research communications
N,N-bis{[(1RS,4SR)-1,4-dihydro-1,4-epoxynaphthalen-1-yl]methyl}acetamide
and Hirshfeld surface analysis of 2,2,2-trichloro-aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the title compound, C24H18Cl3NO3, the tetrahydrofuran rings adopt envelope conformations. In the crystal, C—H⋯O hydrogen bonds connect molecules, generating layers parallel to the (001) plane. These layers are connected along the c-axis direction by C—H⋯π interactions. The packing is further stabilized by interlayer van der Waals and interhalogen interactions. The most important contributions to the surface contacts are from H⋯H (36.8%), Cl⋯H/H⋯Cl (26.6%), C⋯H/H⋯C (18.8%) and O⋯H/H⋯O (11.3%) interactions, as concluded from a Hirshfeld surface analysis.
Keywords: crystal structure; tetrahydrofuran rings; C—H⋯O hydrogen bonds; C—H⋯π interactions; Hirshfeld surface analysis; IMDAF reaction; Diels–Alder reaction.
CCDC reference: 2095762
1. Chemical context
In recent years, the IMDAF cycloaddition (the intramolecular furan Diels–Alder reaction) in combination with other known reactions in a tandem or sequential manner is pursued for the construction of several important bicyclic or polycyclic compounds, including natural ones (for some reviews on this topic, see: Zubkov et al., 2005; Takao et al., 2005; Juhl et al., 2009; Padwa et al., 2013; Parvatkar et al., 2014; Krishna et al., 2021). Cascade sequences comprising two or more successive [4 + 2] cycloaddition steps are a powerful and frequently used protocol in modern syntheses aimed at constructing cyclohexene derivatives thanks to their exceptional regioselectivity, and capability to create more than four chiral centers in a single synthetic step (Criado et al., 2010, 2013). It has been shown previously that the Diels–Alder reaction of bis-dienes with derivatives of maleic acid, of acetylene dicarboxylic acid and hexafluoro-2-butyne proceeds in all cases diastereo- and chemoselectively and leads, depending on the temperature, to annelated diepoxynaphthalenes of the `domino' or `pincer' type (Borisova et al., 2018a,b; Grudova et al., 2020; Kvyatkovskaya et al., 2020, 2021). In order to expand the limits of the applicability of the IMDAF strategy, we tested in this study dehydrobenzene generated in situ in the role of It was demonstrated that the products of the parallel [4 + 2] cycloaddition of two moieties to both the furan fragments of the bis-diene system (Fig. 1, 1 and 2) prevails over the adduct (3) of the IMDAF reaction (Fig. 1).
On the other hand, intermolecular non-covalent interactions organize the molecular aggregates, catalytic intermediates, etc., which play crucial roles for the functional properties of (Gurbanov et al., 2020a,b; Khalilov et al., 2018a,b; Ma et al., 2017a,b, 2020, 2021; Mahmudov et al., 2020; Mizar et al., 2012). Thus, attached –CCl3 and C=O groups can participate in intermolecular interactions and affect the properties of 1–3.
2. Structural commentary
In the title compound (1, Fig. 2), the tetrahydrofuran rings (O19/C11–C14 and O29/C21–C24) adopt envelope conformations with the O atoms as the flaps. The molecular conformation is stabilized by intramolecular C10—H10A⋯O29 and C20—H20A⋯O19 hydrogen bonds and C20—H20B⋯Cl1 and C20—H20B⋯Cl3 interactions (Table 1).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, hydrogen bonds of the C—H⋯O type link the molecules, generating layers parallel to the (001) plane (Table 1; Figs. 3, 4, 5 and 6). These layers are connected by C—H⋯π interactions (C13—H13A⋯Cg8; Table 1), where Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring. The intermolecular interactions in the crystal of the title compound (Table 2) were quantified using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated. The calculations and visualization were performed using CrystalExplorer17 (Turner et al., 2017). The three-dimensional Hirshfeld surface mapped over dnorm in the range −0.1862 (red) to +1.4233 (blue) a.u. is shown in Fig. 7. The short and long contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The Cl⋯H and C—H⋯O interactions, which play a key role in the molecular packing, can be correlated with the bright-red patches near Cl1, Cl2, O1 and O19 and hydrogen atoms H14A and H16A, which highlight their functions as donors and/or acceptors. Fig. 8 shows the full two-dimensional fingerprint plot (Fig. 8a) and those delineated into the major contacts: H⋯H (36.8%, Fig. 8b) interactions are the major factor in the crystal packing together with Cl⋯H/H⋯Cl (26.6%, Fig. 8c), C⋯H/H⋯C (18.8%, Fig. 8d) and O⋯H/H⋯O (11.3%, Fig. 8e) interactions representing the next highest contributions. The percentage contributions of other weak interactions are listed in Table 3.
|
|
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016) for structures having the epoxyisoindole moiety gave ten hits that closely resemble the title compound, viz. 4,5-dibromo-2-[4-(trifluoromethyl)phenyl]hexahydro-3a,6-epoxyisoindol-1(4H)-one (CSD refcode IQOTOA; Mertsalov et al., 2021a), 3-hydroxy-2-{[2-(4-methylbenzene-1-sulfonyl)-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-6(1H)-yl]methyl}-2,3-dihydro-1H-isoindol-1-one (OMUTAU; Mertsalov et al., 2021b), 2-benzyl-4,5-dibromohexahydro-3a,6-epoxyisoindol-1(4H)-one (OMEMAX; Mertsalov et al., 2021c), 4,5-dibromo-6-methyl-2-phenylhexahydro-3a,6-epoxyisoindol-1(4H)-one (IMUBIE; Mertsalov et al., 2021a), (3aR,6S,7aR)-7a-chloro-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (AGONUH; Temel et al., 2013), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (TIJMIK; Demircan et al., 2013), 5-chloro-7-methyl-3-[(4-methyl-phenyl)sulfonyl]-10-oxa-3-azatricyclo[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012), (3aR,6S,7aR)-7a-bromo-2-[(4-methylphenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyiso-indole (UPAQEI; Koşar et al., 2011), (3aR,6S,7aR)-7a-bromo-2-methylsulfonyl-1,2,3,6,7,7-hexahydro-3a,6-epoxyisoindole (ERIVIL; Temel et al., 2011) and tert-butyl 3a-chloroper-hydro-2,6a-epoxyoxireno(e)isoindole-5-carboxylate (MIGTIG; Koşar et al., 2007).
In the crystal of IQOTOA, the π and C—Br⋯π interactions. OMUTAU also crystallizes with two independent molecules in the In the central ring systems of both molecules, the tetrahydrofuran rings adopt envelope conformations, the pyrrolidine rings adopt twisted-envelope conformations and the six-membered ring is in a boat conformation. In both molecules, the nine-membered groups attached to the central ring system are essentially planar. In the crystal, strong intermolecular O—H⋯O hydrogen bonds and weak intermolecular C—H⋯O contacts link the molecules, forming a three-dimensional network. In addition, weak π–π stacking interactions between the pyrrolidine rings are observed. OMEMAX again crystallizes with two molecules in the of the In both molecules, the tetrahydrofuran rings adopt envelope conformations with the O atoms as the flaps and the pyrrolidine rings also adopt envelope conformations. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (001) plane. These sheets are connected only by weak van der Waals interactions. In the crystal of IMUBIE, the molecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating R22(18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π interactions. In the crystal structures of IQOTOA, OMUTAU, OMEMAX, AGONUH, TIJMIK, YAXCIL, UPAQEI and ERIVIL, the molecules are predominantly linked by C—H⋯O hydrogen bonds, giving various hydrogen-bonding pattern connectivities. In the crystal of AGONUH, the molecules are connected in zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds are found, viz. R22(20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Additionally, C—H⋯O hydrogen bonds form a C(6) chain, linking the molecules in the b-axis direction. In the crystal of ERIVIL, the molecules are connected into R22(8) and R22(14) rings along the b-axis direction. In MIGTIG, the molecules are linked only by weak van der Waals interactions.
consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt envelope conformations. In the crystal, molecules are linked in pairs by C— H⋯O hydrogen bonds. These pairs form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane formed by C— H⋯5. Synthesis and crystallization
CsF (1.7 g, 0.011 mol) was added to 2,2,2-trichloro-N,N-bis(furan-2-ylmethyl)acetamide (0.0022 mol) dissolved in dry CH3CN (20 mL). Then an equivalent of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.54 mL, 0.022 mol) was added to the solution under an argon atmosphere. The mixture was refluxed for 4 h (TLC control). After that, one more portion of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.27 mL, 0.011 mol) and CsF (1.7 g, 0.011 mol) was added to the mixture, repeating all procedures again. After the mixture was cooled, CsF was filtered off through a thin layer of SiO2, and the resulting solution was concentrated under reduced pressure. The residue (brown oil) was separated using on silica gel (a mixture EtOAc/hexane = 1/25 as eluent) to give compounds 1–3 in the ratio ∼30/25/45. Single crystals of compound 1 was obtained by slow crystallization from a hexane/EtOAc mixture.
Compound 1: white powder (0.29 g, 0.62 mmol, 28%); Rf 0.50 (`Sorbfil' plates for EtOAc/hexane, 1:4, Sorbfil); m.p. 431.7–433.4 K. 1H NMR (600.2 MHz, CDCl3) δ 7.19–7.24 (4H, m, H-Ar), 7.07 (1H, dd, J = 1.5 and J = 5.6 Hz, H-2′), 7.04 (2H, br dd, J = 2.0 and J = 5.0 Hz, H-3,3′), 6.95–6.99 (4H, m, H-Ar), 6.85 (1H, d, J = 5.6 Hz, H-2), 5.73 (1H, d, J = 1.5 Hz, H-4′), 5.71 (1H, d, J = 1.5 Hz, H-4), 5.11 (1H, d, J = 16.2 Hz, H-1′B), 4.87 (1H, d, J = 16.2 Hz, H-1B), 4.76 (1H, d, J = 15.1 Hz, H-1′A), 4.72 (1H, br d, J = 15.1 Hz, H-1A). 13C NMR (150.9 MHz, CDCl3) d 161.5, 150.2, 149.9, 148.7, 148.2, 145.2, 145.1, 143.3, 143.0, 125.5, 125.3, 125.2, 125.1, 120.5, 120.2, 120.0, 119.6, 94.1, 93.3, 92.1, 82.4, 82.2, 49.1, 45.6. IR νmax/cm−1 (tablet KBr): 2953, 2919, 1702, 1632, 1462, 1410, 1236. HRMS (ESI–TOF): calculated for C24H18Cl3NO4 [M + H]+ 473.0352; found 473.0358.
6. details
Crystal data, data collection and structure . All C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). Six reflections (01, 011, 101, 110, 002 and 200), which were obscured by the beam stop, and nine outliers (343, 253, ,1,15, 3,6,11, 15,4,4, 072, 4,6,12, ,3,22 and 13,6,2) were omitted during the final cycle.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2095762
https://doi.org/10.1107/S2056989021009907/yk2156sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021009907/yk2156Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021009907/yk2156Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C24H18Cl3NO3 | F(000) = 976 |
Mr = 474.74 | Dx = 1.458 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 15.0134 (6) Å | Cell parameters from 4831 reflections |
b = 8.1336 (3) Å | θ = 2.8–26.7° |
c = 18.2841 (6) Å | µ = 0.45 mm−1 |
β = 104.307 (2)° | T = 296 K |
V = 2163.48 (14) Å3 | Fragment, colourless |
Z = 4 | 0.34 × 0.18 × 0.14 mm |
Bruker Kappa APEXII area-detector diffractometer | 3570 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 27.6°, θmin = 3.2° |
Tmin = 0.743, Tmax = 0.940 | h = −19→19 |
17833 measured reflections | k = −10→10 |
4991 independent reflections | l = −23→23 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0576P)2 + 0.6103P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
4991 reflections | Δρmax = 0.30 e Å−3 |
280 parameters | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.57432 (13) | 0.4170 (2) | 0.17193 (10) | 0.0396 (4) | |
C2 | 0.53382 (14) | 0.2461 (3) | 0.14061 (12) | 0.0450 (5) | |
C10 | 0.57234 (13) | 0.6612 (2) | 0.24521 (11) | 0.0386 (4) | |
H10A | 0.533570 | 0.757230 | 0.231289 | 0.046* | |
H10B | 0.628106 | 0.679444 | 0.228600 | 0.046* | |
C11 | 0.59728 (12) | 0.6449 (2) | 0.32991 (11) | 0.0353 (4) | |
C12 | 0.64935 (13) | 0.7922 (2) | 0.37350 (12) | 0.0445 (5) | |
H12A | 0.686507 | 0.866559 | 0.356181 | 0.053* | |
C13 | 0.63075 (14) | 0.7916 (2) | 0.44014 (12) | 0.0473 (5) | |
H13A | 0.651717 | 0.865687 | 0.479366 | 0.057* | |
C14 | 0.56784 (13) | 0.6447 (2) | 0.43983 (11) | 0.0417 (4) | |
H14A | 0.530748 | 0.647835 | 0.477024 | 0.050* | |
C14A | 0.62536 (12) | 0.4899 (2) | 0.44023 (11) | 0.0390 (4) | |
C15 | 0.65706 (14) | 0.3678 (3) | 0.49181 (12) | 0.0466 (5) | |
H15A | 0.643575 | 0.368000 | 0.538795 | 0.056* | |
C16 | 0.71008 (15) | 0.2436 (3) | 0.47154 (13) | 0.0531 (5) | |
H16A | 0.731376 | 0.158196 | 0.505157 | 0.064* | |
C17 | 0.73137 (15) | 0.2450 (3) | 0.40299 (13) | 0.0521 (5) | |
H17A | 0.767642 | 0.161342 | 0.391117 | 0.062* | |
C18 | 0.69959 (13) | 0.3700 (2) | 0.35035 (12) | 0.0436 (4) | |
H18A | 0.714646 | 0.371239 | 0.303977 | 0.052* | |
C18A | 0.64551 (11) | 0.4905 (2) | 0.36943 (10) | 0.0356 (4) | |
C20 | 0.42684 (12) | 0.5001 (2) | 0.20562 (10) | 0.0359 (4) | |
H20A | 0.422213 | 0.498360 | 0.257597 | 0.043* | |
H20B | 0.404568 | 0.395232 | 0.183106 | 0.043* | |
C21 | 0.36523 (12) | 0.6346 (2) | 0.16411 (10) | 0.0348 (4) | |
C22 | 0.37783 (13) | 0.7010 (3) | 0.08860 (11) | 0.0440 (4) | |
H22A | 0.405680 | 0.647375 | 0.055171 | 0.053* | |
C23 | 0.34135 (14) | 0.8485 (3) | 0.08083 (13) | 0.0503 (5) | |
H23A | 0.338084 | 0.920840 | 0.040843 | 0.060* | |
C24 | 0.30557 (14) | 0.8769 (2) | 0.15056 (12) | 0.0467 (5) | |
H24A | 0.296146 | 0.991967 | 0.162742 | 0.056* | |
C24A | 0.22319 (13) | 0.7630 (2) | 0.14421 (10) | 0.0396 (4) | |
C25 | 0.12998 (14) | 0.7862 (3) | 0.13138 (11) | 0.0485 (5) | |
H25A | 0.104624 | 0.891139 | 0.125152 | 0.058* | |
C26 | 0.07468 (15) | 0.6477 (3) | 0.12801 (12) | 0.0556 (6) | |
H26A | 0.011307 | 0.660262 | 0.118843 | 0.067* | |
C27 | 0.11209 (14) | 0.4931 (3) | 0.13797 (12) | 0.0558 (6) | |
H27A | 0.073843 | 0.402457 | 0.136186 | 0.067* | |
C28 | 0.20793 (13) | 0.4696 (3) | 0.15092 (11) | 0.0448 (4) | |
H28A | 0.233674 | 0.365028 | 0.157926 | 0.054* | |
C28A | 0.26130 (12) | 0.6058 (2) | 0.15276 (9) | 0.0350 (4) | |
N1 | 0.52425 (10) | 0.51733 (18) | 0.20508 (8) | 0.0353 (3) | |
O1 | 0.65181 (10) | 0.4475 (2) | 0.16809 (9) | 0.0594 (4) | |
O19 | 0.51694 (8) | 0.64419 (16) | 0.36140 (7) | 0.0389 (3) | |
O29 | 0.37315 (9) | 0.78716 (15) | 0.20640 (7) | 0.0431 (3) | |
Cl1 | 0.49921 (4) | 0.13248 (6) | 0.21124 (4) | 0.05856 (17) | |
Cl2 | 0.61916 (5) | 0.13144 (9) | 0.11317 (5) | 0.0795 (2) | |
Cl3 | 0.44055 (5) | 0.27068 (8) | 0.06047 (4) | 0.0719 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0400 (10) | 0.0380 (10) | 0.0425 (10) | −0.0010 (8) | 0.0136 (8) | 0.0011 (8) |
C2 | 0.0436 (11) | 0.0415 (10) | 0.0510 (11) | 0.0025 (8) | 0.0138 (9) | −0.0063 (9) |
C10 | 0.0366 (10) | 0.0304 (9) | 0.0486 (11) | −0.0056 (7) | 0.0101 (8) | 0.0000 (7) |
C11 | 0.0276 (8) | 0.0296 (9) | 0.0489 (10) | −0.0020 (7) | 0.0096 (7) | −0.0022 (7) |
C12 | 0.0393 (11) | 0.0305 (9) | 0.0603 (13) | −0.0053 (8) | 0.0060 (9) | −0.0042 (8) |
C13 | 0.0465 (12) | 0.0361 (10) | 0.0552 (12) | −0.0006 (9) | 0.0051 (9) | −0.0105 (9) |
C14 | 0.0358 (10) | 0.0437 (11) | 0.0449 (10) | −0.0001 (8) | 0.0088 (8) | −0.0059 (8) |
C14A | 0.0309 (9) | 0.0356 (10) | 0.0485 (10) | −0.0048 (7) | 0.0062 (7) | −0.0043 (8) |
C15 | 0.0417 (11) | 0.0463 (11) | 0.0489 (11) | −0.0066 (9) | 0.0056 (9) | 0.0023 (9) |
C16 | 0.0491 (12) | 0.0401 (11) | 0.0632 (14) | 0.0007 (9) | 0.0006 (10) | 0.0081 (10) |
C17 | 0.0450 (12) | 0.0366 (10) | 0.0707 (14) | 0.0091 (9) | 0.0067 (10) | −0.0039 (10) |
C18 | 0.0382 (10) | 0.0389 (10) | 0.0536 (12) | 0.0009 (8) | 0.0109 (8) | −0.0047 (8) |
C18A | 0.0266 (8) | 0.0312 (9) | 0.0473 (10) | −0.0040 (7) | 0.0060 (7) | −0.0008 (7) |
C20 | 0.0323 (9) | 0.0329 (9) | 0.0431 (10) | −0.0024 (7) | 0.0102 (7) | 0.0010 (7) |
C21 | 0.0346 (9) | 0.0309 (9) | 0.0383 (9) | −0.0023 (7) | 0.0082 (7) | −0.0031 (7) |
C22 | 0.0381 (10) | 0.0508 (12) | 0.0455 (11) | −0.0010 (9) | 0.0150 (8) | 0.0056 (9) |
C23 | 0.0445 (11) | 0.0458 (12) | 0.0601 (13) | −0.0024 (9) | 0.0118 (9) | 0.0166 (10) |
C24 | 0.0445 (11) | 0.0323 (10) | 0.0595 (13) | 0.0040 (8) | 0.0058 (9) | −0.0005 (9) |
C24A | 0.0406 (10) | 0.0413 (10) | 0.0370 (9) | 0.0020 (8) | 0.0098 (7) | −0.0010 (8) |
C25 | 0.0463 (12) | 0.0594 (13) | 0.0416 (10) | 0.0136 (10) | 0.0142 (9) | 0.0030 (9) |
C26 | 0.0345 (10) | 0.0849 (18) | 0.0496 (12) | 0.0021 (11) | 0.0149 (9) | 0.0111 (11) |
C27 | 0.0412 (11) | 0.0735 (16) | 0.0533 (12) | −0.0185 (11) | 0.0125 (9) | 0.0043 (11) |
C28 | 0.0438 (11) | 0.0458 (11) | 0.0446 (10) | −0.0064 (9) | 0.0106 (8) | 0.0017 (9) |
C28A | 0.0346 (9) | 0.0410 (10) | 0.0302 (8) | −0.0022 (7) | 0.0093 (7) | −0.0020 (7) |
N1 | 0.0325 (8) | 0.0314 (8) | 0.0418 (8) | −0.0030 (6) | 0.0086 (6) | −0.0015 (6) |
O1 | 0.0475 (9) | 0.0566 (9) | 0.0848 (11) | −0.0086 (7) | 0.0368 (8) | −0.0112 (8) |
O19 | 0.0279 (6) | 0.0422 (7) | 0.0460 (7) | 0.0007 (5) | 0.0081 (5) | −0.0044 (6) |
O29 | 0.0429 (8) | 0.0311 (7) | 0.0497 (8) | 0.0011 (6) | 0.0011 (6) | −0.0067 (6) |
Cl1 | 0.0690 (4) | 0.0354 (3) | 0.0743 (4) | −0.0035 (2) | 0.0234 (3) | 0.0056 (2) |
Cl2 | 0.0716 (4) | 0.0686 (4) | 0.1080 (6) | 0.0077 (3) | 0.0409 (4) | −0.0319 (4) |
Cl3 | 0.0757 (4) | 0.0686 (4) | 0.0586 (4) | −0.0006 (3) | −0.0076 (3) | −0.0129 (3) |
C1—O1 | 1.209 (2) | C17—H17A | 0.9300 |
C1—N1 | 1.351 (2) | C18—C18A | 1.372 (3) |
C1—C2 | 1.568 (3) | C18—H18A | 0.9300 |
C2—Cl2 | 1.755 (2) | C20—N1 | 1.472 (2) |
C2—Cl1 | 1.767 (2) | C20—C21 | 1.510 (2) |
C2—Cl3 | 1.770 (2) | C20—H20A | 0.9700 |
C10—N1 | 1.472 (2) | C20—H20B | 0.9700 |
C10—C11 | 1.506 (3) | C21—O29 | 1.451 (2) |
C10—H10A | 0.9700 | C21—C22 | 1.537 (3) |
C10—H10B | 0.9700 | C21—C28A | 1.540 (2) |
C11—O19 | 1.459 (2) | C22—C23 | 1.312 (3) |
C11—C18A | 1.538 (2) | C22—H22A | 0.9300 |
C11—C12 | 1.540 (2) | C23—C24 | 1.519 (3) |
C12—C13 | 1.316 (3) | C23—H23A | 0.9300 |
C12—H12A | 0.9300 | C24—O29 | 1.447 (2) |
C13—C14 | 1.522 (3) | C24—C24A | 1.527 (3) |
C13—H13A | 0.9300 | C24—H24A | 0.9800 |
C14—O19 | 1.449 (2) | C24A—C25 | 1.374 (3) |
C14—C14A | 1.526 (3) | C24A—C28A | 1.394 (3) |
C14—H14A | 0.9800 | C25—C26 | 1.392 (3) |
C14A—C15 | 1.371 (3) | C25—H25A | 0.9300 |
C14A—C18A | 1.400 (3) | C26—C27 | 1.371 (3) |
C15—C16 | 1.392 (3) | C26—H26A | 0.9300 |
C15—H15A | 0.9300 | C27—C28 | 1.412 (3) |
C16—C17 | 1.368 (3) | C27—H27A | 0.9300 |
C16—H16A | 0.9300 | C28—C28A | 1.362 (3) |
C17—C18 | 1.400 (3) | C28—H28A | 0.9300 |
O1—C1—N1 | 123.52 (18) | C18—C18A—C11 | 134.72 (18) |
O1—C1—C2 | 116.95 (17) | C14A—C18A—C11 | 104.65 (15) |
N1—C1—C2 | 119.42 (16) | N1—C20—C21 | 114.45 (14) |
C1—C2—Cl2 | 109.31 (13) | N1—C20—H20A | 108.6 |
C1—C2—Cl1 | 110.74 (13) | C21—C20—H20A | 108.6 |
Cl2—C2—Cl1 | 107.36 (11) | N1—C20—H20B | 108.6 |
C1—C2—Cl3 | 110.99 (14) | C21—C20—H20B | 108.6 |
Cl2—C2—Cl3 | 107.91 (11) | H20A—C20—H20B | 107.6 |
Cl1—C2—Cl3 | 110.41 (11) | O29—C21—C20 | 113.09 (14) |
N1—C10—C11 | 114.17 (14) | O29—C21—C22 | 99.57 (14) |
N1—C10—H10A | 108.7 | C20—C21—C22 | 120.64 (16) |
C11—C10—H10A | 108.7 | O29—C21—C28A | 98.57 (13) |
N1—C10—H10B | 108.7 | C20—C21—C28A | 115.56 (14) |
C11—C10—H10B | 108.7 | C22—C21—C28A | 106.13 (14) |
H10A—C10—H10B | 107.6 | C23—C22—C21 | 106.13 (18) |
O19—C11—C10 | 112.73 (14) | C23—C22—H22A | 126.9 |
O19—C11—C18A | 98.64 (13) | C21—C22—H22A | 126.9 |
C10—C11—C18A | 121.53 (15) | C22—C23—C24 | 105.84 (18) |
O19—C11—C12 | 99.35 (14) | C22—C23—H23A | 127.1 |
C10—C11—C12 | 115.42 (15) | C24—C23—H23A | 127.1 |
C18A—C11—C12 | 105.78 (15) | O29—C24—C23 | 100.59 (15) |
C13—C12—C11 | 106.25 (17) | O29—C24—C24A | 99.27 (15) |
C13—C12—H12A | 126.9 | C23—C24—C24A | 106.97 (16) |
C11—C12—H12A | 126.9 | O29—C24—H24A | 115.9 |
C12—C13—C14 | 105.83 (17) | C23—C24—H24A | 115.9 |
C12—C13—H13A | 127.1 | C24A—C24—H24A | 115.9 |
C14—C13—H13A | 127.1 | C25—C24A—C28A | 121.17 (18) |
O19—C14—C13 | 100.44 (15) | C25—C24A—C24 | 134.57 (19) |
O19—C14—C14A | 99.30 (14) | C28A—C24A—C24 | 104.24 (16) |
C13—C14—C14A | 107.32 (15) | C24A—C25—C26 | 117.9 (2) |
O19—C14—H14A | 115.8 | C24A—C25—H25A | 121.0 |
C13—C14—H14A | 115.8 | C26—C25—H25A | 121.0 |
C14A—C14—H14A | 115.8 | C27—C26—C25 | 121.08 (19) |
C15—C14A—C18A | 121.38 (18) | C27—C26—H26A | 119.5 |
C15—C14A—C14 | 134.49 (18) | C25—C26—H26A | 119.5 |
C18A—C14A—C14 | 104.12 (16) | C26—C27—C28 | 120.9 (2) |
C14A—C15—C16 | 117.8 (2) | C26—C27—H27A | 119.6 |
C14A—C15—H15A | 121.1 | C28—C27—H27A | 119.6 |
C16—C15—H15A | 121.1 | C28A—C28—C27 | 117.6 (2) |
C17—C16—C15 | 121.1 (2) | C28A—C28—H28A | 121.2 |
C17—C16—H16A | 119.5 | C27—C28—H28A | 121.2 |
C15—C16—H16A | 119.5 | C28—C28A—C24A | 121.36 (17) |
C16—C17—C18 | 121.3 (2) | C28—C28A—C21 | 134.20 (17) |
C16—C17—H17A | 119.4 | C24A—C28A—C21 | 104.43 (15) |
C18—C17—H17A | 119.4 | C1—N1—C20 | 127.57 (15) |
C18A—C18—C17 | 117.81 (19) | C1—N1—C10 | 116.44 (15) |
C18A—C18—H18A | 121.1 | C20—N1—C10 | 115.99 (14) |
C17—C18—H18A | 121.1 | C14—O19—C11 | 96.05 (13) |
C18—C18A—C14A | 120.62 (17) | C24—O29—C21 | 96.01 (13) |
O1—C1—C2—Cl2 | 4.6 (2) | C21—C22—C23—C24 | 0.0 (2) |
N1—C1—C2—Cl2 | −171.75 (15) | C22—C23—C24—O29 | 33.4 (2) |
O1—C1—C2—Cl1 | 122.72 (17) | C22—C23—C24—C24A | −69.8 (2) |
N1—C1—C2—Cl1 | −53.7 (2) | O29—C24—C24A—C25 | 146.2 (2) |
O1—C1—C2—Cl3 | −114.28 (18) | C23—C24—C24A—C25 | −109.7 (2) |
N1—C1—C2—Cl3 | 69.3 (2) | O29—C24—C24A—C28A | −35.51 (18) |
N1—C10—C11—O19 | −67.92 (19) | C23—C24—C24A—C28A | 68.64 (19) |
N1—C10—C11—C18A | 48.7 (2) | C28A—C24A—C25—C26 | 0.7 (3) |
N1—C10—C11—C12 | 178.87 (15) | C24—C24A—C25—C26 | 178.8 (2) |
O19—C11—C12—C13 | 32.80 (19) | C24A—C25—C26—C27 | 0.7 (3) |
C10—C11—C12—C13 | 153.59 (17) | C25—C26—C27—C28 | −0.9 (3) |
C18A—C11—C12—C13 | −69.00 (19) | C26—C27—C28—C28A | −0.3 (3) |
C11—C12—C13—C14 | 0.4 (2) | C27—C28—C28A—C24A | 1.7 (3) |
C12—C13—C14—O19 | −33.89 (19) | C27—C28—C28A—C21 | −179.31 (18) |
C12—C13—C14—C14A | 69.4 (2) | C25—C24A—C28A—C28 | −1.9 (3) |
O19—C14—C14A—C15 | −144.6 (2) | C24—C24A—C28A—C28 | 179.46 (17) |
C13—C14—C14A—C15 | 111.3 (2) | C25—C24A—C28A—C21 | 178.80 (17) |
O19—C14—C14A—C18A | 36.13 (17) | C24—C24A—C28A—C21 | 0.19 (18) |
C13—C14—C14A—C18A | −67.96 (18) | O29—C21—C28A—C28 | −144.1 (2) |
C18A—C14A—C15—C16 | −0.1 (3) | C20—C21—C28A—C28 | −23.4 (3) |
C14—C14A—C15—C16 | −179.27 (19) | C22—C21—C28A—C28 | 113.2 (2) |
C14A—C15—C16—C17 | 1.3 (3) | O29—C21—C28A—C24A | 35.00 (16) |
C15—C16—C17—C18 | −0.9 (3) | C20—C21—C28A—C24A | 155.77 (15) |
C16—C17—C18—C18A | −0.6 (3) | C22—C21—C28A—C24A | −67.64 (17) |
C17—C18—C18A—C14A | 1.8 (3) | O1—C1—N1—C20 | 172.92 (18) |
C17—C18—C18A—C11 | −179.78 (19) | C2—C1—N1—C20 | −10.9 (3) |
C15—C14A—C18A—C18 | −1.5 (3) | O1—C1—N1—C10 | −6.9 (3) |
C14—C14A—C18A—C18 | 177.93 (16) | C2—C1—N1—C10 | 169.28 (16) |
C15—C14A—C18A—C11 | 179.68 (16) | C21—C20—N1—C1 | −114.5 (2) |
C14—C14A—C18A—C11 | −0.92 (17) | C21—C20—N1—C10 | 65.2 (2) |
O19—C11—C18A—C18 | 147.2 (2) | C11—C10—N1—C1 | −104.29 (19) |
C10—C11—C18A—C18 | 23.7 (3) | C11—C10—N1—C20 | 75.91 (19) |
C12—C11—C18A—C18 | −110.5 (2) | C13—C14—O19—C11 | 52.63 (15) |
O19—C11—C18A—C14A | −34.20 (16) | C14A—C14—O19—C11 | −57.06 (15) |
C10—C11—C18A—C14A | −157.68 (16) | C10—C11—O19—C14 | −174.45 (14) |
C12—C11—C18A—C14A | 68.14 (18) | C18A—C11—O19—C14 | 55.97 (14) |
N1—C20—C21—O29 | −76.82 (19) | C12—C11—O19—C14 | −51.72 (15) |
N1—C20—C21—C22 | 40.7 (2) | C23—C24—O29—C21 | −52.34 (16) |
N1—C20—C21—C28A | 170.63 (14) | C24A—C24—O29—C21 | 57.01 (16) |
O29—C21—C22—C23 | −33.12 (19) | C20—C21—O29—C24 | −178.99 (15) |
C20—C21—C22—C23 | −157.33 (17) | C22—C21—O29—C24 | 51.68 (16) |
C28A—C21—C22—C23 | 68.77 (19) | C28A—C21—O29—C24 | −56.40 (15) |
Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O29 | 0.97 | 2.35 | 3.074 (2) | 131 |
C12—H12A···O1i | 0.93 | 2.66 | 3.494 (2) | 150 |
C17—H17A···O1ii | 0.93 | 2.51 | 3.427 (3) | 168 |
C20—H20A···O19 | 0.97 | 2.39 | 3.068 (2) | 127 |
C27—H27A···O19iii | 0.93 | 2.51 | 3.438 (3) | 175 |
C20—H20B···Cl1 | 0.97 | 2.55 | 3.1744 (18) | 122 |
C20—H20B···Cl3 | 0.97 | 2.64 | 3.2921 (19) | 125 |
C13—H13A···Cg8iv | 0.93 | 2.90 | 3.633 (2) | 136 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, z−1/2. |
Contact | Distance | Symmetry operation |
Cl1···H10A | 3.10 | x, -1 + y, z |
H20A···H25A | 2.44 | 1/2 - x, -1/2 + y, 1/2 - z |
H17A···O1 | 2.51 | 3/2 - x, -1/2 + y, 1/2 - z |
H23A···Cl2 | 3.07 | 1 - x, 1 - y, -z |
C28···H16A | 2.96 | -1/2 + x, 1/2 - y, -1/2 + z |
H14A···C25 | 2.90 | -1/2 + x, 1/2 - y, -1/2 + z |
H15A···H14A | 2.56 | 1 - x, 1 - y, 1 - z |
Contact | Percentage contribution |
H···H | 36.8 |
Cl···H/H···Cl | 26.6 |
C···H/H···C | 18.8 |
O···H/H···O | 11.3 |
Cl···C/C···Cl | 4.4 |
Cl···O/O···Cl | 0.8 |
Cl···Cl | 0.8 |
O···C/C···O | 0.4 |
C···C | 0.1 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, GZM; X-ray analysis, ZA and GZM; writing (review and editing of the manuscript), ZA, GZM and MA; supervision, MA and AB.
References
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. Web of Science CSD CrossRef CAS PubMed Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Criado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736–9740. Web of Science CSD CrossRef CAS PubMed Google Scholar
Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649. CSD CrossRef CAS PubMed Google Scholar
Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grudova, M. V., Gil, D. M., Khrustalev, V. N., Nikitina, E. V., Sinelshchikova, A. A., Grigoriev, M. S., Kletskov, A. V., Frontera, A. & Zubkov, F. I. (2020). New J. Chem. 44, 20167–20180. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Juhl, M. & Tanner, D. (2009). Chem. Soc. Rev. 38, 2983–2992. CrossRef PubMed CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53, https://doi.org/10.1055/s-0040-1705983. Google Scholar
Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021). New J. Chem. 45, 3400–3407. CSD CrossRef CAS Google Scholar
Kvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmés, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156–161. CSD CrossRef Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466–472. CSD CrossRef IUCr Journals Google Scholar
Mertsalov, D. F., Nadirova, M. A., Sorokina, E. A., Vinokurova, M. A., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A. & Bhattarai, A. (2021b). Acta Cryst. E77, 260–265. CSD CrossRef IUCr Journals Google Scholar
Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021c). Acta Cryst. E77, 255–259. CSD CrossRef IUCr Journals Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Padwa, A. & Flick, A. C. (2013). Adv. Heterocycl. Chem. 110, 1–41. CrossRef CAS Google Scholar
Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Takao, K., Munakata, R. & Tadano, K. (2005). Chem. Rev. 105, 4779–4807. CrossRef PubMed CAS Google Scholar
Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103. CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.