Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Geometrical variations of two manganese(II) complexes with closely related quinoline-based tripodal ligands

crossmark logo

aDepartment of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH, 03435-2001, USA
*Correspondence e-mail: sfrey@skidmore.edu

Edited by M. Zeller, Purdue University, USA (Received 3 August 2021; accepted 20 September 2021; online 28 September 2021)

Structural analyses of the compounds di-μ-acetato-κ4O:O′-bis­{[2-meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine-κ4N,N′,N′′,O]manganese(II)} bis­(tetra­phen­yl­borate) di­chloro­methane 1.45-solvate, [Mn2(C23O2)2(C23H23N3O)2](C24H20B)·1.45CH2Cl2 or [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)](BPh4)2·1.45CH2Cl2 or [1](BPh4)2·1.45CH2Cl2, and (acetato-κO)[2-hy­droxy-N,N-bis(quinolin-2-ylmeth­yl)ethanamine-κ4N,N′,N′′,O](methanol-κO)manganese(II) tetra­phenyl­borate methanol monosolvate, [Mn(CH3COO)(C22H21N3O)(CH3OH)](C24H20B)·CH3OH or [Mn(DQEA)(OAc)(CH3OH)]BPh4·CH3OH or [2]BPh4·CH3OH, by single-crystal X-ray diffraction reveal distinct differences in the geometry of coordination of the tripodal DQEA and DQMEA ligands to MnII ions. In the asymmetric unit, compound [1](BPh4)2·(CH2Cl2)1.45 crystallizes as a dimer in which each manganese(II) center is coordinated by the central amine nitro­gen, the nitro­gen atom of each quinoline group, and the meth­oxy-oxygen of the tetra­dentate DQMEA ligand, and two bridging-acetate oxygen atoms. The symmetric MnII centers have a distorted, octa­hedral geometry in which the quinoline nitro­gen atoms are trans to each other resulting in co-planarity of the quinoline rings. For each MnII center, a coordinated acetate oxygen participates in C—H⋯O hydrogen-bonding inter­actions with the two quinolyl moieties, further stabilizing the trans structure. Within the crystal, weak ππ stacking inter­actions and inter­molecular cation–anion inter­actions stabilize the crystal packing. In the asymmetric unit, compound [2]BPh4·CH3OH crystallizes as a monomer in which the manganese(II) ion is coordinated to the central nitro­gen, the nitro­gen atom of each quinoline group, and the alcohol oxygen of the tetra­dentate DQEA ligand, an oxygen atom of OAc, and the oxygen atom of a methanol ligand. The geometry of the MnII center in [2]BPh4·CH3OH is also a distorted octa­hedron, but the quinoline nitro­gen atoms are cis to each other in this structure. Hydrogen bonding between the acetate oxygen atoms and hydroxyl (O—H⋯O) and quinolyl (C—H⋯O and N—H⋯O) moieties of the DQEA ligand stabilize the complex in this cis configuration. Within the crystal, dimerization of complexes occurs by the formation of a pair of inter­molecular O3—H3⋯O2 hydrogen bonds between the coordinated hydroxyl oxygen of the DQEA ligand of one complex and an acetate oxygen of another. Additional hydrogen-bonding and inter­molecular cation–anion inter­actions contribute to the crystal packing.

1. Chemical context

Synthetic manganese(II) compounds have gained attention in recent years owing to their anti­oxidant (Signorella et al., 2018[Signorella, S., Palopoli, C. & Ledesma, G. (2018). Coord. Chem. Rev. 365, 75-102.]; Batinić-Haberle et al., 2010[Batinić-Haberle, I., Rebouças, J. S. & Spasojević, I. (2010). Antioxid. & Redox Signal. 13, 877-918.], 2014[Batinić-Haberle, I., Tovmasyan, A., Roberts, E. R. H., Vujaskovic, Z., Leong, K. W. & Spasojevic, I. (2014). Antioxid. & Redox Signal. 20, 2372-2415.]; Iranzo, 2011[Iranzo, O. (2011). Bioorg. Chem. 39, 73-87.]; Bani & Bencini, 2012[Bani, D. & Bencini, A. (2012). Curr. Med. Chem. 19, 4431-4444.]; Miriyala et al., 2012[Miriyala, S., Spasojevic, I., Tovmasyan, A., Salvemini, D., Vujaskovic, Z., St Clair, D. & Batinic-Haberle, I. (2012). Biochim. Biophys. Acta, 1822, 794-814.]; Policar, 2016[Policar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. S. Rebouças & I. Spasojević, pp. 125-164. Switzerland: Springer International Publishing.]), anti­cancer (Icsel et al., 2020[Icsel, C., Yilmaz, V. T., Aydinlik, S. & Aygun, M. (2020). Eur. J. Med. Chem. 202, 112535-112545.]; Prihantono et al., 2020[Prihantono, , Irfandi, R., Raya, I. & Warsinggih, (2020). Ann. Med. Surg. 60, 396-402.]; Liu et al., 2015[Liu, J., Guo, W., Li, X., Li, X., Geng, J., Chen, Q. & Gao, J. (2015). Int. J. Mol. Med. 35, 607-616.]; Wang et al., 2014[Wang, Z.-W., Chen, Q. Y. & Liu, Q.-S. (2014). Transition Met. Chem. 39, 917-924.]; Zhou et al., 2011[Zhou, D.-F., Chen, Q.-Y., Qi, Y., Fu, H.-J., Li, Z., Zhao, K.-D. & Gao, J. (2011). Inorg. Chem. 50, 6929-6937.]), anti­bacterial (Saha et al., 2020[Saha, T., Kumar, P., Sepay, N., Ganguly, D., Tiwari, K., Mukhopadhyay, K. & Das, S. (2020). ACS Omega, 5, 16342-16357.]; Maurya et al., 2011[Maurya, R. C., Bohre, P., Sahu, S., Martin, M. H. & Sharma, A. K. (2011). Arab. J. Chem, 9, S54-S63.], Dong et al., 2017[Dong, H., Yang, X., He, J., Cai, S., Xiao, K. & Zhu, L. (2017). RSC Adv. 7, 53385-53395.]), optoelectronic (Qin et al., 2020[Qin, Y., She, P., Huang, X., Huang, W. & Zhao, Q. (2020). Coord. Chem. Rev. 416, 213331-213350.]), catalytic (Sarma et al., 2019[Sarma, C., Chaurasia, P. K. & Bharati, S. L. (2019). Russ. J. Gen. Chem. 89, 517-531.]), and MRI enhancement (Wang et al., 2018[Wang, J., Wang, H., Ramsay, I. A., Erstad, D. J., Fuchs, B. C., Tanabe, K. K., Caravan, P. & Gale, E. M. (2018). J. Med. Chem. 61, 8811-8824.], Boros et al., 2015[Boros, E., Gale, E. M. & Caravan, P. (2015). Dalton Trans. 44, 4804-4818.], Gale et al., 2015[Gale, E. M., Atanasova, I. P., Blasi, F., Ay, I. & Caravan, P. (2015). J. Am. Chem. Soc. 137, 15548-15557.]) properties. Manganese(II) tends to be less toxic than other metal ions (Iranzo, 2011[Iranzo, O. (2011). Bioorg. Chem. 39, 73-87.]; Bani & Bencini, 2012[Bani, D. & Bencini, A. (2012). Curr. Med. Chem. 19, 4431-4444.]), can often reversibly access the MnIII oxidation state, and exhibits luminescence in some instances (Qin et al., 2020[Qin, Y., She, P., Huang, X., Huang, W. & Zhao, Q. (2020). Coord. Chem. Rev. 416, 213331-213350.]). The ability to form stable, efficacious MnII compounds for these applications is dependent upon the nature of the ligands employed, their coord­in­ating atoms, and other groups that can alter the geometry, bulkiness, and/or optical properties of the compound (Signorella et al., 2018[Signorella, S., Palopoli, C. & Ledesma, G. (2018). Coord. Chem. Rev. 365, 75-102.], Policar, 2016[Policar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. S. Rebouças & I. Spasojević, pp. 125-164. Switzerland: Springer International Publishing.], Qin et al., 2020[Qin, Y., She, P., Huang, X., Huang, W. & Zhao, Q. (2020). Coord. Chem. Rev. 416, 213331-213350.]).

[Scheme 1]

We have recently begun to study MnII compounds with tetra­dentate, tripodal ligands (Frey, Li et al., 2018[Frey, S. T., Li, J., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1138-1141.]; Frey, Ramirez et al., 2018[Frey, S. T., Ramirez, H. A., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1075-1078.]). These ligands are readily synthesized to provide a variety of N and O donors and other groups that can potentially alter the structural and/or electronic properties of the MnII center. Quinoline groups, for example, provide bulkiness that can lead to distorted coordination geometries, potentially altering the coordination number, redox potential, substrate specificity, and/or photophysical properties of a complex. Quinoline ring systems are also the basis for a number of biologically active mol­ecules, suggesting that their presence might lead to medicinally-relevant compounds (Kakoulidou et al., 2021[Kakoulidou, C., Hatzidimitriou, A. G., Fylaktakidou, K. C. & Psomas, G. (2021). Polyhedron, 195, 114986-1144996.]). We report here the synthesis and structural characterization of [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)](BPh4)2·(CH2Cl2)1.45, [1](BPh4)2·1.45CH2Cl2 where DQMEA = 2-meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine, OAc = acetate, BPh4 = tetra­phenyl­borate and [Mn(DQEA)(OAc)(CH3OH)]BPh4·CH3OH, [2]BPh4·CH3OH where DQEA = 2-hy­droxy-N,N-bis­(quinolin-2-yl­meth­yl)ethanamine). These compounds are prepared in a two-step reaction (see reaction scheme) in which mangan­ese(II) acetate is reacted with either DQMEA or DQEA in methanol, followed by anion exchange with sodium tetra­phenyl­borate. The resulting complexes demonstrate how minor alterations in ligand structure can result in significant differences in the complex structure.

2. Structural commentary

Compound [1](BPh4)2·(CH2Cl2)1.45 crystallizes in the triclinic space group P[\overline{1}] (Fig. 1[link]). The structure reveals a dimeric [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)]2+ cation, [1] (Fig. 2[link]) balanced by the presence of tetra­phenyl borate anions. The manganese(II) ions are hexa­coordinate with a distorted octa­hedral geometry. While this is a standard coordination number for transition metal cations, manganese(II) complexes with N-donor ligands are often hepta­coordinate (Frey, Li et al., 2018[Frey, S. T., Li, J., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1138-1141.]; Deroche et al., 1996[Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567-4573.]; Policar et al., 2001[Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp.1807-1818.]; Lessa et al., 2007[Lessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863-866.]; Dees et al., 2007[Dees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459-2470.]; Wu et al., 2010[Wu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097-1100.]; Lieb et al., 2013[Lieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovic-Burmazovic, I. (2013). Inorg. Chem. 52, 222-236.]). The presence of the bulky quinoline rings in this compound may restrict the coordination number to six in [1]. The DQMEA ligands are tetra­dentate, with the central N2 and two quinolyl nitro­gen atoms (N1 and N3) in the same octa­hedral plane and the meth­oxy oxygen (O1) located perpendicular to this nitro­gen plane. This configuration of the DQMEA ligand results in the quinoline groups binding MnII trans to each other, and in coplanarity of their rings. Hydrogen-bonding inter­actions between quinolyl hydrogens and an acetate oxygen, C—H⋯O, further stabilize this trans configuration (Table 3[link]). Oxygens from two bridging acetate ions make up the final two coordinating atoms, with O2 trans to the central N2 nitro­gen of DQMEA and O3 trans to the meth­oxy oxygen, O1. Distortion of the octa­hedral geometry of the coordination sphere is caused by the bite angles of the DQMEA ligand. For example, the five-membered metallacycles formed by coord­ination of quinoline nitro­gens and central nitro­gen of DQMEA, produce bond angles, N2—Mn1—N3 and N2—Mn1—N1, of 73.25 (5) and 75.56 (5)°, respectively, which are significantly reduced from 90° (Table 1[link]). This results in a trans N1—Mn1—N3 angle of 148.35 (5)°. Likewise, the bond angle formed by cis coordination of the meth­oxy oxygen of DQMEA and central nitro­gen, N2—Mn1—O1 is 75.32 (5)°. The remaining trans bond angles, O2—Mn1—N2 and O31—Mn1—O1 are 157.89 (5) and 163.58 (5)°, respectively. The Mn—O and Mn—N bond lengths for the neutral DQMEA ligand fall in the range 2.27–2.36 Å, which is typical of manganese(II) complexes (Deroche et al., 1996[Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567-4573.]; Policar et al., 2001[Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp.1807-1818.]; Lessa et al., 2007[Lessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863-866.]; Dees et al., 2007[Dees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459-2470.]; Wu et al., 2010[Wu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097-1100.]; Lieb et al., 2013[Lieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovic-Burmazovic, I. (2013). Inorg. Chem. 52, 222-236.]). However, the Mn1—O2 and Mn1—O31 acetate bond lengths, 2.0617 (13) and 2.0908 (14) Å, are significantly shorter.

Table 3
Hydrogen-bond geometry (Å, °) for [1](BPh4)2·1.45CH2Cl2[link]

Cg9 and Cg12 are the centroids of the C32–C37 and C44–C49 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.49 3.366 (3) 154
C19—H19⋯O2 0.95 2.31 3.199 (3) 155
C23—H23A⋯O2 0.98 2.31 3.1767 (2) 119
C29—H29⋯Cl2ii 0.95 2.65 3.5305 (2) 155
C8—H8⋯Cg11iii 0.95 2.68 3.5556 (2) 153
C11—H11BCg11iv 0.99 2.81 3.7195 (2) 152
C23—H23BCg9 0.98 2.78 3.7034 (2) 157
Symmetry codes: (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) x+1, y, z.

Table 1
Selected geometric parameters (Å, °) for [1](BPh4)2·1.45CH2Cl2[link]

Mn1—O1 2.3225 (12) Mn1—N1 2.3179 (14)
Mn1—O2 2.0617 (13) Mn1—N2 2.2730 (14)
Mn1—O3i 2.0908 (14) Mn1—N3 2.3588 (16)
       
N2—Mn1—N3 73.25 (5) N2—Mn1—O1 75.32 (5)
N2—Mn1—N1 75.56 (5) O2—Mn1—N2 157.89 (6)
N1—Mn1—N3 148.35 (5) O3i—Mn1—O1 163.58 (6)
Symmetry code: (i) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
The title compound [1](BPh4)2·(CH2Cl2)1.45 with displacement ellipsoids drawn at the 30% probability level. Only the major disorder components for the di­chloro­methane solvent are shown. Dashed lines indicate intra­molecular weak C—H⋯O inter­actions influencing the stability of the complex conformation.
[Figure 2]
Figure 2
Structure of the [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)]2+ complex [DQMEA = 2-meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine, OAc = acetate] with atom labels. Displacement ellipsoids drawn at the 30% probability level.

The compound [2]BPh4·CH3OH crystallizes in the monoclinic space group P21/c. The structure of this compound consists of the [Mn(DQEA)(OAc)(CH3OH)]+ monocation, [2], tetra­phenyl borate counter-ion, and a methanol solvent mol­ecule (Fig. 3[link]). The MnII ion is hexa­coordinate with a distorted octa­hedral geometry. As with [1], the bulky quinoline groups likely prevent a seven-coordinate species from forming. The DQEA ligand is tetra­dentate, but the quinolyl nitro­gen atoms in this structure, N2 and N3, are cis to each other, and the rings are therefore not co-planar. The central nitro­gen of DQEA, N1 and the quinolyl nitro­gens occupy an octa­hedral face, while the alcohol oxygen, O3 is trans to the quinolyl nitro­gen N3. In addition to the DQEA ligand, a monodentate acetate oxygen, O1 is trans to the central nitro­gen of DQEA, while a methanol oxygen, O4 occupies a position trans to the quinolyl nitro­gen, N2. Like DQMEA in [1], binding constraints of the DQEA ligand in [2] result in significant distortions of the octa­hedral geometry of the coordination sphere. Bond angles involving the central nitro­gen of DQEA and quinolyl nitro­gens, N1—Mn1—N2 and N1—Mn1—N3 are 75.63 (5) and 73.81 (5)°, respectively (Table 2[link]). The alcohol oxygen and quinolyl nitro­gen that are trans to each other, form a bond angle with manganese, O3—Mn1—N3 of 149.83 (12)°. The remaining trans bond angles, O1—Mn1—N1 and N2—Mn1—O4 are 175.54 (6) and 161.38 (6)°, respectively.

Table 2
Selected geometric parameters (Å, °) for [2]BPh4·CH3OH[link]

Mn1—O1 2.0551 (14) Mn1—N1 2.2787 (15)
Mn1—O3 2.182 (7) Mn1—N2 2.3167 (15)
Mn1—O3B 2.13 (3) Mn1—N3 2.2664 (14)
Mn1—O4 2.3190 (16)    
       
N1—Mn1—N2 75.63 (5) O1—Mn1—N1 175.54 (6)
N1—Mn1—N3 73.81 (5) N2—Mn1—O4 161.38 (6)
O3—Mn1—N3 149.83 (12)    
[Figure 3]
Figure 3
The title compound [2](BPh4)·CH3OH with displacement ellipsoids drawn at the 30% probability level. (Only the major disorder components for the hy­droxy­ethyl fragment are shown.)

The cis coordination of DQEA to Mn(II) in [2] may result from a hydrogen-bonding network involving the alcohol and quinolyl groups of DQEA and the acetate ligand, O—H⋯O and C—H⋯O (Table 4[link]). A trans configuration of DQEA, like that of DQMEA in [1] would swing the alcohol hydrogen up and away from the acetate ligand, preventing this hydrogen-bonding inter­action. Additional O—H⋯O hydrogen bonds in [2]BPh4·CH3OH, between methanol mol­ecules themselves and with the acetate ligand, provide further stabilization of the structure. This cis structure observed in [2]BPh4·CH3OH may not be favorable with the DQMEA ligand, since the meth­oxy methyl group would disrupt this hydrogen-bonding network.

Table 4
Hydrogen-bond geometry (Å, °) for [2]BPh4·CH3OH[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.85 (2) 1.79 (2) 2.631 (8) 170 (4)
O3B—H3B⋯O2i 0.84 (2) 1.87 (8) 2.65 (3) 152 (14)
O4—H4⋯O1S 0.89 (2) 1.77 (2) 2.646 (2) 168 (3)
C9—H9⋯O1 0.95 2.43 3.325 (3) 157
C17—H17⋯O1Sii 0.95 2.73 3.364 (3) 125
C18—H18⋯O1Sii 0.95 2.73 3.367 (2) 125
C19—H19⋯O1 0.95 2.39 3.183 (2) 141
C25—H25A⋯N3 0.98 2.79 3.387 (3) 120
O1S—H1S⋯O2i 0.84 1.92 2.691 (2) 151
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) x+1, y, z.

3. Supra­molecular features

Within the crystal of [1](BPh4)2·(CH2Cl2)1.45, no classical inter­molecular hydrogen bonding inter­actions were found. The crystal packing (Fig. 4[link]) is primarily stabilized by weak C29—H29⋯Cl2 inter­actions (Table 3[link]) and ππ stacking inter­actions between nearby benzene rings (Cg7⋯Cg6) of a quinoline group (where Cg7 and Cg6 are the centroids of the C15–C120 and C1–C6 rings, respectively). In addition, a network of weak C—H⋯π (C8—H8⋯Cg11, X—H, π = 78°; C11—H11BCg11, X—H, π = 59°, C23—H23BCg9, X—H, π = 72°, where Cg9 and Cg11 are the centroids of the C32–C37 and C44–C49 rings, respectively) inter­molecular cation–anion inter­actions (Table 3[link]) are also present and contribute additionally to the crystal packing.

[Figure 4]
Figure 4
A view along the a axis of the crystal packing of [1](BPh4)2·(CH2Cl2)1.45 with dashed lines indicating weak C—H⋯Cl inter­actions. Minor disordered solvate mol­ecules were omitted for clarity.

Within the crystal of [2]BPh4·CH3OH, dimerization of complexes occurs by the formation of a pair of inter­molecular O3—H3⋯O2 hydrogen bonds (Table 4[link]) between the coordinated hydroxyl oxygen of DQEA ligand of one complex and an acetate oxygen of another (Fig. 5[link]), forming an R22(12) ring-motif inter­action. In addition, the methanol solvent mol­ecule forms strong O—H⋯O hydrogen bonds (Table 4[link]) with the coordinated methanol and acetate ligands of the cationic complex, forming an R44(16) ring motif influencing the crystal packing. Weak C11—H11ACg12 (X—H, π = 58°; where Cg12 is the centroid of the C13A–C18A ring) inter­molecular cation–anion inter­actions (Table 4[link]) are also present and contribute additionally to the crystal packing.

[Figure 5]
Figure 5
A view along the c axis of the crystal packing of [2]BPh4·CH3OH. The intra­molecular and inter­molecular O—H⋯O and C—H⋯O hydrogen bonds (Table 4[link]) are shown as dashed lines. Solvate mol­ecules were omitted for clarity.

4. Database survey

To the best of our knowledge, structures of the manganese(II) compounds described herein have not been reported previously. We have previously reported the structure of a mononuclear copper(II) complex with DQMEA (Frey, Ramirez et al., 2018[Frey, S. T., Ramirez, H. A., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1075-1078.]). In this structure, the DQMEA ligand is tetra­dentate with a tris configuration of the quinoline groups as observed in [1]. A search of the Cambridge Crystallographic Database (updated in May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed a related manganese(II) complex with a penta­dentate, tripodal ligand containing two methyl quinolyl groups and an imine thiol­ate group (Coggins & Kovacs, 2011[Coggins, M. K. & Kovacs, J. A. (2011). J. Am. Chem. Soc. 133, 12470-12473.]). This ligand binds the MnII ion in a trigonal–bipyramidal geometry with the quinoline rings cis to each other in the equatorial plane, similar to [2].

5. Synthesis and crystallization

All chemicals were obtained from commercial sources and used without further purification. The water used was deion­ized. The 1H NMR spectra were recorded with a JEOL JNM-ECZ400s NMR spectrometer and referenced against chloro­form. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT–IR.

2-Meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine (DQMEA). In a 250 ml round-bottom flask, 5 g (23 mmol) of 2-chlormethyl­quinoline hydro­chloride was dissolved in 10 ml of H2O and cooled to 273 K in an ice bath. A solution of 1.9 g (47 mmol) of NaOH in 10 ml of H2O was added dropwise with stirring. Following this, a solution of 0.9 g (12 mmol) of 2-meth­oxy­ethyl­amine in 10 ml of CH2Cl2 was added. The reaction mixture was then removed from the ice bath, and brought to reflux for 7 days. The mixture was then cooled to room temperature, and the CH2Cl2 layer was separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was then filtered, and the filtrate was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 20:1 CH2Cl2/methanol. Fractions were collected that produced a single spot by TLC on alumina plates (eluting with 100:1, CH2Cl2/methanol) with an RF value of 0.33. Rotary evaporation of these fractions gave 2.4 g (58%) of a light-yellow solid. 1H NMR (CDCl3, 400 MHz) δ 2.87 (t, 2H), 3.30 (s, 3H), 3.54 (t, 2H), 4.06 (s, 4H), 7.48 (t, 2H), 7.65 (t, 2H), 7.75 (m, 4H), 8.01 (d, 2H), 8.10 (d, 2H).

2-Hy­droxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine (DQEA). In a 100 ml round-bottom flask, 2.5 g (12 mmol) of 2-chlormethyl­quinoline hydro­chloride was dissolved in 10 ml of H2O and cooled to 273 K in an ice bath. A solution of 0.95 g (24 mmol) of NaOH in 10 ml of H2O was added dropwise with stirring. Following this, a solution of 0.36 g (6.0 mmol) of ethano­lamine in 10 ml of CH2Cl2 was added. The reaction mixture was then removed from the ice bath, and brought to reflux for 7 days. The mixture was then cooled to room temperature, and the CH2Cl2 layer was separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was then filtered, and the filtrate was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 100:1 CH2Cl2/methanol. Fractions were collected that produced a single spot by TLC on alumina plates (eluting with 100:1, CH2Cl2/methanol) with an RF value of 0.33. Rotary evaporation of these fractions gave 0.70 g (20%) of a light-yellow solid. 1H NMR (CDCl3, 400 MHz) δ 3.02 (t, 2H), 3.54 (t, 2H), 4.17 (s, 4H), 7.51 (m, 4H), 7.74 (m, 4H), 8.07 (m, 4H).

[Mn(DQMEA)(μ-OAc)2Mn(DQMEA)](BPh4)2. In a 100 ml round-bottom flask, 0.20 g (0.56 mmol) of DQEA was dissolved in 10 ml of methanol. To this solution, 0.14 g (0.58 mmol) of manganese(II) acetate tetra­hydrate was added, and the solution was brought to reflux for 30 minutes. A solution of 0.19 g (0.56 mmol) of sodium tetra­phenyl­borate in 10 ml of methanol was then added dropwise to the warm reaction mixture. The solution was then cooled in a refrigerator to promote crystallization of the compound. After several hours, the reaction mixture was filtered to produce light-yellow microcrystals that were washed twice with cold methanol and air dried to give 0.36 g (82%) of product. Recrystallization of 20 mg of this product in a mixture of di­chloro­methane and methanol gave crystals suitable for X-ray diffraction. These crystals had an IR spectrum identical to the original product. IR (ATR, cm−1) 2800–3200 (aromatic C—H, w), 1600 (C—O, s), 1425 (C—O, s), 731 (BPh4, s), 704 (BPh4, s).

[Mn(DQEA)(OAc)(CH3OH)]BPh4·CH3OH. In a 100 ml round-bottom flask, 0.20 g (0.58 mmol) of DQEA was dissolved in 10 ml of methanol. To this solution, 0.14 g (0.58 mmol) of manganese(II) acetate tetra­hydrate was added, and the solution was brought to reflux for 30 minutes. A solution of 0.20 g (0.58 mmol) of sodium tetra­phenyl­borate in 10 ml of methanol was then added dropwise to the warm reaction mixture. The solution was then cooled in a refrigerator to promote crystallization of the compound. After several hours, the reaction mixture was filtered to produce light yellow microcrystals that were washed twice with cold methanol and air dried to give 0.31 g (69%) of product. Recrystallization of 20 mg of this product in a mixture of di­chloro­methane and methanol gave crystals suitable for X-ray diffraction. These crystals had an IR spectrum identical to the original product. IR (ATR, cm−1) 2800–3200 (aromatic C—H, w), 1578 (C—O, s), 1427 (C—O, s), 736 (BPh4, s), 700 (BPh4, s).

6. Refinement

Crystal data, data collection and structure refinement details for [1](BPh4)2·(CH2Cl2)1.45 and [2]BPh4·CH3OH are summarized in Table 5[link]. For [1](BPh4)2·(CH2Cl2)1.45, all H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.99 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Idealized methyl groups were refined as rotating groups. A solvate methyl­ene chloride mol­ecule was refined as threefold disordered. All C—Cl bond distances were restrained to be the same within a standard deviation of 0.02 Å. Uij components of ADPs were restrained to be similar to each other (SIMU command, esd = 0.01 Å2). Occupancies were not constrained to unity and refined to 0.401 (3), 0.234 (4) and 0.090 (4). In [2]BPh4·CH3OH, the ethanol group of C21, C22 and O3 was found to be disordered. Bond distances and angles of major and minor moiety were restrained to be similar to each other (SAME and SADI commands, esd = 0.02 Å). Uij components of ADPs were restrained to be similar to each other (SIMU command, esd = 0.01 Å2). The hy­droxy H atoms (O3—H3, O3B—H3B, O4—H4) were located in a difference-Fourier map and refined with the distance restraint O—H = 0.8 (2) Å and with Uiso(H) = 1.5Ueq(O). C-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Idealized methyl groups were refined as rotating groups. An idealized tetra­hedral OH group was also refined as a rotating group: O1S(H1S).

Table 5
Experimental details

  [1](BPh4)2·1.45CH2Cl2 [2]BPh4·CH3OH
Crystal data
Chemical formula [Mn2(C2H3O2)2(C23H23N3O)2](C24H20B)·1.45CH2Cl2 [Mn(C2H3O2)(C22H21N3O)(CH4O)](C24H20B)·CH4O
Mr 1704.59 840.69
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 11.6553 (5), 13.6846 (7), 16.1109 (6) 10.3504 (3), 17.4824 (5), 23.9618 (9)
α, β, γ (°) 96.842 (4), 105.959 (3), 111.907 (4) 90, 96.222 (3), 90
V3) 2220.29 (18) 4310.3 (3)
Z 1 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.43 0.36
Crystal size (mm) 0.32 × 0.26 × 0.18 0.34 × 0.28 × 0.26
 
Data collection
Diffractometer Rigaku Oxford Diffraction Gemini Eos Rigaku Oxford Diffraction Gemini Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.819, 1.000 0.845, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27481, 14664, 10475 31473, 14443, 10348
Rint 0.027 0.032
(sin θ/λ)max−1) 0.762 0.765
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.145, 1.02 0.054, 0.149, 1.04
No. of reflections 14664 14443
No. of parameters 600 582
No. of restraints 141 85
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.98, −0.38 0.67, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.][Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]a), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.][Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]b), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) top
Crystal data top
[Mn2(C2H3O2)2(C23H23N3O)2](C24H20B)·1.45CH2Cl2Z = 1
Mr = 1704.59F(000) = 891
Triclinic, P1Dx = 1.275 Mg m3
a = 11.6553 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6846 (7) ÅCell parameters from 6992 reflections
c = 16.1109 (6) Åθ = 3.1–31.9°
α = 96.842 (4)°µ = 0.43 mm1
β = 105.959 (3)°T = 173 K
γ = 111.907 (4)°Prism, clear colourless
V = 2220.29 (18) Å30.32 × 0.26 × 0.18 mm
Data collection top
Rigaku Oxford Diffraction Gemini Eos
diffractometer
14664 independent reflections
Radiation source: fine-focus sealed X-ray tube10475 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.027
ω scansθmax = 32.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1714
Tmin = 0.819, Tmax = 1.000k = 2019
27481 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.9487P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
14664 reflectionsΔρmax = 0.98 e Å3
600 parametersΔρmin = 0.38 e Å3
141 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C500.2765 (8)0.1499 (8)0.2170 (7)0.087 (2)0.401 (3)
H50A0.3104300.0936800.2221140.104*0.401 (3)
H50B0.3141590.1936350.1784270.104*0.401 (3)
Cl10.1035 (4)0.0871 (4)0.1687 (4)0.0912 (13)0.401 (3)
Cl20.3236 (2)0.2312 (2)0.31916 (15)0.0994 (10)0.401 (3)
C50B0.1821 (13)0.0765 (17)0.2361 (13)0.110 (3)0.234 (4)
H50C0.1619130.0896290.2910880.132*0.234 (4)
H50D0.1498350.0033480.2170340.132*0.234 (4)
Cl1B0.0714 (8)0.1029 (7)0.1592 (7)0.106 (3)0.234 (4)
Cl2B0.3482 (8)0.1217 (5)0.2742 (4)0.121 (2)0.234 (4)
C50C0.120 (3)0.044 (4)0.210 (2)0.098 (4)0.091 (4)
H50E0.1118920.0313150.2022290.117*0.091 (4)
H50F0.0674670.0528160.2468240.117*0.091 (4)
Cl1C0.0580 (17)0.0658 (14)0.1071 (15)0.121 (4)0.091 (4)
Cl2C0.2853 (19)0.1342 (16)0.2661 (13)0.113 (3)0.091 (4)
Mn10.09233 (2)0.45986 (2)0.62585 (2)0.02693 (7)
O10.29639 (12)0.48106 (12)0.71832 (8)0.0371 (3)
O20.18228 (14)0.48215 (12)0.53151 (8)0.0394 (3)
O30.09615 (13)0.54513 (13)0.42244 (10)0.0483 (4)
N10.15837 (14)0.62702 (11)0.72088 (9)0.0278 (3)
N20.05875 (14)0.41899 (12)0.75235 (9)0.0292 (3)
N30.01211 (15)0.26857 (12)0.59563 (10)0.0328 (3)
C10.22911 (16)0.72862 (14)0.71239 (11)0.0288 (3)
C20.2634 (2)0.73924 (17)0.63578 (13)0.0437 (5)
H20.2357710.6762980.5899000.052*
C30.3360 (3)0.8393 (2)0.62682 (17)0.0581 (6)
H30.3593970.8452010.5749920.070*
C40.3766 (3)0.93357 (19)0.69306 (18)0.0594 (6)
H40.4272931.0026690.6859280.071*
C50.3439 (2)0.92634 (17)0.76695 (16)0.0498 (5)
H50.3715900.9904950.8115840.060*
C60.26878 (19)0.82404 (15)0.77838 (12)0.0353 (4)
C70.2307 (2)0.81229 (17)0.85354 (13)0.0437 (5)
H70.2539130.8746090.8987580.052*
C80.1608 (2)0.71178 (17)0.86105 (12)0.0410 (4)
H80.1341390.7030680.9114080.049*
C90.12753 (17)0.61981 (14)0.79355 (11)0.0292 (3)
C100.04934 (19)0.50950 (15)0.80483 (12)0.0360 (4)
H10A0.0803070.5099940.8686550.043*
H10B0.0444790.4964510.7875550.043*
C110.06460 (18)0.32018 (15)0.72553 (12)0.0348 (4)
H11A0.1400530.3393500.7062390.042*
H11B0.0694980.2889540.7774930.042*
C120.07526 (18)0.23631 (15)0.65099 (13)0.0356 (4)
C130.1571 (2)0.12665 (18)0.64192 (18)0.0543 (6)
H130.1969430.1066570.6851190.065*
C140.1784 (3)0.0501 (2)0.5708 (2)0.0642 (7)
H140.2349050.0239090.5631050.077*
C150.1173 (2)0.08009 (18)0.50898 (16)0.0498 (5)
C160.1365 (3)0.0053 (2)0.43211 (19)0.0667 (8)
H160.1945300.0691560.4206910.080*
C170.0738 (3)0.0384 (2)0.37522 (18)0.0708 (8)
H170.0892490.0127000.3234120.085*
C180.0142 (3)0.1473 (2)0.39118 (16)0.0658 (7)
H180.0586210.1693480.3506180.079*
C190.0365 (2)0.2227 (2)0.46546 (14)0.0505 (5)
H190.0974150.2961770.4765150.061*
C200.03004 (19)0.19127 (16)0.52453 (13)0.0383 (4)
C210.16945 (19)0.39647 (18)0.80239 (13)0.0405 (4)
H21A0.1573890.3238420.7728810.049*
H21B0.1683390.3950840.8634660.049*
C220.30084 (19)0.48029 (19)0.80770 (12)0.0425 (5)
H22A0.3171640.5528200.8405540.051*
H22B0.3724910.4614190.8391340.051*
C230.41726 (19)0.5603 (2)0.71646 (16)0.0505 (5)
H23A0.4121010.5580940.6544740.076*
H23B0.4905520.5441340.7474340.076*
H23C0.4318100.6328370.7462100.076*
C240.17232 (17)0.50770 (15)0.45824 (11)0.0306 (3)
C250.2625 (3)0.4928 (3)0.41239 (19)0.0715 (8)
H25A0.3226540.4685490.4502290.107*
H25B0.3136890.5620830.4014530.107*
H25C0.2102720.4381800.3554980.107*
C260.45814 (17)0.73445 (16)0.27058 (12)0.0356 (4)
C270.5447 (2)0.6969 (2)0.32062 (14)0.0482 (5)
H270.5763360.6546270.2901970.058*
C280.5860 (2)0.7196 (2)0.41342 (17)0.0672 (8)
H280.6447220.6927570.4449920.081*
C290.5418 (3)0.7806 (3)0.45937 (16)0.0768 (10)
H290.5691830.7957590.5225460.092*
C300.4580 (3)0.8191 (2)0.41299 (16)0.0661 (8)
H300.4278010.8619770.4441870.079*
C310.4166 (2)0.79596 (18)0.32057 (14)0.0469 (5)
H310.3575720.8231710.2900880.056*
C320.35697 (15)0.56817 (14)0.13074 (11)0.0288 (3)
C330.37922 (16)0.51452 (15)0.06121 (11)0.0314 (3)
H330.4251260.5564200.0280150.038*
C340.33679 (17)0.40263 (16)0.03904 (12)0.0357 (4)
H340.3556770.3697080.0076850.043*
C350.26734 (18)0.33891 (16)0.08447 (13)0.0386 (4)
H350.2385000.2622970.0694930.046*
C360.24016 (18)0.38826 (16)0.15238 (13)0.0375 (4)
H360.1908760.3453940.1835050.045*
C370.28496 (17)0.49968 (15)0.17444 (12)0.0328 (4)
H370.2662060.5318380.2216140.039*
C380.52340 (17)0.76522 (15)0.12307 (12)0.0326 (4)
C390.4939 (2)0.7860 (2)0.03918 (15)0.0483 (5)
H390.4039320.7601010.0030110.058*
C400.5905 (3)0.8432 (2)0.00576 (18)0.0591 (6)
H400.5654070.8573660.0511890.071*
C410.7210 (3)0.87880 (19)0.05451 (18)0.0572 (7)
H410.7871520.9182910.0322430.069*
C420.7548 (2)0.85645 (18)0.13635 (16)0.0508 (6)
H420.8449940.8784870.1701370.061*
C430.65782 (18)0.80176 (16)0.17015 (14)0.0394 (4)
H430.6841010.7887900.2274810.047*
C440.27982 (17)0.72875 (15)0.11957 (11)0.0320 (4)
C450.14906 (17)0.65120 (15)0.07830 (11)0.0310 (3)
H450.1308920.5764840.0719960.037*
C460.04444 (18)0.67864 (17)0.04607 (12)0.0362 (4)
H460.0428070.6231660.0186700.043*
C470.0672 (2)0.78577 (19)0.05386 (14)0.0459 (5)
H470.0038660.8052180.0332150.055*
C480.1950 (2)0.8647 (2)0.09213 (18)0.0561 (6)
H480.2124050.9390900.0965830.067*
C490.2982 (2)0.83617 (18)0.12416 (16)0.0478 (5)
H490.3851570.8922800.1503760.057*
B10.40542 (18)0.69972 (16)0.16043 (13)0.0297 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C500.078 (3)0.088 (4)0.095 (4)0.034 (3)0.033 (3)0.019 (3)
Cl10.0627 (15)0.0701 (19)0.124 (3)0.0262 (11)0.0198 (15)0.0036 (17)
Cl20.0863 (15)0.128 (2)0.0717 (14)0.0313 (14)0.0241 (11)0.0371 (13)
C50B0.097 (5)0.097 (4)0.112 (4)0.028 (4)0.030 (4)0.006 (4)
Cl1B0.107 (4)0.061 (3)0.111 (4)0.004 (3)0.032 (4)0.030 (3)
Cl2B0.107 (4)0.121 (3)0.101 (3)0.037 (3)0.016 (3)0.008 (3)
C50C0.085 (5)0.082 (5)0.109 (5)0.024 (4)0.029 (5)0.014 (4)
Cl1C0.106 (5)0.088 (5)0.132 (6)0.016 (5)0.024 (5)0.024 (5)
Cl2C0.086 (5)0.113 (5)0.106 (5)0.024 (4)0.019 (5)0.007 (4)
Mn10.02674 (13)0.03049 (14)0.02112 (11)0.01047 (10)0.00803 (9)0.00420 (9)
O10.0261 (6)0.0485 (8)0.0334 (6)0.0143 (5)0.0069 (5)0.0116 (6)
O20.0464 (8)0.0493 (8)0.0283 (6)0.0213 (6)0.0187 (5)0.0123 (6)
O30.0324 (7)0.0494 (9)0.0538 (9)0.0165 (6)0.0012 (6)0.0164 (7)
N10.0311 (7)0.0276 (7)0.0225 (6)0.0118 (6)0.0078 (5)0.0045 (5)
N20.0310 (7)0.0294 (7)0.0250 (6)0.0102 (6)0.0100 (5)0.0069 (5)
N30.0338 (8)0.0304 (7)0.0296 (7)0.0127 (6)0.0075 (6)0.0024 (6)
C10.0307 (8)0.0269 (8)0.0264 (7)0.0117 (6)0.0072 (6)0.0067 (6)
C20.0596 (13)0.0352 (10)0.0361 (10)0.0150 (9)0.0228 (9)0.0103 (8)
C30.0804 (17)0.0434 (13)0.0549 (13)0.0177 (12)0.0380 (13)0.0223 (11)
C40.0716 (16)0.0319 (11)0.0660 (16)0.0092 (11)0.0262 (13)0.0184 (11)
C50.0571 (13)0.0289 (10)0.0527 (12)0.0123 (9)0.0136 (10)0.0054 (9)
C60.0392 (9)0.0279 (9)0.0327 (8)0.0136 (7)0.0063 (7)0.0033 (7)
C70.0601 (13)0.0333 (10)0.0337 (9)0.0199 (9)0.0143 (9)0.0009 (8)
C80.0560 (12)0.0396 (10)0.0279 (8)0.0197 (9)0.0184 (8)0.0032 (7)
C90.0312 (8)0.0301 (8)0.0247 (7)0.0122 (7)0.0095 (6)0.0039 (6)
C100.0430 (10)0.0327 (9)0.0316 (8)0.0103 (8)0.0211 (7)0.0056 (7)
C110.0369 (9)0.0313 (9)0.0360 (9)0.0102 (7)0.0182 (7)0.0081 (7)
C120.0351 (9)0.0296 (9)0.0405 (9)0.0127 (7)0.0129 (7)0.0077 (7)
C130.0598 (14)0.0322 (11)0.0743 (16)0.0143 (10)0.0361 (12)0.0118 (10)
C140.0629 (16)0.0303 (11)0.092 (2)0.0108 (10)0.0335 (14)0.0019 (12)
C150.0491 (12)0.0364 (11)0.0526 (12)0.0182 (9)0.0080 (10)0.0055 (9)
C160.0658 (16)0.0471 (14)0.0671 (16)0.0205 (12)0.0117 (13)0.0178 (12)
C170.0785 (19)0.0614 (17)0.0534 (15)0.0309 (15)0.0084 (13)0.0219 (13)
C180.0874 (19)0.0707 (18)0.0417 (12)0.0395 (15)0.0241 (12)0.0015 (12)
C190.0639 (14)0.0480 (13)0.0367 (10)0.0239 (11)0.0181 (10)0.0008 (9)
C200.0375 (10)0.0362 (10)0.0346 (9)0.0178 (8)0.0044 (7)0.0021 (7)
C210.0409 (10)0.0527 (12)0.0297 (8)0.0220 (9)0.0089 (7)0.0177 (8)
C220.0360 (10)0.0578 (13)0.0275 (8)0.0203 (9)0.0018 (7)0.0101 (8)
C230.0256 (9)0.0617 (14)0.0590 (13)0.0137 (9)0.0114 (9)0.0214 (11)
C240.0287 (8)0.0337 (9)0.0257 (7)0.0100 (7)0.0099 (6)0.0036 (6)
C250.096 (2)0.105 (2)0.0677 (16)0.0679 (19)0.0631 (16)0.0456 (16)
C260.0290 (8)0.0346 (9)0.0313 (8)0.0038 (7)0.0086 (7)0.0033 (7)
C270.0388 (11)0.0522 (13)0.0375 (10)0.0095 (9)0.0037 (8)0.0105 (9)
C280.0485 (13)0.0771 (19)0.0418 (12)0.0015 (12)0.0022 (10)0.0218 (12)
C290.0674 (17)0.085 (2)0.0291 (11)0.0109 (15)0.0112 (11)0.0026 (12)
C300.0644 (16)0.0672 (17)0.0406 (12)0.0006 (13)0.0277 (11)0.0048 (11)
C310.0433 (11)0.0459 (12)0.0386 (10)0.0044 (9)0.0201 (8)0.0006 (9)
C320.0227 (7)0.0334 (9)0.0277 (7)0.0117 (6)0.0061 (6)0.0054 (6)
C330.0256 (8)0.0365 (9)0.0295 (8)0.0123 (7)0.0083 (6)0.0047 (7)
C340.0298 (8)0.0392 (10)0.0343 (9)0.0157 (7)0.0078 (7)0.0000 (7)
C350.0327 (9)0.0326 (9)0.0450 (10)0.0138 (7)0.0077 (8)0.0050 (8)
C360.0324 (9)0.0377 (10)0.0416 (10)0.0128 (8)0.0130 (7)0.0139 (8)
C370.0294 (8)0.0368 (9)0.0318 (8)0.0137 (7)0.0111 (7)0.0075 (7)
C380.0325 (9)0.0290 (8)0.0371 (9)0.0127 (7)0.0154 (7)0.0050 (7)
C390.0480 (12)0.0599 (14)0.0465 (11)0.0256 (11)0.0228 (9)0.0220 (10)
C400.0778 (18)0.0622 (16)0.0590 (14)0.0343 (14)0.0430 (13)0.0305 (12)
C410.0621 (15)0.0371 (11)0.0750 (17)0.0094 (10)0.0476 (13)0.0059 (11)
C420.0373 (11)0.0403 (11)0.0603 (14)0.0024 (8)0.0244 (9)0.0090 (10)
C430.0338 (9)0.0359 (10)0.0403 (10)0.0088 (7)0.0143 (7)0.0021 (8)
C440.0318 (8)0.0348 (9)0.0290 (8)0.0143 (7)0.0117 (6)0.0037 (7)
C450.0323 (8)0.0367 (9)0.0255 (7)0.0144 (7)0.0126 (6)0.0079 (7)
C460.0309 (9)0.0511 (11)0.0275 (8)0.0182 (8)0.0108 (7)0.0094 (7)
C470.0444 (11)0.0552 (13)0.0445 (11)0.0316 (10)0.0113 (9)0.0095 (9)
C480.0547 (13)0.0394 (12)0.0707 (16)0.0277 (10)0.0095 (11)0.0045 (11)
C490.0387 (11)0.0354 (11)0.0585 (13)0.0148 (8)0.0067 (9)0.0006 (9)
B10.0269 (9)0.0312 (9)0.0282 (8)0.0112 (7)0.0087 (7)0.0040 (7)
Geometric parameters (Å, º) top
C50—H50A0.9900C19—H190.9500
C50—H50B0.9900C19—C201.395 (3)
C50—Cl11.759 (9)C21—H21A0.9900
C50—Cl21.690 (9)C21—H21B0.9900
C50B—H50C0.9900C21—C221.504 (3)
C50B—H50D0.9900C22—H22A0.9900
C50B—Cl1B1.705 (12)C22—H22B0.9900
C50B—Cl2B1.694 (12)C23—H23A0.9800
C50C—H50E0.9900C23—H23B0.9800
C50C—H50F0.9900C23—H23C0.9800
C50C—Cl1C1.727 (16)C24—C251.498 (3)
C50C—Cl2C1.744 (16)C25—H25A0.9800
Mn1—O12.3225 (12)C25—H25B0.9800
Mn1—O22.0617 (13)C25—H25C0.9800
Mn1—O3i2.0908 (14)C26—C271.403 (3)
Mn1—N12.3179 (14)C26—C311.396 (3)
Mn1—N22.2730 (14)C26—B11.653 (3)
Mn1—N32.3588 (16)C27—H270.9500
O1—C221.428 (2)C27—C281.395 (3)
O1—C231.433 (2)C28—H280.9500
O2—C241.258 (2)C28—C291.376 (5)
O3—C241.229 (2)C29—H290.9500
N1—C11.372 (2)C29—C301.366 (5)
N1—C91.320 (2)C30—H300.9500
N2—C101.471 (2)C30—C311.389 (3)
N2—C111.466 (2)C31—H310.9500
N2—C211.481 (2)C32—C331.403 (2)
N3—C121.321 (2)C32—C371.405 (2)
N3—C201.375 (2)C32—B11.636 (3)
C1—C21.405 (3)C33—H330.9500
C1—C61.413 (2)C33—C341.387 (3)
C2—H20.9500C34—H340.9500
C2—C31.365 (3)C34—C351.379 (3)
C3—H30.9500C35—H350.9500
C3—C41.402 (3)C35—C361.389 (3)
C4—H40.9500C36—H360.9500
C4—C51.350 (4)C36—C371.378 (3)
C5—H50.9500C37—H370.9500
C5—C61.413 (3)C38—C391.391 (3)
C6—C71.407 (3)C38—C431.397 (3)
C7—H70.9500C38—B11.649 (3)
C7—C81.352 (3)C39—H390.9500
C8—H80.9500C39—C401.395 (3)
C8—C91.413 (2)C40—H400.9500
C9—C101.507 (3)C40—C411.366 (4)
C10—H10A0.9900C41—H410.9500
C10—H10B0.9900C41—C421.374 (4)
C11—H11A0.9900C42—H420.9500
C11—H11B0.9900C42—C431.392 (3)
C11—C121.503 (3)C43—H430.9500
C12—C131.409 (3)C44—C451.400 (2)
C13—H130.9500C44—C491.394 (3)
C13—C141.355 (3)C44—B11.643 (3)
C14—H140.9500C45—H450.9500
C14—C151.391 (4)C45—C461.392 (3)
C15—C161.416 (3)C46—H460.9500
C15—C201.423 (3)C46—C471.372 (3)
C16—H160.9500C47—H470.9500
C16—C171.342 (4)C47—C481.378 (3)
C17—H170.9500C48—H480.9500
C17—C181.401 (4)C48—C491.386 (3)
C18—H180.9500C49—H490.9500
C18—C191.377 (3)
H50A—C50—H50B108.1C18—C19—C20120.2 (2)
Cl1—C50—H50A109.6C20—C19—H19119.9
Cl1—C50—H50B109.6N3—C20—C15121.25 (19)
Cl2—C50—H50A109.6N3—C20—C19119.40 (19)
Cl2—C50—H50B109.6C19—C20—C15119.34 (19)
Cl2—C50—Cl1110.3 (6)N2—C21—H21A109.2
H50C—C50B—H50D105.2N2—C21—H21B109.2
Cl1B—C50B—H50C103.3N2—C21—C22112.12 (16)
Cl1B—C50B—H50D103.3H21A—C21—H21B107.9
Cl2B—C50B—H50C103.3C22—C21—H21A109.2
Cl2B—C50B—H50D103.3C22—C21—H21B109.2
Cl2B—C50B—Cl1B135.4 (13)O1—C22—C21107.05 (15)
H50E—C50C—H50F107.9O1—C22—H22A110.3
Cl1C—C50C—H50E109.2O1—C22—H22B110.3
Cl1C—C50C—H50F109.2C21—C22—H22A110.3
Cl1C—C50C—Cl2C112.2 (17)C21—C22—H22B110.3
Cl2C—C50C—H50E109.2H22A—C22—H22B108.6
Cl2C—C50C—H50F109.2O1—C23—H23A109.5
O1—Mn1—N396.57 (5)O1—C23—H23B109.5
O2—Mn1—O184.05 (5)O1—C23—H23C109.5
O2—Mn1—O3i110.97 (6)H23A—C23—H23B109.5
O2—Mn1—N1109.12 (6)H23A—C23—H23C109.5
O2—Mn1—N3101.83 (6)H23B—C23—H23C109.5
O3i—Mn1—N187.99 (6)O2—C24—C25116.91 (18)
O3i—Mn1—N290.53 (6)O3—C24—O2125.16 (17)
O3i—Mn1—N387.05 (6)O3—C24—C25117.92 (19)
N1—Mn1—O180.52 (5)C24—C25—H25A109.5
N2—Mn1—N373.25 (5)C24—C25—H25B109.5
N2—Mn1—N175.56 (5)C24—C25—H25C109.5
N1—Mn1—N3148.35 (5)H25A—C25—H25B109.5
N2—Mn1—O175.32 (5)H25A—C25—H25C109.5
O2—Mn1—N2157.89 (6)H25B—C25—H25C109.5
O3i—Mn1—O1163.58 (6)C27—C26—B1120.56 (18)
C22—O1—Mn1112.30 (11)C31—C26—C27115.02 (19)
C22—O1—C23111.21 (16)C31—C26—B1124.32 (18)
C23—O1—Mn1121.88 (12)C26—C27—H27118.8
C24—O2—Mn1142.36 (13)C28—C27—C26122.4 (3)
C24—O3—Mn1i151.82 (14)C28—C27—H27118.8
C1—N1—Mn1128.22 (11)C27—C28—H28119.9
C9—N1—Mn1113.65 (11)C29—C28—C27120.2 (3)
C9—N1—C1118.04 (14)C29—C28—H28119.9
C10—N2—Mn1109.92 (11)C28—C29—H29120.4
C10—N2—C21111.94 (15)C30—C29—C28119.2 (2)
C11—N2—Mn1107.45 (10)C30—C29—H29120.4
C11—N2—C10110.41 (14)C29—C30—H30119.7
C11—N2—C21109.22 (15)C29—C30—C31120.5 (3)
C21—N2—Mn1107.76 (11)C31—C30—H30119.7
C12—N3—Mn1111.67 (12)C26—C31—H31118.6
C12—N3—C20118.07 (17)C30—C31—C26122.8 (3)
C20—N3—Mn1129.60 (13)C30—C31—H31118.6
N1—C1—C2119.51 (16)C33—C32—C37114.90 (16)
N1—C1—C6122.12 (16)C33—C32—B1124.78 (16)
C2—C1—C6118.37 (17)C37—C32—B1120.30 (15)
C1—C2—H2119.8C32—C33—H33118.7
C3—C2—C1120.5 (2)C34—C33—C32122.53 (17)
C3—C2—H2119.8C34—C33—H33118.7
C2—C3—H3119.6C33—C34—H34119.8
C2—C3—C4120.9 (2)C35—C34—C33120.37 (17)
C4—C3—H3119.6C35—C34—H34119.8
C3—C4—H4119.9C34—C35—H35120.5
C5—C4—C3120.1 (2)C34—C35—C36119.09 (18)
C5—C4—H4119.9C36—C35—H35120.5
C4—C5—H5119.8C35—C36—H36120.1
C4—C5—C6120.5 (2)C37—C36—C35119.71 (18)
C6—C5—H5119.8C37—C36—H36120.1
C5—C6—C1119.66 (18)C32—C37—H37118.3
C7—C6—C1117.70 (17)C36—C37—C32123.36 (17)
C7—C6—C5122.64 (18)C36—C37—H37118.3
C6—C7—H7120.2C39—C38—C43114.79 (18)
C8—C7—C6119.61 (17)C39—C38—B1121.06 (17)
C8—C7—H7120.2C43—C38—B1124.13 (17)
C7—C8—H8120.2C38—C39—H39118.5
C7—C8—C9119.59 (18)C38—C39—C40123.0 (2)
C9—C8—H8120.2C40—C39—H39118.5
N1—C9—C8122.90 (17)C39—C40—H40119.8
N1—C9—C10119.42 (15)C41—C40—C39120.3 (2)
C8—C9—C10117.64 (16)C41—C40—H40119.8
N2—C10—C9114.35 (14)C40—C41—H41120.6
N2—C10—H10A108.7C40—C41—C42118.7 (2)
N2—C10—H10B108.7C42—C41—H41120.6
C9—C10—H10A108.7C41—C42—H42119.7
C9—C10—H10B108.7C41—C42—C43120.5 (2)
H10A—C10—H10B107.6C43—C42—H42119.7
N2—C11—H11A109.2C38—C43—H43118.7
N2—C11—H11B109.2C42—C43—C38122.6 (2)
N2—C11—C12112.10 (15)C42—C43—H43118.7
H11A—C11—H11B107.9C45—C44—B1124.36 (16)
C12—C11—H11A109.2C49—C44—C45114.81 (17)
C12—C11—H11B109.2C49—C44—B1120.83 (16)
N3—C12—C11119.00 (16)C44—C45—H45118.5
N3—C12—C13123.29 (18)C46—C45—C44122.94 (18)
C13—C12—C11117.66 (18)C46—C45—H45118.5
C12—C13—H13120.4C45—C46—H46120.0
C14—C13—C12119.1 (2)C47—C46—C45120.04 (18)
C14—C13—H13120.4C47—C46—H46120.0
C13—C14—H14120.1C46—C47—H47120.5
C13—C14—C15119.9 (2)C46—C47—C48118.94 (19)
C15—C14—H14120.1C48—C47—H47120.5
C14—C15—C16123.2 (2)C47—C48—H48119.8
C14—C15—C20118.2 (2)C47—C48—C49120.4 (2)
C16—C15—C20118.5 (2)C49—C48—H48119.8
C15—C16—H16119.6C44—C49—H49118.6
C17—C16—C15120.8 (3)C48—C49—C44122.9 (2)
C17—C16—H16119.6C48—C49—H49118.6
C16—C17—H17119.6C32—B1—C26106.64 (15)
C16—C17—C18120.9 (2)C32—B1—C38111.30 (14)
C18—C17—H17119.6C32—B1—C44109.25 (14)
C17—C18—H18119.9C38—B1—C26110.86 (14)
C19—C18—C17120.3 (3)C44—B1—C26110.05 (14)
C19—C18—H18119.9C44—B1—C38108.71 (15)
C18—C19—H19119.9
Mn1—O1—C22—C2138.51 (19)C20—N3—C12—C11175.83 (16)
Mn1—O2—C24—O310.6 (3)C20—N3—C12—C131.6 (3)
Mn1—O2—C24—C25170.5 (2)C20—C15—C16—C170.1 (4)
Mn1i—O3—C24—O252.6 (4)C21—N2—C10—C990.09 (19)
Mn1i—O3—C24—C25128.6 (3)C21—N2—C11—C1273.32 (19)
Mn1—N1—C1—C23.7 (2)C23—O1—C22—C21178.99 (18)
Mn1—N1—C1—C6176.51 (12)C26—C27—C28—C290.0 (4)
Mn1—N1—C9—C8178.81 (14)C27—C26—C31—C300.3 (3)
Mn1—N1—C9—C103.4 (2)C27—C26—B1—C3247.7 (2)
Mn1—N2—C10—C929.63 (18)C27—C26—B1—C3873.6 (2)
Mn1—N2—C11—C1243.31 (17)C27—C26—B1—C44166.12 (17)
Mn1—N2—C21—C2246.04 (18)C27—C28—C29—C300.4 (4)
Mn1—N3—C12—C114.3 (2)C28—C29—C30—C310.7 (4)
Mn1—N3—C12—C13173.17 (18)C29—C30—C31—C260.7 (4)
Mn1—N3—C20—C15167.79 (15)C31—C26—C27—C280.0 (3)
Mn1—N3—C20—C1910.9 (3)C31—C26—B1—C32128.48 (19)
N1—C1—C2—C3178.6 (2)C31—C26—B1—C38110.2 (2)
N1—C1—C6—C5178.65 (18)C31—C26—B1—C4410.1 (2)
N1—C1—C6—C71.4 (3)C32—C33—C34—C351.4 (3)
N1—C9—C10—N223.0 (2)C33—C32—C37—C360.8 (2)
N2—C11—C12—N326.8 (2)C33—C32—B1—C26139.84 (16)
N2—C11—C12—C13155.63 (19)C33—C32—B1—C3818.8 (2)
N2—C21—C22—O157.5 (2)C33—C32—B1—C44101.24 (18)
N3—C12—C13—C143.4 (4)C33—C34—C35—C360.2 (3)
C1—N1—C9—C81.9 (3)C34—C35—C36—C371.3 (3)
C1—N1—C9—C10179.71 (16)C35—C36—C37—C320.8 (3)
C1—C2—C3—C40.8 (4)C37—C32—C33—C341.8 (2)
C1—C6—C7—C81.3 (3)C37—C32—B1—C2641.6 (2)
C2—C1—C6—C51.6 (3)C37—C32—B1—C38162.65 (15)
C2—C1—C6—C7178.30 (19)C37—C32—B1—C4477.29 (19)
C2—C3—C4—C50.1 (4)C38—C39—C40—C412.1 (4)
C3—C4—C5—C60.1 (4)C39—C38—C43—C421.1 (3)
C4—C5—C6—C10.8 (3)C39—C38—B1—C26153.23 (18)
C4—C5—C6—C7179.1 (2)C39—C38—B1—C3288.2 (2)
C5—C6—C7—C8178.8 (2)C39—C38—B1—C4432.1 (2)
C6—C1—C2—C31.6 (3)C39—C40—C41—C420.5 (4)
C6—C7—C8—C90.4 (3)C40—C41—C42—C432.2 (3)
C7—C8—C9—N12.1 (3)C41—C42—C43—C381.4 (3)
C7—C8—C9—C10179.91 (19)C43—C38—C39—C402.8 (3)
C8—C9—C10—N2159.09 (17)C43—C38—B1—C2628.2 (2)
C9—N1—C1—C2179.88 (17)C43—C38—B1—C3290.3 (2)
C9—N1—C1—C60.1 (2)C43—C38—B1—C44149.32 (17)
C10—N2—C11—C12163.18 (16)C44—C45—C46—C470.2 (3)
C10—N2—C21—C2274.9 (2)C45—C44—C49—C481.3 (3)
C11—N2—C10—C9148.00 (16)C45—C44—B1—C26107.56 (19)
C11—N2—C21—C22162.47 (16)C45—C44—B1—C329.2 (2)
C11—C12—C13—C14174.1 (2)C45—C44—B1—C38130.85 (17)
C12—N3—C20—C152.0 (3)C45—C46—C47—C481.4 (3)
C12—N3—C20—C19179.26 (19)C46—C47—C48—C491.6 (4)
C12—C13—C14—C151.4 (4)C47—C48—C49—C440.2 (4)
C13—C14—C15—C16178.7 (3)C49—C44—C45—C461.5 (3)
C13—C14—C15—C202.0 (4)C49—C44—B1—C2672.5 (2)
C14—C15—C16—C17179.2 (3)C49—C44—B1—C32170.74 (18)
C14—C15—C20—N33.8 (3)C49—C44—B1—C3849.1 (2)
C14—C15—C20—C19177.5 (2)B1—C26—C27—C28176.5 (2)
C15—C16—C17—C181.2 (5)B1—C26—C31—C30176.7 (2)
C16—C15—C20—N3176.9 (2)B1—C32—C33—C34179.55 (16)
C16—C15—C20—C191.9 (3)B1—C32—C37—C36179.43 (16)
C16—C17—C18—C190.7 (5)B1—C38—C39—C40178.5 (2)
C17—C18—C19—C201.1 (4)B1—C38—C43—C42179.73 (18)
C18—C19—C20—N3176.4 (2)B1—C44—C45—C46178.56 (16)
C18—C19—C20—C152.3 (3)B1—C44—C49—C48178.8 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg9 and Cg12 are the centroids of the C32–C37 and C44–C49 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.493.366 (3)154
C19—H19···O20.952.313.199 (3)155
C23—H23A···O20.982.313.1767 (2)119
C29—H29···Cl2ii0.952.653.5305 (2)155
C8—H8···Cg11iii0.952.683.5556 (2)153
C11—H11B···Cg11iv0.992.813.7195 (2)152
C23—H23B···Cg90.982.783.7034 (2)157
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z.
(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) top
Crystal data top
[Mn(C2H3O2)(C22H21N3O)(CH4O)](C24H20B)·CH4OF(000) = 1772
Mr = 840.69Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3504 (3) ÅCell parameters from 8395 reflections
b = 17.4824 (5) Åθ = 2.4–32.4°
c = 23.9618 (9) ŵ = 0.36 mm1
β = 96.222 (3)°T = 173 K
V = 4310.3 (3) Å3Prism, colourless
Z = 40.34 × 0.28 × 0.26 mm
Data collection top
Rigaku Oxford Diffraction Gemini Eos
diffractometer
14443 independent reflections
Radiation source: fine-focus sealed X-ray tube10348 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.032
ω scansθmax = 32.9°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1512
Tmin = 0.845, Tmax = 1.000k = 2515
31473 measured reflectionsl = 3436
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.7892P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
14443 reflectionsΔρmax = 0.67 e Å3
582 parametersΔρmin = 0.44 e Å3
85 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.20955 (3)0.33373 (2)0.52463 (2)0.02919 (8)
O10.28258 (14)0.44314 (8)0.52710 (7)0.0462 (4)
O20.13629 (13)0.53266 (9)0.50981 (7)0.0474 (4)
C210.0123 (4)0.2185 (2)0.51942 (16)0.0392 (8)0.791 (5)
H21A0.0463720.2367170.5541010.047*0.791 (5)
H21B0.0502690.1674890.5101000.047*0.791 (5)
C220.0519 (2)0.27345 (14)0.47199 (13)0.0418 (7)0.791 (5)
H22A0.0264260.2526950.4363290.050*0.791 (5)
H22B0.1473850.2803760.4678180.050*0.791 (5)
O30.0113 (7)0.3457 (3)0.4842 (2)0.0403 (9)0.791 (5)
H30.040 (3)0.3839 (18)0.4820 (17)0.060*0.791 (5)
C21B0.0034 (13)0.2064 (8)0.5036 (7)0.037 (2)0.209 (5)
H21C0.0472540.1621250.5191870.044*0.209 (5)
H21D0.0067770.2001110.4624370.044*0.209 (5)
C22B0.0669 (8)0.2791 (5)0.5177 (5)0.0389 (19)0.209 (5)
H22C0.1576930.2804970.4998240.047*0.209 (5)
H22D0.0677220.2836490.5588030.047*0.209 (5)
O3B0.008 (3)0.3419 (13)0.4966 (10)0.043 (3)0.209 (5)
H3B0.056 (11)0.371 (8)0.499 (7)0.065*0.209 (5)
O40.11509 (17)0.35761 (10)0.60633 (7)0.0527 (4)
H40.055 (2)0.3937 (15)0.5997 (13)0.079*
N10.13266 (14)0.21202 (8)0.52926 (7)0.0303 (3)
N20.25628 (13)0.27746 (8)0.44162 (6)0.0266 (3)
N30.35823 (13)0.26902 (8)0.58298 (6)0.0252 (3)
C10.1944 (2)0.16292 (10)0.48974 (8)0.0357 (4)
H1A0.1333260.1211920.4772140.043*
H1B0.2726300.1391480.5100290.043*
C20.23347 (16)0.20309 (9)0.43876 (7)0.0280 (3)
C30.25111 (19)0.15814 (10)0.39141 (8)0.0334 (4)
H3A0.2330760.1048580.3914100.040*
C40.29409 (19)0.19162 (11)0.34578 (8)0.0356 (4)
H4A0.3089190.1617260.3139790.043*
C50.31655 (16)0.27117 (10)0.34599 (7)0.0283 (3)
C60.35729 (18)0.31007 (11)0.29957 (8)0.0353 (4)
H60.3707400.2823130.2666080.042*
C70.37775 (18)0.38724 (12)0.30132 (9)0.0381 (4)
H70.4058970.4129340.2698610.046*
C80.35708 (19)0.42820 (11)0.34959 (9)0.0393 (4)
H80.3703690.4819740.3504150.047*
C90.31792 (18)0.39232 (10)0.39589 (9)0.0345 (4)
H90.3051400.4211400.4284510.041*
C100.29674 (15)0.31276 (9)0.39503 (7)0.0259 (3)
C110.17185 (17)0.18520 (10)0.58677 (8)0.0312 (4)
H11A0.1635310.1288380.5881500.037*
H11B0.1132870.2074890.6124890.037*
C120.31033 (16)0.20774 (9)0.60597 (7)0.0267 (3)
C130.38127 (18)0.16443 (10)0.64823 (7)0.0312 (3)
H130.3438390.1203500.6631920.037*
C140.50433 (18)0.18645 (11)0.66747 (7)0.0319 (4)
H140.5523990.1586360.6968110.038*
C150.56008 (16)0.25053 (10)0.64375 (7)0.0276 (3)
C160.68919 (18)0.27456 (12)0.66024 (8)0.0364 (4)
H160.7407530.2482390.6893570.044*
C170.73966 (18)0.33547 (12)0.63438 (9)0.0396 (4)
H170.8264800.3512670.6454670.047*
C180.66421 (17)0.37488 (11)0.59156 (9)0.0356 (4)
H180.7009190.4169200.5737130.043*
C190.53883 (17)0.35388 (10)0.57505 (8)0.0300 (3)
H190.4886630.3815830.5462590.036*
C200.48377 (15)0.29084 (9)0.60089 (7)0.0250 (3)
C230.24089 (16)0.50955 (10)0.53307 (8)0.0303 (3)
C240.3267 (3)0.56395 (15)0.56863 (12)0.0614 (7)
H24A0.4048810.5746720.5503080.092*
H24B0.3515500.5409390.6055200.092*
H24C0.2795100.6117470.5732580.092*
C250.1491 (3)0.3478 (2)0.66598 (13)0.0784 (10)
H25A0.2363580.3256400.6727990.118*
H25B0.0862760.3134770.6808870.118*
H25C0.1477100.3975640.6847050.118*
C1A0.22940 (15)0.82390 (9)0.66632 (7)0.0259 (3)
C2A0.10210 (17)0.80890 (11)0.67793 (9)0.0355 (4)
H2A0.0389370.8483230.6720240.043*
C3A0.06469 (19)0.73829 (13)0.69782 (10)0.0447 (5)
H3AA0.0223830.7307870.7057350.054*
C4A0.1531 (2)0.67907 (11)0.70614 (9)0.0387 (4)
H4AA0.1272190.6306970.7191750.046*
C5A0.27959 (18)0.69140 (10)0.69519 (8)0.0326 (4)
H5A0.3414840.6512010.7003780.039*
C6A0.31643 (16)0.76255 (10)0.67659 (8)0.0297 (3)
H6A0.4047140.7701150.6705190.036*
C7A0.31146 (15)0.89862 (10)0.57761 (7)0.0261 (3)
C8A0.3448 (2)0.83050 (11)0.55251 (9)0.0380 (4)
H8A0.3436590.7844190.5734590.046*
C9A0.3796 (3)0.82714 (13)0.49820 (10)0.0529 (6)
H9A0.4011980.7792320.4829770.063*
C10A0.3831 (2)0.89245 (14)0.46602 (9)0.0466 (5)
H10A0.4068220.8901040.4288550.056*
C11A0.35142 (19)0.96101 (13)0.48919 (8)0.0389 (4)
H11C0.3537861.0068420.4680200.047*
C12A0.31613 (17)0.96345 (11)0.54320 (8)0.0329 (4)
H12A0.2938161.0115970.5578540.040*
C13A0.16269 (15)0.97007 (9)0.64705 (8)0.0267 (3)
C14A0.05958 (16)0.97907 (10)0.60442 (9)0.0353 (4)
H14A0.0592560.9490830.5713410.042*
C15A0.04201 (17)1.02996 (11)0.60857 (11)0.0432 (5)
H15A0.1104421.0337100.5788940.052*
C16A0.04368 (19)1.07520 (12)0.65585 (11)0.0474 (6)
H16A0.1121961.1106700.6586810.057*
C17A0.0554 (2)1.06805 (12)0.69877 (10)0.0441 (5)
H17A0.0554351.0986020.7315600.053*
C18A0.15569 (17)1.01606 (11)0.69413 (8)0.0335 (4)
H18A0.2224001.0117410.7244820.040*
C19A0.41144 (14)0.93303 (9)0.68196 (7)0.0232 (3)
C20A0.51032 (15)0.97532 (10)0.66120 (8)0.0287 (3)
H20A0.5017090.9885010.6225090.034*
C21A0.62107 (17)0.99890 (10)0.69507 (9)0.0352 (4)
H21E0.6857051.0278670.6792530.042*
C22A0.63763 (18)0.98059 (11)0.75126 (9)0.0375 (4)
H22E0.7132400.9965730.7743370.045*
C23A0.54236 (19)0.93855 (11)0.77356 (8)0.0366 (4)
H23A0.5521870.9254410.8122650.044*
C24A0.43231 (17)0.91548 (10)0.73937 (7)0.0300 (3)
H24D0.3682730.8865200.7555810.036*
B10.27814 (16)0.90606 (10)0.64275 (8)0.0242 (3)
O1S0.05332 (15)0.47197 (9)0.60054 (7)0.0472 (4)
H1S0.0687720.4861070.5669740.071*
C1S0.0042 (2)0.53448 (14)0.63392 (11)0.0520 (6)
H1SA0.0470100.5817050.6197490.078*
H1SB0.0896740.5388280.6322300.078*
H1SC0.0213280.5261890.6728970.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02894 (13)0.02222 (13)0.03608 (15)0.00182 (9)0.00209 (10)0.00026 (10)
O10.0414 (7)0.0229 (6)0.0737 (11)0.0002 (5)0.0041 (7)0.0025 (6)
O20.0346 (7)0.0392 (8)0.0650 (10)0.0033 (6)0.0096 (7)0.0072 (7)
C210.0324 (13)0.0326 (16)0.051 (2)0.0094 (11)0.0030 (14)0.0003 (13)
C220.0340 (12)0.0340 (13)0.0541 (17)0.0049 (9)0.0099 (11)0.0010 (11)
O30.0302 (12)0.0282 (13)0.060 (3)0.0003 (10)0.0077 (17)0.0041 (14)
C21B0.029 (4)0.032 (4)0.047 (5)0.008 (3)0.001 (4)0.004 (4)
C22B0.028 (3)0.032 (3)0.057 (4)0.005 (3)0.007 (3)0.003 (3)
O3B0.036 (4)0.033 (4)0.059 (6)0.004 (3)0.000 (5)0.009 (4)
O40.0568 (10)0.0561 (10)0.0459 (9)0.0133 (8)0.0089 (7)0.0098 (7)
N10.0296 (7)0.0264 (7)0.0346 (8)0.0053 (5)0.0021 (6)0.0003 (6)
N20.0274 (6)0.0215 (6)0.0306 (7)0.0026 (5)0.0017 (5)0.0030 (5)
N30.0270 (6)0.0225 (6)0.0269 (7)0.0020 (5)0.0071 (5)0.0009 (5)
C10.0546 (11)0.0213 (8)0.0311 (9)0.0066 (7)0.0039 (8)0.0011 (6)
C20.0296 (8)0.0225 (7)0.0308 (8)0.0020 (6)0.0011 (6)0.0012 (6)
C30.0442 (10)0.0214 (8)0.0341 (9)0.0025 (7)0.0028 (8)0.0008 (6)
C40.0434 (10)0.0296 (9)0.0338 (9)0.0004 (7)0.0049 (8)0.0026 (7)
C50.0252 (7)0.0271 (8)0.0324 (9)0.0023 (6)0.0020 (6)0.0035 (6)
C60.0360 (9)0.0365 (10)0.0340 (9)0.0030 (7)0.0070 (7)0.0048 (7)
C70.0360 (9)0.0384 (10)0.0408 (11)0.0013 (8)0.0074 (8)0.0119 (8)
C80.0428 (10)0.0273 (9)0.0488 (12)0.0024 (7)0.0088 (9)0.0072 (8)
C90.0383 (9)0.0253 (8)0.0408 (10)0.0028 (7)0.0086 (8)0.0013 (7)
C100.0220 (7)0.0239 (7)0.0315 (8)0.0001 (6)0.0014 (6)0.0035 (6)
C110.0313 (8)0.0287 (8)0.0348 (9)0.0063 (6)0.0092 (7)0.0016 (7)
C120.0292 (8)0.0248 (8)0.0274 (8)0.0025 (6)0.0097 (6)0.0005 (6)
C130.0380 (9)0.0280 (8)0.0287 (8)0.0022 (7)0.0085 (7)0.0041 (6)
C140.0376 (9)0.0323 (9)0.0260 (8)0.0025 (7)0.0040 (7)0.0046 (6)
C150.0295 (8)0.0273 (8)0.0269 (8)0.0024 (6)0.0069 (6)0.0012 (6)
C160.0332 (9)0.0403 (10)0.0351 (10)0.0021 (7)0.0012 (7)0.0009 (8)
C170.0291 (9)0.0454 (11)0.0439 (11)0.0068 (8)0.0032 (8)0.0025 (8)
C180.0317 (8)0.0312 (9)0.0450 (11)0.0065 (7)0.0088 (8)0.0009 (7)
C190.0309 (8)0.0249 (8)0.0352 (9)0.0017 (6)0.0073 (7)0.0022 (6)
C200.0253 (7)0.0218 (7)0.0289 (8)0.0003 (6)0.0077 (6)0.0018 (6)
C230.0299 (8)0.0254 (8)0.0354 (9)0.0037 (6)0.0027 (7)0.0017 (6)
C240.0570 (14)0.0509 (14)0.0712 (18)0.0076 (11)0.0169 (12)0.0204 (12)
C250.0734 (19)0.093 (2)0.0644 (19)0.0182 (16)0.0132 (15)0.0370 (17)
C1A0.0239 (7)0.0248 (8)0.0289 (8)0.0040 (6)0.0030 (6)0.0026 (6)
C2A0.0230 (7)0.0353 (9)0.0486 (11)0.0038 (7)0.0051 (7)0.0046 (8)
C3A0.0304 (9)0.0429 (11)0.0615 (14)0.0123 (8)0.0087 (9)0.0073 (10)
C4A0.0440 (10)0.0297 (9)0.0420 (11)0.0124 (8)0.0027 (8)0.0037 (7)
C5A0.0384 (9)0.0242 (8)0.0344 (9)0.0020 (7)0.0001 (7)0.0023 (7)
C6A0.0259 (7)0.0253 (8)0.0379 (9)0.0021 (6)0.0038 (7)0.0028 (7)
C7A0.0205 (7)0.0277 (8)0.0301 (8)0.0019 (6)0.0020 (6)0.0039 (6)
C8A0.0437 (10)0.0296 (9)0.0438 (11)0.0057 (8)0.0182 (9)0.0081 (8)
C9A0.0690 (15)0.0421 (12)0.0532 (14)0.0081 (10)0.0323 (12)0.0192 (10)
C10A0.0506 (12)0.0585 (14)0.0329 (10)0.0097 (10)0.0154 (9)0.0122 (9)
C11A0.0372 (9)0.0489 (12)0.0302 (9)0.0006 (8)0.0024 (7)0.0031 (8)
C12A0.0351 (9)0.0347 (9)0.0289 (9)0.0052 (7)0.0027 (7)0.0001 (7)
C13A0.0200 (6)0.0222 (7)0.0387 (9)0.0020 (5)0.0075 (6)0.0002 (6)
C14A0.0245 (8)0.0272 (8)0.0533 (12)0.0023 (6)0.0001 (7)0.0015 (8)
C15A0.0201 (8)0.0336 (10)0.0754 (15)0.0017 (7)0.0028 (8)0.0101 (10)
C16A0.0294 (9)0.0323 (10)0.0853 (17)0.0059 (7)0.0279 (10)0.0079 (10)
C17A0.0428 (10)0.0351 (10)0.0598 (13)0.0029 (8)0.0296 (10)0.0042 (9)
C18A0.0309 (8)0.0313 (9)0.0404 (10)0.0003 (7)0.0132 (7)0.0019 (7)
C19A0.0208 (6)0.0186 (7)0.0304 (8)0.0006 (5)0.0041 (6)0.0026 (6)
C20A0.0243 (7)0.0267 (8)0.0353 (9)0.0032 (6)0.0036 (6)0.0037 (6)
C21A0.0239 (7)0.0265 (8)0.0548 (12)0.0052 (6)0.0023 (7)0.0021 (8)
C22A0.0300 (8)0.0280 (9)0.0512 (12)0.0005 (7)0.0104 (8)0.0079 (8)
C23A0.0415 (10)0.0341 (10)0.0325 (9)0.0007 (8)0.0036 (8)0.0040 (7)
C24A0.0310 (8)0.0292 (8)0.0303 (8)0.0034 (6)0.0060 (7)0.0029 (6)
B10.0208 (7)0.0218 (8)0.0304 (9)0.0016 (6)0.0045 (6)0.0025 (6)
O1S0.0457 (8)0.0450 (9)0.0509 (9)0.0040 (7)0.0050 (7)0.0076 (7)
C1S0.0468 (12)0.0492 (13)0.0588 (15)0.0004 (10)0.0004 (10)0.0151 (11)
Geometric parameters (Å, º) top
Mn1—O12.0551 (14)C18—H180.9500
Mn1—O32.182 (7)C18—C191.365 (2)
Mn1—O3B2.13 (3)C19—H190.9500
Mn1—O42.3190 (16)C19—C201.414 (2)
Mn1—N12.2787 (15)C23—C241.501 (3)
Mn1—N22.3167 (15)C24—H24A0.9800
Mn1—N32.2664 (14)C24—H24B0.9800
O1—C231.252 (2)C24—H24C0.9800
O2—C231.231 (2)C25—H25A0.9800
C21—H21A0.9900C25—H25B0.9800
C21—H21B0.9900C25—H25C0.9800
C21—C221.511 (5)C1A—C2A1.401 (2)
C21—N11.497 (4)C1A—C6A1.405 (2)
C22—H22A0.9900C1A—B11.643 (2)
C22—H22B0.9900C2A—H2A0.9500
C22—O31.438 (5)C2A—C3A1.393 (3)
O3—H30.849 (18)C3A—H3AA0.9500
C21B—H21C0.9900C3A—C4A1.382 (3)
C21B—H21D0.9900C4A—H4AA0.9500
C21B—C22B1.487 (13)C4A—C5A1.380 (3)
C21B—N11.477 (13)C5A—H5A0.9500
C22B—H22C0.9900C5A—C6A1.389 (2)
C22B—H22D0.9900C6A—H6A0.9500
C22B—O3B1.463 (16)C7A—C8A1.394 (2)
O3B—H3B0.84 (2)C7A—C12A1.406 (3)
O4—H40.890 (17)C7A—B11.640 (3)
O4—C251.445 (3)C8A—H8A0.9500
N1—C11.474 (2)C8A—C9A1.389 (3)
N1—C111.470 (2)C9A—H9A0.9500
N2—C21.322 (2)C9A—C10A1.380 (3)
N2—C101.380 (2)C10A—H10A0.9500
N3—C121.325 (2)C10A—C11A1.375 (3)
N3—C201.377 (2)C11A—H11C0.9500
C1—H1A0.9900C11A—C12A1.383 (3)
C1—H1B0.9900C12A—H12A0.9500
C1—C21.502 (2)C13A—C14A1.404 (2)
C2—C31.408 (3)C13A—C18A1.394 (3)
C3—H3A0.9500C13A—B11.648 (2)
C3—C41.357 (3)C14A—H14A0.9500
C4—H4A0.9500C14A—C15A1.389 (3)
C4—C51.410 (3)C15A—H15A0.9500
C5—C61.407 (3)C15A—C16A1.383 (3)
C5—C101.415 (2)C16A—H16A0.9500
C6—H60.9500C16A—C17A1.377 (3)
C6—C71.366 (3)C17A—H17A0.9500
C7—H70.9500C17A—C18A1.393 (3)
C7—C81.396 (3)C18A—H18A0.9500
C8—H80.9500C19A—C20A1.397 (2)
C8—C91.373 (3)C19A—C24A1.403 (2)
C9—H90.9500C19A—B11.651 (2)
C9—C101.408 (2)C20A—H20A0.9500
C11—H11A0.9900C20A—C21A1.393 (2)
C11—H11B0.9900C21A—H21E0.9500
C11—C121.509 (2)C21A—C22A1.376 (3)
C12—C131.406 (2)C22A—H22E0.9500
C13—H130.9500C22A—C23A1.383 (3)
C13—C141.362 (3)C23A—H23A0.9500
C14—H140.9500C23A—C24A1.389 (2)
C14—C151.408 (2)C24A—H24D0.9500
C15—C161.416 (3)O1S—H1S0.8400
C15—C201.414 (2)O1S—C1S1.416 (3)
C16—H160.9500C1S—H1SA0.9800
C16—C171.364 (3)C1S—H1SB0.9800
C17—H170.9500C1S—H1SC0.9800
C17—C181.401 (3)
O1—Mn1—O3104.41 (14)C14—C15—C20117.95 (15)
O1—Mn1—O3B107.0 (6)C20—C15—C16119.40 (16)
O1—Mn1—O489.75 (7)C15—C16—H16120.0
O1—Mn1—N2108.03 (6)C17—C16—C15120.08 (18)
O1—Mn1—N3102.93 (6)C17—C16—H16120.0
O3—Mn1—O483.98 (17)C16—C17—H17119.8
O3—Mn1—N178.14 (13)C16—C17—C18120.39 (17)
O3—Mn1—N286.19 (17)C18—C17—H17119.8
O3B—Mn1—O476.4 (7)C17—C18—H18119.4
O3B—Mn1—N175.0 (5)C19—C18—C17121.11 (17)
O3B—Mn1—N292.6 (8)C19—C18—H18119.4
O3B—Mn1—N3143.7 (5)C18—C19—H19120.1
N1—Mn1—O486.88 (6)C18—C19—C20119.89 (17)
N1—Mn1—N275.63 (5)C20—C19—H19120.1
N1—Mn1—N373.81 (5)N3—C20—C15121.47 (15)
O3—Mn1—N3149.83 (12)N3—C20—C19119.39 (15)
O1—Mn1—N1175.54 (6)C15—C20—C19119.12 (15)
N2—Mn1—O4161.38 (6)O1—C23—C24117.54 (18)
N3—Mn1—O483.64 (6)O2—C23—O1123.34 (17)
N3—Mn1—N297.28 (5)O2—C23—C24119.07 (18)
C23—O1—Mn1137.39 (13)C23—C24—H24A109.5
H21A—C21—H21B108.1C23—C24—H24B109.5
C22—C21—H21A109.5C23—C24—H24C109.5
C22—C21—H21B109.5H24A—C24—H24B109.5
N1—C21—H21A109.5H24A—C24—H24C109.5
N1—C21—H21B109.5H24B—C24—H24C109.5
N1—C21—C22110.6 (3)O4—C25—H25A109.5
C21—C22—H22A109.9O4—C25—H25B109.5
C21—C22—H22B109.9O4—C25—H25C109.5
H22A—C22—H22B108.3H25A—C25—H25B109.5
O3—C22—C21109.0 (3)H25A—C25—H25C109.5
O3—C22—H22A109.9H25B—C25—H25C109.5
O3—C22—H22B109.9C2A—C1A—C6A114.92 (16)
Mn1—O3—H3131 (3)C2A—C1A—B1124.23 (15)
C22—O3—Mn1113.0 (4)C6A—C1A—B1120.85 (14)
C22—O3—H3114 (3)C1A—C2A—H2A118.8
H21C—C21B—H21D108.7C3A—C2A—C1A122.42 (18)
C22B—C21B—H21C110.6C3A—C2A—H2A118.8
C22B—C21B—H21D110.6C2A—C3A—H3AA119.7
N1—C21B—H21C110.6C4A—C3A—C2A120.60 (18)
N1—C21B—H21D110.6C4A—C3A—H3AA119.7
N1—C21B—C22B105.9 (9)C3A—C4A—H4AA120.6
C21B—C22B—H22C110.2C5A—C4A—C3A118.86 (17)
C21B—C22B—H22D110.2C5A—C4A—H4AA120.6
H22C—C22B—H22D108.5C4A—C5A—H5A120.0
O3B—C22B—C21B107.5 (15)C4A—C5A—C6A120.01 (17)
O3B—C22B—H22C110.2C6A—C5A—H5A120.0
O3B—C22B—H22D110.2C1A—C6A—H6A118.4
Mn1—O3B—H3B141 (10)C5A—C6A—C1A123.15 (16)
C22B—O3B—Mn1112.2 (16)C5A—C6A—H6A118.4
C22B—O3B—H3B90 (10)C8A—C7A—C12A114.20 (16)
Mn1—O4—H4109 (2)C8A—C7A—B1124.47 (16)
C25—O4—Mn1137.22 (16)C12A—C7A—B1121.23 (15)
C25—O4—H4111 (2)C7A—C8A—H8A118.6
C21—N1—Mn1105.73 (17)C9A—C8A—C7A122.81 (19)
C21B—N1—Mn1111.4 (6)C9A—C8A—H8A118.6
C1—N1—Mn1109.55 (11)C8A—C9A—H9A119.5
C1—N1—C21116.0 (2)C10A—C9A—C8A120.9 (2)
C1—N1—C21B98.8 (5)C10A—C9A—H9A119.5
C11—N1—Mn1106.33 (10)C9A—C10A—H10A120.9
C11—N1—C21109.97 (19)C11A—C10A—C9A118.26 (19)
C11—N1—C21B121.5 (7)C11A—C10A—H10A120.9
C11—N1—C1108.77 (14)C10A—C11A—H11C119.9
C2—N2—Mn1114.17 (11)C10A—C11A—C12A120.2 (2)
C2—N2—C10117.78 (15)C12A—C11A—H11C119.9
C10—N2—Mn1127.93 (11)C7A—C12A—H12A118.2
C12—N3—Mn1113.60 (11)C11A—C12A—C7A123.60 (18)
C12—N3—C20118.50 (14)C11A—C12A—H12A118.2
C20—N3—Mn1127.48 (11)C14A—C13A—B1121.98 (15)
N1—C1—H1A108.5C18A—C13A—C14A114.98 (16)
N1—C1—H1B108.5C18A—C13A—B1122.95 (15)
N1—C1—C2115.08 (15)C13A—C14A—H14A118.6
H1A—C1—H1B107.5C15A—C14A—C13A122.8 (2)
C2—C1—H1A108.5C15A—C14A—H14A118.6
C2—C1—H1B108.5C14A—C15A—H15A119.9
N2—C2—C1118.68 (16)C16A—C15A—C14A120.1 (2)
N2—C2—C3123.55 (16)C16A—C15A—H15A119.9
C3—C2—C1117.66 (15)C15A—C16A—H16A120.5
C2—C3—H3A120.3C17A—C16A—C15A119.03 (18)
C4—C3—C2119.41 (17)C17A—C16A—H16A120.5
C4—C3—H3A120.3C16A—C17A—H17A120.0
C3—C4—H4A120.3C16A—C17A—C18A120.0 (2)
C3—C4—C5119.39 (17)C18A—C17A—H17A120.0
C5—C4—H4A120.3C13A—C18A—H18A118.5
C4—C5—C10118.09 (16)C17A—C18A—C13A123.07 (19)
C6—C5—C4122.50 (17)C17A—C18A—H18A118.5
C6—C5—C10119.40 (16)C20A—C19A—C24A115.08 (15)
C5—C6—H6119.6C20A—C19A—B1123.20 (15)
C7—C6—C5120.80 (19)C24A—C19A—B1121.72 (14)
C7—C6—H6119.6C19A—C20A—H20A118.7
C6—C7—H7120.2C21A—C20A—C19A122.51 (17)
C6—C7—C8119.66 (18)C21A—C20A—H20A118.7
C8—C7—H7120.2C20A—C21A—H21E119.7
C7—C8—H8119.3C22A—C21A—C20A120.55 (17)
C9—C8—C7121.33 (18)C22A—C21A—H21E119.7
C9—C8—H8119.3C21A—C22A—H22E120.6
C8—C9—H9120.1C21A—C22A—C23A118.90 (17)
C8—C9—C10119.90 (18)C23A—C22A—H22E120.6
C10—C9—H9120.1C22A—C23A—H23A120.0
N2—C10—C5121.73 (15)C22A—C23A—C24A119.99 (18)
N2—C10—C9119.36 (16)C24A—C23A—H23A120.0
C9—C10—C5118.90 (16)C19A—C24A—H24D118.5
N1—C11—H11A109.4C23A—C24A—C19A122.97 (17)
N1—C11—H11B109.4C23A—C24A—H24D118.5
N1—C11—C12111.03 (14)C1A—B1—C13A108.68 (13)
H11A—C11—H11B108.0C1A—B1—C19A108.83 (13)
C12—C11—H11A109.4C7A—B1—C1A111.22 (13)
C12—C11—H11B109.4C7A—B1—C13A110.01 (14)
N3—C12—C11118.03 (15)C7A—B1—C19A108.38 (12)
N3—C12—C13123.03 (16)C13A—B1—C19A109.71 (13)
C13—C12—C11118.92 (15)C1S—O1S—H1S109.5
C12—C13—H13120.4O1S—C1S—H1SA109.5
C14—C13—C12119.19 (16)O1S—C1S—H1SB109.5
C14—C13—H13120.4O1S—C1S—H1SC109.5
C13—C14—H14120.1H1SA—C1S—H1SB109.5
C13—C14—C15119.83 (16)H1SA—C1S—H1SC109.5
C15—C14—H14120.1H1SB—C1S—H1SC109.5
C14—C15—C16122.64 (17)
Mn1—O1—C23—O242.8 (3)C16—C15—C20—C190.6 (2)
Mn1—O1—C23—C24139.8 (2)C16—C17—C18—C190.5 (3)
Mn1—N1—C1—C229.29 (19)C17—C18—C19—C200.7 (3)
Mn1—N1—C11—C1243.03 (16)C18—C19—C20—N3178.44 (16)
Mn1—N2—C2—C16.0 (2)C18—C19—C20—C150.1 (3)
Mn1—N2—C2—C3177.88 (14)C20—N3—C12—C11178.90 (14)
Mn1—N2—C10—C5177.28 (11)C20—N3—C12—C130.7 (2)
Mn1—N2—C10—C92.2 (2)C20—C15—C16—C170.9 (3)
Mn1—N3—C12—C115.76 (19)C1A—C2A—C3A—C4A1.0 (3)
Mn1—N3—C12—C13172.45 (13)C2A—C1A—C6A—C5A1.9 (3)
Mn1—N3—C20—C15170.56 (12)C2A—C1A—B1—C7A110.51 (19)
Mn1—N3—C20—C1910.9 (2)C2A—C1A—B1—C13A10.7 (2)
C21—C22—O3—Mn137.8 (4)C2A—C1A—B1—C19A130.17 (18)
C21—N1—C1—C290.3 (2)C2A—C3A—C4A—C5A0.9 (3)
C21—N1—C11—C12157.0 (2)C3A—C4A—C5A—C6A0.5 (3)
C22—C21—N1—Mn143.1 (3)C4A—C5A—C6A—C1A2.0 (3)
C22—C21—N1—C178.6 (3)C6A—C1A—C2A—C3A0.4 (3)
C22—C21—N1—C11157.5 (2)C6A—C1A—B1—C7A69.80 (19)
C21B—C22B—O3B—Mn152.1 (17)C6A—C1A—B1—C13A168.96 (15)
C21B—N1—C1—C287.2 (7)C6A—C1A—B1—C19A49.5 (2)
C21B—N1—C11—C12171.7 (6)C7A—C8A—C9A—C10A0.2 (4)
C22B—C21B—N1—Mn136.3 (13)C8A—C7A—C12A—C11A0.4 (3)
C22B—C21B—N1—C1151.4 (10)C8A—C7A—B1—C1A23.7 (2)
C22B—C21B—N1—C1190.1 (11)C8A—C7A—B1—C13A144.17 (16)
N1—C21—C22—O355.1 (5)C8A—C7A—B1—C19A95.89 (19)
N1—C21B—C22B—O3B56.6 (17)C8A—C9A—C10A—C11A0.1 (4)
N1—C1—C2—N224.6 (2)C9A—C10A—C11A—C12A0.5 (3)
N1—C1—C2—C3159.00 (16)C10A—C11A—C12A—C7A0.7 (3)
N1—C11—C12—N326.3 (2)C12A—C7A—C8A—C9A0.0 (3)
N1—C11—C12—C13155.37 (16)C12A—C7A—B1—C1A160.32 (15)
N2—C2—C3—C40.2 (3)C12A—C7A—B1—C13A39.9 (2)
N3—C12—C13—C141.0 (3)C12A—C7A—B1—C19A80.09 (18)
C1—N1—C11—C1274.87 (17)C13A—C14A—C15A—C16A0.8 (3)
C1—C2—C3—C4176.00 (18)C14A—C13A—C18A—C17A0.9 (3)
C2—N2—C10—C51.5 (2)C14A—C13A—B1—C1A85.78 (19)
C2—N2—C10—C9177.96 (16)C14A—C13A—B1—C7A36.2 (2)
C2—C3—C4—C51.9 (3)C14A—C13A—B1—C19A155.34 (15)
C3—C4—C5—C6178.02 (18)C14A—C15A—C16A—C17A1.0 (3)
C3—C4—C5—C101.9 (3)C15A—C16A—C17A—C18A0.2 (3)
C4—C5—C6—C7179.84 (18)C16A—C17A—C18A—C13A0.7 (3)
C4—C5—C10—N20.2 (2)C18A—C13A—C14A—C15A0.1 (3)
C4—C5—C10—C9179.62 (16)C18A—C13A—B1—C1A90.51 (18)
C5—C6—C7—C80.5 (3)C18A—C13A—B1—C7A147.51 (16)
C6—C5—C10—N2179.71 (15)C18A—C13A—B1—C19A28.4 (2)
C6—C5—C10—C90.3 (2)C19A—C20A—C21A—C22A0.4 (3)
C6—C7—C8—C90.8 (3)C20A—C19A—C24A—C23A0.4 (2)
C7—C8—C9—C100.6 (3)C20A—C19A—B1—C1A148.13 (15)
C8—C9—C10—N2179.42 (17)C20A—C19A—B1—C7A27.0 (2)
C8—C9—C10—C50.0 (3)C20A—C19A—B1—C13A93.08 (18)
C10—N2—C2—C1177.65 (15)C20A—C21A—C22A—C23A0.1 (3)
C10—N2—C2—C31.5 (2)C21A—C22A—C23A—C24A0.0 (3)
C10—C5—C6—C70.0 (3)C22A—C23A—C24A—C19A0.2 (3)
C11—N1—C1—C2145.12 (15)C24A—C19A—C20A—C21A0.5 (2)
C11—C12—C13—C14177.15 (16)C24A—C19A—B1—C1A32.7 (2)
C12—N3—C20—C151.5 (2)C24A—C19A—B1—C7A153.78 (15)
C12—N3—C20—C19177.03 (15)C24A—C19A—B1—C13A86.09 (18)
C12—C13—C14—C151.9 (3)B1—C1A—C2A—C3A179.91 (19)
C13—C14—C15—C16177.40 (17)B1—C1A—C6A—C5A178.38 (16)
C13—C14—C15—C201.1 (3)B1—C7A—C8A—C9A176.23 (19)
C14—C15—C16—C17177.64 (18)B1—C7A—C12A—C11A175.92 (16)
C14—C15—C20—N30.6 (2)B1—C13A—C14A—C15A176.65 (17)
C14—C15—C20—C19177.92 (16)B1—C13A—C18A—C17A177.39 (17)
C15—C16—C17—C180.3 (3)B1—C19A—C20A—C21A178.73 (16)
C16—C15—C20—N3179.20 (16)B1—C19A—C24A—C23A178.84 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.85 (2)1.79 (2)2.631 (8)170 (4)
O3B—H3B···O2i0.84 (2)1.87 (8)2.65 (3)152 (14)
O4—H4···O1S0.89 (2)1.77 (2)2.646 (2)168 (3)
C9—H9···O10.952.433.325 (3)157
C17—H17···O1Sii0.952.733.364 (3)125
C18—H18···O1Sii0.952.733.367 (2)125
C19—H19···O10.952.393.183 (2)141
C25—H25A···N30.982.793.387 (3)120
O1S—H1S···O2i0.841.922.691 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.
Selected bond lengths (Å) and angles (°) of [1](BPh4)2·(CH2Cl2)1.45 top
Mn1–O12.3255 (12)
Mn1–O22.0617 (13)
Mn1–O3A2.0908 (14)
Mn1–N12.3179 (14)
Mn1–N22.2730 (14)
Mn1–N32.3588 (16)
N2–Mn1–N373.25 (5)
N2–Mn1–N175.56 (5)
N1–Mn1–N3148.35 (5)
N2–Mn1–O175.32 (5)
O2–Mn1–N2157.89 (6)
O3A–Mn1–O1163.58 (6)
Selected bond lengths (Å) and angles (°) of [2]BPh4·CH3OH top
Mn1—O12.0551 (14)
Mn1—O32.182 (7)
Mn1—O3B2.13 (3)
Mn1—O42.3190 (16)
Mn1—N12.2787 (15)
Mn1—N22.3167 (15)
Mn1—N32.2664 (14)
N1—Mn1—N275.63 (5)
N1—Mn1—N373.81 (5)
O3—Mn1—N3149.83 (12)
O1—Mn1—N1175.54 (6)
N2—Mn1—O4161.38 (6)

Footnotes

Submitted posthumously.

Acknowledgements

This publication is submitted in memory of Jerry P. Jasinski, a selfless friend, mentor and collaborator who was always generous with his time and willing to share his expertise and guidance. He will be missed.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1039027 to Jerry P. Jasinski; grant No. CHE-2018494 to Steven T. Frey).

References

First citationBani, D. & Bencini, A. (2012). Curr. Med. Chem. 19, 4431–4444.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBatinić-Haberle, I., Rebouças, J. S. & Spasojević, I. (2010). Antioxid. & Redox Signal. 13, 877–918.  Google Scholar
First citationBatinić-Haberle, I., Tovmasyan, A., Roberts, E. R. H., Vujaskovic, Z., Leong, K. W. & Spasojevic, I. (2014). Antioxid. & Redox Signal. 20, 2372–2415.  Google Scholar
First citationBoros, E., Gale, E. M. & Caravan, P. (2015). Dalton Trans. 44, 4804–4818.  CrossRef CAS PubMed Google Scholar
First citationCoggins, M. K. & Kovacs, J. A. (2011). J. Am. Chem. Soc. 133, 12470–12473.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459–2470.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567–4573.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, H., Yang, X., He, J., Cai, S., Xiao, K. & Zhu, L. (2017). RSC Adv. 7, 53385–53395.  CrossRef CAS Google Scholar
First citationFrey, S. T., Li, J., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1138–1141.  CSD CrossRef IUCr Journals Google Scholar
First citationFrey, S. T., Ramirez, H. A., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1075–1078.  CSD CrossRef IUCr Journals Google Scholar
First citationGale, E. M., Atanasova, I. P., Blasi, F., Ay, I. & Caravan, P. (2015). J. Am. Chem. Soc. 137, 15548–15557.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIcsel, C., Yilmaz, V. T., Aydinlik, S. & Aygun, M. (2020). Eur. J. Med. Chem. 202, 112535–112545.  CSD CrossRef CAS PubMed Google Scholar
First citationIranzo, O. (2011). Bioorg. Chem. 39, 73–87.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKakoulidou, C., Hatzidimitriou, A. G., Fylaktakidou, K. C. & Psomas, G. (2021). Polyhedron, 195, 114986–1144996.  CSD CrossRef CAS Google Scholar
First citationLessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863–866.  Web of Science CSD CrossRef CAS Google Scholar
First citationLieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovic-Burmazovic, I. (2013). Inorg. Chem. 52, 222–236.  CSD CrossRef CAS PubMed Google Scholar
First citationLiu, J., Guo, W., Li, X., Li, X., Geng, J., Chen, Q. & Gao, J. (2015). Int. J. Mol. Med. 35, 607–616.  CrossRef CAS PubMed Google Scholar
First citationMaurya, R. C., Bohre, P., Sahu, S., Martin, M. H. & Sharma, A. K. (2011). Arab. J. Chem, 9, S54–S63.  CrossRef Google Scholar
First citationMiriyala, S., Spasojevic, I., Tovmasyan, A., Salvemini, D., Vujaskovic, Z., St Clair, D. & Batinic-Haberle, I. (2012). Biochim. Biophys. Acta, 1822, 794–814.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPolicar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. S. Rebouças & I. Spasojević, pp. 125–164. Switzerland: Springer International Publishing.  Google Scholar
First citationPolicar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp.1807–1818.  CrossRef Google Scholar
First citationPrihantono, , Irfandi, R., Raya, I. & Warsinggih, (2020). Ann. Med. Surg. 60, 396–402.  Google Scholar
First citationQin, Y., She, P., Huang, X., Huang, W. & Zhao, Q. (2020). Coord. Chem. Rev. 416, 213331–213350.  CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaha, T., Kumar, P., Sepay, N., Ganguly, D., Tiwari, K., Mukhopadhyay, K. & Das, S. (2020). ACS Omega, 5, 16342–16357.  CrossRef CAS PubMed Google Scholar
First citationSarma, C., Chaurasia, P. K. & Bharati, S. L. (2019). Russ. J. Gen. Chem. 89, 517–531.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSignorella, S., Palopoli, C. & Ledesma, G. (2018). Coord. Chem. Rev. 365, 75–102.  CrossRef CAS Google Scholar
First citationWang, J., Wang, H., Ramsay, I. A., Erstad, D. J., Fuchs, B. C., Tanabe, K. K., Caravan, P. & Gale, E. M. (2018). J. Med. Chem. 61, 8811–8824.  CrossRef CAS PubMed Google Scholar
First citationWang, Z.-W., Chen, Q. Y. & Liu, Q.-S. (2014). Transition Met. Chem. 39, 917–924.  CSD CrossRef Google Scholar
First citationWu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097–1100.  CrossRef CAS Google Scholar
First citationZhou, D.-F., Chen, Q.-Y., Qi, Y., Fu, H.-J., Li, Z., Zhao, K.-D. & Gao, J. (2011). Inorg. Chem. 50, 6929–6937.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds