research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 9,9-di­ethyl-9H-fluorene-2,4,7-tricarbaldehyde

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 30 August 2021; accepted 10 September 2021; online 17 September 2021)

The title compound, C20H18O3, crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit of the cell. The fluorene skeleton is nearly planar and the crystal structure is composed of mol­ecular layers extending parallel to the (302) plane. Within a layer, one formyl oxygen atom participates in the formation of a Carene—H⋯O bond, which is responsible for the formation of an inversion symmetric supra­molecular motif of graph set R22(10). A second oxygen atom is involved in an intra­molecular Carene—H⋯O hydrogen bond and is further connected with a formyl hydrogen atom of an adjacent mol­ecule. A Hirshfeld surface analysis indicated that the most important contributions to the overall surface are from H⋯H (46.9%), O⋯H (27.9%) and C⋯H (17.8%) inter­actions.

1. Chemical context

Compounds featuring a fluorene moiety have been recognized as useful for a broad spectrum of applications, which range from agents for cell imaging, solar cells, organic light-emitting diodes to lasers. Furthermore, fluorene derivatives have the potential to act as artificial receptors for different ionic and neutral substrates in analogy to the known receptors possessing a benzene or biphenyl core, which, for example, are able to complex ammonium ions (Koch et al., 2015[Koch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965-8974.]; Schulze et al., 2018[Schulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317-4330.]; Chin et al., 2002[Chin, J., Oh, J., Jon, S. Y., Park, S. H., Walsdorff, C., Stranix, B., Ghoussoub, A., Lee, S. J., Chung, H. J., Park, S.-M. & Kim, K. (2002). J. Am. Chem. Soc. 124, 5374-5379.]; Arunachalam et al., 2010[Arunachalam, M., Ahamed, B. N. & Ghosh, P. (2010). Org. Lett. 12, 2742-2745.]), ion pairs (Stapf et al., 2015[Stapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350-6354.]) or carbohydrates (Stapf et al., 2020[Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. 2020, 4900-4915.]; Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.], 2021[Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221-22229.]; Kaiser et al., 2019[Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555-7562.]; Lippe & Mazik, 2013[Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013-9020.], 2015[Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427-1439.]; Amrhein et al., 2016[Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648-10659.]; Amrhein & Mazik, 2021[Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. https://doi.org/10.1002/ejoc.202100758]). As a result of the manifold application possibilities of fluorenes, the syntheses of new representatives of this class of compounds are the subject of intensive research (Seidel et al., 2019[Seidel, P., Schwarzer, A. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 1493-1502.], 2021[Seidel, P., Seichter, W., Schwarzer, A. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 2901-2914.]; Seidel & Mazik, 2020[Seidel, P. & Mazik, M. (2020). ChemistryOpen, 9, 1202-1213.]; Sicard et al., 2018[Sicard, L., Jeannin, O., Rault-Berthelot, J., Quinton, C. & Poriel, C. (2018). ChemPlusChem, 83, 874-880.]). Fluorene derivatives bearing halogen, formyl or amino groups are valuable starting mat­erials for a wide range of fluorene-based acyclic and macrocyclic compounds as well as polymers. Recently we have described the efficient one-step synthesis of 9,9-diethyl-9H-fluorene-2,4,7-tricarbaldehyde on the basis of 2,4,7-tris(bromo­meth­yl)-9,9-diethyl-9H-fluorene (Seidel et al., 2019[Seidel, P., Schwarzer, A. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 1493-1502.]), which provided a threefold higher yield of the product than the previously known three-step reaction sequence (Yao & Belfield, 2005[Yao, S. & Belfield, K. D. (2005). J. Org. Chem. 70, 5126-5132.]). In this work we describe the crystal structure of this fluorene derivative bearing three formyl groups.

[Scheme 1]

2. Structural commentary

The title compound (1) (Fig. 1[link]) crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit. The 2,4,7-substituted fluorene scaffold adopts a nearly planar geometry with the formyl groups inclined at angles of 4.2 (2), 3.5 (2) and 3.3 (2)° with respect to the fluorene moiety. These values correlate with torsion angles of −175.8 (3), −175.4 (3) and −176.7 (4)°, respectively, for the atomic sequences C3—C2—C14—O1, C3—C4—C15—O2 and C6—C7—C16—O3. The plane passing through the two ethyl groups is oriented nearly orthogonal to the plane of the fluorene unit [dihedral angle = 89.8 (1)°]. The oxygen atom O2 is involved in an intra­molecular Carene—H⋯O hydrogen bond [d(H⋯O) 2.18 Å, C—H⋯O 138°; Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.59 3.512 (4) 165
C5—H5⋯O2 0.95 2.18 2.961 (4) 138
C5—H5⋯O3ii 0.95 2.67 3.350 (4) 129
C16—H16⋯O2iii 0.95 2.53 3.321 (4) 141
C17—H17A⋯O1i 0.99 2.68 3.611 (4) 157
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Perspective view of (1) including the labelling of non-hydrogen atoms. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure of the title compound is composed of mol­ecular layers extending parallel to the (302) plane. An excerpt of the layer structure showing the mode of hydrogen bonding is depicted in Fig. 2[link]. Within a given layer, the formyl oxygen atom O1 participates in the formation of a Carene—H⋯O bond [d(H⋯O) 2.59 Å; Table 1[link]], thus creating an inversion-symmetric supra­molecular motif of graph-set R22(10) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; for examples of other crystal structures including such a ten-membered supra­molecular motif, see Seidel et al., 2021[Seidel, P., Seichter, W., Schwarzer, A. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 2901-2914.]; Stapf et al., 2021[Stapf, M., Leibiger, B., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 919-923.]). The oxygen atom O2 is connected with the formyl hydrogen H16 of an adjacent mol­ecule [d(H⋯O) 2.53 Å]. The steric requirements of the ethyl groups cause an offset of the mol­ecules of consecutive layers, so that neither hydrogen bonds nor ππ arene stacking inter­actions are observed in the direction of the layer normal. Consequently, the crystal appears to be stabilized by van der Waals forces in the direction of the stacking axis of the mol­ecular layers (Fig. 3[link]).

[Figure 2]
Figure 2
Packing excerpt of (1) showing selected C—H⋯O inter­actions within one layer of mol­ecules.
[Figure 3]
Figure 3
Packing excerpt of (1) showing adjacent layers of mol­ecules and selected C—H⋯O inter­actions within the layers. Hydrogen atoms of subunits not involved in inter­molecular hydrogen bonding are omitted for clarity.

4. Database Survey

A search in the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 9H-fluorene derivatives bearing a formyl group resulted in three hits, including 9H-fluorene carbaldehyde (SAZQIT; Dobson & Gerkin, 1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1890-1892.]) and two ferrocene-fluorene complexes including a 2-formyl-9-fluorenyl (HAPROF) and a 2,7-diformyl-9-fluorenyl moiety (HAPRUL; Wright & Cochran, 1993[Wright, M. E. & Cochran, B. B. (1993). Organometallics, 12, 3873-3878.]). As in the case of the title compound, the 9H-fluorene carbaldehyde crystallized in the space group P21/c with one mol­ecule in the asymmetric unit. The mol­ecular core is nearly planar and the crystal structure is characterized by the presence of C—H⋯O hydrogen bonds, which are responsible for the formation of a supra­molecular motif of graph set R22(14).

5. Hirshfeld surface analysis

Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were calculated and the associated 2D fingerprint plots generated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are displayed within the expanded 0.4–3.0 Å range including reciprocal contacts (Fig. 4[link]); 3D dnorm surfaces are mapped over a fixed colour scale of −0.3 a.u. (red)–1.0 a.u. (blue) (Figs. 5[link] and 6[link]). The 2D fingerprint plots (see Fig. 4[link]) indicate that the most important contributions to the overall surface are from H⋯H (46.9%), O⋯H (27.9%) and C⋯H (17.8%) inter­actions, whereas only 3.8% and 2.6% are from the C⋯C and C⋯O contacts, respectively. In addition to the fingerprint plots, the Hirshfeld plots mapped with dnorm give a hint about the significance of the close contacts. For example, the O⋯H hydrogen bonds are responsible for the intense red spots on the surface, as shown in Figs. 5[link] and 6[link].

[Figure 4]
Figure 4
Fingerprint plot of (1) including the contribution of the atom⋯atom pairs to the overall surface.
[Figure 5]
Figure 5
Hirshfeld surface for (1) mapped with dnorm (front and back views).
[Figure 6]
Figure 6
Hirshfeld surface for (1) mapped with dnorm and shape-index function showing neigbouring mol­ecules and the corresponding contacts.

6. Synthesis and crystallization

The title compound was prepared by an efficient one-step synthesis involving the treatment of 2,4,7-tris­(bromo­meth­yl)-9,9-di­ethyl-9H-­fluorene with N-methyl­morpholine N-oxide (Seidel et al., 2019[Seidel, P., Schwarzer, A. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 1493-1502.]). Single crystals of (1) were achieved via crystallization from a mixture of di­chloro­methane and n-hexane (1:1 v/v).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.95 Å for aryl-H atoms, C—H = 0.99 Å for methyl­ene groups and C—H = 0.98 Å for methyl groups with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms. The crystal structure of (1) was refined as a two-component twin with an approximate occupancy ratio of 63:37.

Table 2
Experimental details

Crystal data
Chemical formula C20H18O3
Mr 306.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 15.6595 (9), 13.1466 (14), 7.6834 (15)
β (°) 93.146 (9)
V3) 1579.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.38 × 0.30 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 13951, 13951, 8830
Rint ?
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 0.93
No. of reflections 13951
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.24
Computer programs: X-AREA and X-RED (Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2009); cell refinement: X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010), and shelXle (Hübschle et al., 2011).

9,9-Diethylfluorene-2,4,7-tricarbaldehyde top
Crystal data top
C20H18O3F(000) = 648
Mr = 306.34Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6595 (9) ÅCell parameters from 6293 reflections
b = 13.1466 (14) Åθ = 2.9–28.3°
c = 7.6834 (15) ŵ = 0.09 mm1
β = 93.146 (9)°T = 150 K
V = 1579.4 (4) Å3Piece, colorless
Z = 40.38 × 0.30 × 0.15 mm
Data collection top
Stoe IPDS 2T
diffractometer
13951 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus8830 reflections with I > 2σ(I)
Plane graphite monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 6.67 pixels mm-1h = 1718
rotation method scansk = 1515
13951 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0713P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
13951 reflectionsΔρmax = 0.26 e Å3
211 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51535 (14)0.34892 (18)0.5435 (3)0.0532 (7)
O20.15641 (16)0.18707 (17)0.0059 (3)0.0604 (7)
O30.03712 (16)0.7414 (2)0.2592 (4)0.0713 (8)
C10.37790 (18)0.4293 (2)0.3116 (3)0.0322 (7)
H10.4145720.4802630.3615670.039*
C20.39372 (18)0.3258 (2)0.3466 (3)0.0316 (7)
C30.33905 (17)0.2531 (2)0.2722 (4)0.0330 (6)
H30.3508750.1833870.2958500.040*
C40.26770 (17)0.2774 (2)0.1647 (3)0.0313 (7)
C50.11308 (18)0.4025 (2)0.0802 (4)0.0372 (7)
H50.0995640.3321380.0874670.045*
C60.06274 (19)0.4738 (2)0.1701 (4)0.0412 (8)
H60.0149470.4513690.2413940.049*
C70.08030 (19)0.5775 (2)0.1586 (4)0.0385 (7)
C80.15063 (18)0.6120 (2)0.0543 (4)0.0364 (7)
H80.1627210.6826130.0443650.044*
C90.28194 (18)0.5627 (2)0.1500 (4)0.0313 (7)
C100.30798 (17)0.4554 (2)0.2032 (3)0.0294 (6)
C110.25144 (17)0.3818 (2)0.1286 (3)0.0291 (6)
C120.18436 (17)0.4364 (2)0.0215 (3)0.0305 (6)
C130.20206 (18)0.5414 (2)0.0338 (3)0.0311 (7)
C140.46610 (18)0.2932 (2)0.4635 (4)0.0379 (7)
H140.4748480.2220390.4772970.045*
C150.2180 (2)0.1882 (2)0.0975 (4)0.0436 (8)
H150.2367540.1237710.1408310.052*
C160.0245 (2)0.6512 (3)0.2560 (5)0.0535 (9)
H160.0244670.6255460.3201030.064*
C170.26251 (19)0.6290 (2)0.3086 (4)0.0366 (7)
H17A0.3158550.6367300.3826970.044*
H17B0.2453930.6974990.2662100.044*
C180.1931 (2)0.5885 (2)0.4212 (4)0.0466 (8)
H18A0.1906900.6303880.5263750.070*
H18B0.2060830.5180190.4543800.070*
H18C0.1377190.5911870.3553340.070*
C190.35203 (19)0.6155 (2)0.0494 (4)0.0388 (7)
H19A0.3314600.6842400.0152210.047*
H19B0.4031500.6242830.1296590.047*
C200.3791 (2)0.5611 (3)0.1127 (4)0.0516 (9)
H20A0.4196680.6036130.1725360.077*
H20B0.3286500.5481440.1908830.077*
H20C0.4063100.4962960.0795540.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0435 (13)0.0551 (15)0.0591 (14)0.0035 (12)0.0151 (13)0.0044 (13)
O20.0656 (15)0.0508 (15)0.0633 (15)0.0157 (12)0.0094 (14)0.0051 (12)
O30.0680 (16)0.0551 (16)0.0880 (18)0.0021 (15)0.0219 (16)0.0182 (15)
C10.0309 (15)0.0348 (16)0.0311 (13)0.0035 (13)0.0026 (13)0.0008 (12)
C20.0302 (15)0.0353 (16)0.0296 (15)0.0015 (13)0.0045 (13)0.0014 (12)
C30.0389 (15)0.0300 (15)0.0308 (14)0.0026 (14)0.0072 (14)0.0007 (12)
C40.0349 (15)0.0303 (16)0.0292 (14)0.0029 (13)0.0071 (14)0.0032 (12)
C50.0341 (16)0.0363 (16)0.0409 (16)0.0056 (14)0.0000 (14)0.0041 (14)
C60.0320 (17)0.049 (2)0.0421 (17)0.0048 (15)0.0037 (15)0.0012 (14)
C70.0332 (16)0.0450 (19)0.0371 (15)0.0006 (14)0.0003 (14)0.0057 (14)
C80.0360 (16)0.0350 (16)0.0381 (16)0.0038 (14)0.0003 (14)0.0044 (13)
C90.0330 (15)0.0263 (14)0.0344 (14)0.0022 (12)0.0008 (13)0.0009 (12)
C100.0303 (15)0.0301 (15)0.0280 (13)0.0010 (13)0.0034 (13)0.0004 (12)
C110.0314 (15)0.0289 (15)0.0274 (13)0.0020 (13)0.0042 (12)0.0018 (12)
C120.0287 (15)0.0321 (15)0.0309 (14)0.0024 (12)0.0036 (13)0.0014 (13)
C130.0316 (15)0.0328 (15)0.0288 (13)0.0030 (13)0.0001 (13)0.0002 (13)
C140.0355 (16)0.0414 (17)0.0371 (17)0.0051 (15)0.0056 (15)0.0057 (15)
C150.050 (2)0.0422 (19)0.0389 (17)0.0085 (16)0.0045 (17)0.0019 (15)
C160.044 (2)0.055 (2)0.060 (2)0.0005 (18)0.0105 (18)0.0115 (19)
C170.0403 (17)0.0308 (15)0.0378 (15)0.0010 (14)0.0054 (14)0.0035 (13)
C180.0519 (19)0.0454 (19)0.0427 (17)0.0051 (16)0.0043 (16)0.0022 (15)
C190.0378 (16)0.0349 (16)0.0430 (16)0.0097 (13)0.0046 (15)0.0071 (14)
C200.0473 (19)0.060 (2)0.0478 (18)0.0153 (18)0.0095 (16)0.0028 (17)
Geometric parameters (Å, º) top
O1—C141.207 (3)C9—C131.523 (4)
O2—C151.216 (3)C9—C191.542 (4)
O3—C161.203 (4)C9—C171.542 (4)
C1—C101.382 (4)C10—C111.411 (4)
C1—C21.406 (4)C11—C121.483 (4)
C1—H10.9500C12—C131.410 (4)
C2—C31.386 (4)C14—H140.9500
C2—C141.471 (4)C15—H150.9500
C3—C41.390 (4)C16—H160.9500
C3—H30.9500C17—C181.522 (5)
C4—C111.421 (4)C17—H17A0.9900
C4—C151.484 (4)C17—H17B0.9900
C5—C61.384 (4)C18—H18A0.9800
C5—C121.400 (4)C18—H18B0.9800
C5—H50.9500C18—H18C0.9800
C6—C71.393 (4)C19—C201.517 (5)
C6—H60.9500C19—H19A0.9900
C7—C81.401 (4)C19—H19B0.9900
C7—C161.479 (4)C20—H20A0.9800
C8—C131.381 (4)C20—H20B0.9800
C8—H80.9500C20—H20C0.9800
C9—C101.518 (4)
C10—C1—C2118.8 (2)C13—C12—C11107.8 (2)
C10—C1—H1120.6C8—C13—C12121.2 (2)
C2—C1—H1120.6C8—C13—C9127.0 (2)
C3—C2—C1119.4 (2)C12—C13—C9111.8 (2)
C3—C2—C14119.2 (3)O1—C14—C2125.7 (3)
C1—C2—C14121.4 (2)O1—C14—H14117.2
C2—C3—C4123.0 (3)C2—C14—H14117.2
C2—C3—H3118.5O2—C15—C4128.2 (3)
C4—C3—H3118.5O2—C15—H15115.9
C3—C4—C11117.9 (2)C4—C15—H15115.9
C3—C4—C15114.4 (3)O3—C16—C7124.2 (3)
C11—C4—C15127.7 (2)O3—C16—H16117.9
C6—C5—C12118.5 (3)C7—C16—H16117.9
C6—C5—H5120.7C18—C17—C9115.5 (2)
C12—C5—H5120.7C18—C17—H17A108.4
C5—C6—C7121.8 (2)C9—C17—H17A108.4
C5—C6—H6119.1C18—C17—H17B108.4
C7—C6—H6119.1C9—C17—H17B108.4
C6—C7—C8119.9 (3)H17A—C17—H17B107.5
C6—C7—C16120.0 (3)C17—C18—H18A109.5
C8—C7—C16120.1 (3)C17—C18—H18B109.5
C13—C8—C7118.8 (3)H18A—C18—H18B109.5
C13—C8—H8120.6C17—C18—H18C109.5
C7—C8—H8120.6H18A—C18—H18C109.5
C10—C9—C13100.8 (2)H18B—C18—H18C109.5
C10—C9—C19111.4 (2)C20—C19—C9116.0 (2)
C13—C9—C19111.9 (2)C20—C19—H19A108.3
C10—C9—C17112.0 (2)C9—C19—H19A108.3
C13—C9—C17112.1 (2)C20—C19—H19B108.3
C19—C9—C17108.6 (2)C9—C19—H19B108.3
C1—C10—C11122.2 (2)H19A—C19—H19B107.4
C1—C10—C9125.8 (2)C19—C20—H20A109.5
C11—C10—C9112.0 (2)C19—C20—H20B109.5
C10—C11—C4118.8 (2)H20A—C20—H20B109.5
C10—C11—C12107.6 (2)C19—C20—H20C109.5
C4—C11—C12133.6 (2)H20A—C20—H20C109.5
C5—C12—C13119.8 (2)H20B—C20—H20C109.5
C5—C12—C11132.4 (2)
C10—C1—C2—C30.1 (4)C10—C11—C12—C5180.0 (3)
C10—C1—C2—C14178.8 (3)C4—C11—C12—C50.6 (6)
C1—C2—C3—C40.7 (4)C10—C11—C12—C130.1 (3)
C14—C2—C3—C4178.0 (3)C4—C11—C12—C13179.3 (3)
C2—C3—C4—C110.8 (4)C7—C8—C13—C120.6 (5)
C2—C3—C4—C15179.6 (3)C7—C8—C13—C9178.7 (3)
C12—C5—C6—C71.3 (5)C5—C12—C13—C80.6 (4)
C5—C6—C7—C80.1 (5)C11—C12—C13—C8179.3 (3)
C5—C6—C7—C16179.6 (3)C5—C12—C13—C9180.0 (3)
C6—C7—C8—C130.9 (5)C11—C12—C13—C90.1 (3)
C16—C7—C8—C13179.4 (3)C10—C9—C13—C8179.4 (3)
C2—C1—C10—C110.9 (4)C19—C9—C13—C860.9 (4)
C2—C1—C10—C9179.3 (3)C17—C9—C13—C861.4 (4)
C13—C9—C10—C1179.8 (3)C10—C9—C13—C120.0 (3)
C19—C9—C10—C161.4 (3)C19—C9—C13—C12118.5 (3)
C17—C9—C10—C160.5 (4)C17—C9—C13—C12119.2 (3)
C13—C9—C10—C110.0 (3)C3—C2—C14—O1175.8 (3)
C19—C9—C10—C11118.8 (2)C1—C2—C14—O12.9 (5)
C17—C9—C10—C11119.3 (3)C3—C4—C15—O2175.4 (3)
C1—C10—C11—C40.8 (4)C11—C4—C15—O23.2 (5)
C9—C10—C11—C4179.4 (3)C6—C7—C16—O3176.7 (4)
C1—C10—C11—C12179.7 (3)C8—C7—C16—O33.5 (6)
C9—C10—C11—C120.1 (3)C10—C9—C17—C1857.6 (3)
C3—C4—C11—C100.1 (4)C13—C9—C17—C1854.8 (3)
C15—C4—C11—C10178.6 (3)C19—C9—C17—C18179.0 (2)
C3—C4—C11—C12179.2 (3)C10—C9—C19—C2056.6 (3)
C15—C4—C11—C120.7 (5)C13—C9—C19—C2055.3 (3)
C6—C5—C12—C131.5 (4)C17—C9—C19—C20179.6 (2)
C6—C5—C12—C11178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.593.512 (4)165
C5—H5···O20.952.182.961 (4)138
C5—H5···O3ii0.952.673.350 (4)129
C16—H16···O2iii0.952.533.321 (4)141
C17—H17A···O1i0.992.683.611 (4)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationAmrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAmrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. https://doi.org/10.1002/ejoc.202100758  Google Scholar
First citationArunachalam, M., Ahamed, B. N. & Ghosh, P. (2010). Org. Lett. 12, 2742–2745.  CSD CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChin, J., Oh, J., Jon, S. Y., Park, S. H., Walsdorff, C., Stranix, B., Ghoussoub, A., Lee, S. J., Chung, H. J., Park, S.-M. & Kim, K. (2002). J. Am. Chem. Soc. 124, 5374–5379.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1890–1892.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.  Web of Science CrossRef Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965–8974.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229.  Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationLippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSchulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317–4330.  Web of Science CSD CrossRef Google Scholar
First citationSeidel, P. & Mazik, M. (2020). ChemistryOpen, 9, 1202–1213.  CrossRef CAS PubMed Google Scholar
First citationSeidel, P., Schwarzer, A. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 1493–1502.  CSD CrossRef Google Scholar
First citationSeidel, P., Seichter, W., Schwarzer, A. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 2901–2914.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSicard, L., Jeannin, O., Rault-Berthelot, J., Quinton, C. & Poriel, C. (2018). ChemPlusChem, 83, 874–880.  CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStapf, M., Leibiger, B., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 919–923.  CSD CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350–6354.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. 2020, 4900–4915.  CSD CrossRef CAS Google Scholar
First citationStoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, M. E. & Cochran, B. B. (1993). Organometallics, 12, 3873–3878.  CSD CrossRef CAS Google Scholar
First citationYao, S. & Belfield, K. D. (2005). J. Org. Chem. 70, 5126–5132.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds