research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 1,3-benzoxazole-2-carboxyl­ate

crossmark logo

aUniversité de Toulouse III Paul Sabatier, Laboratoire SPCMIB, UMR CNRS 5068, 118 route de Narbonne, F-31062 Toulouse, France, and bUniversité de Toulouse III Paul Sabatier, Institut de Chimie de Toulouse, ICT-UAR 2599, 118, route de Narbonne, F-31062 Toulouse, France
*Correspondence e-mail: sff@chimie.ups-tlse.fr

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 8 July 2021; accepted 28 September 2021; online 8 October 2021)

The title compound, C9H7NO3, crystallizes in the monoclinic (P21) space group. In the crystal, the almost planar mol­ecules display a flattened herringbone arrangement. Stacking mol­ecules are slipped in the lengthwise and widthwise directions and are linked by ππ inter­actions [d(CgCg = 3.6640 (11) Å]. The structure is characterized by strong C—H⋯N and weak C—H⋯O hydrogen bonds, and further stabilized by C–O⋯π inter­actions.

1. Chemical context

Benzoxazoles are common in natural products and represent an important class of key structural motifs, often incorporated as building blocks in ligands to target a variety of receptors and enzymes in medicinal chemistry studies (Demmer & Bunch, 2015[Demmer, C. S. & Bunch, L. (2015). Eur. J. Med. Chem. 97, 778-785.]; Kamal et al., 2020[Kamal, U., Javed, N. M. & Arun, K. (2020). Asia. J. Pharm. Clin. Res. pp. 28-41.]). They are also a scaffold of prime importance for fluorescent probes and materials (Carayon & Fery-Forgues, 2017[Carayon, C. & Fery-Forgues, S. (2017). Photochem. Photobiol. Sci. 16, 1020-1035.]; Fery-Forgues & Vanucci-Bacqué, 2021[Fery-Forgues, S. & Vanucci-Bacqué, C. (2021). Top. Curr. Chem. (Z.), 379, 32.]). Methyl-1,3-benzoxazole-2-carboxyl­ate (1) belongs to this family and much attention has been paid to its preparation.

[Scheme 1]

This compound was first prepared by a multi-step synthesis starting from 2,3-dioxo-1,4-benzoxazine (Dickoré et al., 1970[Dickoré, K., Sasse, K. & Bode, K.-D. (1970). Justus Liebigs Ann. Chem. 733, 70-87.]) and 2-cyano­benzoxazole (Möller, 1970[Möller, H. (1971). Justus Liebigs Ann. Chem. 749, 1-11.]), but it can be obtained much more simply from condensation of 2-amino­phenol with methyl 2,2,2-tri­meth­oxy­acetate (Musser, Hudec et al., 1984[Musser, J. H., Hudec, T. T. & Bailey, K. (1984). Synth. Commun. 14, 947-953.]; Koshelev et al., 2019[Koshelev, D. S., Chikineva, T. Y., Kozhevnikova (Khudoleeva), V. Y., Medvedko, A. V., Vashchenko, A. A., Goloveshkin, A. S., Tsymbarenko, D. M., Averin, A. A., Meschkov, A., Schepers, U., Vatsadze, S. Z. & Utochnikova, V. V. (2019). Dyes Pigments, 170, 107604.]). It has been synthesized in high yields by direct carboxyl­ation of benzoxazole using carbon dioxide (CO2) as a naturally abundant and renewable C1 source, with (Zhang et al., 2010[Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. (2010). Angew. Chem. Int. Ed. 49, 8670-8673.]; Inomata et al., 2012[Inomata, H., Ogata, K., Fukuzawa, S. & Hou, Z. (2012). Org. Lett. 14, 3986-3989.]) or without any metal catalyst (Vechorkin et al., 2010[Vechorkin, O., Hirt, N. & Hu, X. (2010). Org. Lett. 12, 3567-3569.]; Fenner & Ackermann, 2016[Fenner, S. & Ackermann, L. (2016). Green Chem. 18, 3804-3807.]). Recently, it has been produced by oxidative cyclization of glycine catalysed by copper (Liu et al., 2021[Liu, S., Zhu, Z.-Q., Hu, Z.-Y., Tang, J. & Yuan, E. (2021). Org. Biomol. Chem. 19, 1616-1619.]) or induced by irradiation with visible light (Zhu et al., 2021[Zhu, Z.-Q., Liu, S., Hu, Z.-Y., Xie, Z.-B., Tang, J. & Le, Z.-G. (2021). Adv. Synth. Catal. 363, 2568-2572.]). The mol­ecule is commercially available. It has been used to complex europium, resulting in a very efficient electroluminescent layer for applications in the field of organic light-emitting diodes (OLEDs) (Koshelev et al., 2019[Koshelev, D. S., Chikineva, T. Y., Kozhevnikova (Khudoleeva), V. Y., Medvedko, A. V., Vashchenko, A. A., Goloveshkin, A. S., Tsymbarenko, D. M., Averin, A. A., Meschkov, A., Schepers, U., Vatsadze, S. Z. & Utochnikova, V. V. (2019). Dyes Pigments, 170, 107604.]). Used as a synthetic inter­mediate, methyl-1,3-benzoxazole-2-carboxyl­ate has led to various pharmacologically active agents with anti-allergic (Musser, Brown et al., 1984[Musser, J. H., Brown, R. E., Loev, B., Bailey, K., Jones, H., Kahen, R., Huang, F., Khandwala, A., Leibowitz, M. & Sonnino-Goldman, P. (1984). J. Med. Chem. 27, 121-125.]), anti-microbial (Vodela et al., 2013[Vodela, S., Mekala, R. V. R., Danda, R. R. & Kodhati, V. (2013). Chin. Chem. Lett. 24, 625-628.]) and neuro-anti-inflammatory (Shang et al., 2020[Shang, Y., Hao, Q., Jiang, K., He, M. & Wang, J. (2020). Bioorg. Med. Chem. Lett. 30, 127118.]) activity, to name just a few.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21 and exhibits the expected bond lengths and angles for a benzoxazole. The N1—C1 bond, which corresponds to a double bond, is significantly shorter [1.293 (2) Å] than the other bonds (>1.36 Å) of the oxazole cycle. The mol­ecule is almost planar [N1—C1—C2—O3 = −6.7 (2)°]. The heterocyclic and carbonyl oxygen atoms O1 aand O2, respectively, are located on the same side with respect to the long axis of the mol­ecule.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure, mol­ecules are displayed according to the γ packing type, i.e. a flattened herringbone featuring stacks of parallel, translationally related mol­ecules (Desiraju et al., 1989[Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473-482.]; Campbell et al., 2017[Campbell, J. E., Yang, J. & Day, G. M. (2017). J. Mater. Chem. C. 5, 7574-7584.]) (Fig. 2[link]). Neighboring mol­ecules situated in almost perpendicular planes (84.4°) are linked through C—H⋯N inter­actions between the heterocyclic nitro­gen atom N1 and H9 of an adjacent mol­ecule and weak C—H⋯O hydrogen bonds between O2 and one hydrogen atom of the methyl group (Table 1[link], Fig. 2[link]). Strong C—O⋯π inter­actions are also important for the stabilization of the structure (Table 2[link], Fig. 3[link]). Stacking mol­ecules are slipped in the lengthwise and widthwise directions and linked by ππ inter­actions [centroid–centroid distance = 3.6640 (11) Å] (Table 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1i 0.95 2.53 3.377 (2) 149
C3—H3C⋯O2ii 0.98 2.65 3.389 (2) 133
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Table 2
C—O⋯π inter­actions (Å, °)

Cg1 is the centroid of the O1/C1/N1/C5/C4 ring and Cg3 is the centroid of the O1/C1/C5–C9 ring.

X I J IJ XJ XIJ
C2 O2 Cg1ii 3.2088 (14) 3.5487 (18) 96.39 (10)
C2 O2 Cg3ii 3.5912 (14) 3.7321 (17) 87.29 (10)
Symmetry code: (ii) x, −1 + y, z.

Table 3
π–π inter­action (Å, °)

Cg1 is the centroid of the O1/C1/N1/C5/C4 ring and Cg2 is the centroid of the C4–C9 ring. CgICgJ is the distance between ring centroids. α is the dihedral angle between the planes of the rings I and J. CgIperp and CgJperp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.

I J CgICgJ α CgIperp CgJperp CgIOffset CgJOffset
1 2ii 3.6640 (11) 0.19 (9) 3.3115 (7) 3.3065 (8) 1.579 1.568
Symmetry code: (ii) x, −1 + y, z.
[Figure 2]
Figure 2
C—H⋯N and C—H⋯O hydrogen bonds (blue dotted lines).
[Figure 3]
Figure 3
ππ and C—O⋯π inter­actions (green dotted lines). Orange balls represent the ring centroids Cg.

4. Database survey

Benzoxazole-based mol­ecules have given an umpteen number of crystal structures. A search of the Cambridge Structural Database (CSD, version of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found only twelve benzoxazoles substituted by a carbonyl group on the 2-position. In almost half of the cases, the benzoxazole derivative is used as a ligand to complex an Ni, Co or Cu atom (CAYSIG and CAYSOM; Iasco et al., 2012[Iasco, O., Novitchi, G., Jeanneau, E., Tommasino, J. B., Roques, N. & Luneau, D. (2012). Inorg. Chem. 51, 2588-2596.]; LAJNAN; Zhang et al., 2010[Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. (2010). Angew. Chem. Int. Ed. 49, 8670-8673.]), or incorporated in a macromolecule (NESPUY; Lim et al., 2012[Lim, J., Osowska, K., Armitage, J. A., Martin, B. R. & Miljanić, O. S. (2012). CrystEngComm, 14, 6152-6162.]; LUYJUL; Osowska & Miljanić, 2010[Osowska, K. & Miljanić, O. S. (2010). Chem. Commun. 46, 4276-4278.]), resulting in a geometry quite far from that of a small entity. Among the remaining examples, the benzoxazolylcarbonyl moiety may be linked to an aromatic group. When the latter is a phenyl group, the mol­ecule is almost planar (ROFZUJ; Boominathan et al., 2014[Boominathan, S. S. K., Hu, W.-P., Senadi, G. C., Vandavasi, J. K. & Wang, J.-J. (2014). Chem. Commun. 50, 6726-6728.]). With another benzoxazole heterocycle, the dihedral angle is only around 8° (AGESUD; Boga et al., 2018[Boga, C., Bordoni, S., Casarin, L., Micheletti, G. & Monari, M. (2018). Molecules, 23, 171.]). In contrast, this angle almost reaches 71° with a benzoic acid that is involved in many inter­molecular inter­actions (DEJGEE; Ling et al., 1999[Ling, K.-Q., Cai, H., Ye, J.-H. & Xu, J.-H. (1999). Tetrahedron, 55, 1707-1716.]), and when the benzoxazole and phenyl derivative moieties are attached via a flexible linker (KONTEP; Deng et al., 2019[Deng, S., Chen, H., Ma, X., Zhou, Y., Yang, K., Lan, Y. & Song, Q. (2019). Chem. Sci. 10, 6828-6833.]). Finally, the benzoxazolylcarbonyl moiety may be linked to an aliphatic moiety, which may be rather bulky like a bornane-1,2-sultam moiety (BAKRIQ; Piątek et al., 2011[Piątek, A. M., Sadowska, A., Chapuis, C. & Jurczak, J. (2011). Helv. Chim. Acta, 94, 2141-2167.]), or smaller like a morpholine moiety (JAXMED; Xing et al., 2017[Xing, Q.,Lv, H., Xia, C.,& Li. F. (2017). Chem. Commun. 53, 6914-6917.]). In both cases, the network is structured by an interaction between the carbonyl oxygen of one molecule and the hydrogen atom borne by the C7 carbon of a neighbouring molecule. Finally, the framework closest to that of the title compound is an isopropyl 4-acetyl-5-hy­droxy-1,3-benzoxazole-2-carboxyl­ate (MIMZUG; Tangellamudi et al., 2018[Tangellamudi, N. D., Shinde, S. B., Pooladanda, V., Godugu, C. & Balasubramanian, S. (2018). Bioorg. Med. Chem. Lett. 28, 3639-3647.]). In this mol­ecule, the hydroxyl and the acetyl substituents form intra­molecular hydrogen bonds while the carbonyl oxygen of one mol­ecule inter­acts with the isopropyl group of the neigbouring one to form some kind of dimer. In general, planar mol­ecules tend to assemble in layers (AGESUD; Boga et al., 2018[Boga, C., Bordoni, S., Casarin, L., Micheletti, G. & Monari, M. (2018). Molecules, 23, 171.]; MIMZUG; Tangellamudi et al., 2018[Tangellamudi, N. D., Shinde, S. B., Pooladanda, V., Godugu, C. & Balasubramanian, S. (2018). Bioorg. Med. Chem. Lett. 28, 3639-3647.]) and even in ribbons (JAXMED; Xing et al., 2017[Xing, Q.,Lv, H., Xia, C.,& Li. F. (2017). Chem. Commun. 53, 6914-6917.]).

5. Synthesis and crystallization

The title compound was synthesized according to a variant of the procedure described by Jacobs et al. (2017[Jacobs, L., de Kock, C., Taylor, D., Pelly, S. C. & Blackie, M. A. L. (2018). Bioorg. Med. Chem. 26, 5730-5741.]) (Fig. 4[link]). To a mixture of 5-amino­phenol (1.09 g, 0.01 mol) and tri­ethyl­amine (2.02 g, 0.02 mol) in anhydrous tetra­hydro­furan (40 mL) at 263 K was added slowly methyl oxalyl chloride (1.34 g, 0.011 mol). The mixture was stirred at room temperature for 3 h and then cooled onto an ice–water bath. Tri­phenyl­phosphine (5.64 g, 0.0215 mol), diisopropyl azodi­carboxyl­ate (2.25 g, 0.011 mol) and tetra­hydro­furan (50 mL) were then added. The solution was allowed to stir at room temperature for 16 h and concentrated in vacuo. The crude product was purified by column chromatography (SiO2, petroleum ether/di­chloro­methane 70/30 v/v until 60/40 v/v) to give a white solid (1.2 g) in 83% yield. 1H NMR (300 MHz, CDCl3): δ = 7.90 (ddd, J = 7.9, 1.5, 0.8 Hz, 1H), 7.67 (ddd, J = 8.1, 1.2, 0.8 Hz, 1H), 7.57–7.44 (m, 2H), 4.10 (s, 3H). 13C NMR (75 MHz, CDCl3): δ = 156.9, 152.5, 150.9, 140.5, 128.2, 125.8, 122.2, 111.7, 53.7.

[Figure 4]
Figure 4
Synthesis route to methyl-1,3-benzoxazole-2-carboxyl­ate.

Single crystals of the title compound, suitable for X-ray analysis, were grown by slow evaporation of a di­chloro­methane solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were fixed geometrically and treated as riding atoms with C—H = 0.95 Å (aromatic) or 0.98 Å (CH3), with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3).

Table 4
Experimental details

Crystal data
Chemical formula C9H7NO3
Mr 177.16
Crystal system, space group Monoclinic, P21
Temperature (K) 193
a, b, c (Å) 6.8165 (3), 4.4676 (2), 13.2879 (6)
β (°) 95.1319 (16)
V3) 403.04 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker D8-Venture Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.698, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9084, 1954, 1860
Rint 0.022
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.10
No. of reflections 1954
No. of parameters 119
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek 2020) and publCIF (Westrip 2010).

Methyl 1,3-benzoxazole-2-carboxylate top
Crystal data top
C9H7NO3F(000) = 184
Mr = 177.16Dx = 1.460 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.8165 (3) ÅCell parameters from 6695 reflections
b = 4.4676 (2) Åθ = 3.3–28.2°
c = 13.2879 (6) ŵ = 0.11 mm1
β = 95.1319 (16)°T = 193 K
V = 403.04 (3) Å3Plate, colourless
Z = 20.40 × 0.30 × 0.10 mm
Data collection top
Bruker D8-Venture Photon III detector
diffractometer
1860 reflections with I > 2σ(I)
Radiation source: Fine-focus sealed tubeRint = 0.022
Phi and ω scansθmax = 28.3°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 89
Tmin = 0.698, Tmax = 0.746k = 55
9084 measured reflectionsl = 1717
1954 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.0403P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1954 reflectionsΔρmax = 0.20 e Å3
119 parametersΔρmin = 0.16 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25255 (16)0.3885 (3)0.69933 (9)0.0329 (3)
O20.43981 (19)0.0004 (3)0.57993 (9)0.0382 (3)
O30.73220 (17)0.2017 (3)0.63833 (9)0.0341 (3)
N10.54541 (19)0.5493 (3)0.77177 (10)0.0277 (3)
C10.4528 (2)0.3789 (4)0.70473 (12)0.0296 (3)
C20.5378 (2)0.1703 (4)0.63294 (12)0.0297 (3)
C30.8319 (3)0.0125 (4)0.57015 (13)0.0381 (4)
H3A0.7947770.1968240.5797910.057*
H3B0.9747290.0342970.5844610.057*
H3C0.7935060.0721270.5001880.057*
C40.2149 (2)0.5919 (4)0.77264 (12)0.0291 (3)
C50.3947 (2)0.6919 (4)0.81779 (11)0.0273 (3)
C60.4014 (2)0.9009 (4)0.89607 (13)0.0347 (4)
H60.5227300.9716030.9281210.042*
C70.2220 (3)0.9998 (4)0.92465 (14)0.0401 (4)
H70.2203001.1418020.9777850.048*
C80.0429 (3)0.8959 (5)0.87719 (15)0.0406 (4)
H80.0766520.9714350.8988300.049*
C90.0342 (2)0.6878 (5)0.80018 (14)0.0370 (4)
H90.0870480.6156980.7683840.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0259 (5)0.0362 (6)0.0359 (6)0.0064 (5)0.0013 (4)0.0001 (5)
O20.0406 (6)0.0349 (6)0.0380 (6)0.0087 (5)0.0024 (5)0.0035 (5)
O30.0315 (6)0.0342 (6)0.0364 (6)0.0025 (5)0.0009 (4)0.0061 (5)
N10.0241 (6)0.0274 (6)0.0312 (6)0.0017 (5)0.0008 (4)0.0002 (5)
C10.0288 (7)0.0286 (7)0.0311 (7)0.0048 (6)0.0007 (6)0.0048 (6)
C20.0329 (8)0.0264 (7)0.0292 (7)0.0042 (6)0.0006 (6)0.0039 (6)
C30.0384 (9)0.0380 (10)0.0381 (8)0.0030 (8)0.0047 (7)0.0042 (8)
C40.0259 (7)0.0305 (8)0.0308 (7)0.0049 (6)0.0010 (5)0.0063 (6)
C50.0233 (7)0.0278 (7)0.0306 (7)0.0019 (6)0.0013 (5)0.0057 (6)
C60.0311 (8)0.0357 (8)0.0366 (8)0.0030 (7)0.0006 (6)0.0014 (7)
C70.0438 (10)0.0370 (9)0.0407 (9)0.0020 (8)0.0096 (7)0.0015 (8)
C80.0302 (8)0.0431 (10)0.0505 (10)0.0040 (8)0.0146 (7)0.0107 (9)
C90.0220 (7)0.0429 (9)0.0461 (9)0.0035 (7)0.0032 (6)0.0104 (8)
Geometric parameters (Å, º) top
O1—C11.3610 (19)C4—C91.384 (2)
O1—C41.373 (2)C4—C51.390 (2)
O2—C21.200 (2)C5—C61.395 (2)
O3—C21.3281 (19)C6—C71.385 (3)
O3—C31.452 (2)C6—H60.9500
N1—C11.293 (2)C7—C81.402 (3)
N1—C51.395 (2)C7—H70.9500
C1—C21.488 (2)C8—C91.380 (3)
C3—H3A0.9800C8—H80.9500
C3—H3B0.9800C9—H90.9500
C3—H3C0.9800
C1—O1—C4103.51 (12)C9—C4—C5123.92 (17)
C2—O3—C3115.17 (14)C4—C5—N1108.64 (15)
C1—N1—C5103.74 (13)C4—C5—C6120.36 (15)
N1—C1—O1116.33 (15)N1—C5—C6131.00 (14)
N1—C1—C2128.06 (14)C7—C6—C5116.58 (16)
O1—C1—C2115.61 (13)C7—C6—H6121.7
O2—C2—O3126.82 (17)C5—C6—H6121.7
O2—C2—C1123.11 (16)C6—C7—C8121.71 (18)
O3—C2—C1110.07 (14)C6—C7—H7119.1
O3—C3—H3A109.5C8—C7—H7119.1
O3—C3—H3B109.5C9—C8—C7122.32 (17)
H3A—C3—H3B109.5C9—C8—H8118.8
O3—C3—H3C109.5C7—C8—H8118.8
H3A—C3—H3C109.5C8—C9—C4115.10 (16)
H3B—C3—H3C109.5C8—C9—H9122.4
O1—C4—C9128.30 (15)C4—C9—H9122.4
O1—C4—C5107.78 (14)
C5—N1—C1—O10.05 (19)C9—C4—C5—N1179.93 (15)
C5—N1—C1—C2179.34 (15)O1—C4—C5—C6179.61 (14)
C4—O1—C1—N10.03 (18)C9—C4—C5—C60.2 (2)
C4—O1—C1—C2179.50 (13)C1—N1—C5—C40.11 (17)
C3—O3—C2—O21.7 (2)C1—N1—C5—C6179.60 (17)
C3—O3—C2—C1178.99 (13)C4—C5—C6—C70.2 (2)
N1—C1—C2—O2172.61 (18)N1—C5—C6—C7179.92 (16)
O1—C1—C2—O26.8 (2)C5—C6—C7—C80.1 (3)
N1—C1—C2—O36.7 (2)C6—C7—C8—C90.6 (3)
O1—C1—C2—O3173.92 (14)C7—C8—C9—C40.6 (3)
C1—O1—C4—C9179.89 (17)O1—C4—C9—C8180.00 (16)
C1—O1—C4—C50.10 (16)C5—C4—C9—C80.2 (3)
O1—C4—C5—N10.14 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1i0.952.533.377 (2)149
C3—H3C···O2ii0.982.653.389 (2)133
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1.
C—O···π interactions (Å, °) top
Cg1 is the centroid of the O1/C1/N1/C5/C4 ring and Cg3 is the centroid of the O1/C1/C5–C9 ring.
XIJI···JX···JXI···J
C2O2Cg1ii3.2088 (14)3.5487 (18)96.39 (10)
C2O2Cg3ii3.5912 (14)3.7321 (17)87.29 (10)
Symmetry code: (ii) x, -1 + y, z.
ππ interaction (Å, °) top
Cg1 is the centroid of the O1/C1/N1/C4/C5 ring and Cg2 is the centroid of the C4–C9 ring. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIperp and CgJperp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.
IJCgI···CgJDihedral angleCgIperpCgJperpCgIOffsetCgJOffset
12ii3.6640 (11)0.19 (9)3.3115 (7)3.3065 (8)1.5791.568
Symmetry code: (ii) x, -1 + y, z.
 

References

First citationBoga, C., Bordoni, S., Casarin, L., Micheletti, G. & Monari, M. (2018). Molecules, 23, 171.  Web of Science CSD CrossRef Google Scholar
First citationBoominathan, S. S. K., Hu, W.-P., Senadi, G. C., Vandavasi, J. K. & Wang, J.-J. (2014). Chem. Commun. 50, 6726–6728.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, J. E., Yang, J. & Day, G. M. (2017). J. Mater. Chem. C. 5, 7574–7584.  Web of Science CrossRef CAS Google Scholar
First citationCarayon, C. & Fery-Forgues, S. (2017). Photochem. Photobiol. Sci. 16, 1020–1035.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDemmer, C. S. & Bunch, L. (2015). Eur. J. Med. Chem. 97, 778–785.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDeng, S., Chen, H., Ma, X., Zhou, Y., Yang, K., Lan, Y. & Song, Q. (2019). Chem. Sci. 10, 6828–6833.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDickoré, K., Sasse, K. & Bode, K.-D. (1970). Justus Liebigs Ann. Chem. 733, 70–87.  Google Scholar
First citationFenner, S. & Ackermann, L. (2016). Green Chem. 18, 3804–3807.  Web of Science CrossRef CAS Google Scholar
First citationFery-Forgues, S. & Vanucci-Bacqué, C. (2021). Top. Curr. Chem. (Z.), 379, 32.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIasco, O., Novitchi, G., Jeanneau, E., Tommasino, J. B., Roques, N. & Luneau, D. (2012). Inorg. Chem. 51, 2588–2596.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationInomata, H., Ogata, K., Fukuzawa, S. & Hou, Z. (2012). Org. Lett. 14, 3986–3989.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJacobs, L., de Kock, C., Taylor, D., Pelly, S. C. & Blackie, M. A. L. (2018). Bioorg. Med. Chem. 26, 5730–5741.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKamal, U., Javed, N. M. & Arun, K. (2020). Asia. J. Pharm. Clin. Res. pp. 28–41.  CrossRef Google Scholar
First citationKoshelev, D. S., Chikineva, T. Y., Kozhevnikova (Khudoleeva), V. Y., Medvedko, A. V., Vashchenko, A. A., Goloveshkin, A. S., Tsymbarenko, D. M., Averin, A. A., Meschkov, A., Schepers, U., Vatsadze, S. Z. & Utochnikova, V. V. (2019). Dyes Pigments, 170, 107604.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLim, J., Osowska, K., Armitage, J. A., Martin, B. R. & Miljanić, O. S. (2012). CrystEngComm, 14, 6152–6162.  Web of Science CSD CrossRef CAS Google Scholar
First citationLing, K.-Q., Cai, H., Ye, J.-H. & Xu, J.-H. (1999). Tetrahedron, 55, 1707–1716.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S., Zhu, Z.-Q., Hu, Z.-Y., Tang, J. & Yuan, E. (2021). Org. Biomol. Chem. 19, 1616–1619.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMöller, H. (1971). Justus Liebigs Ann. Chem. 749, 1–11.  Google Scholar
First citationMusser, J. H., Brown, R. E., Loev, B., Bailey, K., Jones, H., Kahen, R., Huang, F., Khandwala, A., Leibowitz, M. & Sonnino-Goldman, P. (1984). J. Med. Chem. 27, 121–125.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMusser, J. H., Hudec, T. T. & Bailey, K. (1984). Synth. Commun. 14, 947–953.  CrossRef CAS Web of Science Google Scholar
First citationOsowska, K. & Miljanić, O. S. (2010). Chem. Commun. 46, 4276–4278.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiątek, A. M., Sadowska, A., Chapuis, C. & Jurczak, J. (2011). Helv. Chim. Acta, 94, 2141–2167.  Google Scholar
First citationShang, Y., Hao, Q., Jiang, K., He, M. & Wang, J. (2020). Bioorg. Med. Chem. Lett. 30, 127118.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTangellamudi, N. D., Shinde, S. B., Pooladanda, V., Godugu, C. & Balasubramanian, S. (2018). Bioorg. Med. Chem. Lett. 28, 3639–3647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVechorkin, O., Hirt, N. & Hu, X. (2010). Org. Lett. 12, 3567–3569.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVodela, S., Mekala, R. V. R., Danda, R. R. & Kodhati, V. (2013). Chin. Chem. Lett. 24, 625–628.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, Q.,Lv, H., Xia, C.,& Li. F. (2017). Chem. Commun. 53, 6914–6917.  Google Scholar
First citationZhang, L., Cheng, J., Ohishi, T. & Hou, Z. (2010). Angew. Chem. Int. Ed. 49, 8670–8673.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Z.-Q., Liu, S., Hu, Z.-Y., Xie, Z.-B., Tang, J. & Le, Z.-G. (2021). Adv. Synth. Catal. 363, 2568–2572.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds