Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [Th3(Cp*)3(O)(OH)3]2Cl2(N3)6: a discrete mol­ecular capsule built from multinuclear organothorium cluster cations

crossmark logo

aDepartment of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
*Correspondence e-mail: kelleysp@missouri.edu, walenskyj@missouri.edu

Edited by M. Zeller, Purdue University, USA (Received 19 August 2021; accepted 25 August 2021; online 3 September 2021)

An unusually large and structurally complex charge-neutral polynuclear cluster, hexa-μ2-azido-di-μ3-chlorido-hexa-μ2-hydroxido-di-μ3-oxido-hexa­kis­(penta­methyl­cyclo­penta­dien­yl)hexa­thorium–diethyl ether–tetra­hydro­furan (1/0.56/1.44), [Th3(C10H15)6Cl3(N3)6(OH)6O2]·0.56C4H10O·1.44C4H8O or [Th3(Cp*)3(O)(OH)3]2Cl2(N3)6·0.56C4H10O·1.44C4H8O (Cp* = [penta­methyl­cyclo­penta­dien­yl]), has been crystallized as a mixed tetra­hydro­furan/diethyl ether solvate and structurally characterized. The mol­ecule contains a number of unusual features, the most notable being a finite yet exceptionally long cyclic metal-azido chain. These rare features are the consequence of both sterically protecting Cp* ligands and highly bridging oxide and hydroxide ligands in the same system and illustrate the inter­esting new possibilities that can arise from combining organometallic and solvothermal f-block element chemistry.

1. Chemical context

Penta­methyl­cyclo­penta­dienyl (Cp*) ligands have become almost ubiquitous in the organometallic chemistry of the f-block elements (Evans & Davis, 2002[Evans, W. J. & Davis, B. L. (2002). Chem. Rev. 102, 2119-2136.]). These ligands protect the reactive metal center and allow the solubilization and recrystallization of metal complexes in non-coordinating organic solvents. The actinides in particular have unique chemical properties owing to the participation of f-orbital electrons in chemical bonding (Neidig et al., 2013[Neidig, M. L., Clark, D. L. & Martin, R. L. (2013). Coord. Chem. Rev. 257, 394-406.]) and the breakdown of periodic trends in the elements due to relativistic electron motion (Cary et al., 2015[Cary, S. K., Vasiliu, M., Baumbach, R. E., Stritzinger, J. T., Green, T. D., Diefenbach, K., Cross, J. N., Knappenberger, K. L., Liu, G., Silver, M. A., DePrince, A. E., Polinski, M. J., Van Cleve, S. M., House, J. H., Kikugawa, N., Gallagher, A., Arico, A. A., Dixon, D. A. & Albrecht-Schmitt, T.-E. (2015). Nat. Commun. 6, 6827. https://doi.org/10.1038/ncomms7827.]), making organoactinide chemistry an important frontier in fundamental chemistry. However, the general instability of f-element organometallic complexes towards air, moisture, and protic solvents has prevented them from being applied in other areas where f-elements have been successfully applied, such as the formation of unique extended structures driven by their unusual coordination polyhedra (Burns & Nyman, 2018[Burns, P. C. & Nyman, M. (2018). Dalton Trans. 47, 5916-5927.], Li et al., 2017[Li, P., Vermeulen, N. A., Malliakas, C. D., Gómez-Gualdrón, D. A., Howarth, A. J., Mehdi, B. L., Dohnalkova, A., Browning, N. D., O'Keeffe, M. & Farha, O. K. (2017). Science, 356, 624-627.]; Rocha et al., 2011[Rocha, J., Carlos, L. D., Paz, F. A. A. & Ananias, D. (2011). Chem. Soc. Rev. 40, 926-940.]).

Compared to uranium and the lanthanides, the coordination chemistry of thorium has been surprisingly under-investigated. Of the 55,423 entries in the Cambridge Structural Database [Version 2020.3.0 (November 2020); Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] containing an f-element, only 1,241 contain thorium, and over two-thirds of these have only been reported since 2010. The increased number of Th-containing structures coincides with a renewed inter­est in actinide chemistry in general, and these studies have revealed inter­esting structural features unique to Th-containing compounds such as a strong tendency of Th4+ to form high-nuclearity yet discrete mol­ecular complexes and ions (Wilson et al., 2007[Wilson, R. E., Skanthakumar, S., Sigmon, G., Burns, P. C. & Soderholm, L. (2007). Inorg. Chem. 46, 2368-2372.]; Knope et al., 2011[Knope, K. E., Wilson, R. E., Vasiliu, M., Dixon, D. A. & Soderholm, L. (2011). Inorg. Chem. 50, 9676-9704.]; Wacker et al., 2019[Wacker, J. N., Vasiliu, M., Colliard, I., Ayscue, R. L., Han, S. Y., Bertke, J. A., Nyman, M., Dixon, D. A. & Knope, K. E. (2019). Inorg. Chem. 58, 10871-10882.].)

The title compound of this study was isolated during research using {Th(Cp*)2}-based complexes to study novel organic transformations (Tarlton et al., 2020[Tarlton, M. L., Del Rosal, I., Vilanova, S. P., Kelley, S. P., Maron, L. & Walensky, J. R. (2020). Organometallics, 39, 2152-2161.]; Tarlton, Fajen et al., 2021[Tarlton, M., Fajen, O. J., Kelley, S. P., Kerridge, A., Malcomson, T., Morrison, T. L., Shores, M. P., Xhani, X. & Walensky, J. R. (2021). Inorg. Chem. 60, 10614-10630.]) and actinide–main-group bonding involving Th4+ (Tarlton, Yang et al. 2021[Tarlton, M. L., Yang, Y., Kelley, S. P., Maron, L. & Walensky, J. R. (2021). Organometallics, 40, https://doi.org/10.1021/acs.organomet.1c00330]; Rungthanaphatsophon et al., 2018[Rungthanaphatsophon, P., Duignan, T. J., Myers, A. J., Vilanova, S. P., Barnes, C. L., Autschbach, J., Batista, E. R., Yang, P. & Walensky, J. R. (2018). Inorg. Chem. 57, 7270-7278.]; Vilanova et al., 2017[Vilanova, S. P., Alayoglu, P., Heidarian, M., Huang, P. & Walensky, J. R. (2017). Chem. Eur. J. 23, 16748-16752.]). It represents an unprecedented case of overlap between organothorium chemistry and the formation of polynuclear oxo-bridged clusters. Spontaneous cluster formation in other, oxygen-free complexes of Th4+ with tetrel group elements is explored in a second publication as part of this joint special issue (Kelley et al., 2021[Kelley, S. P., Tarlton, M. L. & Walensky, J. R. (2021). J. Chem. Crystallogr. In preparation.]).

[Scheme 1]

2. Structural commentary

The mol­ecule is a charge-neutral polynuclear metal complex of unusual size and complexity. It can be conceived as being built from two polyatomic cations with the formula [Th3(Cp*)3(O)(OH)3]4+, each of which is sandwiched between two terminal Cl ions at either end of the mol­ecule and a ring of 6 N3 anions in the center (Fig. 1[link]). The structure crystallizes in the monoclinic space group C2/m with Z = 2. The mol­ecule resides on a crystallographic mirror plane perpendicular to b, a crystallographic twofold proper axis parallel to b, and the inversion center where the axis and plane coincide, giving the entire mol­ecule exact C2h symmetry. All Th4+ centers in the structure are chemically equivalent, and the {[Th3(Cp*)3(O)(OH)3]Cl} units have approximate C3v symmetry. The symmetry of the overall mol­ecule is lowered by the arrangements of the N3 ions, which tilt to differing degrees relative to the twofold axis.

[Figure 1]
Figure 1
50% probability ellipsoid plot of a single mol­ecule of [Th3(Cp*)3(O)(OH)3]2Cl2(N3)6. A tetra­hydro­furan mol­ecule of crystallization is shown to illustrate hydrogen bonding, all other solvents of crystallization are omitted. Hydrogen atoms with the exception of hydroxyl H atoms have been omitted for clarity. Light dashes indicate hydrogen bonding. Unlabeled atoms are symmetry equivalents of labeled atoms.

There are no published structures containing a moiety exactly analogous to the [Th3(Cp*)3(O)(OH)3]4+ cluster, and published Th—O distances vary extremely widely due to the highly variable coordination geometry of Th4+. Another neutral hexa­nuclear Th4+ complex with the formula Th6(O)4(OH)4(CHO2)12(OH2)12 has been reported and shows comparable Th—O2− distances, although the OH ligands in this structure bridge three metal centers and have significantly longer bond distances (Takao et al., 2009[Takao, S., Takao, K., Kraus, W., Emmerling, F., Scheinost, A. C., Bernhard, G. & Hennig, C. (2009). Eur. J. Inorg. Chem. pp. 4771-4775.]). A polyatomic anion with the formula [Th3Cl10(OH)5(OH2)2]3− is reported, which has the same six-membered cycle of Th4+ and μ2-OH ligands (but no O2− ligands), and the Th—O distances for these ligands are very similar to those in [Th3(Cp*)3(O)(OH)3]4+ (Wacker et al., 2019[Wacker, J. N., Vasiliu, M., Colliard, I., Ayscue, R. L., Han, S. Y., Bertke, J. A., Nyman, M., Dixon, D. A. & Knope, K. E. (2019). Inorg. Chem. 58, 10871-10882.]).

The six Th4+ atoms and six azido ligands are bridged into what is essentially a linear chain that has cyclized to form a 24-membered ring, which is the longest non-polymeric metal–azido chain reported. However, cycles with three or four repeat units are quite common, and one example is known for Th4+ and has Th—N and azide N—N distances that overlap with those in this structure (Du et al. 2019[Du, J., King, D. M., Chatelain, L., Lu, E., Tuna, F., McInnes, E. J. L., Wooles, A. J., Maron, L. & Liddle, S. T. (2019). Chem. Sci. 10, 3738-3745.]). It is clear that while most of the individual building blocks within this structure have been observed previously, the unusual features arise from the termination of growth of a Th4+ cluster ion by Cp* ligands, leading to very intricate inter­connectivity between the metal centers.

3. Supra­molecular features

The mol­ecules pack through a herringbone arrangement of the Cp* ligands so that the methyl groups of one Cp* point towards the aromatic ring plane of the neighboring mol­ecules, leading to infinite two-dimensional layers parallel to the ab face (Fig. 2[link], left). These layers stack along c such that the mol­ecules in each layer reside over holes in the neighboring layer, analogous to cubic close packing of spheres (Fig. 2[link], right); this arrangement most likely reduces repulsion between the like-charged anionic groups at either end of the mol­ecule. For each mol­ecule of the main moiety there are two solvent mol­ecules of crystallization, which are located in the holes in each layer on the crystallographic mirror planes. These solvent mol­ecules were found to be either tetra­hydro­furan (THF) or diethyl ether (Et2O) and are substitutionally disordered across the same site; their relative occupancies refined to 72%:28% THF:Et2O. Both mol­ecules are positioned such that the ether oxygen atom accepts a hydrogen bond from one of the bridging OH ions (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1S 0.84 (2) 1.93 (3) 2.762 (10) 170 (8)
[Figure 2]
Figure 2
Left: Packing diagram showing a single two-dimensional layer of mol­ecules, elements are color coded as in Fig. 1[link]. Right: Packing diagram showing the CCP-like arrangement of one mol­ecule (red) over the hole formed by four neighboring mol­ecules in the adjacent layer (yellow/blue, all atoms drawn as spheres of vdW radii).

4. Synthesis and crystallization

The title compound was the byproduct of the reaction of (C5Me5)2Th(CH3)[P(Mes)(SiMe3)], Mes = 2,4,6-Me3C6H2, (Rungthanaphatsophon et al., 2018[Rungthanaphatsophon, P., Duignan, T. J., Myers, A. J., Vilanova, S. P., Barnes, C. L., Autschbach, J., Batista, E. R., Yang, P. & Walensky, J. R. (2018). Inorg. Chem. 57, 7270-7278.]) with two equivalents of Me3SiN3 in di­meth­oxy­ethane (DME) at room temperature. After stirring overnight, the resulting solution was allowed to crystallize inside an N2-filled glove box at ambient temperature (∼3 days). Crystals suitable for SCXRD were obtained by recrystallization of these solids from diethyl ether/tetra­hydro­furan. The chloride is presumably due to the starting material, (C5Me5)2Th(CH3)(Cl), which is used to make (C5Me5)2Th(CH3)[P(Mes)(SiMe3)], while the oxo- and hydroxide ligands are due to an adventitious source of oxygen present in the solvent or glove box.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal structure was solved by an iterative dual space approach as implemented in SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). All atoms could be refined anisotropically. The residual difference map contained large, chemically non-reasonable peaks near the Th atoms which could not be modeled but could be reduced by truncating some of the high-angle data during reduction. The disordered THF and Et2O mol­ecules were located from the difference map. For the THF mol­ecule, the oxygen atom and carbon atom C1S had their y coordinates fixed to reside on the crystallographic mirror plane; the other atoms were refined as additionally disordered across both positions related by the mirror plane. All non-hydrogen atoms of the Et2O mol­ecule had their y coordinates fixed to lie on the mirror plane. The chemical occupancy of the THF mol­ecule was fixed to a free variable, which refined to 72 (1)%, and the chemical occupancies of the THF and Et2O mol­ecules were constrained to sum to 100%. The fractional occupancies of all atoms in both solvent mol­ecules were set to 50% of the chemical occupancies due to their residence on or disorder across a crystallographic mirror plane. Both solvent mol­ecules were also refined with C—C distances restrained to 1.54 (2) Å, C—O distances restrained to 1.41 (2) Å, and all anisotropic displacement parameters among bonded atoms restrained to be equal within an e.s.d. of 0.01 Å2. A hydrogen atom was located from the difference map for the non-hydrogen bonding –OH group, and its coordinates were refined with the O—H distance restrained to 0.84 (2) Å. For the –OH group engaged in the strong hydrogen bond with THF, a hydrogen atom was placed along the ideal O—H⋯O hydrogen bond vector and restrained to a distance of 0.84 Å from the covalently bonded O atom. The identities of the –OH groups are established on the basis of charge-balance considerations and consistency with Th—O distances in the literature for –OH vs O2− ligands, rather than the location of H atoms from the difference map. All other hydrogen atoms were placed in calculated positions, and were constrained to ride on their carrier atoms. Methyl group hydrogen atoms were refined with a riding-rotating model (except for disordered Et2O methyl groups which were fixed in idealized staggered geometries). For all H atoms, displacement parameters were constrained to be multiples of Uiso for the bonded non-hydrogen atom.

Table 2
Experimental details

Crystal data
Chemical formula [Th6(C10H15)6Cl2(N3)6(OH)6O2]·0.56C4H10O·1.44C4H8O
Mr 2804.00
Crystal system, space group Monoclinic, C2/m
Temperature (K) 100
a, b, c (Å) 17.6783 (14), 17.2647 (14), 16.383 (2)
β (°) 121.867 (3)
V3) 4246.6 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.59
Crystal size (mm) 0.17 × 0.13 × 0.04
 
Data collection
Diffractometer Bruker VENTURE CMOS area detector
Absorption correction Multi-scan (AXScale; Bruker, 2017[Bruker (2017). AXScale, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.333, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 64622, 5050, 4393
Rint 0.071
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.056, 1.03
No. of reflections 5050
No. of parameters 307
No. of restraints 155
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
   
Δρmax, Δρmin (e Å−3) 3.14, −0.91
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). AXScale, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: APEX3 and SAINT (Bruker, 2017); data reduction: APEX3 and SAINT (Bruker, 2017); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hexa-µ2-azido-di-µ3-chlorido-hexa-µ2-hydroxido-di-µ3-oxido-hexakis(pentamethylcyclopentadienyl)hexathorium–diethyl ether–tetrahydrofuran (1/0.56/1.44) top
Crystal data top
[Th6(C10H15)6Cl2(N3)6(OH)6O2]·0.56C4H10O·1.44C4H8OF(000) = 2598
Mr = 2804.00Dx = 2.193 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 17.6783 (14) ÅCell parameters from 9971 reflections
b = 17.2647 (14) Åθ = 2.4–27.5°
c = 16.383 (2) ŵ = 10.59 mm1
β = 121.867 (3)°T = 100 K
V = 4246.6 (7) Å3Irregular, colorless
Z = 20.17 × 0.13 × 0.04 mm
Data collection top
Bruker VENTURE CMOS area detector
diffractometer
4393 reflections with I > 2σ(I)
Radiation source: Incoatec IMuS microfocus Mo tubeRint = 0.071
shutterless ω and phi scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(AXScale; Bruker, 2017)
h = 2222
Tmin = 0.333, Tmax = 0.431k = 2222
64622 measured reflectionsl = 2121
5050 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0229P)2 + 34.2882P]
where P = (Fo2 + 2Fc2)/3
5050 reflections(Δ/σ)max = 0.003
307 parametersΔρmax = 3.14 e Å3
155 restraintsΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Th10.68056 (2)0.60822 (2)0.69358 (2)0.01292 (5)
Th20.53556 (2)0.5000000.75710 (2)0.01168 (6)
Cl10.73648 (11)0.5000000.86411 (11)0.0174 (3)
O10.5917 (3)0.5000000.6566 (3)0.0147 (9)
O20.7638 (3)0.5000000.6957 (3)0.0169 (10)
H20.809 (3)0.5000000.691 (6)0.025*
O30.5971 (2)0.62494 (18)0.7689 (2)0.0168 (7)
H30.563 (6)0.663 (4)0.748 (7)0.025*0.5
N10.4076 (3)0.5858 (3)0.6357 (3)0.0233 (9)
N20.3749 (3)0.5981 (2)0.5529 (3)0.0153 (8)
N30.3402 (3)0.6128 (2)0.4715 (3)0.0228 (9)
N40.5440 (3)0.6925 (2)0.5842 (3)0.0198 (9)
N50.5000000.6919 (3)0.5000000.0168 (12)
C10.8493 (3)0.6738 (3)0.8077 (4)0.0204 (10)
C20.8168 (3)0.7073 (3)0.7160 (3)0.0211 (11)
C30.7461 (4)0.7577 (3)0.6962 (4)0.0236 (11)
C40.7349 (3)0.7564 (3)0.7756 (3)0.0208 (10)
C50.7987 (3)0.7044 (3)0.8442 (3)0.0187 (10)
C60.9278 (4)0.6209 (3)0.8601 (4)0.0307 (13)
H6A0.9185350.5854710.9007680.046*
H6B0.9817310.6515920.9002650.046*
H6C0.9346100.5909030.8135300.046*
C70.8561 (4)0.6980 (4)0.6544 (4)0.0332 (14)
H7A0.8840530.6468860.6657110.050*
H7B0.9010310.7382960.6708650.050*
H7C0.8089050.7028190.5865030.050*
C80.6968 (4)0.8088 (3)0.6087 (4)0.0314 (13)
H8A0.6753950.7774970.5506020.047*
H8B0.7369050.8492000.6112310.047*
H8C0.6459070.8329310.6072810.047*
C90.6695 (4)0.8042 (3)0.7866 (4)0.0276 (12)
H9A0.6116090.8038760.7260800.041*
H9B0.6913180.8575770.8031660.041*
H9C0.6631600.7822410.8378510.041*
C100.8162 (4)0.6901 (3)0.9437 (4)0.0260 (12)
H10A0.7621980.7012600.9443100.039*
H10B0.8646430.7237910.9898680.039*
H10C0.8332170.6357830.9614290.039*
C110.4835 (3)0.4335 (3)0.8752 (3)0.0154 (9)
C120.4289 (4)0.5000000.8363 (5)0.0171 (14)
C130.5718 (3)0.4589 (3)0.9384 (3)0.0154 (9)
C140.4549 (4)0.3503 (3)0.8574 (4)0.0260 (12)
H14A0.3956640.3463190.7988280.039*
H14B0.4526830.3301730.9120700.039*
H14C0.4975350.3199100.8496700.039*
C150.3290 (5)0.5000000.7689 (5)0.0279 (17)
H15A0.3125670.4644740.7154260.042*0.5
H15B0.3087720.5524250.7439130.042*0.5
H15C0.3007940.4831010.8037990.042*0.5
C160.6503 (4)0.4080 (3)0.9991 (3)0.0222 (11)
H16A0.7051800.4361741.0176570.033*
H16B0.6463690.3616340.9625500.033*
H16C0.6507050.3926831.0569740.033*
O2S0.962 (2)0.5000000.674 (2)0.061 (4)0.280 (11)
C5S1.055 (2)0.5000000.720 (2)0.065 (5)0.280 (11)
H5SA1.0759200.5466190.7016660.078*0.140 (5)
H5SB1.0759200.4533810.7016660.078*0.140 (5)
C6S1.091 (3)0.5000000.828 (3)0.064 (6)0.280 (11)
H6SA1.1565830.5000000.8645330.097*0.280 (11)
H6SB1.0700920.5463470.8448210.097*0.140 (5)
H6SC1.0700920.4536530.8448210.097*0.140 (5)
C7S0.923 (2)0.5000000.573 (2)0.058 (4)0.280 (11)
H7SA0.9428030.4535730.5542590.069*0.140 (5)
H7SB0.9428030.5464270.5542590.069*0.140 (5)
C8S0.822 (2)0.5000000.522 (3)0.054 (4)0.280 (11)
H8SA0.7957790.5000000.4524480.081*0.280 (11)
H8SB0.8021330.4536530.5404620.081*0.140 (5)
H8SC0.8021330.5463470.5404620.081*0.140 (5)
O1S0.8969 (7)0.5000000.6553 (7)0.050 (2)0.360 (5)
C1S0.8526 (10)0.5000000.5515 (11)0.055 (3)0.360 (5)
H1SA0.8052670.5398870.5231280.066*0.360 (5)
H1SB0.8253860.4488140.5250570.066*0.360 (5)
C2S0.9243 (12)0.5179 (12)0.5292 (15)0.066 (4)0.360 (5)
H2SA0.9343390.5743030.5286680.079*0.360 (5)
H2SB0.9107960.4946640.4676760.079*0.360 (5)
C3S1.0042 (13)0.4768 (12)0.6179 (14)0.067 (4)0.360 (5)
H3SA0.9984540.4197140.6133360.080*0.360 (5)
H3SB1.0622380.4922630.6272730.080*0.360 (5)
C4S0.9910 (10)0.510 (2)0.6976 (15)0.061 (3)0.360 (5)
H4SA1.0254620.4801110.7581130.073*0.360 (5)
H4SB1.0082720.5651290.7103570.073*0.360 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Th10.01355 (9)0.01211 (8)0.01065 (8)0.00232 (6)0.00472 (7)0.00054 (6)
Th20.01279 (12)0.01143 (11)0.01021 (11)0.0000.00567 (9)0.000
Cl10.0168 (8)0.0177 (8)0.0122 (7)0.0000.0039 (6)0.000
O10.015 (2)0.014 (2)0.010 (2)0.0000.0034 (19)0.000
O20.014 (2)0.019 (2)0.017 (2)0.0000.008 (2)0.000
O30.0188 (18)0.0151 (16)0.0162 (17)0.0004 (13)0.0090 (15)0.0016 (13)
N10.021 (2)0.033 (2)0.015 (2)0.0078 (19)0.0086 (18)0.0078 (18)
N20.014 (2)0.0136 (18)0.017 (2)0.0046 (16)0.0073 (17)0.0007 (15)
N30.024 (2)0.029 (2)0.012 (2)0.0009 (19)0.0074 (18)0.0004 (17)
N40.019 (2)0.021 (2)0.011 (2)0.0002 (17)0.0022 (18)0.0013 (16)
N50.018 (3)0.012 (3)0.019 (3)0.0000.008 (3)0.000
C10.019 (3)0.018 (2)0.022 (3)0.007 (2)0.009 (2)0.0013 (19)
C20.024 (3)0.021 (2)0.019 (2)0.014 (2)0.011 (2)0.007 (2)
C30.027 (3)0.017 (2)0.022 (3)0.009 (2)0.010 (2)0.002 (2)
C40.022 (3)0.017 (2)0.017 (2)0.007 (2)0.007 (2)0.0037 (19)
C50.018 (2)0.019 (2)0.014 (2)0.010 (2)0.005 (2)0.0050 (19)
C60.020 (3)0.037 (3)0.028 (3)0.002 (2)0.008 (2)0.005 (2)
C70.035 (3)0.040 (3)0.029 (3)0.017 (3)0.020 (3)0.013 (3)
C80.039 (3)0.025 (3)0.021 (3)0.010 (3)0.010 (3)0.003 (2)
C90.031 (3)0.019 (3)0.027 (3)0.003 (2)0.012 (3)0.008 (2)
C100.029 (3)0.026 (3)0.018 (3)0.006 (2)0.009 (2)0.002 (2)
C110.018 (2)0.018 (2)0.015 (2)0.0038 (19)0.012 (2)0.0010 (18)
C120.014 (3)0.027 (4)0.015 (3)0.0000.010 (3)0.000
C130.022 (3)0.014 (2)0.012 (2)0.0000 (19)0.010 (2)0.0008 (17)
C140.035 (3)0.022 (3)0.028 (3)0.008 (2)0.021 (3)0.003 (2)
C150.017 (4)0.045 (5)0.020 (4)0.0000.008 (3)0.000
C160.028 (3)0.021 (2)0.017 (2)0.006 (2)0.011 (2)0.007 (2)
O2S0.059 (6)0.055 (6)0.085 (6)0.0000.050 (6)0.000
C5S0.058 (7)0.057 (7)0.090 (7)0.0000.046 (7)0.000
C6S0.055 (9)0.058 (9)0.091 (9)0.0000.046 (8)0.000
C7S0.058 (6)0.055 (5)0.084 (6)0.0000.053 (6)0.000
C8S0.057 (7)0.051 (6)0.081 (7)0.0000.054 (6)0.000
O1S0.052 (5)0.049 (4)0.079 (5)0.001 (5)0.054 (5)0.000
C1S0.058 (6)0.051 (5)0.083 (6)0.003 (5)0.054 (5)0.000
C2S0.063 (6)0.059 (6)0.089 (7)0.012 (5)0.050 (6)0.006 (5)
C3S0.062 (6)0.062 (6)0.090 (7)0.010 (4)0.050 (6)0.009 (4)
C4S0.056 (6)0.057 (6)0.088 (6)0.001 (4)0.051 (6)0.002 (4)
Geometric parameters (Å, º) top
Th1—Cl13.0589 (12)C10—H10A0.9800
Th1—O12.307 (3)C10—H10B0.9800
Th1—O22.367 (3)C10—H10C0.9800
Th1—O32.388 (3)C11—C121.417 (6)
Th1—N3i2.530 (4)C11—C131.413 (7)
Th1—N42.567 (4)C11—C141.500 (7)
Th1—C12.791 (5)C12—C151.510 (10)
Th1—C22.816 (5)C13—C13ii1.417 (9)
Th1—C32.820 (5)C13—C161.493 (7)
Th1—C42.813 (5)C14—H14A0.9800
Th1—C52.787 (5)C14—H14B0.9800
Th2—Cl13.0190 (17)C14—H14C0.9800
Th2—O12.329 (4)C15—H15Aii0.98 (6)
Th2—O32.378 (3)C15—H15A0.9800
Th2—O3ii2.378 (3)C15—H15B0.9800
Th2—N12.553 (4)C15—H15Bii0.98 (2)
Th2—N1ii2.553 (4)C15—H15C0.9800
Th2—C112.791 (4)C15—H15Cii0.98 (4)
Th2—C11ii2.791 (4)C16—H16A0.9800
Th2—C122.796 (6)C16—H16B0.9800
Th2—C13ii2.780 (4)C16—H16C0.9800
Th2—C132.780 (4)O2S—C5S1.415 (19)
O2—H20.84 (2)O2S—C7S1.411 (19)
O3—H30.84 (2)C5S—H5SA0.9900
N1—N21.180 (5)C5S—H5SB0.9900
N2—N31.165 (5)C5S—C6S1.542 (19)
N4—N51.172 (4)C6S—H6SA0.9800
C1—C21.418 (7)C6S—H6SB0.9800
C1—C51.415 (7)C6S—H6SC0.9800
C1—C61.497 (7)C7S—H7SA0.9900
C2—C31.414 (8)C7S—H7SB0.9900
C2—C71.505 (7)C7S—C8S1.523 (19)
C3—C41.415 (7)C8S—H8SA0.9800
C3—C81.508 (7)C8S—H8SB0.9800
C4—C51.415 (7)C8S—H8SC0.9800
C4—C91.507 (7)O1S—C1S1.448 (15)
C5—C101.511 (7)O1S—C4S1.435 (15)
C6—H6A0.9800C1S—H1SA0.9900
C6—H6B0.9800C1S—H1SB0.9900
C6—H6C0.9800C1S—C2S1.525 (16)
C7—H7A0.9800C2S—H2SA0.9900
C7—H7B0.9800C2S—H2SB0.9900
C7—H7C0.9800C2S—C3S1.563 (17)
C8—H8A0.9800C3S—H3SA0.9900
C8—H8B0.9800C3S—H3SB0.9900
C8—H8C0.9800C3S—C4S1.551 (17)
C9—H9A0.9800C4S—H4SA0.9900
C9—H9B0.9800C4S—H4SB0.9900
C9—H9C0.9800
O1—Th1—Cl165.94 (10)C8—C3—Th1119.6 (3)
O1—Th1—O272.32 (13)C3—C4—Th175.7 (3)
O1—Th1—O373.33 (13)C3—C4—C9126.1 (5)
O1—Th1—N3i92.85 (14)C5—C4—Th174.3 (3)
O1—Th1—N490.95 (13)C5—C4—C3107.5 (4)
O1—Th1—C1147.52 (14)C5—C4—C9126.3 (5)
O1—Th1—C2160.60 (14)C9—C4—Th1117.7 (3)
O1—Th1—C3164.27 (14)C1—C5—Th175.4 (3)
O1—Th1—C4151.16 (15)C1—C5—C4108.5 (4)
O1—Th1—C5143.48 (14)C1—C5—C10125.4 (5)
O2—Th1—Cl166.77 (11)C4—C5—Th176.4 (3)
O2—Th1—O3129.52 (12)C4—C5—C10125.8 (5)
O2—Th1—N3i77.23 (15)C10—C5—Th1119.2 (3)
O2—Th1—N4143.70 (14)C1—C6—H6A109.5
O2—Th1—C182.76 (14)C1—C6—H6B109.5
O2—Th1—C289.72 (14)C1—C6—H6C109.5
O2—Th1—C3118.37 (14)H6A—C6—H6B109.5
O2—Th1—C4131.14 (14)H6A—C6—H6C109.5
O2—Th1—C5106.72 (15)H6B—C6—H6C109.5
O3—Th1—Cl165.92 (8)C2—C7—H7A109.5
O3—Th1—N3i140.13 (13)C2—C7—H7B109.5
O3—Th1—N471.49 (12)C2—C7—H7C109.5
O3—Th1—C1109.77 (13)H7A—C7—H7B109.5
O3—Th1—C2125.35 (13)H7A—C7—H7C109.5
O3—Th1—C3104.02 (14)H7B—C7—H7C109.5
O3—Th1—C477.98 (13)C3—C8—H8A109.5
O3—Th1—C581.33 (13)C3—C8—H8B109.5
N3i—Th1—Cl1142.14 (10)C3—C8—H8C109.5
N3i—Th1—N471.56 (13)H8A—C8—H8B109.5
N3i—Th1—C1101.77 (14)H8A—C8—H8C109.5
N3i—Th1—C275.63 (14)H8B—C8—H8C109.5
N3i—Th1—C379.31 (14)C4—C9—H9A109.5
N3i—Th1—C4107.60 (14)C4—C9—H9B109.5
N3i—Th1—C5123.06 (14)C4—C9—H9C109.5
N4—Th1—Cl1135.67 (10)H9A—C9—H9B109.5
N4—Th1—C1121.10 (14)H9A—C9—H9C109.5
N4—Th1—C299.86 (15)H9B—C9—H9C109.5
N4—Th1—C373.69 (14)C5—C10—H10A109.5
N4—Th1—C477.07 (14)C5—C10—H10B109.5
N4—Th1—C5105.63 (14)C5—C10—H10C109.5
C1—Th1—Cl185.43 (10)H10A—C10—H10B109.5
C1—Th1—C229.29 (14)H10A—C10—H10C109.5
C1—Th1—C348.19 (15)H10B—C10—H10C109.5
C1—Th1—C448.40 (15)C12—C11—Th275.5 (3)
C2—Th1—Cl1114.22 (11)C12—C11—C14127.5 (5)
C2—Th1—C329.07 (15)C13—C11—Th274.9 (2)
C3—Th1—Cl1127.82 (11)C13—C11—C12107.7 (4)
C4—Th1—Cl1104.78 (10)C13—C11—C14124.7 (4)
C4—Th1—C248.11 (15)C14—C11—Th2117.4 (3)
C4—Th1—C329.10 (14)C11ii—C12—Th275.1 (3)
C5—Th1—Cl179.97 (10)C11—C12—Th275.1 (3)
C5—Th1—C129.39 (15)C11ii—C12—C11108.3 (6)
C5—Th1—C248.16 (14)C11—C12—C15125.8 (3)
C5—Th1—C348.03 (14)C11ii—C12—C15125.8 (3)
C5—Th1—C429.26 (14)C15—C12—Th2118.5 (4)
O1—Th2—Cl166.47 (11)C11—C13—Th275.7 (3)
O1—Th2—O373.12 (9)C11—C13—C13ii108.1 (3)
O1—Th2—O3ii73.12 (9)C11—C13—C16125.7 (4)
O1—Th2—N188.99 (13)C13ii—C13—Th275.23 (9)
O1—Th2—N1ii88.99 (13)C13ii—C13—C16126.1 (3)
O1—Th2—C11155.49 (10)C16—C13—Th2118.1 (3)
O1—Th2—C11ii155.49 (10)C11—C14—H14A109.5
O1—Th2—C12166.28 (18)C11—C14—H14B109.5
O1—Th2—C13ii144.28 (14)C11—C14—H14C109.5
O1—Th2—C13144.28 (14)H14A—C14—H14B109.5
O3—Th2—Cl166.73 (8)H14A—C14—H14C109.5
O3ii—Th2—Cl166.73 (8)H14B—C14—H14C109.5
O3ii—Th2—O3130.25 (16)C12—C15—H15Aii109.5 (13)
O3ii—Th2—N1ii73.53 (13)C12—C15—H15A109.5
O3—Th2—N1ii140.27 (13)C12—C15—H15B109.5
O3—Th2—N173.53 (13)C12—C15—H15Bii109.5 (5)
O3ii—Th2—N1140.27 (13)C12—C15—H15Cii109.5 (9)
O3—Th2—C11128.42 (12)C12—C15—H15C109.5
O3ii—Th2—C1182.80 (12)H15A—C15—H15Aii77.5
O3—Th2—C11ii82.80 (12)H15A—C15—H15B109.5
O3ii—Th2—C11ii128.42 (12)H15Aii—C15—H15Bii109.5
O3—Th2—C12110.75 (9)H15A—C15—H15Bii34.6
O3ii—Th2—C12110.75 (9)H15A—C15—H15C109.5
O3ii—Th2—C13ii107.88 (12)H15Aii—C15—H15Cii109.5
O3—Th2—C13ii81.05 (12)H15A—C15—H15Cii134.9
O3ii—Th2—C1381.05 (12)H15B—C15—H15Aii34.6
O3—Th2—C13107.88 (12)H15B—C15—H15Bii134.9
N1—Th2—Cl1137.70 (10)H15B—C15—H15C109.5
N1ii—Th2—Cl1137.70 (10)H15Bii—C15—H15Cii109.5
N1ii—Th2—N170.9 (2)H15B—C15—H15Cii77.5
N1—Th2—C11107.32 (14)H15C—C15—H15Aii134.9
N1ii—Th2—C11ii107.32 (14)H15C—C15—H15Bii77.5
N1—Th2—C11ii79.65 (13)H15C—C15—H15Cii34.6
N1ii—Th2—C1179.65 (13)C13—C16—H16A109.5
N1ii—Th2—C1279.86 (15)C13—C16—H16B109.5
N1—Th2—C1279.86 (15)C13—C16—H16C109.5
N1ii—Th2—C13107.11 (14)H16A—C16—H16B109.5
N1—Th2—C13126.15 (13)H16A—C16—H16C109.5
N1ii—Th2—C13ii126.15 (13)H16B—C16—H16C109.5
N1—Th2—C13ii107.11 (13)C7S—O2S—C5S109 (3)
C11—Th2—Cl1108.35 (10)O2S—C5S—H5SA110.7
C11ii—Th2—Cl1108.35 (10)O2S—C5S—H5SB110.7
C11—Th2—C11ii48.60 (19)O2S—C5S—C6S105 (3)
C11ii—Th2—C1229.38 (12)H5SA—C5S—H5SB108.8
C11—Th2—C1229.38 (12)C6S—C5S—H5SA110.7
C12—Th2—Cl1127.25 (14)C6S—C5S—H5SB110.7
C13ii—Th2—Cl180.94 (10)C5S—C6S—H6SA109.5
C13—Th2—Cl180.94 (10)C5S—C6S—H6SB109.5
C13—Th2—C1129.39 (13)C5S—C6S—H6SC109.5
C13—Th2—C11ii48.59 (13)H6SA—C6S—H6SB109.5
C13ii—Th2—C1148.59 (13)H6SA—C6S—H6SC109.5
C13ii—Th2—C11ii29.39 (13)H6SB—C6S—H6SC109.5
C13ii—Th2—C1248.39 (16)O2S—C7S—H7SA109.6
C13—Th2—C1248.39 (16)O2S—C7S—H7SB109.6
C13ii—Th2—C1329.54 (18)O2S—C7S—C8S110 (3)
Th1ii—Cl1—Th175.30 (4)H7SA—C7S—H7SB108.1
Th2—Cl1—Th1ii75.86 (3)C8S—C7S—H7SA109.6
Th2—Cl1—Th175.86 (3)C8S—C7S—H7SB109.6
Th1—O1—Th1ii108.19 (18)C7S—C8S—H8SA109.5
Th1ii—O1—Th2107.42 (12)C7S—C8S—H8SB109.5
Th1—O1—Th2107.42 (12)C7S—C8S—H8SC109.5
Th1ii—O2—Th1104.25 (18)H8SA—C8S—H8SB109.5
Th1—O2—H2127.6 (5)H8SA—C8S—H8SC109.5
Th1ii—O2—H2127.6 (5)H8SB—C8S—H8SC109.5
Th1—O3—H3113 (8)C4S—O1S—C1S109.7 (12)
Th2—O3—Th1103.27 (12)O1S—C1S—H1SA110.5
Th2—O3—H3119 (8)O1S—C1S—H1SB110.5
N2—N1—Th2134.0 (3)O1S—C1S—C2S106.2 (13)
N3—N2—N1176.9 (5)H1SA—C1S—H1SB108.7
N2—N3—Th1i155.4 (4)C2S—C1S—H1SA110.5
N5—N4—Th1127.7 (3)C2S—C1S—H1SB110.5
N4—N5—N4i179.0 (7)C1S—C2S—H2SA112.1
C2—C1—Th176.3 (3)C1S—C2S—H2SB112.1
C2—C1—C6126.2 (5)C1S—C2S—C3S98.2 (15)
C5—C1—Th175.2 (3)H2SA—C2S—H2SB109.8
C5—C1—C2107.6 (4)C3S—C2S—H2SA112.1
C5—C1—C6126.0 (5)C3S—C2S—H2SB112.1
C6—C1—Th1118.4 (3)C2S—C3S—H3SA112.0
C1—C2—Th174.4 (3)C2S—C3S—H3SB112.0
C1—C2—C7126.5 (5)C4S—C3S—C2S98.7 (16)
C3—C2—Th175.6 (3)C4S—C3S—H3SA112.0
C3—C2—C1107.9 (4)C4S—C3S—H3SB112.0
C3—C2—C7125.3 (5)O1S—C4S—C3S101.6 (15)
C7—C2—Th1120.9 (3)O1S—C4S—H4SA111.5
C2—C3—Th175.3 (3)O1S—C4S—H4SB111.5
C2—C3—C4108.4 (4)C3S—C4S—H4SA111.5
C2—C3—C8125.1 (5)C3S—C4S—H4SB111.5
C4—C3—Th175.2 (3)H4SA—C4S—H4SB109.3
C4—C3—C8126.3 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1S0.84 (2)1.93 (3)2.762 (10)170 (8)
 

Funding information

JRW gratefully acknowledges support for this work from the US Department of Energy, Office of Science under award No. DE-SC0021273. SPK thanks the University of Missouri Department of Chemistry for support of this work.

References

First citationBruker (2017). AXScale, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, P. C. & Nyman, M. (2018). Dalton Trans. 47, 5916–5927.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCary, S. K., Vasiliu, M., Baumbach, R. E., Stritzinger, J. T., Green, T. D., Diefenbach, K., Cross, J. N., Knappenberger, K. L., Liu, G., Silver, M. A., DePrince, A. E., Polinski, M. J., Van Cleve, S. M., House, J. H., Kikugawa, N., Gallagher, A., Arico, A. A., Dixon, D. A. & Albrecht-Schmitt, T.-E. (2015). Nat. Commun. 6, 6827. https://doi.org/10.1038/ncomms7827.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, J., King, D. M., Chatelain, L., Lu, E., Tuna, F., McInnes, E. J. L., Wooles, A. J., Maron, L. & Liddle, S. T. (2019). Chem. Sci. 10, 3738–3745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEvans, W. J. & Davis, B. L. (2002). Chem. Rev. 102, 2119–2136.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKelley, S. P., Tarlton, M. L. & Walensky, J. R. (2021). J. Chem. Crystallogr. In preparation.  Google Scholar
First citationKnope, K. E., Wilson, R. E., Vasiliu, M., Dixon, D. A. & Soderholm, L. (2011). Inorg. Chem. 50, 9676–9704.  Google Scholar
First citationLi, P., Vermeulen, N. A., Malliakas, C. D., Gómez-Gualdrón, D. A., Howarth, A. J., Mehdi, B. L., Dohnalkova, A., Browning, N. D., O'Keeffe, M. & Farha, O. K. (2017). Science, 356, 624–627.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNeidig, M. L., Clark, D. L. & Martin, R. L. (2013). Coord. Chem. Rev. 257, 394–406.  Web of Science CrossRef CAS Google Scholar
First citationRocha, J., Carlos, L. D., Paz, F. A. A. & Ananias, D. (2011). Chem. Soc. Rev. 40, 926–940.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRungthanaphatsophon, P., Duignan, T. J., Myers, A. J., Vilanova, S. P., Barnes, C. L., Autschbach, J., Batista, E. R., Yang, P. & Walensky, J. R. (2018). Inorg. Chem. 57, 7270–7278.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakao, S., Takao, K., Kraus, W., Emmerling, F., Scheinost, A. C., Bernhard, G. & Hennig, C. (2009). Eur. J. Inorg. Chem. pp. 4771–4775.  Web of Science CSD CrossRef ICSD Google Scholar
First citationTarlton, M., Fajen, O. J., Kelley, S. P., Kerridge, A., Malcomson, T., Morrison, T. L., Shores, M. P., Xhani, X. & Walensky, J. R. (2021). Inorg. Chem. 60, 10614–10630.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTarlton, M. L., Del Rosal, I., Vilanova, S. P., Kelley, S. P., Maron, L. & Walensky, J. R. (2020). Organometallics, 39, 2152–2161.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarlton, M. L., Yang, Y., Kelley, S. P., Maron, L. & Walensky, J. R. (2021). Organometallics, 40, https://doi.org/10.1021/acs.organomet.1c00330  Web of Science CSD CrossRef Google Scholar
First citationVilanova, S. P., Alayoglu, P., Heidarian, M., Huang, P. & Walensky, J. R. (2017). Chem. Eur. J. 23, 16748–16752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWacker, J. N., Vasiliu, M., Colliard, I., Ayscue, R. L., Han, S. Y., Bertke, J. A., Nyman, M., Dixon, D. A. & Knope, K. E. (2019). Inorg. Chem. 58, 10871–10882.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWilson, R. E., Skanthakumar, S., Sigmon, G., Burns, P. C. & Soderholm, L. (2007). Inorg. Chem. 46, 2368–2372.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds