research communications
H-fluorene-2,4,7-tricarbaldehyde
of 9,9-diethyl-9aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de
The title compound, C20H18O3, crystallizes in the P21/c with one molecule in the of the cell. The fluorene skeleton is nearly planar and the is composed of molecular layers extending parallel to the (302) plane. Within a layer, one formyl oxygen atom participates in the formation of a Carene—H⋯O bond, which is responsible for the formation of an inversion symmetric supramolecular motif of graph set R22(10). A second oxygen atom is involved in an intramolecular Carene—H⋯O hydrogen bond and is further connected with a formyl hydrogen atom of an adjacent molecule. A Hirshfeld surface analysis indicated that the most important contributions to the overall surface are from H⋯H (46.9%), O⋯H (27.9%) and C⋯H (17.8%) interactions.
Keywords: crystal structure; fluorene derivative; hydrogen bonding; Hirshfeld surface analysis; two-dimensional fingerprint plots.
CCDC reference: 2109160
1. Chemical context
Compounds featuring a fluorene moiety have been recognized as useful for a broad spectrum of applications, which range from agents for cell imaging, solar cells, organic light-emitting diodes to lasers. Furthermore, fluorene derivatives have the potential to act as artificial receptors for different ionic and neutral substrates in analogy to the known receptors possessing a benzene or biphenyl core, which, for example, are able to complex ammonium ions (Koch et al., 2015; Schulze et al., 2018; Chin et al., 2002; Arunachalam et al., 2010), ion pairs (Stapf et al., 2015) or (Stapf et al., 2020; Köhler et al., 2020, 2021; Kaiser et al., 2019; Lippe & Mazik, 2013, 2015; Amrhein et al., 2016; Amrhein & Mazik, 2021). As a result of the manifold application possibilities of fluorenes, the syntheses of new representatives of this class of compounds are the subject of intensive research (Seidel et al., 2019, 2021; Seidel & Mazik, 2020; Sicard et al., 2018). Fluorene derivatives bearing halogen, formyl or amino groups are valuable starting materials for a wide range of fluorene-based acyclic and macrocyclic compounds as well as polymers. Recently we have described the efficient one-step synthesis of 9,9-diethyl-9H-fluorene-2,4,7-tricarbaldehyde on the basis of 2,4,7-tris(bromomethyl)-9,9-diethyl-9H-fluorene (Seidel et al., 2019), which provided a threefold higher yield of the product than the previously known three-step reaction sequence (Yao & Belfield, 2005). In this work we describe the of this fluorene derivative bearing three formyl groups.
2. Structural commentary
The title compound (1) (Fig. 1) crystallizes in the P21/c with one molecule in the The 2,4,7-substituted fluorene scaffold adopts a nearly planar geometry with the formyl groups inclined at angles of 4.2 (2), 3.5 (2) and 3.3 (2)° with respect to the fluorene moiety. These values correlate with torsion angles of −175.8 (3), −175.4 (3) and −176.7 (4)°, respectively, for the atomic sequences C3—C2—C14—O1, C3—C4—C15—O2 and C6—C7—C16—O3. The plane passing through the two ethyl groups is oriented nearly orthogonal to the plane of the fluorene unit [dihedral angle = 89.8 (1)°]. The oxygen atom O2 is involved in an intramolecular Carene—H⋯O hydrogen bond [d(H⋯O) 2.18 Å, C—H⋯O 138°; Table 1].
3. Supramolecular features
The . Within a given layer, the formyl oxygen atom O1 participates in the formation of a Carene—H⋯O bond [d(H⋯O) 2.59 Å; Table 1], thus creating an inversion-symmetric supramolecular motif of graph-set R22(10) (Etter et al., 1990; Bernstein et al., 1995; for examples of other crystal structures including such a ten-membered supramolecular motif, see Seidel et al., 2021; Stapf et al., 2021). The oxygen atom O2 is connected with the formyl hydrogen H16 of an adjacent molecule [d(H⋯O) 2.53 Å]. The steric requirements of the ethyl groups cause an offset of the molecules of consecutive layers, so that neither hydrogen bonds nor π–π arene stacking interactions are observed in the direction of the layer normal. Consequently, the crystal appears to be stabilized by in the direction of the stacking axis of the molecular layers (Fig. 3).
of the title compound is composed of molecular layers extending parallel to the (302) plane. An excerpt of the layer structure showing the mode of hydrogen bonding is depicted in Fig. 24. Database Survey
A search in the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016) for 9H-fluorene derivatives bearing a formyl group resulted in three hits, including 9H-fluorene carbaldehyde (SAZQIT; Dobson & Gerkin, 1998) and two ferrocene-fluorene complexes including a 2-formyl-9-fluorenyl (HAPROF) and a 2,7-diformyl-9-fluorenyl moiety (HAPRUL; Wright & Cochran, 1993). As in the case of the title compound, the 9H-fluorene carbaldehyde crystallized in the P21/c with one molecule in the The molecular core is nearly planar and the is characterized by the presence of C—H⋯O hydrogen bonds, which are responsible for the formation of a supramolecular motif of graph set R22(14).
5. Hirshfeld surface analysis
Hirshfeld surfaces (Spackman & Jayatilaka, 2009) were calculated and the associated 2D fingerprint plots generated using Crystal Explorer 17.5 (Turner et al., 2017). The 2D fingerprint plots (McKinnon et al., 2007) are displayed within the expanded 0.4–3.0 Å range including reciprocal contacts (Fig. 4); 3D dnorm surfaces are mapped over a fixed colour scale of −0.3 a.u. (red)–1.0 a.u. (blue) (Figs. 5 and 6). The 2D fingerprint plots (see Fig. 4) indicate that the most important contributions to the overall surface are from H⋯H (46.9%), O⋯H (27.9%) and C⋯H (17.8%) interactions, whereas only 3.8% and 2.6% are from the C⋯C and C⋯O contacts, respectively. In addition to the fingerprint plots, the Hirshfeld plots mapped with dnorm give a hint about the significance of the close contacts. For example, the O⋯H hydrogen bonds are responsible for the intense red spots on the surface, as shown in Figs. 5 and 6.
6. Synthesis and crystallization
The title compound was prepared by an efficient one-step synthesis involving the treatment of 2,4,7-tris(bromomethyl)-9,9-diethyl-9H-fluorene with N-methylmorpholine N-oxide (Seidel et al., 2019). Single crystals of (1) were achieved via crystallization from a mixture of dichloromethane and n-hexane (1:1 v/v).
7. Refinement
Crystal data, data collection and structure . The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.95 Å for aryl-H atoms, C—H = 0.99 Å for methylene groups and C—H = 0.98 Å for methyl groups with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms. The of (1) was refined as a two-component twin with an approximate occupancy ratio of 63:37.
details are summarized in Table 2Supporting information
CCDC reference: 2109160
https://doi.org/10.1107/S2056989021009464/zq2265sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021009464/zq2265Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021009464/zq2265Isup3.cml
Data collection: X-AREA (Stoe, 2009); cell
X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010), and shelXle (Hübschle et al., 2011).C20H18O3 | F(000) = 648 |
Mr = 306.34 | Dx = 1.288 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.6595 (9) Å | Cell parameters from 6293 reflections |
b = 13.1466 (14) Å | θ = 2.9–28.3° |
c = 7.6834 (15) Å | µ = 0.09 mm−1 |
β = 93.146 (9)° | T = 150 K |
V = 1579.4 (4) Å3 | Piece, colorless |
Z = 4 | 0.38 × 0.30 × 0.15 mm |
Stoe IPDS 2T diffractometer | 13951 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 8830 reflections with I > 2σ(I) |
Plane graphite monochromator | θmax = 25.0°, θmin = 3.0° |
Detector resolution: 6.67 pixels mm-1 | h = −17→18 |
rotation method scans | k = −15→15 |
13951 measured reflections | l = −9→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0713P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.93 | (Δ/σ)max < 0.001 |
13951 reflections | Δρmax = 0.26 e Å−3 |
211 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.51535 (14) | 0.34892 (18) | 0.5435 (3) | 0.0532 (7) | |
O2 | 0.15641 (16) | 0.18707 (17) | −0.0059 (3) | 0.0604 (7) | |
O3 | 0.03712 (16) | 0.7414 (2) | −0.2592 (4) | 0.0713 (8) | |
C1 | 0.37790 (18) | 0.4293 (2) | 0.3116 (3) | 0.0322 (7) | |
H1 | 0.414572 | 0.480263 | 0.361567 | 0.039* | |
C2 | 0.39372 (18) | 0.3258 (2) | 0.3466 (3) | 0.0316 (7) | |
C3 | 0.33905 (17) | 0.2531 (2) | 0.2722 (4) | 0.0330 (6) | |
H3 | 0.350875 | 0.183387 | 0.295850 | 0.040* | |
C4 | 0.26770 (17) | 0.2774 (2) | 0.1647 (3) | 0.0313 (7) | |
C5 | 0.11308 (18) | 0.4025 (2) | −0.0802 (4) | 0.0372 (7) | |
H5 | 0.099564 | 0.332138 | −0.087467 | 0.045* | |
C6 | 0.06274 (19) | 0.4738 (2) | −0.1701 (4) | 0.0412 (8) | |
H6 | 0.014947 | 0.451369 | −0.241394 | 0.049* | |
C7 | 0.08030 (19) | 0.5775 (2) | −0.1586 (4) | 0.0385 (7) | |
C8 | 0.15063 (18) | 0.6120 (2) | −0.0543 (4) | 0.0364 (7) | |
H8 | 0.162721 | 0.682613 | −0.044365 | 0.044* | |
C9 | 0.28194 (18) | 0.5627 (2) | 0.1500 (4) | 0.0313 (7) | |
C10 | 0.30798 (17) | 0.4554 (2) | 0.2032 (3) | 0.0294 (6) | |
C11 | 0.25144 (17) | 0.3818 (2) | 0.1286 (3) | 0.0291 (6) | |
C12 | 0.18436 (17) | 0.4364 (2) | 0.0215 (3) | 0.0305 (6) | |
C13 | 0.20206 (18) | 0.5414 (2) | 0.0338 (3) | 0.0311 (7) | |
C14 | 0.46610 (18) | 0.2932 (2) | 0.4635 (4) | 0.0379 (7) | |
H14 | 0.474848 | 0.222039 | 0.477297 | 0.045* | |
C15 | 0.2180 (2) | 0.1882 (2) | 0.0975 (4) | 0.0436 (8) | |
H15 | 0.236754 | 0.123771 | 0.140831 | 0.052* | |
C16 | 0.0245 (2) | 0.6512 (3) | −0.2560 (5) | 0.0535 (9) | |
H16 | −0.024467 | 0.625546 | −0.320103 | 0.064* | |
C17 | 0.26251 (19) | 0.6290 (2) | 0.3086 (4) | 0.0366 (7) | |
H17A | 0.315855 | 0.636730 | 0.382697 | 0.044* | |
H17B | 0.245393 | 0.697499 | 0.266210 | 0.044* | |
C18 | 0.1931 (2) | 0.5885 (2) | 0.4212 (4) | 0.0466 (8) | |
H18A | 0.190690 | 0.630388 | 0.526375 | 0.070* | |
H18B | 0.206083 | 0.518019 | 0.454380 | 0.070* | |
H18C | 0.137719 | 0.591187 | 0.355334 | 0.070* | |
C19 | 0.35203 (19) | 0.6155 (2) | 0.0494 (4) | 0.0388 (7) | |
H19A | 0.331460 | 0.684240 | 0.015221 | 0.047* | |
H19B | 0.403150 | 0.624283 | 0.129659 | 0.047* | |
C20 | 0.3791 (2) | 0.5611 (3) | −0.1127 (4) | 0.0516 (9) | |
H20A | 0.419668 | 0.603613 | −0.172536 | 0.077* | |
H20B | 0.328650 | 0.548144 | −0.190883 | 0.077* | |
H20C | 0.406310 | 0.496296 | −0.079554 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0435 (13) | 0.0551 (15) | 0.0591 (14) | −0.0035 (12) | −0.0151 (13) | 0.0044 (13) |
O2 | 0.0656 (15) | 0.0508 (15) | 0.0633 (15) | −0.0157 (12) | −0.0094 (14) | −0.0051 (12) |
O3 | 0.0680 (16) | 0.0551 (16) | 0.0880 (18) | 0.0021 (15) | −0.0219 (16) | 0.0182 (15) |
C1 | 0.0309 (15) | 0.0348 (16) | 0.0311 (13) | −0.0035 (13) | 0.0026 (13) | −0.0008 (12) |
C2 | 0.0302 (15) | 0.0353 (16) | 0.0296 (15) | 0.0015 (13) | 0.0045 (13) | 0.0014 (12) |
C3 | 0.0389 (15) | 0.0300 (15) | 0.0308 (14) | 0.0026 (14) | 0.0072 (14) | 0.0007 (12) |
C4 | 0.0349 (15) | 0.0303 (16) | 0.0292 (14) | −0.0029 (13) | 0.0071 (14) | −0.0032 (12) |
C5 | 0.0341 (16) | 0.0363 (16) | 0.0409 (16) | −0.0056 (14) | 0.0000 (14) | −0.0041 (14) |
C6 | 0.0320 (17) | 0.049 (2) | 0.0421 (17) | −0.0048 (15) | −0.0037 (15) | −0.0012 (14) |
C7 | 0.0332 (16) | 0.0450 (19) | 0.0371 (15) | 0.0006 (14) | −0.0003 (14) | 0.0057 (14) |
C8 | 0.0360 (16) | 0.0350 (16) | 0.0381 (16) | −0.0038 (14) | 0.0003 (14) | 0.0044 (13) |
C9 | 0.0330 (15) | 0.0263 (14) | 0.0344 (14) | −0.0022 (12) | −0.0008 (13) | 0.0009 (12) |
C10 | 0.0303 (15) | 0.0301 (15) | 0.0280 (13) | −0.0010 (13) | 0.0034 (13) | −0.0004 (12) |
C11 | 0.0314 (15) | 0.0289 (15) | 0.0274 (13) | −0.0020 (13) | 0.0042 (12) | −0.0018 (12) |
C12 | 0.0287 (15) | 0.0321 (15) | 0.0309 (14) | −0.0024 (12) | 0.0036 (13) | −0.0014 (13) |
C13 | 0.0316 (15) | 0.0328 (15) | 0.0288 (13) | −0.0030 (13) | 0.0001 (13) | −0.0002 (13) |
C14 | 0.0355 (16) | 0.0414 (17) | 0.0371 (17) | 0.0051 (15) | 0.0056 (15) | 0.0057 (15) |
C15 | 0.050 (2) | 0.0422 (19) | 0.0389 (17) | −0.0085 (16) | 0.0045 (17) | −0.0019 (15) |
C16 | 0.044 (2) | 0.055 (2) | 0.060 (2) | −0.0005 (18) | −0.0105 (18) | 0.0115 (19) |
C17 | 0.0403 (17) | 0.0308 (15) | 0.0378 (15) | 0.0010 (14) | −0.0054 (14) | −0.0035 (13) |
C18 | 0.0519 (19) | 0.0454 (19) | 0.0427 (17) | 0.0051 (16) | 0.0043 (16) | −0.0022 (15) |
C19 | 0.0378 (16) | 0.0349 (16) | 0.0430 (16) | −0.0097 (13) | −0.0046 (15) | 0.0071 (14) |
C20 | 0.0473 (19) | 0.060 (2) | 0.0478 (18) | −0.0153 (18) | 0.0095 (16) | 0.0028 (17) |
O1—C14 | 1.207 (3) | C9—C13 | 1.523 (4) |
O2—C15 | 1.216 (3) | C9—C19 | 1.542 (4) |
O3—C16 | 1.203 (4) | C9—C17 | 1.542 (4) |
C1—C10 | 1.382 (4) | C10—C11 | 1.411 (4) |
C1—C2 | 1.406 (4) | C11—C12 | 1.483 (4) |
C1—H1 | 0.9500 | C12—C13 | 1.410 (4) |
C2—C3 | 1.386 (4) | C14—H14 | 0.9500 |
C2—C14 | 1.471 (4) | C15—H15 | 0.9500 |
C3—C4 | 1.390 (4) | C16—H16 | 0.9500 |
C3—H3 | 0.9500 | C17—C18 | 1.522 (5) |
C4—C11 | 1.421 (4) | C17—H17A | 0.9900 |
C4—C15 | 1.484 (4) | C17—H17B | 0.9900 |
C5—C6 | 1.384 (4) | C18—H18A | 0.9800 |
C5—C12 | 1.400 (4) | C18—H18B | 0.9800 |
C5—H5 | 0.9500 | C18—H18C | 0.9800 |
C6—C7 | 1.393 (4) | C19—C20 | 1.517 (5) |
C6—H6 | 0.9500 | C19—H19A | 0.9900 |
C7—C8 | 1.401 (4) | C19—H19B | 0.9900 |
C7—C16 | 1.479 (4) | C20—H20A | 0.9800 |
C8—C13 | 1.381 (4) | C20—H20B | 0.9800 |
C8—H8 | 0.9500 | C20—H20C | 0.9800 |
C9—C10 | 1.518 (4) | ||
C10—C1—C2 | 118.8 (2) | C13—C12—C11 | 107.8 (2) |
C10—C1—H1 | 120.6 | C8—C13—C12 | 121.2 (2) |
C2—C1—H1 | 120.6 | C8—C13—C9 | 127.0 (2) |
C3—C2—C1 | 119.4 (2) | C12—C13—C9 | 111.8 (2) |
C3—C2—C14 | 119.2 (3) | O1—C14—C2 | 125.7 (3) |
C1—C2—C14 | 121.4 (2) | O1—C14—H14 | 117.2 |
C2—C3—C4 | 123.0 (3) | C2—C14—H14 | 117.2 |
C2—C3—H3 | 118.5 | O2—C15—C4 | 128.2 (3) |
C4—C3—H3 | 118.5 | O2—C15—H15 | 115.9 |
C3—C4—C11 | 117.9 (2) | C4—C15—H15 | 115.9 |
C3—C4—C15 | 114.4 (3) | O3—C16—C7 | 124.2 (3) |
C11—C4—C15 | 127.7 (2) | O3—C16—H16 | 117.9 |
C6—C5—C12 | 118.5 (3) | C7—C16—H16 | 117.9 |
C6—C5—H5 | 120.7 | C18—C17—C9 | 115.5 (2) |
C12—C5—H5 | 120.7 | C18—C17—H17A | 108.4 |
C5—C6—C7 | 121.8 (2) | C9—C17—H17A | 108.4 |
C5—C6—H6 | 119.1 | C18—C17—H17B | 108.4 |
C7—C6—H6 | 119.1 | C9—C17—H17B | 108.4 |
C6—C7—C8 | 119.9 (3) | H17A—C17—H17B | 107.5 |
C6—C7—C16 | 120.0 (3) | C17—C18—H18A | 109.5 |
C8—C7—C16 | 120.1 (3) | C17—C18—H18B | 109.5 |
C13—C8—C7 | 118.8 (3) | H18A—C18—H18B | 109.5 |
C13—C8—H8 | 120.6 | C17—C18—H18C | 109.5 |
C7—C8—H8 | 120.6 | H18A—C18—H18C | 109.5 |
C10—C9—C13 | 100.8 (2) | H18B—C18—H18C | 109.5 |
C10—C9—C19 | 111.4 (2) | C20—C19—C9 | 116.0 (2) |
C13—C9—C19 | 111.9 (2) | C20—C19—H19A | 108.3 |
C10—C9—C17 | 112.0 (2) | C9—C19—H19A | 108.3 |
C13—C9—C17 | 112.1 (2) | C20—C19—H19B | 108.3 |
C19—C9—C17 | 108.6 (2) | C9—C19—H19B | 108.3 |
C1—C10—C11 | 122.2 (2) | H19A—C19—H19B | 107.4 |
C1—C10—C9 | 125.8 (2) | C19—C20—H20A | 109.5 |
C11—C10—C9 | 112.0 (2) | C19—C20—H20B | 109.5 |
C10—C11—C4 | 118.8 (2) | H20A—C20—H20B | 109.5 |
C10—C11—C12 | 107.6 (2) | C19—C20—H20C | 109.5 |
C4—C11—C12 | 133.6 (2) | H20A—C20—H20C | 109.5 |
C5—C12—C13 | 119.8 (2) | H20B—C20—H20C | 109.5 |
C5—C12—C11 | 132.4 (2) | ||
C10—C1—C2—C3 | −0.1 (4) | C10—C11—C12—C5 | 180.0 (3) |
C10—C1—C2—C14 | −178.8 (3) | C4—C11—C12—C5 | 0.6 (6) |
C1—C2—C3—C4 | −0.7 (4) | C10—C11—C12—C13 | 0.1 (3) |
C14—C2—C3—C4 | 178.0 (3) | C4—C11—C12—C13 | −179.3 (3) |
C2—C3—C4—C11 | 0.8 (4) | C7—C8—C13—C12 | −0.6 (5) |
C2—C3—C4—C15 | 179.6 (3) | C7—C8—C13—C9 | 178.7 (3) |
C12—C5—C6—C7 | −1.3 (5) | C5—C12—C13—C8 | −0.6 (4) |
C5—C6—C7—C8 | 0.1 (5) | C11—C12—C13—C8 | 179.3 (3) |
C5—C6—C7—C16 | −179.6 (3) | C5—C12—C13—C9 | −180.0 (3) |
C6—C7—C8—C13 | 0.9 (5) | C11—C12—C13—C9 | −0.1 (3) |
C16—C7—C8—C13 | −179.4 (3) | C10—C9—C13—C8 | −179.4 (3) |
C2—C1—C10—C11 | 0.9 (4) | C19—C9—C13—C8 | −60.9 (4) |
C2—C1—C10—C9 | −179.3 (3) | C17—C9—C13—C8 | 61.4 (4) |
C13—C9—C10—C1 | −179.8 (3) | C10—C9—C13—C12 | 0.0 (3) |
C19—C9—C10—C1 | 61.4 (3) | C19—C9—C13—C12 | 118.5 (3) |
C17—C9—C10—C1 | −60.5 (4) | C17—C9—C13—C12 | −119.2 (3) |
C13—C9—C10—C11 | 0.0 (3) | C3—C2—C14—O1 | −175.8 (3) |
C19—C9—C10—C11 | −118.8 (2) | C1—C2—C14—O1 | 2.9 (5) |
C17—C9—C10—C11 | 119.3 (3) | C3—C4—C15—O2 | −175.4 (3) |
C1—C10—C11—C4 | −0.8 (4) | C11—C4—C15—O2 | 3.2 (5) |
C9—C10—C11—C4 | 179.4 (3) | C6—C7—C16—O3 | −176.7 (4) |
C1—C10—C11—C12 | 179.7 (3) | C8—C7—C16—O3 | 3.5 (6) |
C9—C10—C11—C12 | −0.1 (3) | C10—C9—C17—C18 | −57.6 (3) |
C3—C4—C11—C10 | −0.1 (4) | C13—C9—C17—C18 | 54.8 (3) |
C15—C4—C11—C10 | −178.6 (3) | C19—C9—C17—C18 | 179.0 (2) |
C3—C4—C11—C12 | 179.2 (3) | C10—C9—C19—C20 | 56.6 (3) |
C15—C4—C11—C12 | 0.7 (5) | C13—C9—C19—C20 | −55.3 (3) |
C6—C5—C12—C13 | 1.5 (4) | C17—C9—C19—C20 | −179.6 (2) |
C6—C5—C12—C11 | −178.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.95 | 2.59 | 3.512 (4) | 165 |
C5—H5···O2 | 0.95 | 2.18 | 2.961 (4) | 138 |
C5—H5···O3ii | 0.95 | 2.67 | 3.350 (4) | 129 |
C16—H16···O2iii | 0.95 | 2.53 | 3.321 (4) | 141 |
C17—H17A···O1i | 0.99 | 2.68 | 3.611 (4) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, y−1/2, −z−1/2; (iii) −x, y+1/2, −z−1/2. |
Acknowledgements
Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.
References
Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659. Web of Science CrossRef CAS PubMed Google Scholar
Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. https://doi.org/10.1002/ejoc.202100758 Google Scholar
Arunachalam, M., Ahamed, B. N. & Ghosh, P. (2010). Org. Lett. 12, 2742–2745. CSD CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chin, J., Oh, J., Jon, S. Y., Park, S. H., Walsdorff, C., Stranix, B., Ghoussoub, A., Lee, S. J., Chung, H. J., Park, S.-M. & Kim, K. (2002). J. Am. Chem. Soc. 124, 5374–5379. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1890–1892. CSD CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562. Web of Science CrossRef Google Scholar
Koch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965–8974. Web of Science CSD CrossRef CAS Google Scholar
Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229. Google Scholar
Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034. Google Scholar
Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020. Web of Science CrossRef CAS PubMed Google Scholar
Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Schulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317–4330. Web of Science CSD CrossRef Google Scholar
Seidel, P. & Mazik, M. (2020). ChemistryOpen, 9, 1202–1213. CrossRef CAS PubMed Google Scholar
Seidel, P., Schwarzer, A. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 1493–1502. CSD CrossRef Google Scholar
Seidel, P., Seichter, W., Schwarzer, A. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 2901–2914. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sicard, L., Jeannin, O., Rault-Berthelot, J., Quinton, C. & Poriel, C. (2018). ChemPlusChem, 83, 874–880. CSD CrossRef CAS PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stapf, M., Leibiger, B., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 919–923. CSD CrossRef IUCr Journals Google Scholar
Stapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350–6354. Web of Science CSD CrossRef CAS PubMed Google Scholar
Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. 2020, 4900–4915. CSD CrossRef CAS Google Scholar
Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wright, M. E. & Cochran, B. B. (1993). Organometallics, 12, 3873–3878. CSD CrossRef CAS Google Scholar
Yao, S. & Belfield, K. D. (2005). J. Org. Chem. 70, 5126–5132. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.