numerous applications in a diversity of areas, including in mol­ecular recognition, optical data storage, non-linear optics and as mol­ecular switches, anti­microbial agents, colour-changing materials, liquid crystals, dye-sensitized solar cells, mainly because of the ability for cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). Not only isomerization, but azo-hydrazone tautomerisim is also an important phenomenon in the coordination chemistry of azo dyes (Mahmoudi et al., 2018a[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395-4408.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.]). Modification of azo dyes with functional groups leads to multifunctional ligands, of which the corresponding metal complexes are effective catalysts in oxidation and in C—C coupling reactions (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]). Moreover, the functional properties of azo dyes are dependent on non-covalent bond-donor or -acceptor site(s) attached to the –N=N– synthon (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Thus, we have introduced halogen-bond-donor centres to the –N=N– moiety, leading to a new azo dye, (E)-4-({2,2-di­chloro-1-[4-(di­methyl­amino)­phen­yl]ethen­yl}diazen­yl)benzo­nitrile, which provides multiple inter­molecular non-covalent inter­actions.

2. Structural commentary

The aromatic rings C3–C8 and C11–C16 of the title compound (Fig. 1[link]) form a dihedral angle of 50.09 (9)°. In the di­methyl­amino group, the sum of bond angles about N3 is 357.02° and the nitro­gen atom has a flattened trigonal–pyramidal conformation. The atoms of the di­methyl­amino group and those of its attached benzene ring (C3–C8) are nearly coplanar, with maximum deviations of −0.058 (2), 0.179 (2), and 0.087 (2) Å for N3, C9 and C10, respectively. The title mol­ecule adopts an E configuration with respect to the N1=N2 bond. The N1/N2/C1–C3/Cl1/Cl2 unit is approximately planar with a maximum deviation of 0.102 (2) Å, and makes dihedral angles of 55.44 (9) and 5.36 (9)°, respectively, with the C3–C8 and C11–C16 benzene rings.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by C—H⋯N inter­actions (Table 1[link]), C—H⋯π [Cl2⋯Cg2ii = 3.3910 (12) Å, C2⋯Cg2ii = 3.858 (2) Å, C2—Cl2⋯Cg2ii = 92.07 (7)°; symmetry code: (ii) x, 1 + y, z; where Cg2 is the centroid of the C11–C16 benzene ring] and ππ stacking inter­actions [Cg2⋯Cg1iii = 3.7719 (14) Å, slippage = 1.741 Å; Cg1⋯Cg2iv = 3.7719 (14) Å, slippage = 1.336 Å; symmetry codes: (iii) [{3\over 2}] − x, − [{1\over 2}] + y, [{1\over 2}] − z; (iv) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; where Cg1 and Cg2 are the centroids of the C3—C8 and C11–C16 benzene rings, respectively], forming mol­ecular layers approximately parallel to the (002) plane with the mol­ecules having a bellows-like shape when viewed along the a axis (Figs. 2[link] and 3[link]). Weak van der Waals inter­actions between these layers increase the stability of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N4i 0.95 2.48 3.428 (3) 175
Symmetry code: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A general view of the C—H⋯N contacts, C—Cl⋯π inter­actions and ππ stacking inter­actions in the crystal packing of the title compound [symmetry codes: (a) −1 + x, y, z; (b) −1 + x, 1 + y, z; (c) x, 1 + y, z; (d) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (e) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (f) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (g) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z].
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the a axis, showing the C—Cl⋯π inter­actions and ππ stacking inter­actions as dashed lines.

To visualize the inter­molecular inter­actions in the title mol­ecule, CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to compute Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) is shown in Fig. 4[link]. The positive electrostatic potential (blue region) over the surface indicates hydrogen-bond donors, whereas the hydrogen-bond acceptors are represented by a negative electrostatic potential (red region). In the Hirshfeld surface mapped over dnorm (Fig. 5[link]), the bright-red spots near atoms H7, H13, N4 and Cl1 indicate the short C—H⋯N and C—H⋯Cl contacts (Table 2[link]). Other contacts are equal to or longer than the sum of van der Waals radii. The most important inter­action is H⋯H, contributing 33.6% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.15 Å. The reciprocal N⋯H/H⋯N inter­actions appear as two symmetrical broad wings with de + di = 2.3 Å and contribute 17.2% to the Hirshfeld surface (Fig. 6[link]c). The reciprocal Cl⋯H/H⋯Cl inter­actions (14.1% contribution) are present as two symmetrical broad wings with de + di = 2.7 (Fig. 6[link]d). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6[link]e; 14.1% contribution) have the tips at de + di = 2.8 Å. The smaller percentage contributions to the Hirshfeld surface from the various other inter­atomic contact are comparatively listed in Table 3[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H4 2.86 x, 1 + y, z
Cl2⋯Cl1 3.60 2 − x, 3 − y, 1 − z
H9C⋯C7 2.95 1 − x, 2 − y, 1 − z
Cl2⋯H10B 3.01 1 + x, y, z
C2⋯C2 3.47 2 − x, 2 − y, 1 − z
N4⋯H13 2.48 [{5\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
N4⋯H7 2.70 [{3\over 2}] − x, −[{3\over 2}] + y, [{1\over 2}] − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 33.6
N⋯H/H⋯N 17.2
Cl⋯H/H⋯Cl 14.1
C⋯H/H⋯C 14.1
C⋯C 6.7
Cl⋯C/C⋯Cl 6.3
Cl⋯Cl 3.5
Cl⋯N/N⋯Cl 2.5
N⋯C/C⋯N 1.9
N⋯N 0.1
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.
[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm highlighting the regions of C—H⋯Cl and C—H⋯N inter­molecular contacts.
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H (33.6%), (c) N⋯H/H⋯N (17.2%), (d) Cl⋯H/H⋯Cl (14.1%) and (e) C⋯H/H⋯C (14.1%) contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having an (E)-1-(2,2-di­chloro-1-phenylethen­yl)-2-phenyl­diazene unit gave 25 hits. Six compounds closely resemble the title compound, viz. 4-{2,2-di­chloro-1-[(E)-2-(4-methyl­phen­yl)diazen-1-yl]ethen­yl}-N,N-di­methyl­aniline [(I); Özkaraca et al., 2020[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811-815.]], 4-{2,2-di­chloro-1-[(E)-(4-fluoro­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline [(II); Özkaraca et al., 2020[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811-815.]], 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phenyl)ethen­yl]diazene [(III); Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]], 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]di­azene [(IV); Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]], 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene [(V); Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]] and 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene [(VI); Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]].

In the crystal of (I)[link], mol­ecules are linked by pairs of C—Cl⋯π inter­actions, forming inversion dimers. A short inter­molecular Cl⋯Cl contact [3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The crystal structure of (II) is stabilized by C—Cl⋯π and van der Waals inter­actions. In (III), mol­ecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In the crystals of (IV) and (V), mol­ecules are linked through weak X⋯Cl contacts [X = Br for (IV) and Cl for (V)] and C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. In (VI), mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions.

5. Synthesis and crystallization

The title compound was synthesized according to a reported method (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-4-{2-[4-(di­methyl­amino)­benzyl­idene]hydrazin­yl}benzo­nitrile (264 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (69%); m.p. 395 K. Analysis calculated for C17H14Cl2N4: C 59.15, H 4.09, N 16.23%; found: C 59.05, H 4.02, N 16.19%. 1H NMR (300 MHz, CDCl3) δ 3.04 (6H, NMe2), 6.75–7.89 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 162.08, 154.31, 152.59, 146.76, 135.98, 132.50, 131.25, 128.75, 120.90, 117.76, 115.52 and 38.42. ESI–MS: m/z: 346.18 [M + H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H atoms were positioned geometrically and treated as riding atoms, C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C17H14Cl2N4
Mr 345.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.396 (3), 6.5280 (7), 20.758 (3)
β (°) 104.39 (2)
V3) 1627.1 (5)
Z 4
Radiation type Synchrotron, λ = 0.79475 Å
μ (mm−1) 0.54
Crystal size (mm) 0.10 × 0.08 × 0.05
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.939, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 21540, 3712, 2913
Rint 0.066
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.06
No. of reflections 3712
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.36
Computer programs: Marccd(Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: Marccd(Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-4-({2,2-Dichloro-1-[4-(dimethylamino)phenyl]ethenyl}diazenyl)benzonitrile top
Crystal data top
C17H14Cl2N4F(000) = 712
Mr = 345.22Dx = 1.409 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.79475 Å
a = 12.396 (3) ÅCell parameters from 600 reflections
b = 6.5280 (7) Åθ = 2.0–28.0°
c = 20.758 (3) ŵ = 0.54 mm1
β = 104.39 (2)°T = 100 K
V = 1627.1 (5) Å3Prism, colourless
Z = 40.10 × 0.08 × 0.05 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2913 reflections with I > 2σ(I)
/f scanRint = 0.066
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 31.0°, θmin = 2.0°
Tmin = 0.939, Tmax = 0.966h = 1616
21540 measured reflectionsk = 88
3712 independent reflectionsl = 2526
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.5596P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3712 reflectionsΔρmax = 0.34 e Å3
211 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0082 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88106 (4)1.32286 (7)0.48668 (2)0.03392 (14)
Cl21.05932 (4)1.18867 (7)0.43125 (2)0.03201 (14)
N10.91524 (13)0.8624 (3)0.37007 (8)0.0292 (3)
N20.85729 (13)0.7167 (3)0.33932 (8)0.0300 (3)
N30.40040 (13)0.8913 (3)0.40216 (9)0.0380 (4)
N41.13398 (14)0.0162 (3)0.21331 (9)0.0398 (4)
C10.85825 (15)0.9987 (3)0.40327 (9)0.0284 (4)
C20.92392 (15)1.1508 (3)0.43572 (9)0.0295 (4)
C30.73981 (15)0.9728 (3)0.40425 (9)0.0291 (4)
C40.70143 (15)0.7904 (3)0.42580 (9)0.0310 (4)
H40.75250.68160.44040.037*
C50.59082 (16)0.7638 (3)0.42649 (10)0.0330 (4)
H50.56780.63840.44210.040*
C60.51174 (15)0.9206 (3)0.40439 (9)0.0310 (4)
C70.55024 (15)1.1054 (3)0.38262 (9)0.0312 (4)
H70.49941.21450.36780.037*
C80.66197 (15)1.1295 (3)0.38267 (9)0.0294 (4)
H80.68591.25510.36770.035*
C90.36642 (18)0.7158 (4)0.43561 (12)0.0434 (5)
H9A0.38350.58920.41480.065*
H9B0.28620.72310.43190.065*
H9C0.40670.71690.48260.065*
C100.32281 (16)1.0620 (4)0.38642 (11)0.0410 (5)
H10A0.33901.16090.42310.061*
H10B0.24651.01130.38000.061*
H10C0.33071.12900.34560.061*
C110.92081 (15)0.5780 (3)0.30993 (9)0.0291 (4)
C121.03445 (15)0.6030 (3)0.31285 (9)0.0315 (4)
H121.07310.72140.33300.038*
C131.08971 (15)0.4540 (3)0.28610 (9)0.0318 (4)
H131.16660.46920.28780.038*
C141.03148 (15)0.2803 (3)0.25645 (9)0.0297 (4)
C150.91773 (15)0.2583 (3)0.25146 (9)0.0308 (4)
H150.87840.14230.22990.037*
C160.86290 (15)0.4084 (3)0.27846 (9)0.0308 (4)
H160.78550.39520.27540.037*
C171.08914 (15)0.1179 (3)0.23155 (10)0.0329 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0306 (2)0.0350 (3)0.0359 (3)0.00155 (18)0.00763 (19)0.00490 (19)
Cl20.0255 (2)0.0375 (3)0.0326 (2)0.00150 (18)0.00657 (17)0.00029 (19)
N10.0276 (7)0.0326 (9)0.0261 (8)0.0018 (6)0.0045 (6)0.0004 (6)
N20.0254 (7)0.0358 (9)0.0275 (8)0.0029 (6)0.0043 (6)0.0011 (7)
N30.0275 (8)0.0428 (10)0.0457 (10)0.0004 (7)0.0126 (7)0.0039 (8)
N40.0316 (8)0.0444 (11)0.0441 (10)0.0004 (8)0.0109 (7)0.0063 (8)
C10.0270 (9)0.0323 (10)0.0254 (9)0.0026 (7)0.0055 (7)0.0026 (7)
C20.0257 (9)0.0348 (10)0.0272 (9)0.0036 (7)0.0052 (7)0.0033 (7)
C30.0271 (9)0.0333 (10)0.0261 (9)0.0017 (7)0.0051 (7)0.0007 (7)
C40.0284 (9)0.0334 (11)0.0300 (9)0.0034 (7)0.0049 (7)0.0010 (8)
C50.0313 (9)0.0375 (11)0.0304 (10)0.0013 (8)0.0081 (8)0.0007 (8)
C60.0258 (9)0.0384 (11)0.0289 (9)0.0008 (8)0.0071 (7)0.0017 (8)
C70.0276 (9)0.0352 (10)0.0301 (9)0.0048 (8)0.0062 (7)0.0010 (8)
C80.0269 (9)0.0326 (10)0.0277 (9)0.0013 (7)0.0053 (7)0.0000 (8)
C90.0360 (11)0.0539 (14)0.0430 (12)0.0065 (10)0.0153 (9)0.0035 (10)
C100.0251 (9)0.0503 (13)0.0475 (12)0.0022 (9)0.0089 (8)0.0047 (10)
C110.0258 (9)0.0345 (11)0.0264 (9)0.0030 (7)0.0052 (7)0.0024 (8)
C120.0266 (9)0.0347 (10)0.0326 (10)0.0018 (8)0.0064 (7)0.0001 (8)
C130.0255 (9)0.0388 (11)0.0317 (10)0.0001 (8)0.0085 (7)0.0016 (8)
C140.0271 (9)0.0364 (11)0.0258 (9)0.0020 (7)0.0069 (7)0.0010 (8)
C150.0274 (9)0.0355 (10)0.0287 (9)0.0008 (8)0.0057 (7)0.0000 (8)
C160.0231 (8)0.0403 (11)0.0283 (9)0.0002 (8)0.0052 (7)0.0014 (8)
C170.0267 (9)0.0405 (11)0.0311 (9)0.0009 (8)0.0064 (7)0.0002 (9)
Geometric parameters (Å, º) top
Cl1—C21.715 (2)C7—H70.9500
Cl2—C21.7217 (19)C8—H80.9500
N1—N21.265 (2)C9—H9A0.9800
N1—C11.417 (2)C9—H9B0.9800
N2—C111.432 (2)C9—H9C0.9800
N3—C61.383 (2)C10—H10A0.9800
N3—C101.456 (3)C10—H10B0.9800
N3—C91.455 (3)C10—H10C0.9800
N4—C171.150 (3)C11—C161.391 (3)
C1—C21.353 (3)C11—C121.404 (2)
C1—C31.483 (2)C12—C131.383 (3)
C3—C41.396 (3)C12—H120.9500
C3—C81.401 (3)C13—C141.402 (3)
C4—C51.386 (3)C13—H130.9500
C4—H40.9500C14—C151.395 (3)
C5—C61.412 (3)C14—C171.444 (3)
C5—H50.9500C15—C161.388 (3)
C6—C71.412 (3)C15—H150.9500
C7—C81.394 (3)C16—H160.9500
N2—N1—C1115.36 (15)N3—C9—H9B109.5
N1—N2—C11112.77 (15)H9A—C9—H9B109.5
C6—N3—C10120.00 (18)N3—C9—H9C109.5
C6—N3—C9119.85 (18)H9A—C9—H9C109.5
C10—N3—C9117.17 (17)H9B—C9—H9C109.5
C2—C1—N1113.08 (16)N3—C10—H10A109.5
C2—C1—C3123.52 (17)N3—C10—H10B109.5
N1—C1—C3123.36 (17)H10A—C10—H10B109.5
C1—C2—Cl1123.19 (15)N3—C10—H10C109.5
C1—C2—Cl2123.55 (15)H10A—C10—H10C109.5
Cl1—C2—Cl2113.26 (11)H10B—C10—H10C109.5
C4—C3—C8117.53 (17)C16—C11—C12120.54 (17)
C4—C3—C1121.25 (17)C16—C11—N2115.41 (16)
C8—C3—C1121.21 (18)C12—C11—N2124.03 (17)
C5—C4—C3121.80 (18)C13—C12—C11119.48 (18)
C5—C4—H4119.1C13—C12—H12120.3
C3—C4—H4119.1C11—C12—H12120.3
C4—C5—C6120.97 (19)C12—C13—C14119.54 (17)
C4—C5—H5119.5C12—C13—H13120.2
C6—C5—H5119.5C14—C13—H13120.2
N3—C6—C5121.14 (18)C15—C14—C13121.10 (18)
N3—C6—C7121.41 (18)C15—C14—C17118.60 (18)
C5—C6—C7117.41 (17)C13—C14—C17120.29 (17)
C8—C7—C6120.71 (18)C16—C15—C14118.99 (18)
C8—C7—H7119.6C16—C15—H15120.5
C6—C7—H7119.6C14—C15—H15120.5
C7—C8—C3121.57 (19)C15—C16—C11120.29 (17)
C7—C8—H8119.2C15—C16—H16119.9
C3—C8—H8119.2C11—C16—H16119.9
N3—C9—H9A109.5N4—C17—C14177.5 (2)
C1—N1—N2—C11176.74 (15)C4—C5—C6—C70.9 (3)
N2—N1—C1—C2179.58 (16)N3—C6—C7—C8177.38 (18)
N2—N1—C1—C31.6 (3)C5—C6—C7—C80.5 (3)
N1—C1—C2—Cl1173.44 (13)C6—C7—C8—C30.1 (3)
C3—C1—C2—Cl14.5 (3)C4—C3—C8—C70.1 (3)
N1—C1—C2—Cl25.4 (2)C1—C3—C8—C7179.17 (17)
C3—C1—C2—Cl2176.62 (14)N1—N2—C11—C16176.66 (16)
C2—C1—C3—C4123.2 (2)N1—N2—C11—C121.9 (3)
N1—C1—C3—C454.5 (3)C16—C11—C12—C132.2 (3)
C2—C1—C3—C857.7 (3)N2—C11—C12—C13176.31 (17)
N1—C1—C3—C8124.5 (2)C11—C12—C13—C140.0 (3)
C8—C3—C4—C50.4 (3)C12—C13—C14—C152.2 (3)
C1—C3—C4—C5179.54 (18)C12—C13—C14—C17176.58 (18)
C3—C4—C5—C60.9 (3)C13—C14—C15—C162.2 (3)
C10—N3—C6—C5173.06 (19)C17—C14—C15—C16176.56 (18)
C9—N3—C6—C513.1 (3)C14—C15—C16—C110.0 (3)
C10—N3—C6—C79.1 (3)C12—C11—C16—C152.1 (3)
C9—N3—C6—C7169.03 (19)N2—C11—C16—C15176.47 (17)
C4—C5—C6—N3177.02 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N4i0.952.483.428 (3)175
Symmetry code: (i) x+5/2, y+1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H42.86x, 1 + y, z
Cl2···Cl13.602 - x, 3 - y, 1 - z
H9C···C72.951 - x, 2 - y, 1 - z
Cl2···H10B3.011 + x, y, z
C2···C23.472 - x, 2 - y, 1 - z
N4···H132.485/2 - x, -1/2 + y, 1/2 - z
N4···H72.703/2 - x, -3/2 + y, 1/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound. top
ContactPercentage contribution
H···H33.6
N···H/H···N17.2
Cl···H/H···Cl14.1
C···H/H···C14.1
C···C6.7
Cl···C/C···Cl6.3
Cl···Cl3.5
Cl···N/N···Cl2.5
N···C/C···N1.9
N···N0.1
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, GTS and GVB; X-ray analysis, ZA and MA; writing (review and editing of the manuscript), funding acquisition, NQS, GTS and GVB; supervision, NQS, MA and SM.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds