research communications
of methyl 1,3-benzoxazole-2-carboxylate
aUniversité de Toulouse III Paul Sabatier, Laboratoire SPCMIB, UMR CNRS 5068, 118 route de Narbonne, F-31062 Toulouse, France, and bUniversité de Toulouse III Paul Sabatier, Institut de Chimie de Toulouse, ICT-UAR 2599, 118, route de Narbonne, F-31062 Toulouse, France
*Correspondence e-mail: sff@chimie.ups-tlse.fr
The title compound, C9H7NO3, crystallizes in the monoclinic (P21) In the crystal, the almost planar molecules display a flattened herringbone arrangement. Stacking molecules are slipped in the lengthwise and widthwise directions and are linked by π–π interactions [d(Cg⋯Cg = 3.6640 (11) Å]. The structure is characterized by strong C—H⋯N and weak C—H⋯O hydrogen bonds, and further stabilized by C–O⋯π interactions.
Keywords: crystal structure; benzoxazole; herringbone arrangement; γ packing type; π–π interactions; strong C—H⋯N hydrogen bonds.
CCDC reference: 2112709
1. Chemical context
Benzoxazoles are common in natural products and represent an important class of key structural motifs, often incorporated as building blocks in ligands to target a variety of receptors and enzymes in medicinal chemistry studies (Demmer & Bunch, 2015; Kamal et al., 2020). They are also a scaffold of prime importance for fluorescent probes and materials (Carayon & Fery-Forgues, 2017; Fery-Forgues & Vanucci-Bacqué, 2021). Methyl-1,3-benzoxazole-2-carboxylate (1) belongs to this family and much attention has been paid to its preparation.
This compound was first prepared by a multi-step synthesis starting from 2,3-dioxo-1,4-benzoxazine (Dickoré et al., 1970) and 2-cyanobenzoxazole (Möller, 1970), but it can be obtained much more simply from condensation of 2-aminophenol with methyl 2,2,2-trimethoxyacetate (Musser, Hudec et al., 1984; Koshelev et al., 2019). It has been synthesized in high yields by direct carboxylation of benzoxazole using carbon dioxide (CO2) as a naturally abundant and renewable C1 source, with (Zhang et al., 2010; Inomata et al., 2012) or without any metal catalyst (Vechorkin et al., 2010; Fenner & Ackermann, 2016). Recently, it has been produced by oxidative of glycine catalysed by copper (Liu et al., 2021) or induced by irradiation with visible light (Zhu et al., 2021). The molecule is commercially available. It has been used to complex europium, resulting in a very efficient electroluminescent layer for applications in the field of organic light-emitting diodes (OLEDs) (Koshelev et al., 2019). Used as a synthetic intermediate, methyl-1,3-benzoxazole-2-carboxylate has led to various pharmacologically active agents with anti-allergic (Musser, Brown et al., 1984), anti-microbial (Vodela et al., 2013) and neuro-anti-inflammatory (Shang et al., 2020) activity, to name just a few.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the monoclinic P21 and exhibits the expected bond lengths and angles for a benzoxazole. The N1—C1 bond, which corresponds to a double bond, is significantly shorter [1.293 (2) Å] than the other bonds (>1.36 Å) of the oxazole cycle. The molecule is almost planar [N1—C1—C2—O3 = −6.7 (2)°]. The heterocyclic and carbonyl oxygen atoms O1 aand O2, respectively, are located on the same side with respect to the long axis of the molecule.
3. Supramolecular features
In the γ packing type, i.e. a flattened herringbone featuring stacks of parallel, translationally related molecules (Desiraju et al., 1989; Campbell et al., 2017) (Fig. 2). Neighboring molecules situated in almost perpendicular planes (84.4°) are linked through C—H⋯N interactions between the heterocyclic nitrogen atom N1 and H9 of an adjacent molecule and weak C—H⋯O hydrogen bonds between O2 and one hydrogen atom of the methyl group (Table 1, Fig. 2). Strong C—O⋯π interactions are also important for the stabilization of the structure (Table 2, Fig. 3). Stacking molecules are slipped in the lengthwise and widthwise directions and linked by π– π interactions [centroid–centroid distance = 3.6640 (11) Å] (Table 3).
molecules are displayed according to the
|
|
4. Database survey
Benzoxazole-based molecules have given an umpteen number of crystal structures. A search of the Cambridge Structural Database (CSD, version of November 2020; Groom et al., 2016) found only twelve benzoxazoles substituted by a carbonyl group on the 2-position. In almost half of the cases, the benzoxazole derivative is used as a ligand to complex an Ni, Co or Cu atom (CAYSIG and CAYSOM; Iasco et al., 2012; LAJNAN; Zhang et al., 2010), or incorporated in a macromolecule (NESPUY; Lim et al., 2012; LUYJUL; Osowska & Miljanić, 2010), resulting in a geometry quite far from that of a small entity. Among the remaining examples, the benzoxazolylcarbonyl moiety may be linked to an aromatic group. When the latter is a phenyl group, the molecule is almost planar (ROFZUJ; Boominathan et al., 2014). With another benzoxazole heterocycle, the dihedral angle is only around 8° (AGESUD; Boga et al., 2018). In contrast, this angle almost reaches 71° with a benzoic acid that is involved in many intermolecular interactions (DEJGEE; Ling et al., 1999), and when the benzoxazole and phenyl derivative moieties are attached via a flexible linker (KONTEP; Deng et al., 2019). Finally, the benzoxazolylcarbonyl moiety may be linked to an aliphatic moiety, which may be rather bulky like a bornane-1,2-sultam moiety (BAKRIQ; Piątek et al., 2011), or smaller like a morpholine moiety (JAXMED; Xing et al., 2017). In both cases, the network is structured by an interaction between the carbonyl oxygen of one molecule and the hydrogen atom borne by the C7 carbon of a neighbouring molecule. Finally, the framework closest to that of the title compound is an isopropyl 4-acetyl-5-hydroxy-1,3-benzoxazole-2-carboxylate (MIMZUG; Tangellamudi et al., 2018). In this molecule, the hydroxyl and the acetyl substituents form intramolecular hydrogen bonds while the carbonyl oxygen of one molecule interacts with the isopropyl group of the neigbouring one to form some kind of dimer. In general, planar molecules tend to assemble in layers (AGESUD; Boga et al., 2018; MIMZUG; Tangellamudi et al., 2018) and even in ribbons (JAXMED; Xing et al., 2017).
5. Synthesis and crystallization
The title compound was synthesized according to a variant of the procedure described by Jacobs et al. (2017) (Fig. 4). To a mixture of 5-aminophenol (1.09 g, 0.01 mol) and triethylamine (2.02 g, 0.02 mol) in anhydrous tetrahydrofuran (40 mL) at 263 K was added slowly methyl oxalyl chloride (1.34 g, 0.011 mol). The mixture was stirred at room temperature for 3 h and then cooled onto an ice–water bath. Triphenylphosphine (5.64 g, 0.0215 mol), diisopropyl azodicarboxylate (2.25 g, 0.011 mol) and tetrahydrofuran (50 mL) were then added. The solution was allowed to stir at room temperature for 16 h and concentrated in vacuo. The crude product was purified by (SiO2, petroleum ether/dichloromethane 70/30 v/v until 60/40 v/v) to give a white solid (1.2 g) in 83% yield. 1H NMR (300 MHz, CDCl3): δ = 7.90 (ddd, J = 7.9, 1.5, 0.8 Hz, 1H), 7.67 (ddd, J = 8.1, 1.2, 0.8 Hz, 1H), 7.57–7.44 (m, 2H), 4.10 (s, 3H). 13C NMR (75 MHz, CDCl3): δ = 156.9, 152.5, 150.9, 140.5, 128.2, 125.8, 122.2, 111.7, 53.7.
Single crystals of the title compound, suitable for X-ray analysis, were grown by slow evaporation of a dichloromethane solution.
6. Refinement
Crystal data, data collection and structure . All H atoms were fixed geometrically and treated as riding atoms with C—H = 0.95 Å (aromatic) or 0.98 Å (CH3), with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3).
details are summarized in Table 4
|
Supporting information
CCDC reference: 2112709
https://doi.org/10.1107/S2056989021010094/dj2033sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010094/dj2033Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010094/dj2033Isup4.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek 2020) and publCIF (Westrip 2010).C9H7NO3 | F(000) = 184 |
Mr = 177.16 | Dx = 1.460 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8165 (3) Å | Cell parameters from 6695 reflections |
b = 4.4676 (2) Å | θ = 3.3–28.2° |
c = 13.2879 (6) Å | µ = 0.11 mm−1 |
β = 95.1319 (16)° | T = 193 K |
V = 403.04 (3) Å3 | Plate, colourless |
Z = 2 | 0.40 × 0.30 × 0.10 mm |
Bruker D8-Venture Photon III detector diffractometer | 1860 reflections with I > 2σ(I) |
Radiation source: Fine-focus sealed tube | Rint = 0.022 |
Phi and ω scans | θmax = 28.3°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→9 |
Tmin = 0.698, Tmax = 0.746 | k = −5→5 |
9084 measured reflections | l = −17→17 |
1954 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0432P)2 + 0.0403P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1954 reflections | Δρmax = 0.20 e Å−3 |
119 parameters | Δρmin = −0.16 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.25255 (16) | 0.3885 (3) | 0.69933 (9) | 0.0329 (3) | |
O2 | 0.43981 (19) | −0.0004 (3) | 0.57993 (9) | 0.0382 (3) | |
O3 | 0.73220 (17) | 0.2017 (3) | 0.63833 (9) | 0.0341 (3) | |
N1 | 0.54541 (19) | 0.5493 (3) | 0.77177 (10) | 0.0277 (3) | |
C1 | 0.4528 (2) | 0.3789 (4) | 0.70473 (12) | 0.0296 (3) | |
C2 | 0.5378 (2) | 0.1703 (4) | 0.63294 (12) | 0.0297 (3) | |
C3 | 0.8319 (3) | 0.0125 (4) | 0.57015 (13) | 0.0381 (4) | |
H3A | 0.794777 | −0.196824 | 0.579791 | 0.057* | |
H3B | 0.974729 | 0.034297 | 0.584461 | 0.057* | |
H3C | 0.793506 | 0.072127 | 0.500188 | 0.057* | |
C4 | 0.2149 (2) | 0.5919 (4) | 0.77264 (12) | 0.0291 (3) | |
C5 | 0.3947 (2) | 0.6919 (4) | 0.81779 (11) | 0.0273 (3) | |
C6 | 0.4014 (2) | 0.9009 (4) | 0.89607 (13) | 0.0347 (4) | |
H6 | 0.522730 | 0.971603 | 0.928121 | 0.042* | |
C7 | 0.2220 (3) | 0.9998 (4) | 0.92465 (14) | 0.0401 (4) | |
H7 | 0.220300 | 1.141802 | 0.977785 | 0.048* | |
C8 | 0.0429 (3) | 0.8959 (5) | 0.87719 (15) | 0.0406 (4) | |
H8 | −0.076652 | 0.971435 | 0.898830 | 0.049* | |
C9 | 0.0342 (2) | 0.6878 (5) | 0.80018 (14) | 0.0370 (4) | |
H9 | −0.087048 | 0.615698 | 0.768384 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0259 (5) | 0.0362 (6) | 0.0359 (6) | −0.0064 (5) | −0.0013 (4) | 0.0001 (5) |
O2 | 0.0406 (6) | 0.0349 (6) | 0.0380 (6) | −0.0087 (5) | −0.0024 (5) | −0.0035 (5) |
O3 | 0.0315 (6) | 0.0342 (6) | 0.0364 (6) | −0.0025 (5) | 0.0009 (4) | −0.0061 (5) |
N1 | 0.0241 (6) | 0.0274 (6) | 0.0312 (6) | −0.0017 (5) | 0.0008 (4) | 0.0002 (5) |
C1 | 0.0288 (7) | 0.0286 (7) | 0.0311 (7) | −0.0048 (6) | 0.0007 (6) | 0.0048 (6) |
C2 | 0.0329 (8) | 0.0264 (7) | 0.0292 (7) | −0.0042 (6) | −0.0006 (6) | 0.0039 (6) |
C3 | 0.0384 (9) | 0.0380 (10) | 0.0381 (8) | 0.0030 (8) | 0.0047 (7) | −0.0042 (8) |
C4 | 0.0259 (7) | 0.0305 (8) | 0.0308 (7) | −0.0049 (6) | 0.0010 (5) | 0.0063 (6) |
C5 | 0.0233 (7) | 0.0278 (7) | 0.0306 (7) | −0.0019 (6) | 0.0013 (5) | 0.0057 (6) |
C6 | 0.0311 (8) | 0.0357 (8) | 0.0366 (8) | −0.0030 (7) | −0.0006 (6) | −0.0014 (7) |
C7 | 0.0438 (10) | 0.0370 (9) | 0.0407 (9) | 0.0020 (8) | 0.0096 (7) | −0.0015 (8) |
C8 | 0.0302 (8) | 0.0431 (10) | 0.0505 (10) | 0.0040 (8) | 0.0146 (7) | 0.0107 (9) |
C9 | 0.0220 (7) | 0.0429 (9) | 0.0461 (9) | −0.0035 (7) | 0.0032 (6) | 0.0104 (8) |
O1—C1 | 1.3610 (19) | C4—C9 | 1.384 (2) |
O1—C4 | 1.373 (2) | C4—C5 | 1.390 (2) |
O2—C2 | 1.200 (2) | C5—C6 | 1.395 (2) |
O3—C2 | 1.3281 (19) | C6—C7 | 1.385 (3) |
O3—C3 | 1.452 (2) | C6—H6 | 0.9500 |
N1—C1 | 1.293 (2) | C7—C8 | 1.402 (3) |
N1—C5 | 1.395 (2) | C7—H7 | 0.9500 |
C1—C2 | 1.488 (2) | C8—C9 | 1.380 (3) |
C3—H3A | 0.9800 | C8—H8 | 0.9500 |
C3—H3B | 0.9800 | C9—H9 | 0.9500 |
C3—H3C | 0.9800 | ||
C1—O1—C4 | 103.51 (12) | C9—C4—C5 | 123.92 (17) |
C2—O3—C3 | 115.17 (14) | C4—C5—N1 | 108.64 (15) |
C1—N1—C5 | 103.74 (13) | C4—C5—C6 | 120.36 (15) |
N1—C1—O1 | 116.33 (15) | N1—C5—C6 | 131.00 (14) |
N1—C1—C2 | 128.06 (14) | C7—C6—C5 | 116.58 (16) |
O1—C1—C2 | 115.61 (13) | C7—C6—H6 | 121.7 |
O2—C2—O3 | 126.82 (17) | C5—C6—H6 | 121.7 |
O2—C2—C1 | 123.11 (16) | C6—C7—C8 | 121.71 (18) |
O3—C2—C1 | 110.07 (14) | C6—C7—H7 | 119.1 |
O3—C3—H3A | 109.5 | C8—C7—H7 | 119.1 |
O3—C3—H3B | 109.5 | C9—C8—C7 | 122.32 (17) |
H3A—C3—H3B | 109.5 | C9—C8—H8 | 118.8 |
O3—C3—H3C | 109.5 | C7—C8—H8 | 118.8 |
H3A—C3—H3C | 109.5 | C8—C9—C4 | 115.10 (16) |
H3B—C3—H3C | 109.5 | C8—C9—H9 | 122.4 |
O1—C4—C9 | 128.30 (15) | C4—C9—H9 | 122.4 |
O1—C4—C5 | 107.78 (14) | ||
C5—N1—C1—O1 | 0.05 (19) | C9—C4—C5—N1 | 179.93 (15) |
C5—N1—C1—C2 | −179.34 (15) | O1—C4—C5—C6 | −179.61 (14) |
C4—O1—C1—N1 | 0.03 (18) | C9—C4—C5—C6 | 0.2 (2) |
C4—O1—C1—C2 | 179.50 (13) | C1—N1—C5—C4 | −0.11 (17) |
C3—O3—C2—O2 | 1.7 (2) | C1—N1—C5—C6 | 179.60 (17) |
C3—O3—C2—C1 | −178.99 (13) | C4—C5—C6—C7 | −0.2 (2) |
N1—C1—C2—O2 | 172.61 (18) | N1—C5—C6—C7 | −179.92 (16) |
O1—C1—C2—O2 | −6.8 (2) | C5—C6—C7—C8 | −0.1 (3) |
N1—C1—C2—O3 | −6.7 (2) | C6—C7—C8—C9 | 0.6 (3) |
O1—C1—C2—O3 | 173.92 (14) | C7—C8—C9—C4 | −0.6 (3) |
C1—O1—C4—C9 | −179.89 (17) | O1—C4—C9—C8 | 180.00 (16) |
C1—O1—C4—C5 | −0.10 (16) | C5—C4—C9—C8 | 0.2 (3) |
O1—C4—C5—N1 | 0.14 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···N1i | 0.95 | 2.53 | 3.377 (2) | 149 |
C3—H3C···O2ii | 0.98 | 2.65 | 3.389 (2) | 133 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1. |
Cg1 is the centroid of the O1/C1/N1/C5/C4 ring and Cg3 is the centroid of the O1/C1/C5–C9 ring. |
X | I | J | I···J | X···J | X—I···J |
C2 | O2 | Cg1ii | 3.2088 (14) | 3.5487 (18) | 96.39 (10) |
C2 | O2 | Cg3ii | 3.5912 (14) | 3.7321 (17) | 87.29 (10) |
Symmetry code: (ii) x, -1 + y, z. |
Cg1 is the centroid of the O1/C1/N1/C4/C5 ring and Cg2 is the centroid of the C4–C9 ring. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIperp and CgJperp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively. |
I | J | CgI···CgJ | Dihedral angle | CgIperp | CgJperp | CgIOffset | CgJOffset |
1 | 2ii | 3.6640 (11) | 0.19 (9) | 3.3115 (7) | 3.3065 (8) | 1.579 | 1.568 |
Symmetry code: (ii) x, -1 + y, z. |
References
Boga, C., Bordoni, S., Casarin, L., Micheletti, G. & Monari, M. (2018). Molecules, 23, 171. Web of Science CSD CrossRef Google Scholar
Boominathan, S. S. K., Hu, W.-P., Senadi, G. C., Vandavasi, J. K. & Wang, J.-J. (2014). Chem. Commun. 50, 6726–6728. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, J. E., Yang, J. & Day, G. M. (2017). J. Mater. Chem. C. 5, 7574–7584. Web of Science CrossRef CAS Google Scholar
Carayon, C. & Fery-Forgues, S. (2017). Photochem. Photobiol. Sci. 16, 1020–1035. Web of Science CrossRef CAS PubMed Google Scholar
Demmer, C. S. & Bunch, L. (2015). Eur. J. Med. Chem. 97, 778–785. Web of Science CrossRef CAS PubMed Google Scholar
Deng, S., Chen, H., Ma, X., Zhou, Y., Yang, K., Lan, Y. & Song, Q. (2019). Chem. Sci. 10, 6828–6833. Web of Science CSD CrossRef CAS PubMed Google Scholar
Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dickoré, K., Sasse, K. & Bode, K.-D. (1970). Justus Liebigs Ann. Chem. 733, 70–87. Google Scholar
Fenner, S. & Ackermann, L. (2016). Green Chem. 18, 3804–3807. Web of Science CrossRef CAS Google Scholar
Fery-Forgues, S. & Vanucci-Bacqué, C. (2021). Top. Curr. Chem. (Z.), 379, 32. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iasco, O., Novitchi, G., Jeanneau, E., Tommasino, J. B., Roques, N. & Luneau, D. (2012). Inorg. Chem. 51, 2588–2596. Web of Science CSD CrossRef CAS PubMed Google Scholar
Inomata, H., Ogata, K., Fukuzawa, S. & Hou, Z. (2012). Org. Lett. 14, 3986–3989. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jacobs, L., de Kock, C., Taylor, D., Pelly, S. C. & Blackie, M. A. L. (2018). Bioorg. Med. Chem. 26, 5730–5741. Web of Science CrossRef CAS PubMed Google Scholar
Kamal, U., Javed, N. M. & Arun, K. (2020). Asia. J. Pharm. Clin. Res. pp. 28–41. CrossRef Google Scholar
Koshelev, D. S., Chikineva, T. Y., Kozhevnikova (Khudoleeva), V. Y., Medvedko, A. V., Vashchenko, A. A., Goloveshkin, A. S., Tsymbarenko, D. M., Averin, A. A., Meschkov, A., Schepers, U., Vatsadze, S. Z. & Utochnikova, V. V. (2019). Dyes Pigments, 170, 107604. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lim, J., Osowska, K., Armitage, J. A., Martin, B. R. & Miljanić, O. S. (2012). CrystEngComm, 14, 6152–6162. Web of Science CSD CrossRef CAS Google Scholar
Ling, K.-Q., Cai, H., Ye, J.-H. & Xu, J.-H. (1999). Tetrahedron, 55, 1707–1716. Web of Science CSD CrossRef CAS Google Scholar
Liu, S., Zhu, Z.-Q., Hu, Z.-Y., Tang, J. & Yuan, E. (2021). Org. Biomol. Chem. 19, 1616–1619. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Möller, H. (1971). Justus Liebigs Ann. Chem. 749, 1–11. Google Scholar
Musser, J. H., Brown, R. E., Loev, B., Bailey, K., Jones, H., Kahen, R., Huang, F., Khandwala, A., Leibowitz, M. & Sonnino-Goldman, P. (1984). J. Med. Chem. 27, 121–125. CrossRef CAS PubMed Web of Science Google Scholar
Musser, J. H., Hudec, T. T. & Bailey, K. (1984). Synth. Commun. 14, 947–953. CrossRef CAS Web of Science Google Scholar
Osowska, K. & Miljanić, O. S. (2010). Chem. Commun. 46, 4276–4278. Web of Science CSD CrossRef CAS Google Scholar
Piątek, A. M., Sadowska, A., Chapuis, C. & Jurczak, J. (2011). Helv. Chim. Acta, 94, 2141–2167. Google Scholar
Shang, Y., Hao, Q., Jiang, K., He, M. & Wang, J. (2020). Bioorg. Med. Chem. Lett. 30, 127118. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tangellamudi, N. D., Shinde, S. B., Pooladanda, V., Godugu, C. & Balasubramanian, S. (2018). Bioorg. Med. Chem. Lett. 28, 3639–3647. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vechorkin, O., Hirt, N. & Hu, X. (2010). Org. Lett. 12, 3567–3569. Web of Science CrossRef CAS PubMed Google Scholar
Vodela, S., Mekala, R. V. R., Danda, R. R. & Kodhati, V. (2013). Chin. Chem. Lett. 24, 625–628. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xing, Q.,Lv, H., Xia, C.,& Li. F. (2017). Chem. Commun. 53, 6914–6917. Google Scholar
Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. (2010). Angew. Chem. Int. Ed. 49, 8670–8673. Web of Science CSD CrossRef CAS Google Scholar
Zhu, Z.-Q., Liu, S., Hu, Z.-Y., Xie, Z.-B., Tang, J. & Le, Z.-G. (2021). Adv. Synth. Catal. 363, 2568–2572. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.