research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,2,2-tri­chloro-N,N-bis­­{[(1RS,4SR)-1,4-di­hydro-1,4-ep­­oxy­naphthalen-1-yl]meth­yl}acetamide

crossmark logo

aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 25 August 2021; accepted 22 September 2021; online 28 September 2021)

In the title compound, C24H18Cl3NO3, the tetra­hydro­furan rings adopt envelope conformations. In the crystal, C—H⋯O hydrogen bonds connect mol­ecules, generating layers parallel to the (001) plane. These layers are connected along the c-axis direction by C—H⋯π inter­actions. The packing is further stabilized by inter­layer van der Waals and inter­halogen inter­actions. The most important contributions to the surface contacts are from H⋯H (36.8%), Cl⋯H/H⋯Cl (26.6%), C⋯H/H⋯C (18.8%) and O⋯H/H⋯O (11.3%) inter­actions, as concluded from a Hirshfeld surface analysis.

1. Chemical context

In recent years, the IMDAF cyclo­addition (the intra­molecular furan Diels–Alder reaction) in combination with other known reactions in a tandem or sequential manner is pursued for the construction of several important bicyclic or polycyclic compounds, including natural ones (for some reviews on this topic, see: Zubkov et al., 2005[Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.]; Takao et al., 2005[Takao, K., Munakata, R. & Tadano, K. (2005). Chem. Rev. 105, 4779-4807.]; Juhl et al., 2009[Juhl, M. & Tanner, D. (2009). Chem. Soc. Rev. 38, 2983-2992.]; Padwa et al., 2013[Padwa, A. & Flick, A. C. (2013). Adv. Heterocycl. Chem. 110, 1-41.]; Parvatkar et al., 2014[Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857-2888.]; Krishna et al., 2021[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53, https://doi.org/10.1055/s-0040-1705983.]). Cascade sequences comprising two or more successive [4 + 2] cyclo­addition steps are a powerful and frequently used protocol in modern syntheses aimed at constructing cyclo­hexene derivatives thanks to their exceptional chemoselectivity, regioselectivity, diastereoselectivity, and capability to create more than four chiral centers in a single synthetic step (Criado et al., 2010[Criado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736-9740.], 2013[Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637-12649.]). It has been shown previously that the Diels–Alder reaction of bis-dienes with derivatives of maleic acid, esters of acetyl­ene di­carb­oxy­lic acid and hexa­fluoro-2-butyne proceeds in all cases diastereo- and chemoselectively and leads, depending on the temperature, to annelated di­epoxy­naphthalenes of the `domino' or `pincer' type (Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.],b[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850-2853.]; Grudova et al., 2020[Grudova, M. V., Gil, D. M., Khrustalev, V. N., Nikitina, E. V., Sinelshchikova, A. A., Grigoriev, M. S., Kletskov, A. V., Frontera, A. & Zubkov, F. I. (2020). New J. Chem. 44, 20167-20180.]; Kvyatkovskaya et al., 2020[Kvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmés, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156-161.], 2021[Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021). New J. Chem. 45, 3400-3407.]). In order to expand the limits of the applicability of the IMDAF strategy, we tested in this study de­hydro­benzene generated in situ in the role of dienophile. It was demonstrated that the products of the parallel [4 + 2] cyclo­addition of two aryne moieties to both the furan fragments of the bis-diene system (Fig. 1[link], 1 and 2) prevails over the adduct (3) of the IMDAF reaction (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis scheme for 2,2,2-tri­chloro-N,N-bis­[(1R,4SR)-1,4-ep­oxy­naphthalen-1(4H)-ylmeth­yl]acetamide (1).

On the other hand, inter­molecular non-covalent inter­actions organize the mol­ecular aggregates, catalytic inter­mediates, etc., which play crucial roles for the functional properties of heterocyclic compounds (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.], 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]). Thus, attached –CCl3 and C=O groups can participate in inter­molecular inter­actions and affect the properties of 13.

2. Structural commentary

In the title compound (1, Fig. 2[link]), the tetra­hydro­furan rings (O19/C11–C14 and O29/C21–C24) adopt envelope conformations with the O atoms as the flaps. The mol­ecular conformation is stabilized by intra­molecular C10—H10A⋯O29 and C20—H20A⋯O19 hydrogen bonds and C20—H20B⋯Cl1 and C20—H20B⋯Cl3 inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O29 0.97 2.35 3.074 (2) 131
C12—H12A⋯O1i 0.93 2.66 3.494 (2) 150
C17—H17A⋯O1ii 0.93 2.51 3.427 (3) 168
C20—H20A⋯O19 0.97 2.39 3.068 (2) 127
C27—H27A⋯O19iii 0.93 2.51 3.438 (3) 175
C20—H20B⋯Cl1 0.97 2.55 3.1744 (18) 122
C20—H20B⋯Cl3 0.97 2.64 3.2921 (19) 125
C13—H13ACg8iv 0.93 2.90 3.633 (2) 136
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecule of the title compound 1 with atom-labeling scheme and displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, hydrogen bonds of the C—H⋯O type link the mol­ecules, generating layers parallel to the (001) plane (Table 1[link]; Figs. 3[link], 4[link], 5[link] and 6[link]). These layers are connected by C—H⋯π inter­actions (C13—H13ACg8; Table 1[link]), where Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring. The inter­molecular inter­actions in the crystal of the title compound (Table 2[link]) were qu­anti­fied using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated. The calculations and visualization were performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The three-dimensional Hirshfeld surface mapped over dnorm in the range −0.1862 (red) to +1.4233 (blue) a.u. is shown in Fig. 7[link]. The short and long contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The Cl⋯H and C—H⋯O inter­actions, which play a key role in the mol­ecular packing, can be correlated with the bright-red patches near Cl1, Cl2, O1 and O19 and hydrogen atoms H14A and H16A, which highlight their functions as donors and/or acceptors. Fig. 8[link] shows the full two-dimensional fingerprint plot (Fig. 8[link]a) and those delineated into the major contacts: H⋯H (36.8%, Fig. 8[link]b) inter­actions are the major factor in the crystal packing together with Cl⋯H/H⋯Cl (26.6%, Fig. 8[link]c), C⋯H/H⋯C (18.8%, Fig. 8[link]d) and O⋯H/H⋯O (11.3%, Fig. 8[link]e) inter­actions representing the next highest contributions. The percentage contributions of other weak inter­actions are listed in Table 3[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound (1)

Contact Distance Symmetry operation
Cl1⋯H10A 3.10 x, −1 + y, z
H20A⋯H25A 2.44 [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
H17A⋯O1 2.51 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
H23A⋯Cl2 3.07 1 − x, 1 − y, −z
C28⋯H16A 2.96 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H14A⋯C25 2.90 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H15A⋯H14A 2.56 1 − x, 1 − y, 1 − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound (1)

Contact Percentage contribution
H⋯H 36.8
Cl⋯H/H⋯Cl 26.6
C⋯H/H⋯C 18.8
O⋯H/H⋯O 11.3
Cl⋯C/C⋯Cl 4.4
Cl⋯O/O⋯Cl 0.8
Cl⋯Cl 0.8
O⋯C/C⋯O 0.4
C⋯C 0.1
[Figure 3]
Figure 3
A general view of the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions (depicted by dashed lines) in the unit cell of the title compound 1. [Symmetry codes: (a) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (b) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (c) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (d) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z].
[Figure 4]
Figure 4
Packing viewed along the a-axis direction with the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions depicted by dashed lines.
[Figure 5]
Figure 5
Packing viewed along the b-axis direction with the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions depicted by dashed lines.
[Figure 6]
Figure 6
Packing viewed along the c-axis direction with the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions depicted by dashed lines.
[Figure 7]
Figure 7
Hirshfeld surface of the title mol­ecule 1 mapped with dnorm.
[Figure 8]
Figure 8
Fingerprint plots showing (a) all inter­molecular inter­actions and resolved into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having the ep­oxy­iso­indole moiety gave ten hits that closely resemble the title compound, viz. 4,5-di­bromo-2-[4-(tri­fluoro­meth­yl)phen­yl]hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (CSD refcode IQOTOA; Mertsalov et al., 2021a[Mertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466-472.]), 3-hy­droxy-2-{[2-(4-methyl­benzene-1-sulfon­yl)-2,3,7,7a-tetra­hydro-3a,6-ep­oxy­isoindol-6(1H)-yl]meth­yl}-2,3-di­hydro-1H-isoindol-1-one (OMUTAU; Mertsalov et al., 2021b[Mertsalov, D. F., Nadirova, M. A., Sorokina, E. A., Vinokurova, M. A., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A. & Bhattarai, A. (2021b). Acta Cryst. E77, 260-265.]), 2-benzyl-4,5-di­bromo­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (OME­MAX; Mertsalov et al., 2021c[Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021c). Acta Cryst. E77, 255-259.]), 4,5-di­bromo-6-methyl-2-phenyl­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (IMUBIE; Mertsalov et al., 2021a[Mertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466-472.]), (3aR,6S,7aR)-7a-chloro-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (AGONUH; Temel et al., 2013[Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551-o1552.]), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (TIJMIK; Demircan et al., 2013[Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628-o1629.]), 5-chloro-7-methyl-3-[(4-methyl-phen­yl)sulfon­yl]-10-oxa-3-aza­tri­cyclo­[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012[Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102-o1103.]), (3aR,6S,7aR)-7a-bromo-2-[(4-methyl­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso-indole (UPAQEI; Koşar et al., 2011[Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994-o995.]), (3aR,6S,7aR)-7a-bromo-2-methyl­sulfonyl-1,2,3,6,7,7-hexa­hydro-3a,6-ep­oxy­iso­indole (ERIVIL; Temel et al., 2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.]) and tert-butyl 3a-chloro­per-hydro-2,6a-ep­oxy­oxireno(e)isoindole-5-carboxyl­ate (MIGTIG; Koşar et al., 2007[Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.]).

In the crystal of IQOTOA, the asymmetric unit consists of two crystallographically independent mol­ecules. In both mol­ecules, the pyrrolidine and tetra­hydro­furan rings adopt envelope conformations. In the crystal, mol­ecules are linked in pairs by C— H⋯O hydrogen bonds. These pairs form a tetra­meric supra­molecular motif, leading to mol­ecular layers parallel to the (100) plane formed by C— H⋯π and C—Br⋯π inter­actions. OMUTAU also crystallizes with two independent mol­ecules in the asymmetric unit. In the central ring systems of both mol­ecules, the tetra­hydro­furan rings adopt envelope conformations, the pyrrolidine rings adopt twisted-envelope conformations and the six-membered ring is in a boat conformation. In both mol­ecules, the nine-membered groups attached to the central ring system are essentially planar. In the crystal, strong inter­molecular O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O contacts link the mol­ecules, forming a three-dimensional network. In addition, weak ππ stacking inter­actions between the pyrrolidine rings are observed. OMEMAX again crystallizes with two mol­ecules in the asymmetric unit of the unit cell. In both mol­ecules, the tetra­hydro­furan rings adopt envelope conformations with the O atoms as the flaps and the pyrrolidine rings also adopt envelope conformations. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (001) plane. These sheets are connected only by weak van der Waals inter­actions. In the crystal of IMUBIE, the mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating R22(18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π inter­actions. In the crystal structures of IQOTOA, OMUTAU, OMEMAX, AGONUH, TIJMIK, YAXCIL, UPAQEI and ERIVIL, the mol­ecules are predominantly linked by C—H⋯O hydrogen bonds, giving various hydrogen-bonding pattern connectivities. In the crystal of AGONUH, the mol­ecules are connected in zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds are found, viz. R22(20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Additionally, C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules in the b-axis direction. In the crystal of ERIVIL, the mol­ecules are connected into R22(8) and R22(14) rings along the b-axis direction. In MIGTIG, the mol­ecules are linked only by weak van der Waals inter­actions.

5. Synthesis and crystallization

CsF (1.7 g, 0.011 mol) was added to 2,2,2-tri­chloro-N,N-bis­(furan-2-ylmeth­yl)acetamide (0.0022 mol) dissolved in dry CH3CN (20 mL). Then an equivalent of 2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate (0.54 mL, 0.022 mol) was added to the solution under an argon atmosphere. The mixture was refluxed for 4 h (TLC control). After that, one more portion of 2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate (0.27 mL, 0.011 mol) and CsF (1.7 g, 0.011 mol) was added to the mixture, repeating all procedures again. After the mixture was cooled, CsF was filtered off through a thin layer of SiO2, and the resulting solution was concentrated under reduced pressure. The residue (brown oil) was separated using column chromatography on silica gel (a mixture EtOAc/hexane = 1/25 as eluent) to give compounds 13 in the ratio ∼30/25/45. Single crystals of compound 1 was obtained by slow crystallization from a hexa­ne/EtOAc mixture.

Compound 1: white powder (0.29 g, 0.62 mmol, 28%); Rf 0.50 (`Sorbfil' plates for thin-layer chromatography, EtOAc/hexane, 1:4, Sorbfil); m.p. 431.7–433.4 K. 1H NMR (600.2 MHz, CDCl3) δ 7.19–7.24 (4H, m, H-Ar), 7.07 (1H, dd, J = 1.5 and J = 5.6 Hz, H-2′), 7.04 (2H, br dd, J = 2.0 and J = 5.0 Hz, H-3,3′), 6.95–6.99 (4H, m, H-Ar), 6.85 (1H, d, J = 5.6 Hz, H-2), 5.73 (1H, d, J = 1.5 Hz, H-4′), 5.71 (1H, d, J = 1.5 Hz, H-4), 5.11 (1H, d, J = 16.2 Hz, H-1′B), 4.87 (1H, d, J = 16.2 Hz, H-1B), 4.76 (1H, d, J = 15.1 Hz, H-1′A), 4.72 (1H, br d, J = 15.1 Hz, H-1A). 13C NMR (150.9 MHz, CDCl3) d 161.5, 150.2, 149.9, 148.7, 148.2, 145.2, 145.1, 143.3, 143.0, 125.5, 125.3, 125.2, 125.1, 120.5, 120.2, 120.0, 119.6, 94.1, 93.3, 92.1, 82.4, 82.2, 49.1, 45.6. IR νmax/cm−1 (tablet KBr): 2953, 2919, 1702, 1632, 1462, 1410, 1236. HRMS (ESI–TOF): calculated for C24H18Cl3NO4 [M + H]+ 473.0352; found 473.0358.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). Six reflections ([\overline{1}]01, 011, 101, 110, 002 and 200), which were obscured by the beam stop, and nine outliers (343, 253, [\overline{7}],1,15, 3,6,11, 15,4,4, 072, 4,6,12, [\overline{4}],3,22 and 13,6,2) were omitted during the final refinement cycle.

Table 4
Experimental details

Crystal data
Chemical formula C24H18Cl3NO3
Mr 474.74
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 15.0134 (6), 8.1336 (3), 18.2841 (6)
β (°) 104.307 (2)
V3) 2163.48 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.45
Crystal size (mm) 0.34 × 0.18 × 0.14
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.743, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 17833, 4991, 3570
Rint 0.030
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.01
No. of reflections 4991
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2,2,2-Trichloro-N,N-bis{[(1RS,4SR)-1,4-dihydro-1,4-epoxynaphthalen-1-yl]methyl}acetamide top
Crystal data top
C24H18Cl3NO3F(000) = 976
Mr = 474.74Dx = 1.458 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.0134 (6) ÅCell parameters from 4831 reflections
b = 8.1336 (3) Åθ = 2.8–26.7°
c = 18.2841 (6) ŵ = 0.45 mm1
β = 104.307 (2)°T = 296 K
V = 2163.48 (14) Å3Fragment, colourless
Z = 40.34 × 0.18 × 0.14 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3570 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.6°, θmin = 3.2°
Tmin = 0.743, Tmax = 0.940h = 1919
17833 measured reflectionsk = 1010
4991 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.6103P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4991 reflectionsΔρmax = 0.30 e Å3
280 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57432 (13)0.4170 (2)0.17193 (10)0.0396 (4)
C20.53382 (14)0.2461 (3)0.14061 (12)0.0450 (5)
C100.57234 (13)0.6612 (2)0.24521 (11)0.0386 (4)
H10A0.5335700.7572300.2312890.046*
H10B0.6281060.6794440.2286000.046*
C110.59728 (12)0.6449 (2)0.32991 (11)0.0353 (4)
C120.64935 (13)0.7922 (2)0.37350 (12)0.0445 (5)
H12A0.6865070.8665590.3561810.053*
C130.63075 (14)0.7916 (2)0.44014 (12)0.0473 (5)
H13A0.6517170.8656870.4793660.057*
C140.56784 (13)0.6447 (2)0.43983 (11)0.0417 (4)
H14A0.5307480.6478350.4770240.050*
C14A0.62536 (12)0.4899 (2)0.44023 (11)0.0390 (4)
C150.65706 (14)0.3678 (3)0.49181 (12)0.0466 (5)
H15A0.6435750.3680000.5387950.056*
C160.71008 (15)0.2436 (3)0.47154 (13)0.0531 (5)
H16A0.7313760.1581960.5051570.064*
C170.73137 (15)0.2450 (3)0.40299 (13)0.0521 (5)
H17A0.7676420.1613420.3911170.062*
C180.69959 (13)0.3700 (2)0.35035 (12)0.0436 (4)
H18A0.7146460.3712390.3039770.052*
C18A0.64551 (11)0.4905 (2)0.36943 (10)0.0356 (4)
C200.42684 (12)0.5001 (2)0.20562 (10)0.0359 (4)
H20A0.4222130.4983600.2575970.043*
H20B0.4045680.3952320.1831060.043*
C210.36523 (12)0.6346 (2)0.16411 (10)0.0348 (4)
C220.37783 (13)0.7010 (3)0.08860 (11)0.0440 (4)
H22A0.4056800.6473750.0551710.053*
C230.34135 (14)0.8485 (3)0.08083 (13)0.0503 (5)
H23A0.3380840.9208400.0408430.060*
C240.30557 (14)0.8769 (2)0.15056 (12)0.0467 (5)
H24A0.2961460.9919670.1627420.056*
C24A0.22319 (13)0.7630 (2)0.14421 (10)0.0396 (4)
C250.12998 (14)0.7862 (3)0.13138 (11)0.0485 (5)
H25A0.1046240.8911390.1251520.058*
C260.07468 (15)0.6477 (3)0.12801 (12)0.0556 (6)
H26A0.0113070.6602620.1188430.067*
C270.11209 (14)0.4931 (3)0.13797 (12)0.0558 (6)
H27A0.0738430.4024570.1361860.067*
C280.20793 (13)0.4696 (3)0.15092 (11)0.0448 (4)
H28A0.2336740.3650280.1579260.054*
C28A0.26130 (12)0.6058 (2)0.15276 (9)0.0350 (4)
N10.52425 (10)0.51733 (18)0.20508 (8)0.0353 (3)
O10.65181 (10)0.4475 (2)0.16809 (9)0.0594 (4)
O190.51694 (8)0.64419 (16)0.36140 (7)0.0389 (3)
O290.37315 (9)0.78716 (15)0.20640 (7)0.0431 (3)
Cl10.49921 (4)0.13248 (6)0.21124 (4)0.05856 (17)
Cl20.61916 (5)0.13144 (9)0.11317 (5)0.0795 (2)
Cl30.44055 (5)0.27068 (8)0.06047 (4)0.0719 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0400 (10)0.0380 (10)0.0425 (10)0.0010 (8)0.0136 (8)0.0011 (8)
C20.0436 (11)0.0415 (10)0.0510 (11)0.0025 (8)0.0138 (9)0.0063 (9)
C100.0366 (10)0.0304 (9)0.0486 (11)0.0056 (7)0.0101 (8)0.0000 (7)
C110.0276 (8)0.0296 (9)0.0489 (10)0.0020 (7)0.0096 (7)0.0022 (7)
C120.0393 (11)0.0305 (9)0.0603 (13)0.0053 (8)0.0060 (9)0.0042 (8)
C130.0465 (12)0.0361 (10)0.0552 (12)0.0006 (9)0.0051 (9)0.0105 (9)
C140.0358 (10)0.0437 (11)0.0449 (10)0.0001 (8)0.0088 (8)0.0059 (8)
C14A0.0309 (9)0.0356 (10)0.0485 (10)0.0048 (7)0.0062 (7)0.0043 (8)
C150.0417 (11)0.0463 (11)0.0489 (11)0.0066 (9)0.0056 (9)0.0023 (9)
C160.0491 (12)0.0401 (11)0.0632 (14)0.0007 (9)0.0006 (10)0.0081 (10)
C170.0450 (12)0.0366 (10)0.0707 (14)0.0091 (9)0.0067 (10)0.0039 (10)
C180.0382 (10)0.0389 (10)0.0536 (12)0.0009 (8)0.0109 (8)0.0047 (8)
C18A0.0266 (8)0.0312 (9)0.0473 (10)0.0040 (7)0.0060 (7)0.0008 (7)
C200.0323 (9)0.0329 (9)0.0431 (10)0.0024 (7)0.0102 (7)0.0010 (7)
C210.0346 (9)0.0309 (9)0.0383 (9)0.0023 (7)0.0082 (7)0.0031 (7)
C220.0381 (10)0.0508 (12)0.0455 (11)0.0010 (9)0.0150 (8)0.0056 (9)
C230.0445 (11)0.0458 (12)0.0601 (13)0.0024 (9)0.0118 (9)0.0166 (10)
C240.0445 (11)0.0323 (10)0.0595 (13)0.0040 (8)0.0058 (9)0.0005 (9)
C24A0.0406 (10)0.0413 (10)0.0370 (9)0.0020 (8)0.0098 (7)0.0010 (8)
C250.0463 (12)0.0594 (13)0.0416 (10)0.0136 (10)0.0142 (9)0.0030 (9)
C260.0345 (10)0.0849 (18)0.0496 (12)0.0021 (11)0.0149 (9)0.0111 (11)
C270.0412 (11)0.0735 (16)0.0533 (12)0.0185 (11)0.0125 (9)0.0043 (11)
C280.0438 (11)0.0458 (11)0.0446 (10)0.0064 (9)0.0106 (8)0.0017 (9)
C28A0.0346 (9)0.0410 (10)0.0302 (8)0.0022 (7)0.0093 (7)0.0020 (7)
N10.0325 (8)0.0314 (8)0.0418 (8)0.0030 (6)0.0086 (6)0.0015 (6)
O10.0475 (9)0.0566 (9)0.0848 (11)0.0086 (7)0.0368 (8)0.0112 (8)
O190.0279 (6)0.0422 (7)0.0460 (7)0.0007 (5)0.0081 (5)0.0044 (6)
O290.0429 (8)0.0311 (7)0.0497 (8)0.0011 (6)0.0011 (6)0.0067 (6)
Cl10.0690 (4)0.0354 (3)0.0743 (4)0.0035 (2)0.0234 (3)0.0056 (2)
Cl20.0716 (4)0.0686 (4)0.1080 (6)0.0077 (3)0.0409 (4)0.0319 (4)
Cl30.0757 (4)0.0686 (4)0.0586 (4)0.0006 (3)0.0076 (3)0.0129 (3)
Geometric parameters (Å, º) top
C1—O11.209 (2)C17—H17A0.9300
C1—N11.351 (2)C18—C18A1.372 (3)
C1—C21.568 (3)C18—H18A0.9300
C2—Cl21.755 (2)C20—N11.472 (2)
C2—Cl11.767 (2)C20—C211.510 (2)
C2—Cl31.770 (2)C20—H20A0.9700
C10—N11.472 (2)C20—H20B0.9700
C10—C111.506 (3)C21—O291.451 (2)
C10—H10A0.9700C21—C221.537 (3)
C10—H10B0.9700C21—C28A1.540 (2)
C11—O191.459 (2)C22—C231.312 (3)
C11—C18A1.538 (2)C22—H22A0.9300
C11—C121.540 (2)C23—C241.519 (3)
C12—C131.316 (3)C23—H23A0.9300
C12—H12A0.9300C24—O291.447 (2)
C13—C141.522 (3)C24—C24A1.527 (3)
C13—H13A0.9300C24—H24A0.9800
C14—O191.449 (2)C24A—C251.374 (3)
C14—C14A1.526 (3)C24A—C28A1.394 (3)
C14—H14A0.9800C25—C261.392 (3)
C14A—C151.371 (3)C25—H25A0.9300
C14A—C18A1.400 (3)C26—C271.371 (3)
C15—C161.392 (3)C26—H26A0.9300
C15—H15A0.9300C27—C281.412 (3)
C16—C171.368 (3)C27—H27A0.9300
C16—H16A0.9300C28—C28A1.362 (3)
C17—C181.400 (3)C28—H28A0.9300
O1—C1—N1123.52 (18)C18—C18A—C11134.72 (18)
O1—C1—C2116.95 (17)C14A—C18A—C11104.65 (15)
N1—C1—C2119.42 (16)N1—C20—C21114.45 (14)
C1—C2—Cl2109.31 (13)N1—C20—H20A108.6
C1—C2—Cl1110.74 (13)C21—C20—H20A108.6
Cl2—C2—Cl1107.36 (11)N1—C20—H20B108.6
C1—C2—Cl3110.99 (14)C21—C20—H20B108.6
Cl2—C2—Cl3107.91 (11)H20A—C20—H20B107.6
Cl1—C2—Cl3110.41 (11)O29—C21—C20113.09 (14)
N1—C10—C11114.17 (14)O29—C21—C2299.57 (14)
N1—C10—H10A108.7C20—C21—C22120.64 (16)
C11—C10—H10A108.7O29—C21—C28A98.57 (13)
N1—C10—H10B108.7C20—C21—C28A115.56 (14)
C11—C10—H10B108.7C22—C21—C28A106.13 (14)
H10A—C10—H10B107.6C23—C22—C21106.13 (18)
O19—C11—C10112.73 (14)C23—C22—H22A126.9
O19—C11—C18A98.64 (13)C21—C22—H22A126.9
C10—C11—C18A121.53 (15)C22—C23—C24105.84 (18)
O19—C11—C1299.35 (14)C22—C23—H23A127.1
C10—C11—C12115.42 (15)C24—C23—H23A127.1
C18A—C11—C12105.78 (15)O29—C24—C23100.59 (15)
C13—C12—C11106.25 (17)O29—C24—C24A99.27 (15)
C13—C12—H12A126.9C23—C24—C24A106.97 (16)
C11—C12—H12A126.9O29—C24—H24A115.9
C12—C13—C14105.83 (17)C23—C24—H24A115.9
C12—C13—H13A127.1C24A—C24—H24A115.9
C14—C13—H13A127.1C25—C24A—C28A121.17 (18)
O19—C14—C13100.44 (15)C25—C24A—C24134.57 (19)
O19—C14—C14A99.30 (14)C28A—C24A—C24104.24 (16)
C13—C14—C14A107.32 (15)C24A—C25—C26117.9 (2)
O19—C14—H14A115.8C24A—C25—H25A121.0
C13—C14—H14A115.8C26—C25—H25A121.0
C14A—C14—H14A115.8C27—C26—C25121.08 (19)
C15—C14A—C18A121.38 (18)C27—C26—H26A119.5
C15—C14A—C14134.49 (18)C25—C26—H26A119.5
C18A—C14A—C14104.12 (16)C26—C27—C28120.9 (2)
C14A—C15—C16117.8 (2)C26—C27—H27A119.6
C14A—C15—H15A121.1C28—C27—H27A119.6
C16—C15—H15A121.1C28A—C28—C27117.6 (2)
C17—C16—C15121.1 (2)C28A—C28—H28A121.2
C17—C16—H16A119.5C27—C28—H28A121.2
C15—C16—H16A119.5C28—C28A—C24A121.36 (17)
C16—C17—C18121.3 (2)C28—C28A—C21134.20 (17)
C16—C17—H17A119.4C24A—C28A—C21104.43 (15)
C18—C17—H17A119.4C1—N1—C20127.57 (15)
C18A—C18—C17117.81 (19)C1—N1—C10116.44 (15)
C18A—C18—H18A121.1C20—N1—C10115.99 (14)
C17—C18—H18A121.1C14—O19—C1196.05 (13)
C18—C18A—C14A120.62 (17)C24—O29—C2196.01 (13)
O1—C1—C2—Cl24.6 (2)C21—C22—C23—C240.0 (2)
N1—C1—C2—Cl2171.75 (15)C22—C23—C24—O2933.4 (2)
O1—C1—C2—Cl1122.72 (17)C22—C23—C24—C24A69.8 (2)
N1—C1—C2—Cl153.7 (2)O29—C24—C24A—C25146.2 (2)
O1—C1—C2—Cl3114.28 (18)C23—C24—C24A—C25109.7 (2)
N1—C1—C2—Cl369.3 (2)O29—C24—C24A—C28A35.51 (18)
N1—C10—C11—O1967.92 (19)C23—C24—C24A—C28A68.64 (19)
N1—C10—C11—C18A48.7 (2)C28A—C24A—C25—C260.7 (3)
N1—C10—C11—C12178.87 (15)C24—C24A—C25—C26178.8 (2)
O19—C11—C12—C1332.80 (19)C24A—C25—C26—C270.7 (3)
C10—C11—C12—C13153.59 (17)C25—C26—C27—C280.9 (3)
C18A—C11—C12—C1369.00 (19)C26—C27—C28—C28A0.3 (3)
C11—C12—C13—C140.4 (2)C27—C28—C28A—C24A1.7 (3)
C12—C13—C14—O1933.89 (19)C27—C28—C28A—C21179.31 (18)
C12—C13—C14—C14A69.4 (2)C25—C24A—C28A—C281.9 (3)
O19—C14—C14A—C15144.6 (2)C24—C24A—C28A—C28179.46 (17)
C13—C14—C14A—C15111.3 (2)C25—C24A—C28A—C21178.80 (17)
O19—C14—C14A—C18A36.13 (17)C24—C24A—C28A—C210.19 (18)
C13—C14—C14A—C18A67.96 (18)O29—C21—C28A—C28144.1 (2)
C18A—C14A—C15—C160.1 (3)C20—C21—C28A—C2823.4 (3)
C14—C14A—C15—C16179.27 (19)C22—C21—C28A—C28113.2 (2)
C14A—C15—C16—C171.3 (3)O29—C21—C28A—C24A35.00 (16)
C15—C16—C17—C180.9 (3)C20—C21—C28A—C24A155.77 (15)
C16—C17—C18—C18A0.6 (3)C22—C21—C28A—C24A67.64 (17)
C17—C18—C18A—C14A1.8 (3)O1—C1—N1—C20172.92 (18)
C17—C18—C18A—C11179.78 (19)C2—C1—N1—C2010.9 (3)
C15—C14A—C18A—C181.5 (3)O1—C1—N1—C106.9 (3)
C14—C14A—C18A—C18177.93 (16)C2—C1—N1—C10169.28 (16)
C15—C14A—C18A—C11179.68 (16)C21—C20—N1—C1114.5 (2)
C14—C14A—C18A—C110.92 (17)C21—C20—N1—C1065.2 (2)
O19—C11—C18A—C18147.2 (2)C11—C10—N1—C1104.29 (19)
C10—C11—C18A—C1823.7 (3)C11—C10—N1—C2075.91 (19)
C12—C11—C18A—C18110.5 (2)C13—C14—O19—C1152.63 (15)
O19—C11—C18A—C14A34.20 (16)C14A—C14—O19—C1157.06 (15)
C10—C11—C18A—C14A157.68 (16)C10—C11—O19—C14174.45 (14)
C12—C11—C18A—C14A68.14 (18)C18A—C11—O19—C1455.97 (14)
N1—C20—C21—O2976.82 (19)C12—C11—O19—C1451.72 (15)
N1—C20—C21—C2240.7 (2)C23—C24—O29—C2152.34 (16)
N1—C20—C21—C28A170.63 (14)C24A—C24—O29—C2157.01 (16)
O29—C21—C22—C2333.12 (19)C20—C21—O29—C24178.99 (15)
C20—C21—C22—C23157.33 (17)C22—C21—O29—C2451.68 (16)
C28A—C21—C22—C2368.77 (19)C28A—C21—O29—C2456.40 (15)
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O290.972.353.074 (2)131
C12—H12A···O1i0.932.663.494 (2)150
C17—H17A···O1ii0.932.513.427 (3)168
C20—H20A···O190.972.393.068 (2)127
C27—H27A···O19iii0.932.513.438 (3)175
C20—H20B···Cl10.972.553.1744 (18)122
C20—H20B···Cl30.972.643.2921 (19)125
C13—H13A···Cg8iv0.932.903.633 (2)136
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound (1) top
ContactDistanceSymmetry operation
Cl1···H10A3.10x, -1 + y, z
H20A···H25A2.441/2 - x, -1/2 + y, 1/2 - z
H17A···O12.513/2 - x, -1/2 + y, 1/2 - z
H23A···Cl23.071 - x, 1 - y, -z
C28···H16A2.96-1/2 + x, 1/2 - y, -1/2 + z
H14A···C252.90-1/2 + x, 1/2 - y, -1/2 + z
H15A···H14A2.561 - x, 1 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound (1) top
ContactPercentage contribution
H···H36.8
Cl···H/H···Cl26.6
C···H/H···C18.8
O···H/H···O11.3
Cl···C/C···Cl4.4
Cl···O/O···Cl0.8
Cl···Cl0.8
O···C/C···O0.4
C···C0.1
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, GZM; X-ray analysis, ZA and GZM; writing (review and editing of the manuscript), ZA, GZM and MA; supervision, MA and AB.

References

First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCriado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736–9740.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCriado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649.  CSD CrossRef CAS PubMed Google Scholar
First citationDemircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrudova, M. V., Gil, D. M., Khrustalev, V. N., Nikitina, E. V., Sinelshchikova, A. A., Grigoriev, M. S., Kletskov, A. V., Frontera, A. & Zubkov, F. I. (2020). New J. Chem. 44, 20167–20180.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJuhl, M. & Tanner, D. (2009). Chem. Soc. Rev. 38, 2983–2992.  CrossRef PubMed CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53, https://doi.org/10.1055/s-0040-1705983.  Google Scholar
First citationKvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021). New J. Chem. 45, 3400–3407.  CSD CrossRef CAS Google Scholar
First citationKvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmés, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156–161.  CSD CrossRef Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466–472.  CSD CrossRef IUCr Journals Google Scholar
First citationMertsalov, D. F., Nadirova, M. A., Sorokina, E. A., Vinokurova, M. A., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A. & Bhattarai, A. (2021b). Acta Cryst. E77, 260–265.  CSD CrossRef IUCr Journals Google Scholar
First citationMertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021c). Acta Cryst. E77, 255–259.  CSD CrossRef IUCr Journals Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationPadwa, A. & Flick, A. C. (2013). Adv. Heterocycl. Chem. 110, 1–41.  CrossRef CAS Google Scholar
First citationParvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakao, K., Munakata, R. & Tadano, K. (2005). Chem. Rev. 105, 4779–4807.  CrossRef PubMed CAS Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds