research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-{[5-amino-1-(phenyl­sulfon­yl)-1H-pyrazol-3-yl]­­oxy}-1-(4-methyl­phen­yl)ethan-1-one

crossmark logo

aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 14 September 2021; accepted 25 September 2021; online 30 September 2021)

In the title compound, C18H17N3O4S, the pyrazole ring is planar, with the sulfur atom lying 0.558 (1) Å out of the ring plane. The NH2 group is involved in an intra­molecular hydrogen bond to a sulfonyl oxygen atom; its other hydrogen atom forms an asymmetric three-centre hydrogen bond to the two oxygen atoms of the —O—CH2—C=O— grouping, via the 21 screw axis, forming a ribbon structure parallel to the b axis. Translationally adjacent, coplanar ribbons form a layer parallel to (10[\overline{4}]).

1. Chemical context

We are inter­ested in devising synthetic strategies for heterocyclic ring systems containing the N-sulfonyl- and N-sulf­onyl­amino moiety, which have shown significant biological activity as novel anti­viral and anti­microbial agents (Azzam et al., 2017[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820-1822.], 2019[Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367-371.], 2020[Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020). J. Mol. Struct. 1201, Article 127194.]; Elgemeie et al., 2017[Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. 11, 3389-3399.], 2019[Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099-1131.]; Zhu et al., 2013[Zhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146-4149.]). In addition, some of our recently published N-aryl­sulfonyl­pyrazoles (Elgemeie & Hanfy, 1999[Elgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385-386.]; Elgemeie et al., 1998[Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136-138.], 2002[Elgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250-o1252.], 2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]) have been shown to be active as inhibitors of cathepsin B16 enzyme and NS2B-NS3 virus (Sidique et al., 2009[Sidique, S., Shiryaev, S. A., Ratnikov, B. I., Herath, A., Su, Y., Strongin, A. Y. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 5773-5777.]; Myers et al., 2007[Myers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C.., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761-4766.]). Based on these promising results, and in a continuation of our recent research to develop innovative and simple syntheses of other novel derivatives of N-sulfonyl­pyrazoles, we have begun to seek different scaffolds for use as potential pharmaceuticals (Zhang et al., 2020[Zhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. pp. 1154-1159.]). In particular, we have now synthesized an O-alkyl derivative of N-sulfonyl­amino­pyrazole 1.

Thus, the reaction of 5-amino-1-(phenyl­sulfon­yl)-1,2-di­hydro-3H-pyrazol-3-one 1 with 2-bromo-1-(p-tol­yl)ethan-1-one 2 in N,N-di­methyl­formamide in the presence of potassium carbonate at room temperature furnished an adduct for which two possible isomers, the O-alkyl­ated or N-alkyl­ated N-sulfonyl­pyrazole structures (3 or 4) were considered. The 1H NMR spectrum of the product showed four singlet signals at δ = 2.40, 4.91, 5.45 and 6.34 ppm assigned for CH3, CH-pyrazole, CH2 and NH2 protons, in addition to signals assigned to aromatic protons. The available spectroscopic data cannot differentiate between structures 3 and 4 (Fig. 1[link]). Thus, the X-ray structure of this product was determined, indicating unambiguously the formation of the O-alkyl­ated N-sulfonyl­pyrazole 4 as the sole product in the solid state.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the preparation of the title compound 4.

2. Structural commentary

The mol­ecular structure of 4 is shown in Fig. 2[link]. Selected mol­ecular dimensions are given in Table 1[link]. An intra­molecular hydrogen bond N3—H02⋯O3 is observed. The pyrazole ring is planar (r.m.s. deviation 0.015 Å) and its dimensions may be regarded as normal. The sulfur atom lies 0.558 (1) Å outside the ring plane, and the nitro­gen atom N1 is thus significantly pyramidalized; it lies 0.216 (1) Å out of the plane of the three atoms to which it binds. The atom sequence C4—C3—O1—C6—C7—C21—C22 presents an extended conformation, with all torsion angles close to ±180°. The planes of the pyrazole and the tolyl rings are thus almost parallel [inter­planar angle 14.46 (2)°].

Table 1
Selected geometric parameters (Å, °)

N1—C5 1.3999 (7) N2—C3 1.3141 (7)
N1—N2 1.4071 (7) C3—C4 1.4167 (7)
N1—S1 1.6638 (5) C4—C5 1.3758 (8)
       
C5—N1—N2 111.51 (4) C5—C4—C3 104.42 (5)
C3—N2—N1 102.52 (4) C4—C5—N1 106.35 (5)
N2—C3—C4 115.07 (5) O4—S1—O3 119.98 (3)
       
O1—C6—C7—C21 179.72 (5) C7—C6—O1—C3 −173.56 (5)
C4—C3—O1—C6 174.99 (5) C6—C7—C21—C22 −173.11 (5)
[Figure 2]
Figure 2
The mol­ecular structure of compound 4. Ellipsoids represent 50% probability levels. The dashed line indicates an intra­molecular hydrogen bond.

3. Supra­molecular features

The classical hydrogen bond N3—H01⋯O2 (−x, y + [{1\over 2}], −z + [{1\over 2}]) links the mol­ecules to form a broad ribbon structure parallel to the b axis. H01 also has a short but non-linear contact to O1 (same operator), representing the weaker component of an asymmetric three-centre system (Fig. 3[link]). The vector between translationally adjacent, coplanar ribbons is [401], so that the layer of ribbons is parallel to (10[\overline{4}]). The second amine hydrogen atom H02 is only involved in the intra­molecular hydrogen bond (see above). The layers are linked by inter­actions C14—H14⋯O2 (x, −y + [{1\over 2}], z + [{1\over 2}]), which connect every second layer, penetrating the layer in between. See Table 2[link] for details of hydrogen bonding.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H01⋯O1i 0.869 (13) 2.497 (14) 3.0124 (7) 118.7 (11)
N3—H01⋯O2i 0.869 (13) 2.048 (13) 2.9121 (7) 172.8 (13)
N3—H02⋯O3 0.863 (12) 2.121 (13) 2.7806 (8) 132.8 (11)
C14—H14⋯O2ii 0.95 2.54 3.3458 (8) 142
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing diagram of compound 4 viewed perpendicular to (10[\overline{4}]) and centred on (1/2, 1/2, 1/2). Two ribbons parallel to the b axis are shown. Thick and thin dashed lines represent inter- and intra­molecular hydrogen bonds, respectively. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Selected atoms of the asymmetric unit are labelled.

4. Database survey

Version 5.41 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was used for a CSD search with CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). The relative frequency of O- vs N2-alkyl­ation of such pyrazole ring systems was investigated by a search for pyrazoles with a C=O function at C3, H at C4, substituted at N2, no fused rings [as in our recent publication (Metwally et al., 2021[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 615-617.]); 23 hits] or with substitution at the oxygen atom, H at C4, no substituent at N2, no fused rings (as here; 36 hits). Only one hit was registered for a pyrazole similar to 4 bearing a substitute at the C3—O group together with an N-substituent at C5 and an S-substituent at N1, namely 1-(4-fluoro­benzene­sulfon­yl)-5-amino-1H-pyrazol-3-yl thio­phene 2-carboxyl­ate, refcode YILPUF (Myers et al., 2007[Myers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C.., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761-4766.]).

5. Synthesis and crystallization

A mixture of 5-amino-1-phenyl­sulfonyl-1,2-di­hydro-3H-pyrazol-3-one 1 (0.01 mol), 2-bromo-1-(p-tol­yl)ethan-1-one 2 (0.01 mol) and anhydrous potassium carbonate (0.01 mol) in N,N-di­methyl­formamide (5 mL) was stirred at room temperature for 3 h. The mixture was poured onto ice–water; the solid that formed was filtered off and recrystallized from ethanol to give pale-brown crystals in 70% yield, m.p. 445 K. IR (KBr, cm−1): ν 3475, 3304 (NH2), 1690 (CO); 1H NMR (DMSO-d6): δ = 2.40 (s, 3H, CH3), 4.91 (s, 1H, CH pyrazole), 5.45 (s, 2H, CH2), 6.34 (s, 2H, NH2), 7.37 (d, 2H, J = 8.4 Hz, Ar), 7.56–7.60 (m, 2H, Ar), 7.72–7.76 (m, 3H, Ar), 7.85 (d, 2H, J = 8.0 Hz, Ar). Analysis calculated for C18H17N3O4S (371.41); C, 58.21; H, 4.61; N, 11.31; S, 8.63. Found: C, 58.39; H, 4.42; N, 11.65; S, 8.45%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the NH2 group were refined freely. The methyl group was refined as an idealized rigid group allowed to rotate but not tip, with C—H = 0.98 Å and H—C—H = 109.5°. Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The U(H) values were fixed at 1.5 or 1.2 times the equivalent Uiso value of the parent carbon atoms for methyl and non-methyl hydrogens, respectively. Six reflections were omitted because their calculated and measured Fo2 and Fc2 values differed by more than 7 s.u. The occurrence of such apparent outliers seems to be a general consequence of collecting data to high 2θ values (here 76°), whereby spherical atom scattering factors become less applicable. Special refinements using aspherical atom scattering factors can lead to greatly improved R values and thus fewer outliers, but this method is not yet widely employed. However, even for `normal' refinement, it is still considered best practice to collect data to high diffraction angles wherever possible (Sanjuan-Szklarz et al., 2016[Sanjuan-Szklarz, W. F., Hoser, A. A., Gutmann, M., Madsen, A. Ø. & Woźniak, K. (2016). IUCrJ, 3, 61-70.]).

Table 3
Experimental details

Crystal data
Chemical formula C18H17N3O4S
Mr 371.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.77236 (16), 11.98431 (18), 15.0131 (3)
β (°) 95.4487 (16)
V3) 1750.32 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.917, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 171365, 9400, 8324
Rint 0.035
(sin θ/λ)max−1) 0.870
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 1.06
No. of reflections 9400
No. of parameters 244
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Siemens XP (Siemens, 1994[Siemens (1994). XP, version 5.03. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, U. S. A.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Siemens XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

2-{[5-Amino-1-(phenylsulfonyl)-1H-pyrazol-3-yl]oxy}-1-(4-methylphenyl)ethan-1-one top
Crystal data top
C18H17N3O4SF(000) = 776
Mr = 371.40Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.77236 (16) ÅCell parameters from 110735 reflections
b = 11.98431 (18) Åθ = 2.1–38.3°
c = 15.0131 (3) ŵ = 0.21 mm1
β = 95.4487 (16)°T = 100 K
V = 1750.32 (5) Å3Irregular, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
XtaLAB Synergy, HyPix
diffractometer
9400 independent reflections
Radiation source: micro-focus sealed X-ray tube8324 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.035
ω scansθmax = 38.2°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1616
Tmin = 0.917, Tmax = 1.000k = 2020
171365 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2966P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
9400 reflectionsΔρmax = 0.56 e Å3
244 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 4.1694 (0.0022) x - 1.2934 (0.0031) y + 14.0284 (0.0014) z = 3.1999 (0.0019)

* 0.0038 (0.0004) C21 * 0.0012 (0.0004) C22 * -0.0045 (0.0004) C23 * 0.0029 (0.0004) C24 * 0.0021 (0.0005) C25 * -0.0054 (0.0004) C26

Rms deviation of fitted atoms = 0.0036

- 3.9412 (0.0025) x + 1.7088 (0.0035) y + 14.0838 (0.0015) z = 3.9392 (0.0017)

Angle to previous plane (with approximate esd) = 14.458 ( 0.023 )

* -0.0213 (0.0003) N1 * 0.0180 (0.0003) N2 * -0.0081 (0.0003) C3 * -0.0053 (0.0003) C4 * 0.0167 (0.0003) C5 0.5584 (0.0008) S1 -0.0703 (0.0009) O1 -0.0102 (0.0010) N3

Rms deviation of fitted atoms = 0.0151

0.7595 (0.0030) x + 11.8725 (0.0006) y + 1.5620 (0.0042) z = 8.2715 (0.0020)

Angle to previous plane (with approximate esd) = 77.814 ( 0.024 )

* -0.0025 (0.0004) C11 * 0.0002 (0.0005) C12 * 0.0021 (0.0006) C13 * -0.0021 (0.0005) C14 * -0.0001 (0.0005) C15 * 0.0025 (0.0004) C16

Rms deviation of fitted atoms = 0.0019

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24056 (5)0.51243 (4)0.28333 (3)0.01335 (7)
N20.30323 (5)0.41284 (4)0.31574 (3)0.01269 (7)
C30.20639 (5)0.33841 (4)0.29582 (4)0.01215 (8)
C40.08065 (5)0.38197 (4)0.25555 (4)0.01363 (8)
H40.0010940.3421840.2367260.016*
C50.10363 (5)0.49489 (5)0.24984 (4)0.01353 (8)
C60.36155 (5)0.19759 (5)0.34437 (4)0.01441 (8)
H6A0.3827820.2277850.4055000.017*
H6B0.4293110.2278360.3056920.017*
C70.36826 (5)0.07135 (4)0.34602 (4)0.01344 (8)
O10.22577 (4)0.22853 (3)0.31015 (3)0.01574 (7)
O20.26716 (5)0.01561 (4)0.32082 (4)0.01960 (9)
N30.02108 (6)0.57726 (5)0.21484 (5)0.02257 (11)
H010.0666 (14)0.5651 (12)0.2040 (8)0.036 (3)*
H020.0528 (13)0.6445 (10)0.2171 (8)0.028 (3)*
S10.30852 (2)0.62852 (2)0.32942 (2)0.01351 (4)
O30.23014 (5)0.71771 (4)0.28591 (3)0.01948 (8)
O40.45358 (5)0.62322 (4)0.32464 (3)0.01823 (8)
C110.27468 (6)0.62077 (5)0.44193 (4)0.01454 (9)
C120.13852 (7)0.62706 (6)0.46205 (4)0.02211 (12)
H120.0660480.6378040.4160310.027*
C130.11104 (7)0.61728 (7)0.55093 (5)0.02584 (13)
H130.0189960.6215240.5661060.031*
C140.21846 (7)0.60125 (6)0.61789 (4)0.02114 (11)
H140.1988930.5941760.6784170.025*
C150.35380 (7)0.59553 (5)0.59684 (4)0.01925 (10)
H150.4263140.5848060.6428290.023*
C160.38275 (6)0.60557 (5)0.50806 (4)0.01702 (9)
H160.4748710.6020970.4929410.020*
C210.50072 (5)0.01906 (4)0.37895 (4)0.01340 (8)
C220.51276 (6)0.09678 (5)0.37166 (4)0.01651 (9)
H220.4374190.1394120.3454990.020*
C230.63438 (6)0.14961 (5)0.40253 (4)0.01829 (10)
H230.6417720.2282720.3968290.022*
C240.74621 (6)0.08873 (5)0.44191 (4)0.01787 (10)
C250.73356 (6)0.02713 (6)0.44878 (4)0.01941 (10)
H250.8086890.0696590.4753600.023*
C260.61253 (6)0.08085 (5)0.41722 (4)0.01695 (9)
H260.6057840.1596930.4216780.020*
C270.87758 (7)0.14635 (7)0.47616 (5)0.02598 (13)
H27A0.8652520.2273300.4711130.039*
H27B0.9013710.1263140.5390160.039*
H27C0.9516910.1229300.4406760.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.01168 (17)0.01073 (16)0.01710 (18)0.00019 (13)0.00153 (14)0.00017 (13)
N20.01097 (16)0.01076 (16)0.01599 (18)0.00054 (13)0.00050 (13)0.00021 (13)
C30.01059 (18)0.01128 (18)0.01451 (19)0.00047 (14)0.00092 (14)0.00002 (14)
C40.00988 (18)0.01317 (19)0.0175 (2)0.00025 (14)0.00052 (15)0.00061 (15)
C50.01098 (18)0.01337 (19)0.0159 (2)0.00071 (15)0.00055 (15)0.00110 (15)
C60.01131 (18)0.01194 (18)0.0195 (2)0.00104 (15)0.00122 (16)0.00021 (16)
C70.01256 (19)0.01213 (18)0.0153 (2)0.00107 (15)0.00068 (15)0.00064 (15)
O10.01125 (15)0.01075 (15)0.02455 (19)0.00083 (12)0.00184 (13)0.00110 (13)
O20.01475 (18)0.01379 (17)0.0288 (2)0.00047 (13)0.00554 (15)0.00210 (15)
N30.0147 (2)0.0154 (2)0.0360 (3)0.00168 (16)0.00609 (19)0.00591 (19)
S10.01339 (6)0.01073 (6)0.01621 (6)0.00151 (4)0.00040 (4)0.00007 (4)
O30.0232 (2)0.01187 (16)0.0226 (2)0.00004 (14)0.00214 (16)0.00320 (14)
O40.01387 (17)0.01884 (19)0.0222 (2)0.00499 (14)0.00286 (14)0.00164 (14)
C110.0134 (2)0.01384 (19)0.0161 (2)0.00121 (15)0.00008 (16)0.00136 (15)
C120.0142 (2)0.0340 (3)0.0179 (2)0.0062 (2)0.00046 (18)0.0004 (2)
C130.0176 (3)0.0408 (4)0.0194 (3)0.0068 (2)0.0032 (2)0.0007 (2)
C140.0224 (3)0.0240 (3)0.0170 (2)0.0040 (2)0.00141 (19)0.00039 (19)
C150.0192 (2)0.0198 (2)0.0179 (2)0.00189 (19)0.00336 (18)0.00113 (18)
C160.0139 (2)0.0173 (2)0.0192 (2)0.00034 (17)0.00162 (17)0.00173 (17)
C210.01182 (19)0.01317 (19)0.0149 (2)0.00123 (15)0.00019 (15)0.00002 (15)
C220.0156 (2)0.0138 (2)0.0195 (2)0.00256 (16)0.00126 (17)0.00044 (17)
C230.0175 (2)0.0172 (2)0.0199 (2)0.00551 (18)0.00005 (18)0.00038 (18)
C240.0140 (2)0.0233 (3)0.0162 (2)0.00563 (18)0.00076 (16)0.00157 (18)
C250.0126 (2)0.0226 (3)0.0223 (3)0.00085 (18)0.00198 (18)0.00033 (19)
C260.0131 (2)0.0165 (2)0.0208 (2)0.00012 (16)0.00120 (17)0.00043 (18)
C270.0176 (3)0.0355 (3)0.0242 (3)0.0113 (2)0.0016 (2)0.0022 (3)
Geometric parameters (Å, º) top
N1—C51.3999 (7)C22—C231.3869 (8)
N1—N21.4071 (7)C23—C241.3976 (9)
N1—S11.6638 (5)C24—C251.3987 (9)
N2—C31.3141 (7)C24—C271.5047 (9)
C3—O11.3447 (7)C25—C261.3898 (8)
C3—C41.4167 (7)C4—H40.9500
C4—C51.3758 (8)C6—H6A0.9900
C5—N31.3494 (8)C6—H6B0.9900
C6—O11.4257 (7)N3—H010.869 (13)
C6—C71.5144 (8)N3—H020.863 (12)
C7—O21.2226 (7)C12—H120.9500
C7—C211.4802 (8)C13—H130.9500
S1—O41.4277 (5)C14—H140.9500
S1—O31.4355 (5)C15—H150.9500
S1—C111.7542 (6)C16—H160.9500
C11—C161.3910 (8)C22—H220.9500
C11—C121.3942 (9)C23—H230.9500
C12—C131.3908 (10)C25—H250.9500
C13—C141.3961 (10)C26—H260.9500
C14—C151.3904 (10)C27—H27A0.9800
C15—C161.3938 (9)C27—H27B0.9800
C21—C261.3976 (8)C27—H27C0.9800
C21—C221.3984 (8)
C5—N1—N2111.51 (4)C25—C24—C27120.59 (6)
C5—N1—S1127.24 (4)C26—C25—C24120.87 (6)
N2—N1—S1114.96 (4)C25—C26—C21120.10 (6)
C3—N2—N1102.52 (4)C5—C4—H4127.8
N2—C3—O1122.74 (5)C3—C4—H4127.8
N2—C3—C4115.07 (5)O1—C6—H6A110.2
O1—C3—C4122.17 (5)C7—C6—H6A110.2
C5—C4—C3104.42 (5)O1—C6—H6B110.2
N3—C5—C4130.45 (5)C7—C6—H6B110.2
N3—C5—N1123.07 (5)H6A—C6—H6B108.5
C4—C5—N1106.35 (5)C5—N3—H01119.6 (9)
O1—C6—C7107.65 (4)C5—N3—H02117.9 (8)
O2—C7—C21121.83 (5)H01—N3—H02120.5 (12)
O2—C7—C6120.55 (5)C13—C12—H12120.7
C21—C7—C6117.62 (5)C11—C12—H12120.7
C3—O1—C6115.11 (4)C12—C13—H13119.9
O4—S1—O3119.98 (3)C14—C13—H13119.9
O4—S1—N1107.51 (3)C15—C14—H14119.7
O3—S1—N1104.99 (3)C13—C14—H14119.7
O4—S1—C11108.96 (3)C14—C15—H15120.1
O3—S1—C11109.66 (3)C16—C15—H15120.1
N1—S1—C11104.59 (3)C11—C16—H16120.5
C16—C11—C12121.87 (6)C15—C16—H16120.5
C16—C11—S1119.63 (4)C23—C22—H22119.9
C12—C11—S1118.47 (5)C21—C22—H22119.9
C13—C12—C11118.58 (6)C22—C23—H23119.5
C12—C13—C14120.13 (6)C24—C23—H23119.5
C15—C14—C13120.64 (6)C26—C25—H25119.6
C14—C15—C16119.80 (6)C24—C25—H25119.6
C11—C16—C15118.98 (5)C25—C26—H26119.9
C26—C21—C22119.33 (5)C21—C26—H26119.9
C26—C21—C7122.53 (5)C24—C27—H27A109.5
C22—C21—C7118.14 (5)C24—C27—H27B109.5
C23—C22—C21120.19 (5)H27A—C27—H27B109.5
C22—C23—C24120.92 (6)C24—C27—H27C109.5
C23—C24—C25118.58 (5)H27A—C27—H27C109.5
C23—C24—C27120.83 (6)H27B—C27—H27C109.5
C5—N1—N2—C33.82 (6)O4—S1—C11—C12178.56 (5)
S1—N1—N2—C3158.10 (4)O3—S1—C11—C1245.42 (6)
N1—N2—C3—O1175.68 (5)N1—S1—C11—C1266.72 (5)
N1—N2—C3—C42.54 (6)C16—C11—C12—C130.29 (10)
N2—C3—C4—C50.39 (7)S1—C11—C12—C13177.93 (6)
O1—C3—C4—C5177.85 (5)C11—C12—C13—C140.16 (12)
C3—C4—C5—N3177.84 (6)C12—C13—C14—C150.39 (12)
C3—C4—C5—N12.01 (6)C13—C14—C15—C160.17 (10)
N2—N1—C5—N3179.96 (6)C12—C11—C16—C150.50 (9)
S1—N1—C5—N329.66 (9)S1—C11—C16—C15177.70 (5)
N2—N1—C5—C43.74 (6)C14—C15—C16—C110.26 (9)
S1—N1—C5—C4154.13 (4)O2—C7—C21—C26172.68 (6)
O1—C6—C7—O20.23 (7)C6—C7—C21—C267.36 (8)
O1—C6—C7—C21179.72 (5)O2—C7—C21—C226.85 (8)
N2—C3—O1—C63.11 (8)C6—C7—C21—C22173.11 (5)
C4—C3—O1—C6174.99 (5)C26—C21—C22—C230.28 (9)
C7—C6—O1—C3173.56 (5)C7—C21—C22—C23179.27 (5)
C5—N1—S1—O4159.90 (5)C21—C22—C23—C240.51 (9)
N2—N1—S1—O450.57 (5)C22—C23—C24—C250.66 (9)
C5—N1—S1—O331.07 (6)C22—C23—C24—C27179.40 (6)
N2—N1—S1—O3179.40 (4)C23—C24—C25—C260.02 (9)
C5—N1—S1—C1184.36 (5)C27—C24—C25—C26179.96 (6)
N2—N1—S1—C1165.16 (4)C24—C25—C26—C210.76 (9)
O4—S1—C11—C163.18 (6)C22—C21—C26—C250.91 (9)
O3—S1—C11—C16136.32 (5)C7—C21—C26—C25178.62 (6)
N1—S1—C11—C16111.54 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H01···O1i0.869 (13)2.497 (14)3.0124 (7)118.7 (11)
N3—H01···O2i0.869 (13)2.048 (13)2.9121 (7)172.8 (13)
N3—H02···O30.863 (12)2.121 (13)2.7806 (8)132.8 (11)
C14—H14···O2ii0.952.543.3458 (8)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to Dr Ma­thias Meyer of Rigaku for helpful discussions about aspherical atom refinement.

Funding information

Dr Galal Elgemeie and Dr Nadia Metwally would like to thank the Egyptian Academy of Scientific Research & Technology (ASRT) for awarding a grant. The authors also acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020). J. Mol. Struct. 1201, Article 127194.  CrossRef Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. 11, 3389–3399.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099–1131.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385–386.  Google Scholar
First citationElgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250–o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90–92.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 615–617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMyers, M. C., Napper, A. D., Motlekar, N., Shah, P. P., Chiu, C.., Beavers, M. P., Diamond, S. L., Huryn, D. M. & Smith, A. B. III (2007). Bioorg. Med. Chem. Lett. 17, 4761–4766.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSanjuan-Szklarz, W. F., Hoser, A. A., Gutmann, M., Madsen, A. Ø. & Woźniak, K. (2016). IUCrJ, 3, 61–70.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSidique, S., Shiryaev, S. A., Ratnikov, B. I., Herath, A., Su, Y., Strongin, A. Y. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 5773–5777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSiemens (1994). XP, version 5.03. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, U. S. A.  Google Scholar
First citationZhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. pp. 1154–1159.  CrossRef Google Scholar
First citationZhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146–4149.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds