research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure studies of 4-ethyl­piperazin-1-ium 3,5-di­nitro­benzoate, 4-methyl­piperazin-1-ium 3,5-di­nitro­benzoate and 4-methyl­piperazin-1-ium 4-iodo­benzoate

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 27 September 2021; accepted 15 October 2021; online 21 October 2021)

As part of our ongoing investigation on the chemical and biological properties of piperazinium salts, we synthesized three novel compounds: 1-ethyl­piperazinium 3,5-di­nitro­benzoate (I), 1-methyl­piperazinium 3,5-di­nitro­benzoate (II) and 1-methyl­piperazinium 4-iodo­benzoate (III). The crystal structures of these compounds are built up of organic layers formed by the strong connection between the mol­ecules by hydrogen bonds of type N—H⋯O. These layers are linked through N—H⋯O hydrogen bonds and C—H⋯O inter­actions or C—I⋯N halogen bonding, leading to the formation of a three-dimensional network.

1. Chemical context

Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas (Berkheij, 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]) such as anti­fungal (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti-bacterial, anti-malarial and anti-psychotic agents (Choudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). A valuable insight into recent advances on anti­microbial activity of piperazine derivatives has been reported (Kharb et al., 2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]).

Piperazines are among the most important building blocks in today's drug discovery efforts and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). A review of the current pharmacological and toxicological information for piperazine derivatives is given by Elliott (2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]).

1-Ethyl­piperazine is used in the synthesis of 2-{2-meth­oxy-5-[(4-methyl­piperazin-1-yl)sulfon­yl]phen­yl}-1H-benzo[d]imid­azole hydro­chloride and 2-{5-[(4-ethyl­piperazin-1-yl)sulfon­yl]-2-meth­oxy­phen­yl}-1H-benzo[d]imidazole hydro­chloride as benzimidazole analogs of sildenafil, which is marketed for the treatment of erectile dysfunction (Qandil, 2012[Qandil, A. M. (2012). Pharmaceuticals. 5, 460.]). It is also employed as an inter­mediate in veterinary medicine and serves as a precursor in the preparation of dyes. N-Ethyl piperazine is used in the synthesis of enrofloxacin, which is an anti­biotic used to treat bacterial infections. It is also used in the synthesis of dyes, agrochemicals and other pharmaceutical compounds. The crystal structures of compounds derived from 1-ethyl­piperazine, viz., chloro­bis­(2-chloro­benz­yl)(4-eth­ylpiperazine-1-di­thio­carbamato-κ2S,S′)tin(IV) (Li & Li, 2007[Li, J.-Y. & Li, T.-D. (2007). Acta Cryst. E63, m708-m709.]), 1-diphen­ylmethyl-4-eth­ylpiperazine-1,4-diium dichloride (Qiao et al., 2010[Qiao, H.-Y., Xu, S.-H. & Jiang, H.-X. (2010). Acta Cryst. E66, o1861.]), (S)-3-chloro-4-(4-eth­ylpiperazin-1-yl)-5-[(1R,2S,5R)-2-isopropyl-5-meth­ylcyclo­hex­yloxy]furan-2(5H)-one (Fu et al., 2010[Fu, J.-H., Wang, Z.-Y., Yang, K. & Mao, C.-X. (2010). Acta Cryst. E66, o2022.]), 4-{[5-(4-chloro­phen­yl)-1-(4-fluoro­phen­yl)-1H-pyrazol-3-yl]carbon­yl}-N-eth­ylpiperazine-1-carboxamide (Shahani et al., 2011[Shahani, T., Fun, H.-K., Vijayakumar, V., Ragavan, R. V. & Sarveswari, S. (2011). Acta Cryst. E67, o1747-o1748.]), 2-[4-(2-meth­oxy­phen­yl)piperazin-1-yl]-N-(pyridin-2-yl)acet­amide (Lu & Jiang, 2011[Lu, C. & Jiang, Q. (2011). Acta Cryst. E67, o223.]), N-(4-chloro­phen­yl)-4-eth­ylpiperazine-1-carboxamide (Li, 2011[Li, Y.-F. (2011). Acta Cryst. E67, o2574.]) and tri­chlorido­(1-eth­ylpiperazin-1-ium)cobalt(II) (Dhieb et al., 2014[Dhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m166.]) have been reported.

1-Methyl­piperazine is used in the preparation of 2-(4-methyl-1-piperazinylmeth­yl)acrylo­phenone as an anti­microtubular drug (Mallevais et al., 1984[Mallevais, M. L., Delacourte, A., Lesieur, I., Lesieur, D., Cazin, M., Brunet, C. & Luyckx, M. (1984). Biochimie, 66, 477.]). It is involved in the preparation of 1-(4-meth­oxy­phen­yl)-4-methyl­piperazine by reaction with 1-chloro-4-meth­oxy-benzene. It acts as an inter­mediate in the synthesis of active pharmaceutical ingredients such as ofloxacin, rifampicin, clozapine, sildenafil, trifluoperazine and zopiclone. The crystal structures of 1-meth­ylpiperazine-1,4-diium 4-nitro­phthalate(2−) 4-nitro­phthalic acid monohydrate (Guo, 2004[Guo, M.-L. (2004). Acta Cryst. C60, o690-o692.]), (−)-2-methyl­piper­azin-1-ium perchlorate (Peng, 2010[Peng, C.-H. (2010). Acta Cryst. E66, o2114.]), 1-methyl­piperazine-1,4-diium dipicrate (Dutkiewicz et al., 2011[Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390-o391.]), 1-meth­ylpiperazine-1,4-dium bis­(hydrogen oxalate) (Essid et al., 2014[Essid, M., Marouani, H. & Rzaigui, M. (2014). Acta Cryst. E70, o326-o327.]), 2-meth­ylpiperazine-1,4-diium bis­(hydrogen maleate) (Wecharine et al., 2015[Wecharine, I., Valkonen, A., Rzaigui, M. & Smirani Sta, W. (2015). Acta Cryst. E71, o193-o194.]) and 2-methyl­piperazine-1,4-diium bis­(hydrogen maleate) (Wecharine & Arto, 2015[Wecharine, I., Valkonen, A., Rzaigui, M. & Smirani Sta, W. (2015). Acta Cryst. E71, o193-o194.]), have been reported.

[Scheme 1]

We have recently reported the crystal structures of some salts of 4-meth­oxy­phenyl­piperazine (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]) and also 2-meth­oxy­phenyl­piperazine (Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]). In view of the importance of piperazines in general and the use of 1-eth­yl/methyl­piperazine in particular, the present paper reports the crystal structure of salts 1-ethyl­piperazinium 3,5-di­nitro­benzoate (I)[link], 1-methyl­piperazinium 3,5-di­nitro­benzoate (II)[link] and 1-methyl­piperazinium 4-iodo­benzoate (III)[link].

2. Structural commentary

The mol­ecular structures of the title salts (I)[link], (II)[link] and (III)[link] are illustrated in Figs. 1[link], 2[link] and 3[link], respectively. The asymmetric unit of compound (I)[link] is composed of one 1-ethyl­piperazinium cation and one 3,5-di­nitro­benzoate anion while (II)[link] consists of a 1-methyl­piperazinium cation and a 3,5-di­nitro­benzoate anion. Compound (III)[link] crystallizes with one 1-methyl­piperazinium cation and one 4-iodo­benzoate anion in the asymmetric unit. In all compounds, the piperazine rings have a chair conformation with a positively charged protonated N atom with a maximum deviation from their mean plane of 0.239 (2), 0.258 (2) and 0.238 (2) Å at atom N1, for the three title compounds, respectively. The benzene rings are almost planar, with maximum deviations of 0.010 (2), 0.006 (2) and 0.006 (3) Å at atoms C8, C10 and C8 for (I)[link], (II)[link] and (III)[link] respectively. The substituents of the benzene rings in all compounds are approximately in the same plane and do not deviate significantly from planarity.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], the cation and anion are linked by N2—H21⋯O1 hydrogen bonds, forming layers extending along the c-axis direction. The layers are connected via N2—H22⋯O2 hydrogen bonds, forming sheets lying parallel to the ac plane (Table 1[link] and Fig. 4[link]). The crystal structure of compound (II)[link] is built up of N2—H21⋯O2 and N2—H22⋯O1 hydrogen bonds that connect the mol­ecules in strong layers along the c-axis direction. The layers are linked via weak inter­actions of the type C—H⋯O, giving a three-dimensional network along the b axis (Table 2[link] and Fig. 5[link]). The mol­ecules in the crystal of (III)[link] are linked by N2—H21⋯O2, N2—H22⋯O1, C—H⋯O and C—H⋯π inter­actions, forming layers along the b axis. The layers are linked through C—I⋯N halogen bonding with C9—I1 and I1⋯N1(1 − x, 1 − y, −z) bond distnces of 2.103 (2) and 3.073 (2) Å, respectively, and bond angle of 174.33 (8)°, leading to a three-dimensional structure (Table 3[link] and Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1 0.91 (2) 1.88 (2) 2.768 (2) 168 (3)
N2—H22⋯O2i 0.92 (2) 1.77 (2) 2.684 (2) 171 (3)
Symmetry code: (i) [-x, -y, -z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O2i 0.91 (2) 1.82 (2) 2.728 (2) 175 (2)
N2—H22⋯O1ii 0.91 (2) 1.78 (2) 2.691 (2) 172 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg2 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.97 2.56 3.272 (3) 130
C5—H5A⋯O1ii 0.97 2.56 3.469 (3) 156
N2—H21⋯O2ii 0.87 (2) 1.83 (2) 2.696 (3) 172 (3)
N2—H22⋯O1iii 0.88 (2) 1.83 (2) 2.700 (3) 172 (3)
C4—H4BCg2iv 0.97 2.59 3.473 (3) 152
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y, -z].
[Figure 4]
Figure 4
Mol­ecular packing of (I)[link] with hydrogen bonding shown as dashed lines.
[Figure 5]
Figure 5
Mol­ecular packing of (II)[link] with hydrogen bonding shown as dashed lines..
[Figure 6]
Figure 6
Mol­ecular packing of (III)[link] with hydrogen bonding shown as dashed lines..

4. Database survey

A search of the Cambridge Structural Database (Version 2020.3.0, last update March 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the piperazinium cation and benzoate anion involved in the three salts gave 62 hits, 60 of which have branched aromatic substituents either on the piperazinium cation, the benzoate anion or both, that make their structures extremely different from those of the title salts. The other two compounds are quite similar to the title mol­ecules: 4-meth­ylpiperazin-1-ium 2-amino-5-iodo­benzoate (MAVMEC: Zhu & Guo, 2005[Zhu, M.-L. & Guo, M.-L. (2005). Acta Cryst. E61, o3310-o3311.]) and 1-meth­ylpiperazine-1,4-diium 4-nitro­phthalate(2-) 4-nitro­phthalic acid monohydrate (IZEFY: Guo, 2004[Guo, M.-L. (2004). Acta Cryst. C60, o690-o692.]), which share the cationic part and its chair conformation with salts (II)[link] and (III)[link]. The crystal structures of the two compounds are based on differently sized rings formed through hydrogen-bond contacts, which then aggregate into a 3D framework.

5. Synthesis and crystallization

For the synthesis of (I)[link], a solution of commercially available 1-ethyl­piperazine (100 mg, 0.88 mol) (from Sigma-Aldrich) in methanol (10 ml) was mixed with an equimolar solution of 3,5-di­nitro­benzoic acid (186.6 mg, 0.88 mol). Compounds (II)[link] and (III)[link] were prepared by the same method in which 1-methyl­piperazine (100 mg, 1.0 mol) in methanol (10 ml) was mixed with an equimolar solution of 3,5-di­nitro­benzoic acid (212 mg, 1.0 mol) for (II)[link] or with an equimolar solution of 4-iodo­benzoic acid (248 mg, 1.0 mol) for (III)[link]. The corresponding mixtures were stirred for 30 min at 323 K and allowed to stand at room temperature. X-ray quality crystals were formed upon slow evaporation in a week time (m.p. 453–455 K, 459–461 K and 410–412 K, respectively).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms bound to C were positioned with idealized geometry and refined using a riding model with aromatic C—H = 0.93 Å, 0.96 Å (meth­yl) or 0.97 Å (methyl­ene). The H atoms of the N atom were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. All H atoms were refined with isotropic displace­ment parameters set at 1.2Ueq (C-aromatic, C-methyl­ene, N) or 1.5Ueq (C-meth­yl) of the parent atom.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C6H15N2+·C7H3N2O6 C5H13N2+·C7H3N2O6 C5H13N2+·C7H4IO2
Mr 326.31 312.29 348.17
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293 293
a, b, c (Å) 19.362 (1), 8.6279 (7), 19.318 (1) 7.8023 (6), 10.3920 (8), 10.4770 (8) 6.2418 (4), 9.5465 (8), 12.5346 (9)
α, β, γ (°) 90, 97.261 (8), 90 73.578 (8), 74.289 (8), 71.828 (7) 110.708 (8), 90.235 (5), 101.559 (6)
V3) 3201.3 (4) 758.49 (11) 682.19 (9)
Z 8 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 2.34
Crystal size (mm) 0.46 × 0.28 × 0.24 0.48 × 0.48 × 0.44 0.48 × 0.24 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.964, 0.974 0.948, 0.952 0.515, 0.626
No. of measured, independent and observed [I > 2σ(I)] reflections 6345, 2943, 1968 4819, 2774, 1935 4189, 2492, 2324
Rint 0.016 0.010 0.011
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.04 0.044, 0.129, 1.03 0.020, 0.051, 1.11
No. of reflections 2943 2774 2492
No. of parameters 214 206 160
No. of restraints 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.17 0.28, −0.15 0.37, −0.95
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

4-Ethylpiperazin-1-ium 3,5-dinitrobenzoate (I) top
Crystal data top
C6H15N2+·C7H3N2O6F(000) = 1376
Mr = 326.31Dx = 1.354 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6345 reflections
a = 19.362 (1) Åθ = 2.6–25.4°
b = 8.6279 (7) ŵ = 0.11 mm1
c = 19.318 (1) ÅT = 293 K
β = 97.261 (8)°Prism, orange
V = 3201.3 (4) Å30.46 × 0.28 × 0.24 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2323
Tmin = 0.964, Tmax = 0.974k = 1010
6345 measured reflectionsl = 923
2943 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0507P)2 + 1.8986P]
where P = (Fo2 + 2Fc2)/3
2943 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.17 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18587 (15)0.3364 (3)0.30396 (15)0.0884 (9)
H1A0.2328340.3394260.3268630.133*
H1B0.1775870.4248580.2739030.133*
H1C0.1541080.3381020.3383020.133*
C20.17517 (12)0.1925 (3)0.26195 (13)0.0655 (7)
H2A0.2082610.1905840.2282150.079*
H2B0.1847980.1038910.2925680.079*
C30.08924 (11)0.2969 (3)0.17179 (12)0.0533 (6)
H3A0.123380.2917970.139190.064*
H3B0.0929840.3979260.1940120.064*
C40.01736 (11)0.2779 (3)0.13276 (13)0.0589 (6)
H4A0.0170490.2902260.1647330.071*
H4B0.0092310.3573610.0971520.071*
C50.02593 (11)0.0011 (3)0.15297 (12)0.0563 (6)
H5A0.0235630.0996030.1305070.068*
H5B0.0082480.0034050.1855920.068*
C60.09733 (11)0.0253 (3)0.19161 (12)0.0538 (6)
H6A0.1066570.0542430.2270610.065*
H6B0.1316320.0151950.1593770.065*
C70.22610 (9)0.0114 (2)0.00395 (10)0.0389 (5)
C80.25500 (10)0.1070 (2)0.05725 (10)0.0431 (5)
H80.2265970.1640620.083150.052*
C90.32638 (10)0.1168 (2)0.07159 (10)0.0449 (5)
C100.37088 (10)0.0395 (2)0.03386 (11)0.0468 (5)
H100.4189460.0491220.0438550.056*
C110.34091 (9)0.0527 (2)0.01928 (11)0.0442 (5)
C120.26950 (9)0.0699 (2)0.03464 (10)0.0428 (5)
H120.2509590.1353970.0704960.051*
C130.14743 (10)0.0038 (3)0.01245 (10)0.0440 (5)
N10.10398 (8)0.1771 (2)0.22445 (8)0.0478 (5)
N20.00983 (8)0.1234 (2)0.09987 (9)0.0502 (5)
N30.35665 (12)0.2143 (3)0.13029 (11)0.0657 (6)
N40.38632 (9)0.1369 (2)0.06158 (12)0.0612 (5)
O10.11149 (7)0.0962 (2)0.01190 (8)0.0621 (5)
O20.12597 (7)0.1160 (2)0.05004 (9)0.0653 (5)
O30.31860 (12)0.3056 (3)0.15461 (11)0.0980 (7)
O40.41795 (10)0.1972 (3)0.15171 (10)0.0987 (7)
O50.44928 (7)0.1316 (2)0.04397 (10)0.0829 (6)
O60.35960 (9)0.2085 (3)0.11194 (11)0.0962 (7)
H210.0381 (14)0.116 (4)0.0660 (13)0.115*
H220.0355 (10)0.114 (4)0.0790 (14)0.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (2)0.088 (2)0.085 (2)0.0122 (16)0.0206 (15)0.0224 (17)
C20.0594 (14)0.0728 (18)0.0585 (14)0.0020 (12)0.0150 (11)0.0000 (13)
C30.0511 (12)0.0460 (13)0.0597 (13)0.0019 (10)0.0053 (10)0.0028 (11)
C40.0477 (12)0.0602 (15)0.0652 (14)0.0061 (11)0.0069 (11)0.0037 (13)
C50.0538 (13)0.0543 (14)0.0608 (14)0.0136 (11)0.0072 (11)0.0063 (12)
C60.0546 (13)0.0483 (14)0.0563 (13)0.0017 (10)0.0015 (10)0.0037 (12)
C70.0330 (9)0.0390 (11)0.0437 (11)0.0016 (8)0.0007 (8)0.0063 (10)
C80.0431 (11)0.0413 (12)0.0448 (11)0.0019 (9)0.0053 (9)0.0024 (10)
C90.0460 (11)0.0423 (12)0.0439 (11)0.0114 (10)0.0043 (9)0.0027 (10)
C100.0331 (10)0.0478 (12)0.0565 (13)0.0072 (9)0.0057 (9)0.0094 (11)
C110.0332 (10)0.0446 (12)0.0547 (12)0.0004 (9)0.0049 (9)0.0032 (11)
C120.0370 (10)0.0422 (12)0.0479 (11)0.0039 (9)0.0002 (9)0.0008 (10)
C130.0329 (10)0.0542 (14)0.0443 (11)0.0017 (10)0.0026 (9)0.0081 (11)
N10.0446 (9)0.0524 (11)0.0437 (10)0.0038 (8)0.0048 (8)0.0025 (9)
N20.0331 (9)0.0683 (13)0.0477 (10)0.0049 (9)0.0013 (7)0.0090 (10)
N30.0674 (14)0.0690 (15)0.0579 (12)0.0222 (12)0.0030 (11)0.0041 (12)
N40.0428 (11)0.0591 (13)0.0833 (14)0.0009 (9)0.0135 (10)0.0068 (12)
O10.0415 (8)0.0734 (11)0.0735 (11)0.0069 (8)0.0153 (7)0.0026 (9)
O20.0340 (8)0.0748 (11)0.0837 (11)0.0064 (8)0.0057 (7)0.0170 (10)
O30.1085 (17)0.0929 (16)0.0892 (15)0.0096 (13)0.0011 (12)0.0405 (13)
O40.0675 (12)0.1305 (19)0.0900 (14)0.0337 (12)0.0219 (10)0.0182 (13)
O50.0337 (9)0.0929 (14)0.1238 (16)0.0008 (9)0.0167 (9)0.0136 (12)
O60.0624 (11)0.1236 (18)0.1026 (14)0.0096 (11)0.0109 (10)0.0556 (14)
Geometric parameters (Å, º) top
C1—C21.484 (3)C7—C81.381 (3)
C1—H1A0.96C7—C121.383 (3)
C1—H1B0.96C7—C131.522 (2)
C1—H1C0.96C8—C91.377 (3)
C2—N11.480 (3)C8—H80.93
C2—H2A0.97C9—C101.370 (3)
C2—H2B0.97C9—N31.473 (3)
C3—N11.453 (3)C10—C111.368 (3)
C3—C41.506 (3)C10—H100.93
C3—H3A0.97C11—C121.385 (2)
C3—H3B0.97C11—N41.467 (3)
C4—N21.476 (3)C12—H120.93
C4—H4A0.97C13—O11.238 (2)
C4—H4B0.97C13—O21.250 (2)
C5—N21.477 (3)N2—H210.907 (17)
C5—C61.500 (3)N2—H220.922 (17)
C5—H5A0.97N3—O31.213 (3)
C5—H5B0.97N3—O41.216 (2)
C6—N11.454 (3)N4—O61.212 (2)
C6—H6A0.97N4—O51.224 (2)
C6—H6B0.97
C2—C1—H1A109.5C8—C7—C12119.22 (17)
C2—C1—H1B109.5C8—C7—C13120.47 (18)
H1A—C1—H1B109.5C12—C7—C13120.31 (18)
C2—C1—H1C109.5C9—C8—C7119.24 (19)
H1A—C1—H1C109.5C9—C8—H8120.4
H1B—C1—H1C109.5C7—C8—H8120.4
N1—C2—C1113.6 (2)C10—C9—C8123.05 (19)
N1—C2—H2A108.9C10—C9—N3118.16 (18)
C1—C2—H2A108.9C8—C9—N3118.8 (2)
N1—C2—H2B108.9C11—C10—C9116.52 (17)
C1—C2—H2B108.9C11—C10—H10121.7
H2A—C2—H2B107.7C9—C10—H10121.7
N1—C3—C4111.11 (18)C10—C11—C12122.71 (19)
N1—C3—H3A109.4C10—C11—N4118.60 (17)
C4—C3—H3A109.4C12—C11—N4118.69 (18)
N1—C3—H3B109.4C7—C12—C11119.23 (19)
C4—C3—H3B109.4C7—C12—H12120.4
H3A—C3—H3B108C11—C12—H12120.4
N2—C4—C3110.43 (17)O1—C13—O2126.81 (18)
N2—C4—H4A109.6O1—C13—C7117.20 (19)
C3—C4—H4A109.6O2—C13—C7115.98 (18)
N2—C4—H4B109.6C3—N1—C6109.69 (16)
C3—C4—H4B109.6C3—N1—C2111.54 (17)
H4A—C4—H4B108.1C6—N1—C2108.66 (17)
N2—C5—C6110.30 (17)C4—N2—C5110.20 (17)
N2—C5—H5A109.6C4—N2—H21110 (2)
C6—C5—H5A109.6C5—N2—H21111 (2)
N2—C5—H5B109.6C4—N2—H22108 (2)
C6—C5—H5B109.6C5—N2—H22110.3 (19)
H5A—C5—H5B108.1H21—N2—H22108 (3)
N1—C6—C5111.54 (18)O3—N3—O4124.2 (2)
N1—C6—H6A109.3O3—N3—C9117.8 (2)
C5—C6—H6A109.3O4—N3—C9118.0 (2)
N1—C6—H6B109.3O6—N4—O5123.5 (2)
C5—C6—H6B109.3O6—N4—C11118.33 (18)
H6A—C6—H6B108O5—N4—C11118.2 (2)
N1—C3—C4—N257.7 (2)C12—C7—C13—O215.6 (3)
N2—C5—C6—N157.5 (2)C4—C3—N1—C658.2 (2)
C12—C7—C8—C91.2 (3)C4—C3—N1—C2178.59 (18)
C13—C7—C8—C9179.11 (18)C5—C6—N1—C358.3 (2)
C7—C8—C9—C102.1 (3)C5—C6—N1—C2179.54 (18)
C7—C8—C9—N3177.62 (17)C1—C2—N1—C365.2 (3)
C8—C9—C10—C111.2 (3)C1—C2—N1—C6173.8 (2)
N3—C9—C10—C11178.58 (18)C3—C4—N2—C556.1 (2)
C9—C10—C11—C120.6 (3)C6—C5—N2—C455.9 (2)
C9—C10—C11—N4179.50 (18)C10—C9—N3—O3165.7 (2)
C8—C7—C12—C110.5 (3)C8—C9—N3—O314.5 (3)
C13—C7—C12—C11179.18 (18)C10—C9—N3—O415.0 (3)
C10—C11—C12—C71.5 (3)C8—C9—N3—O4164.7 (2)
N4—C11—C12—C7178.69 (18)C10—C11—N4—O6174.2 (2)
C8—C7—C13—O116.0 (3)C12—C11—N4—O65.9 (3)
C12—C7—C13—O1163.64 (18)C10—C11—N4—O56.0 (3)
C8—C7—C13—O2164.73 (18)C12—C11—N4—O5173.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O10.91 (2)1.88 (2)2.768 (2)168 (3)
N2—H22···O2i0.92 (2)1.77 (2)2.684 (2)171 (3)
Symmetry code: (i) x, y, z.
4-Methylpiperazin-1-ium 3,5-dinitrobenzoate (II) top
Crystal data top
C5H13N2+·C7H3N2O6Z = 2
Mr = 312.29F(000) = 328
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8023 (6) ÅCell parameters from 4819 reflections
b = 10.3920 (8) Åθ = 2.6–25.4°
c = 10.4770 (8) ŵ = 0.11 mm1
α = 73.578 (8)°T = 293 K
β = 74.289 (8)°Prism, orange
γ = 71.828 (7)°0.48 × 0.48 × 0.44 mm
V = 758.49 (11) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ω scansθmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 97
Tmin = 0.948, Tmax = 0.952k = 128
4819 measured reflectionsl = 1212
2774 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.1428P]
where P = (Fo2 + 2Fc2)/3
2774 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.15 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4259 (3)0.25601 (14)0.60539 (19)0.1005 (6)
O20.3187 (2)0.28191 (15)0.44153 (17)0.0950 (5)
O30.2206 (3)0.1945 (2)0.7260 (2)0.1219 (7)
O40.1284 (3)0.37901 (16)0.5805 (2)0.1139 (7)
O50.0144 (3)0.3389 (2)0.16451 (19)0.1237 (7)
O60.0455 (3)0.1363 (3)0.1329 (2)0.1293 (8)
N30.1771 (3)0.25321 (19)0.6173 (2)0.0806 (5)
N40.0540 (3)0.2122 (3)0.1988 (2)0.0877 (6)
C60.2667 (2)0.05607 (17)0.47269 (17)0.0500 (4)
C70.2608 (2)0.02602 (17)0.55809 (18)0.0535 (4)
H70.3075490.0136270.6370910.064*
C80.1847 (2)0.16762 (17)0.52500 (19)0.0569 (4)
C90.1152 (2)0.23142 (19)0.4090 (2)0.0625 (5)
H90.0641430.3266560.388150.075*
C100.1249 (2)0.1477 (2)0.32539 (19)0.0606 (5)
C110.1974 (2)0.00621 (19)0.35514 (18)0.0568 (5)
H110.1997860.0472710.296630.068*
C120.3453 (3)0.21207 (18)0.5093 (2)0.0606 (5)
N10.4346 (2)0.71225 (17)0.02379 (16)0.0702 (5)
N20.4591 (3)0.52702 (16)0.28262 (17)0.0687 (5)
C10.3857 (4)0.8479 (3)0.0671 (3)0.1066 (9)
H1A0.4931570.8650090.1330970.16*
H1B0.3384180.9187420.0151730.16*
H1C0.2935970.8490660.1125980.16*
C20.2725 (3)0.6783 (2)0.1169 (2)0.0697 (5)
H2A0.1840080.6814770.065810.084*
H2B0.216120.746680.1727150.084*
C30.3197 (3)0.5366 (2)0.2067 (2)0.0739 (6)
H3A0.2094940.5178610.2701320.089*
H3B0.3668960.4673130.151650.089*
C40.6227 (3)0.5678 (2)0.1885 (2)0.0809 (6)
H4A0.6842430.5012970.1311590.097*
H4B0.7086620.5680730.2401260.097*
C50.5641 (3)0.7102 (2)0.1016 (2)0.0767 (6)
H5A0.507160.7771050.158950.092*
H5B0.6714130.7364360.0401460.092*
H210.412 (3)0.586 (2)0.340 (2)0.092*
H220.494 (3)0.4374 (18)0.329 (2)0.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1400 (15)0.0432 (8)0.1110 (13)0.0019 (8)0.0587 (12)0.0017 (8)
O20.1243 (14)0.0579 (9)0.0982 (12)0.0057 (8)0.0139 (10)0.0373 (9)
O30.188 (2)0.0895 (13)0.1115 (15)0.0329 (13)0.0574 (15)0.0344 (12)
O40.1277 (14)0.0523 (10)0.1664 (18)0.0016 (9)0.0407 (13)0.0441 (11)
O50.1127 (14)0.1017 (15)0.1015 (13)0.0206 (11)0.0330 (11)0.0208 (11)
O60.1450 (19)0.149 (2)0.0972 (14)0.0207 (14)0.0625 (13)0.0148 (14)
N30.0813 (12)0.0582 (11)0.1069 (16)0.0145 (9)0.0177 (11)0.0297 (11)
N40.0675 (12)0.0988 (16)0.0703 (13)0.0021 (10)0.0176 (9)0.0047 (12)
C60.0438 (9)0.0429 (9)0.0544 (10)0.0084 (7)0.0007 (7)0.0086 (8)
C70.0489 (9)0.0469 (10)0.0578 (10)0.0098 (7)0.0088 (8)0.0053 (8)
C80.0514 (10)0.0439 (10)0.0721 (12)0.0111 (7)0.0067 (9)0.0140 (9)
C90.0484 (10)0.0435 (10)0.0788 (13)0.0071 (7)0.0067 (9)0.0018 (9)
C100.0448 (10)0.0617 (12)0.0590 (11)0.0073 (8)0.0074 (8)0.0023 (9)
C110.0487 (10)0.0597 (11)0.0562 (10)0.0122 (8)0.0013 (8)0.0142 (9)
C120.0630 (11)0.0420 (10)0.0627 (12)0.0068 (8)0.0020 (9)0.0110 (9)
N10.0768 (11)0.0689 (11)0.0543 (9)0.0116 (8)0.0144 (8)0.0036 (8)
N20.0975 (13)0.0401 (8)0.0587 (10)0.0023 (8)0.0235 (9)0.0102 (7)
C10.123 (2)0.0942 (19)0.0786 (16)0.0234 (15)0.0293 (15)0.0223 (14)
C20.0695 (13)0.0647 (12)0.0737 (13)0.0130 (10)0.0253 (10)0.0075 (10)
C30.0870 (15)0.0604 (12)0.0751 (13)0.0214 (10)0.0180 (11)0.0115 (10)
C40.0717 (14)0.0743 (14)0.0922 (16)0.0063 (11)0.0325 (12)0.0237 (12)
C50.0638 (12)0.0790 (14)0.0780 (14)0.0189 (10)0.0099 (11)0.0061 (11)
Geometric parameters (Å, º) top
O1—C121.233 (2)N1—C51.452 (3)
O2—C121.241 (2)N1—C11.464 (3)
O3—N31.213 (3)N2—C31.477 (3)
O4—N31.219 (2)N2—C41.483 (3)
O5—N41.224 (3)N2—H210.906 (16)
O6—N41.212 (3)N2—H220.913 (16)
N3—C81.467 (3)C1—H1A0.96
N4—C101.475 (3)C1—H1B0.96
C6—C71.384 (2)C1—H1C0.96
C6—C111.386 (2)C2—C31.502 (3)
C6—C121.519 (2)C2—H2A0.97
C7—C81.384 (2)C2—H2B0.97
C7—H70.93C3—H3A0.97
C8—C91.374 (3)C3—H3B0.97
C9—C101.373 (3)C4—C51.506 (3)
C9—H90.93C4—H4A0.97
C10—C111.377 (2)C4—H4B0.97
C11—H110.93C5—H5A0.97
N1—C21.446 (2)C5—H5B0.97
O3—N3—O4123.6 (2)C3—N2—H22108.4 (15)
O3—N3—C8117.95 (18)C4—N2—H22109.2 (14)
O4—N3—C8118.4 (2)H21—N2—H22111 (2)
O6—N4—O5124.2 (2)N1—C1—H1A109.5
O6—N4—C10117.9 (2)N1—C1—H1B109.5
O5—N4—C10117.8 (2)H1A—C1—H1B109.5
C7—C6—C11118.91 (16)N1—C1—H1C109.5
C7—C6—C12120.13 (16)H1A—C1—H1C109.5
C11—C6—C12120.95 (17)H1B—C1—H1C109.5
C6—C7—C8119.47 (17)N1—C2—C3111.25 (17)
C6—C7—H7120.3N1—C2—H2A109.4
C8—C7—H7120.3C3—C2—H2A109.4
C9—C8—C7122.55 (18)N1—C2—H2B109.4
C9—C8—N3118.53 (17)C3—C2—H2B109.4
C7—C8—N3118.92 (18)H2A—C2—H2B108
C10—C9—C8116.73 (16)N2—C3—C2110.67 (16)
C10—C9—H9121.6N2—C3—H3A109.5
C8—C9—H9121.6C2—C3—H3A109.5
C9—C10—C11122.66 (18)N2—C3—H3B109.5
C9—C10—N4118.52 (19)C2—C3—H3B109.5
C11—C10—N4118.8 (2)H3A—C3—H3B108.1
C10—C11—C6119.67 (18)N2—C4—C5109.78 (16)
C10—C11—H11120.2N2—C4—H4A109.7
C6—C11—H11120.2C5—C4—H4A109.7
O1—C12—O2126.92 (18)N2—C4—H4B109.7
O1—C12—C6116.25 (18)C5—C4—H4B109.7
O2—C12—C6116.81 (19)H4A—C4—H4B108.2
C2—N1—C5108.81 (15)N1—C5—C4110.61 (18)
C2—N1—C1110.74 (18)N1—C5—H5A109.5
C5—N1—C1110.91 (18)C4—C5—H5A109.5
C3—N2—C4110.66 (16)N1—C5—H5B109.5
C3—N2—H21110.0 (15)C4—C5—H5B109.5
C4—N2—H21107.1 (14)H5A—C5—H5B108.1
C11—C6—C7—C80.5 (2)C9—C10—C11—C61.0 (3)
C12—C6—C7—C8178.42 (15)N4—C10—C11—C6179.18 (15)
C6—C7—C8—C90.6 (3)C7—C6—C11—C100.2 (2)
C6—C7—C8—N3179.23 (15)C12—C6—C11—C10179.17 (15)
O3—N3—C8—C9172.3 (2)C7—C6—C12—O110.5 (2)
O4—N3—C8—C98.0 (3)C11—C6—C12—O1170.56 (17)
O3—N3—C8—C77.5 (3)C7—C6—C12—O2168.17 (16)
O4—N3—C8—C7172.18 (18)C11—C6—C12—O210.8 (2)
C7—C8—C9—C100.2 (3)C5—N1—C2—C360.3 (2)
N3—C8—C9—C10179.99 (15)C1—N1—C2—C3177.52 (19)
C8—C9—C10—C111.0 (3)C4—N2—C3—C254.0 (2)
C8—C9—C10—N4179.21 (15)N1—C2—C3—N257.2 (2)
O6—N4—C10—C9172.5 (2)C3—N2—C4—C554.9 (2)
O5—N4—C10—C910.3 (3)C2—N1—C5—C461.4 (2)
O6—N4—C10—C117.3 (3)C1—N1—C5—C4176.53 (19)
O5—N4—C10—C11169.91 (18)N2—C4—C5—N159.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O2i0.91 (2)1.82 (2)2.728 (2)175 (2)
N2—H22···O1ii0.91 (2)1.78 (2)2.691 (2)172 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
4-Methylpiperazin-1-ium 4-iodobenzoate (III) top
Crystal data top
C5H13N2+·C7H4IO2Z = 2
Mr = 348.17F(000) = 344
Triclinic, P1Dx = 1.695 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2418 (4) ÅCell parameters from 4189 reflections
b = 9.5465 (8) Åθ = 3.3–25.4°
c = 12.5346 (9) ŵ = 2.34 mm1
α = 110.708 (8)°T = 293 K
β = 90.235 (5)°Rods, colourless
γ = 101.559 (6)°0.48 × 0.24 × 0.2 mm
V = 682.19 (9) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ω scansθmax = 25.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 77
Tmin = 0.515, Tmax = 0.626k = 1111
4189 measured reflectionsl = 1514
2492 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: mixed
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2845P]
where P = (Fo2 + 2Fc2)/3
2492 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.95 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2514 (5)0.7762 (5)0.1396 (3)0.0712 (11)
H1A1.2424550.6908530.0689340.107*
H1B1.2839010.8700310.1249470.107*
H1C1.3655510.7761310.191150.107*
C21.0513 (4)0.8911 (3)0.2981 (2)0.0429 (6)
H2A1.0855170.9865670.2841910.051*
H2B1.1672210.8925020.3505020.051*
C30.8371 (4)0.8786 (3)0.3512 (2)0.0428 (6)
H3A0.8475480.9637110.4233790.051*
H3B0.7224350.8834650.3010160.051*
C40.7745 (4)0.6017 (3)0.2629 (2)0.0432 (6)
H4A0.6564730.5968330.2102150.052*
H4B0.7456920.5069840.2778950.052*
C50.9887 (4)0.6188 (3)0.2099 (2)0.0424 (6)
H5A1.104470.6147210.2599060.051*
H5B0.9800050.5343250.1375310.051*
C60.6076 (4)0.2567 (3)0.3636 (2)0.0296 (5)
C70.6850 (4)0.1909 (3)0.2577 (2)0.0339 (5)
H70.8120590.1530840.2539270.041*
C80.5770 (4)0.1804 (3)0.1574 (2)0.0355 (5)
H80.6295980.1345930.0869510.043*
C90.3881 (4)0.2396 (3)0.1635 (2)0.0312 (5)
C100.3100 (4)0.3057 (3)0.2684 (2)0.0332 (5)
H100.1842320.3450250.2725110.04*
C110.4189 (4)0.3135 (3)0.3679 (2)0.0336 (5)
H110.3645480.3572760.4381510.04*
C120.7285 (4)0.2674 (3)0.4722 (2)0.0345 (5)
I10.22668 (3)0.23210 (2)0.01333 (2)0.03947 (7)
N11.0417 (3)0.7631 (3)0.19094 (18)0.0384 (5)
N20.7815 (3)0.7327 (3)0.37083 (19)0.0393 (5)
O10.6295 (3)0.2895 (3)0.56080 (16)0.0567 (6)
O20.9237 (3)0.2528 (3)0.46569 (16)0.0467 (5)
H210.876 (4)0.728 (4)0.420 (2)0.056*
H220.653 (4)0.728 (4)0.400 (3)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (15)0.135 (3)0.056 (2)0.0112 (18)0.0100 (14)0.051 (2)
C20.0390 (14)0.0381 (14)0.0506 (16)0.0024 (11)0.0094 (12)0.0208 (12)
C30.0459 (14)0.0405 (14)0.0395 (14)0.0171 (12)0.0055 (11)0.0075 (12)
C40.0434 (14)0.0365 (14)0.0484 (16)0.0033 (11)0.0035 (12)0.0204 (12)
C50.0455 (15)0.0428 (14)0.0373 (14)0.0159 (12)0.0009 (11)0.0092 (12)
C60.0241 (10)0.0347 (12)0.0346 (12)0.0059 (9)0.0019 (9)0.0183 (10)
C70.0272 (11)0.0423 (13)0.0378 (13)0.0142 (10)0.0040 (9)0.0174 (11)
C80.0362 (13)0.0404 (13)0.0311 (12)0.0142 (10)0.0056 (10)0.0110 (11)
C90.0291 (11)0.0343 (12)0.0326 (12)0.0050 (9)0.0031 (9)0.0162 (10)
C100.0239 (11)0.0430 (13)0.0380 (13)0.0108 (10)0.0029 (9)0.0193 (11)
C110.0299 (11)0.0446 (14)0.0321 (12)0.0117 (10)0.0066 (9)0.0186 (11)
C120.0258 (11)0.0471 (14)0.0354 (13)0.0087 (10)0.0017 (9)0.0203 (11)
I10.03737 (10)0.05212 (12)0.03188 (10)0.01315 (7)0.00148 (7)0.01691 (8)
N10.0269 (10)0.0595 (14)0.0346 (11)0.0059 (9)0.0023 (8)0.0260 (10)
N20.0279 (10)0.0639 (14)0.0327 (11)0.0124 (10)0.0036 (8)0.0241 (11)
O10.0371 (10)0.1100 (18)0.0370 (11)0.0261 (11)0.0097 (8)0.0379 (12)
O20.0319 (9)0.0780 (14)0.0400 (10)0.0216 (9)0.0035 (8)0.0278 (10)
Geometric parameters (Å, º) top
C1—N11.464 (3)C5—H5B0.97
C1—H1A0.96C6—C111.386 (3)
C1—H1B0.96C6—C71.388 (3)
C1—H1C0.96C6—C121.514 (3)
C2—N11.453 (4)C7—C81.386 (4)
C2—C31.498 (4)C7—H70.93
C2—H2A0.97C8—C91.398 (3)
C2—H2B0.97C8—H80.93
C3—N21.474 (4)C9—C101.381 (3)
C3—H3A0.97C9—I12.103 (2)
C3—H3B0.97C10—C111.389 (3)
C4—N21.475 (4)C10—H100.93
C4—C51.501 (4)C11—H110.93
C4—H4A0.97C12—O11.246 (3)
C4—H4B0.97C12—O21.254 (3)
C5—N11.454 (4)N2—H210.874 (18)
C5—H5A0.97N2—H220.881 (18)
N1—C1—H1A109.5C11—C6—C7118.6 (2)
N1—C1—H1B109.5C11—C6—C12120.8 (2)
H1A—C1—H1B109.5C7—C6—C12120.6 (2)
N1—C1—H1C109.5C8—C7—C6121.5 (2)
H1A—C1—H1C109.5C8—C7—H7119.3
H1B—C1—H1C109.5C6—C7—H7119.3
N1—C2—C3110.8 (2)C7—C8—C9119.1 (2)
N1—C2—H2A109.5C7—C8—H8120.4
C3—C2—H2A109.5C9—C8—H8120.4
N1—C2—H2B109.5C10—C9—C8119.9 (2)
C3—C2—H2B109.5C10—C9—I1120.07 (17)
H2A—C2—H2B108.1C8—C9—I1120.00 (18)
N2—C3—C2110.0 (2)C9—C10—C11120.1 (2)
N2—C3—H3A109.7C9—C10—H10119.9
C2—C3—H3A109.7C11—C10—H10119.9
N2—C3—H3B109.7C6—C11—C10120.8 (2)
C2—C3—H3B109.7C6—C11—H11119.6
H3A—C3—H3B108.2C10—C11—H11119.6
N2—C4—C5110.2 (2)O1—C12—O2124.5 (2)
N2—C4—H4A109.6O1—C12—C6118.7 (2)
C5—C4—H4A109.6O2—C12—C6116.7 (2)
N2—C4—H4B109.6C2—N1—C5110.3 (2)
C5—C4—H4B109.6C2—N1—C1110.5 (2)
H4A—C4—H4B108.1C5—N1—C1109.6 (2)
N1—C5—C4111.1 (2)C3—N2—C4110.6 (2)
N1—C5—H5A109.4C3—N2—H21112 (2)
C4—C5—H5A109.4C4—N2—H21108 (2)
N1—C5—H5B109.4C3—N2—H22108 (2)
C4—C5—H5B109.4C4—N2—H22111 (2)
H5A—C5—H5B108H21—N2—H22108 (3)
N1—C2—C3—N258.1 (3)C9—C10—C11—C60.6 (4)
N2—C4—C5—N156.7 (3)C11—C6—C12—O118.7 (4)
C11—C6—C7—C80.4 (4)C7—C6—C12—O1161.8 (2)
C12—C6—C7—C8179.8 (2)C11—C6—C12—O2161.4 (2)
C6—C7—C8—C91.0 (4)C7—C6—C12—O218.0 (4)
C7—C8—C9—C100.8 (4)C3—C2—N1—C558.7 (3)
C7—C8—C9—I1177.94 (18)C3—C2—N1—C1180.0 (2)
C8—C9—C10—C110.0 (4)C4—C5—N1—C258.0 (3)
I1—C9—C10—C11178.72 (18)C4—C5—N1—C1179.9 (2)
C7—C6—C11—C100.4 (4)C2—C3—N2—C456.8 (3)
C12—C6—C11—C10179.0 (2)C5—C4—N2—C356.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.972.563.272 (3)130
C5—H5A···O1ii0.972.563.469 (3)156
N2—H21···O2ii0.87 (2)1.83 (2)2.696 (3)172 (3)
N2—H22···O1iii0.88 (2)1.83 (2)2.700 (3)172 (3)
C4—H4B···Cg2iv0.972.593.473 (3)152
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z.
 

Acknowledgements

SDA is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years. SGG gratefully acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (PID2020–113558RB-C41) and Gobierno del Principado de Asturias (GRUPIN-ID2018–170).

Funding information

Funding for this research was provided by: Spanish Ministerio de Ciencia e Innovación (grant No. PID2020-113558RB-C41 to Santiago Garcia-Granda); Gobierno del Principado de Asturias (grant No. GRUPIN-ID2018-170 to Santiago Garcia-Granda); University of Mysore (grant to Sriramapura D. Archana); Darmstadt University of Technology (studentship to Hemmige S. Yathirajan).

References

First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m166.  CSD CrossRef IUCr Journals Google Scholar
First citationDutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390–o391.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEssid, M., Marouani, H. & Rzaigui, M. (2014). Acta Cryst. E70, o326–o327.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFu, J.-H., Wang, Z.-Y., Yang, K. & Mao, C.-X. (2010). Acta Cryst. E66, o2022.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, M.-L. (2004). Acta Cryst. C60, o690–o692.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-Y. & Li, T.-D. (2007). Acta Cryst. E63, m708–m709.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. (2011). Acta Cryst. E67, o2574.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, C. & Jiang, Q. (2011). Acta Cryst. E67, o223.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMallevais, M. L., Delacourte, A., Lesieur, I., Lesieur, D., Cazin, M., Brunet, C. & Luyckx, M. (1984). Biochimie, 66, 477.  CrossRef PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPeng, C.-H. (2010). Acta Cryst. E66, o2114.  CSD CrossRef IUCr Journals Google Scholar
First citationQandil, A. M. (2012). Pharmaceuticals. 5, 460.  CrossRef PubMed Google Scholar
First citationQiao, H.-Y., Xu, S.-H. & Jiang, H.-X. (2010). Acta Cryst. E66, o1861.  CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Vijayakumar, V., Ragavan, R. V. & Sarveswari, S. (2011). Acta Cryst. E67, o1747–o1748.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWecharine, I., Valkonen, A., Rzaigui, M. & Smirani Sta, W. (2015). Acta Cryst. E71, o193–o194.  CSD CrossRef IUCr Journals Google Scholar
First citationWecharine, I., Valkonen, A., Rzaigui, M. & Smirani Sta, W. (2015). Acta Cryst. E71, o193–o194.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, M.-L. & Guo, M.-L. (2005). Acta Cryst. E61, o3310–o3311.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds