research communications
studies of 4-ethylpiperazin-1-ium 3,5-dinitrobenzoate, 4-methylpiperazin-1-ium 3,5-dinitrobenzoate and 4-methylpiperazin-1-ium 4-iodobenzoate
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es
As part of our ongoing investigation on the chemical and biological properties of piperazinium salts, we synthesized three novel compounds: 1-ethylpiperazinium 3,5-dinitrobenzoate (I), 1-methylpiperazinium 3,5-dinitrobenzoate (II) and 1-methylpiperazinium 4-iodobenzoate (III). The crystal structures of these compounds are built up of organic layers formed by the strong connection between the molecules by hydrogen bonds of type N—H⋯O. These layers are linked through N—H⋯O hydrogen bonds and C—H⋯O interactions or C—I⋯N halogen bonding, leading to the formation of a three-dimensional network.
Keywords: crystal structure; piperazinium salts; benzoate anion; biological activity.
1. Chemical context
Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas (Berkheij, 2005) such as antifungal (Upadhayaya et al., 2004), anti-bacterial, anti-malarial and anti-psychotic agents (Choudhary et al., 2006). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives has been reported (Kharb et al., 2012).
Piperazines are among the most important building blocks in today's drug discovery efforts and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review of the current pharmacological and toxicological information for piperazine derivatives is given by Elliott (2011).
1-Ethylpiperazine is used in the synthesis of 2-{2-methoxy-5-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}-1H-benzo[d]imidazole hydrochloride and 2-{5-[(4-ethylpiperazin-1-yl)sulfonyl]-2-methoxyphenyl}-1H-benzo[d]imidazole hydrochloride as benzimidazole analogs of sildenafil, which is marketed for the treatment of erectile dysfunction (Qandil, 2012). It is also employed as an intermediate in veterinary medicine and serves as a precursor in the preparation of dyes. N-Ethyl piperazine is used in the synthesis of enrofloxacin, which is an antibiotic used to treat bacterial infections. It is also used in the synthesis of dyes, agrochemicals and other pharmaceutical compounds. The crystal structures of compounds derived from 1-ethylpiperazine, viz., chlorobis(2-chlorobenzyl)(4-ethylpiperazine-1-dithiocarbamato-κ2S,S′)tin(IV) (Li & Li, 2007), 1-diphenylmethyl-4-ethylpiperazine-1,4-diium dichloride (Qiao et al., 2010), (S)-3-chloro-4-(4-ethylpiperazin-1-yl)-5-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy]furan-2(5H)-one (Fu et al., 2010), 4-{[5-(4-chlorophenyl)-1-(4-fluorophenyl)-1H-pyrazol-3-yl]carbonyl}-N-ethylpiperazine-1-carboxamide (Shahani et al., 2011), 2-[4-(2-methoxyphenyl)piperazin-1-yl]-N-(pyridin-2-yl)acetamide (Lu & Jiang, 2011), N-(4-chlorophenyl)-4-ethylpiperazine-1-carboxamide (Li, 2011) and trichlorido(1-ethylpiperazin-1-ium)cobalt(II) (Dhieb et al., 2014) have been reported.
1-Methylpiperazine is used in the preparation of 2-(4-methyl-1-piperazinylmethyl)acrylophenone as an antimicrotubular drug (Mallevais et al., 1984). It is involved in the preparation of 1-(4-methoxyphenyl)-4-methylpiperazine by reaction with 1-chloro-4-methoxy-benzene. It acts as an intermediate in the synthesis of active pharmaceutical ingredients such as ofloxacin, rifampicin, clozapine, sildenafil, trifluoperazine and zopiclone. The crystal structures of 1-methylpiperazine-1,4-diium 4-nitrophthalate(2−) 4-nitrophthalic acid monohydrate (Guo, 2004), (−)-2-methylpiperazin-1-ium perchlorate (Peng, 2010), 1-methylpiperazine-1,4-diium dipicrate (Dutkiewicz et al., 2011), 1-methylpiperazine-1,4-dium bis(hydrogen oxalate) (Essid et al., 2014), 2-methylpiperazine-1,4-diium bis(hydrogen maleate) (Wecharine et al., 2015) and 2-methylpiperazine-1,4-diium bis(hydrogen maleate) (Wecharine & Arto, 2015), have been reported.
We have recently reported the crystal structures of some salts of 4-methoxyphenylpiperazine (Kiran Kumar et al., 2019) and also 2-methoxyphenylpiperazine (Harish Chinthal et al., 2020). In view of the importance of piperazines in general and the use of 1-ethyl/methylpiperazine in particular, the present paper reports the of salts 1-ethylpiperazinium 3,5-dinitrobenzoate (I), 1-methylpiperazinium 3,5-dinitrobenzoate (II) and 1-methylpiperazinium 4-iodobenzoate (III).
2. Structural commentary
The molecular structures of the title salts (I), (II) and (III) are illustrated in Figs. 1, 2 and 3, respectively. The of compound (I) is composed of one 1-ethylpiperazinium cation and one 3,5-dinitrobenzoate anion while (II) consists of a 1-methylpiperazinium cation and a 3,5-dinitrobenzoate anion. Compound (III) crystallizes with one 1-methylpiperazinium cation and one 4-iodobenzoate anion in the In all compounds, the piperazine rings have a chair conformation with a positively charged protonated N atom with a maximum deviation from their mean plane of 0.239 (2), 0.258 (2) and 0.238 (2) Å at atom N1, for the three title compounds, respectively. The benzene rings are almost planar, with maximum deviations of 0.010 (2), 0.006 (2) and 0.006 (3) Å at atoms C8, C10 and C8 for (I), (II) and (III) respectively. The substituents of the benzene rings in all compounds are approximately in the same plane and do not deviate significantly from planarity.
3. Supramolecular features
In the crystal of (I), the cation and anion are linked by N2—H21⋯O1 hydrogen bonds, forming layers extending along the c-axis direction. The layers are connected via N2—H22⋯O2 hydrogen bonds, forming sheets lying parallel to the ac plane (Table 1 and Fig. 4). The of compound (II) is built up of N2—H21⋯O2 and N2—H22⋯O1 hydrogen bonds that connect the molecules in strong layers along the c-axis direction. The layers are linked via weak interactions of the type C—H⋯O, giving a three-dimensional network along the b axis (Table 2 and Fig. 5). The molecules in the crystal of (III) are linked by N2—H21⋯O2, N2—H22⋯O1, C—H⋯O and C—H⋯π interactions, forming layers along the b axis. The layers are linked through C—I⋯N halogen bonding with C9—I1 and I1⋯N1(1 − x, 1 − y, −z) bond distnces of 2.103 (2) and 3.073 (2) Å, respectively, and bond angle of 174.33 (8)°, leading to a three-dimensional structure (Table 3 and Fig. 6).
|
|
4. Database survey
A search of the Cambridge Structural Database (Version 2020.3.0, last update March 2021; Groom et al., 2016) for the piperazinium cation and benzoate anion involved in the three salts gave 62 hits, 60 of which have branched aromatic substituents either on the piperazinium cation, the benzoate anion or both, that make their structures extremely different from those of the title salts. The other two compounds are quite similar to the title molecules: 4-methylpiperazin-1-ium 2-amino-5-iodobenzoate (MAVMEC: Zhu & Guo, 2005) and 1-methylpiperazine-1,4-diium 4-nitrophthalate(2-) 4-nitrophthalic acid monohydrate (IZEFY: Guo, 2004), which share the cationic part and its chair conformation with salts (II) and (III). The crystal structures of the two compounds are based on differently sized rings formed through hydrogen-bond contacts, which then aggregate into a 3D framework.
5. Synthesis and crystallization
For the synthesis of (I), a solution of commercially available 1-ethylpiperazine (100 mg, 0.88 mol) (from Sigma-Aldrich) in methanol (10 ml) was mixed with an equimolar solution of 3,5-dinitrobenzoic acid (186.6 mg, 0.88 mol). Compounds (II) and (III) were prepared by the same method in which 1-methylpiperazine (100 mg, 1.0 mol) in methanol (10 ml) was mixed with an equimolar solution of 3,5-dinitrobenzoic acid (212 mg, 1.0 mol) for (II) or with an equimolar solution of 4-iodobenzoic acid (248 mg, 1.0 mol) for (III). The corresponding mixtures were stirred for 30 min at 323 K and allowed to stand at room temperature. X-ray quality crystals were formed upon slow evaporation in a week time (m.p. 453–455 K, 459–461 K and 410–412 K, respectively).
6. Refinement
Crystal data, data collection and structure . The H atoms bound to C were positioned with idealized geometry and refined using a riding model with aromatic C—H = 0.93 Å, 0.96 Å (methyl) or 0.97 Å (methylene). The H atoms of the N atom were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq (C-aromatic, C-methylene, N) or 1.5Ueq (C-methyl) of the parent atom.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989021010689/dj2037sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010689/dj2037Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989021010689/dj2037IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989021010689/dj2037IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010689/dj2037Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010689/dj2037IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010689/dj2037IIIsup7.cml
For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C6H15N2+·C7H3N2O6− | F(000) = 1376 |
Mr = 326.31 | Dx = 1.354 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6345 reflections |
a = 19.362 (1) Å | θ = 2.6–25.4° |
b = 8.6279 (7) Å | µ = 0.11 mm−1 |
c = 19.318 (1) Å | T = 293 K |
β = 97.261 (8)° | Prism, orange |
V = 3201.3 (4) Å3 | 0.46 × 0.28 × 0.24 mm |
Z = 8 |
Oxford Diffraction Xcalibur diffractometer | 1968 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 25.4°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −23→23 |
Tmin = 0.964, Tmax = 0.974 | k = −10→10 |
6345 measured reflections | l = −9→23 |
2943 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0507P)2 + 1.8986P] where P = (Fo2 + 2Fc2)/3 |
2943 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.20 e Å−3 |
2 restraints | Δρmin = −0.17 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.18587 (15) | 0.3364 (3) | 0.30396 (15) | 0.0884 (9) | |
H1A | 0.232834 | 0.339426 | 0.326863 | 0.133* | |
H1B | 0.177587 | 0.424858 | 0.273903 | 0.133* | |
H1C | 0.154108 | 0.338102 | 0.338302 | 0.133* | |
C2 | 0.17517 (12) | 0.1925 (3) | 0.26195 (13) | 0.0655 (7) | |
H2A | 0.208261 | 0.190584 | 0.228215 | 0.079* | |
H2B | 0.184798 | 0.103891 | 0.292568 | 0.079* | |
C3 | 0.08924 (11) | 0.2969 (3) | 0.17179 (12) | 0.0533 (6) | |
H3A | 0.12338 | 0.291797 | 0.13919 | 0.064* | |
H3B | 0.092984 | 0.397926 | 0.194012 | 0.064* | |
C4 | 0.01736 (11) | 0.2779 (3) | 0.13276 (13) | 0.0589 (6) | |
H4A | −0.017049 | 0.290226 | 0.164733 | 0.071* | |
H4B | 0.009231 | 0.357361 | 0.097152 | 0.071* | |
C5 | 0.02593 (11) | 0.0011 (3) | 0.15297 (12) | 0.0563 (6) | |
H5A | 0.023563 | −0.099603 | 0.130507 | 0.068* | |
H5B | −0.008248 | 0.003405 | 0.185592 | 0.068* | |
C6 | 0.09733 (11) | 0.0253 (3) | 0.19161 (12) | 0.0538 (6) | |
H6A | 0.106657 | −0.054243 | 0.227061 | 0.065* | |
H6B | 0.131632 | 0.015195 | 0.159377 | 0.065* | |
C7 | 0.22610 (9) | 0.0114 (2) | 0.00395 (10) | 0.0389 (5) | |
C8 | 0.25500 (10) | 0.1070 (2) | 0.05725 (10) | 0.0431 (5) | |
H8 | 0.226597 | 0.164062 | 0.08315 | 0.052* | |
C9 | 0.32638 (10) | 0.1168 (2) | 0.07159 (10) | 0.0449 (5) | |
C10 | 0.37088 (10) | 0.0395 (2) | 0.03386 (11) | 0.0468 (5) | |
H10 | 0.418946 | 0.049122 | 0.043855 | 0.056* | |
C11 | 0.34091 (9) | −0.0527 (2) | −0.01928 (11) | 0.0442 (5) | |
C12 | 0.26950 (9) | −0.0699 (2) | −0.03464 (10) | 0.0428 (5) | |
H12 | 0.250959 | −0.135397 | −0.070496 | 0.051* | |
C13 | 0.14743 (10) | −0.0038 (3) | −0.01245 (10) | 0.0440 (5) | |
N1 | 0.10398 (8) | 0.1771 (2) | 0.22445 (8) | 0.0478 (5) | |
N2 | 0.00983 (8) | 0.1234 (2) | 0.09987 (9) | 0.0502 (5) | |
N3 | 0.35665 (12) | 0.2143 (3) | 0.13029 (11) | 0.0657 (6) | |
N4 | 0.38632 (9) | −0.1369 (2) | −0.06158 (12) | 0.0612 (5) | |
O1 | 0.11149 (7) | 0.0962 (2) | 0.01190 (8) | 0.0621 (5) | |
O2 | 0.12597 (7) | −0.1160 (2) | −0.05004 (9) | 0.0653 (5) | |
O3 | 0.31860 (12) | 0.3056 (3) | 0.15461 (11) | 0.0980 (7) | |
O4 | 0.41795 (10) | 0.1972 (3) | 0.15171 (10) | 0.0987 (7) | |
O5 | 0.44928 (7) | −0.1316 (2) | −0.04397 (10) | 0.0829 (6) | |
O6 | 0.35960 (9) | −0.2085 (3) | −0.11194 (11) | 0.0962 (7) | |
H21 | 0.0381 (14) | 0.116 (4) | 0.0660 (13) | 0.115* | |
H22 | −0.0355 (10) | 0.114 (4) | 0.0790 (14) | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.084 (2) | 0.088 (2) | 0.085 (2) | −0.0122 (16) | −0.0206 (15) | −0.0224 (17) |
C2 | 0.0594 (14) | 0.0728 (18) | 0.0585 (14) | −0.0020 (12) | −0.0150 (11) | 0.0000 (13) |
C3 | 0.0511 (12) | 0.0460 (13) | 0.0597 (13) | −0.0019 (10) | −0.0053 (10) | −0.0028 (11) |
C4 | 0.0477 (12) | 0.0602 (15) | 0.0652 (14) | 0.0061 (11) | −0.0069 (11) | −0.0037 (13) |
C5 | 0.0538 (13) | 0.0543 (14) | 0.0608 (14) | −0.0136 (11) | 0.0072 (11) | −0.0063 (12) |
C6 | 0.0546 (13) | 0.0483 (14) | 0.0563 (13) | −0.0017 (10) | −0.0015 (10) | 0.0037 (12) |
C7 | 0.0330 (9) | 0.0390 (11) | 0.0437 (11) | −0.0016 (8) | 0.0007 (8) | 0.0063 (10) |
C8 | 0.0431 (11) | 0.0413 (12) | 0.0448 (11) | −0.0019 (9) | 0.0053 (9) | 0.0024 (10) |
C9 | 0.0460 (11) | 0.0423 (12) | 0.0439 (11) | −0.0114 (10) | −0.0043 (9) | 0.0027 (10) |
C10 | 0.0331 (10) | 0.0478 (12) | 0.0565 (13) | −0.0072 (9) | −0.0057 (9) | 0.0094 (11) |
C11 | 0.0332 (10) | 0.0446 (12) | 0.0547 (12) | 0.0004 (9) | 0.0049 (9) | 0.0032 (11) |
C12 | 0.0370 (10) | 0.0422 (12) | 0.0479 (11) | −0.0039 (9) | −0.0002 (9) | 0.0008 (10) |
C13 | 0.0329 (10) | 0.0542 (14) | 0.0443 (11) | −0.0017 (10) | 0.0026 (9) | 0.0081 (11) |
N1 | 0.0446 (9) | 0.0524 (11) | 0.0437 (10) | −0.0038 (8) | −0.0048 (8) | −0.0025 (9) |
N2 | 0.0331 (9) | 0.0683 (13) | 0.0477 (10) | −0.0049 (9) | −0.0013 (7) | −0.0090 (10) |
N3 | 0.0674 (14) | 0.0690 (15) | 0.0579 (12) | −0.0222 (12) | −0.0030 (11) | −0.0041 (12) |
N4 | 0.0428 (11) | 0.0591 (13) | 0.0833 (14) | 0.0009 (9) | 0.0135 (10) | −0.0068 (12) |
O1 | 0.0415 (8) | 0.0734 (11) | 0.0735 (11) | 0.0069 (8) | 0.0153 (7) | −0.0026 (9) |
O2 | 0.0340 (8) | 0.0748 (11) | 0.0837 (11) | −0.0064 (8) | −0.0057 (7) | −0.0170 (10) |
O3 | 0.1085 (17) | 0.0929 (16) | 0.0892 (15) | −0.0096 (13) | −0.0011 (12) | −0.0405 (13) |
O4 | 0.0675 (12) | 0.1305 (19) | 0.0900 (14) | −0.0337 (12) | −0.0219 (10) | −0.0182 (13) |
O5 | 0.0337 (9) | 0.0929 (14) | 0.1238 (16) | 0.0008 (9) | 0.0167 (9) | −0.0136 (12) |
O6 | 0.0624 (11) | 0.1236 (18) | 0.1026 (14) | 0.0096 (11) | 0.0109 (10) | −0.0556 (14) |
C1—C2 | 1.484 (3) | C7—C8 | 1.381 (3) |
C1—H1A | 0.96 | C7—C12 | 1.383 (3) |
C1—H1B | 0.96 | C7—C13 | 1.522 (2) |
C1—H1C | 0.96 | C8—C9 | 1.377 (3) |
C2—N1 | 1.480 (3) | C8—H8 | 0.93 |
C2—H2A | 0.97 | C9—C10 | 1.370 (3) |
C2—H2B | 0.97 | C9—N3 | 1.473 (3) |
C3—N1 | 1.453 (3) | C10—C11 | 1.368 (3) |
C3—C4 | 1.506 (3) | C10—H10 | 0.93 |
C3—H3A | 0.97 | C11—C12 | 1.385 (2) |
C3—H3B | 0.97 | C11—N4 | 1.467 (3) |
C4—N2 | 1.476 (3) | C12—H12 | 0.93 |
C4—H4A | 0.97 | C13—O1 | 1.238 (2) |
C4—H4B | 0.97 | C13—O2 | 1.250 (2) |
C5—N2 | 1.477 (3) | N2—H21 | 0.907 (17) |
C5—C6 | 1.500 (3) | N2—H22 | 0.922 (17) |
C5—H5A | 0.97 | N3—O3 | 1.213 (3) |
C5—H5B | 0.97 | N3—O4 | 1.216 (2) |
C6—N1 | 1.454 (3) | N4—O6 | 1.212 (2) |
C6—H6A | 0.97 | N4—O5 | 1.224 (2) |
C6—H6B | 0.97 | ||
C2—C1—H1A | 109.5 | C8—C7—C12 | 119.22 (17) |
C2—C1—H1B | 109.5 | C8—C7—C13 | 120.47 (18) |
H1A—C1—H1B | 109.5 | C12—C7—C13 | 120.31 (18) |
C2—C1—H1C | 109.5 | C9—C8—C7 | 119.24 (19) |
H1A—C1—H1C | 109.5 | C9—C8—H8 | 120.4 |
H1B—C1—H1C | 109.5 | C7—C8—H8 | 120.4 |
N1—C2—C1 | 113.6 (2) | C10—C9—C8 | 123.05 (19) |
N1—C2—H2A | 108.9 | C10—C9—N3 | 118.16 (18) |
C1—C2—H2A | 108.9 | C8—C9—N3 | 118.8 (2) |
N1—C2—H2B | 108.9 | C11—C10—C9 | 116.52 (17) |
C1—C2—H2B | 108.9 | C11—C10—H10 | 121.7 |
H2A—C2—H2B | 107.7 | C9—C10—H10 | 121.7 |
N1—C3—C4 | 111.11 (18) | C10—C11—C12 | 122.71 (19) |
N1—C3—H3A | 109.4 | C10—C11—N4 | 118.60 (17) |
C4—C3—H3A | 109.4 | C12—C11—N4 | 118.69 (18) |
N1—C3—H3B | 109.4 | C7—C12—C11 | 119.23 (19) |
C4—C3—H3B | 109.4 | C7—C12—H12 | 120.4 |
H3A—C3—H3B | 108 | C11—C12—H12 | 120.4 |
N2—C4—C3 | 110.43 (17) | O1—C13—O2 | 126.81 (18) |
N2—C4—H4A | 109.6 | O1—C13—C7 | 117.20 (19) |
C3—C4—H4A | 109.6 | O2—C13—C7 | 115.98 (18) |
N2—C4—H4B | 109.6 | C3—N1—C6 | 109.69 (16) |
C3—C4—H4B | 109.6 | C3—N1—C2 | 111.54 (17) |
H4A—C4—H4B | 108.1 | C6—N1—C2 | 108.66 (17) |
N2—C5—C6 | 110.30 (17) | C4—N2—C5 | 110.20 (17) |
N2—C5—H5A | 109.6 | C4—N2—H21 | 110 (2) |
C6—C5—H5A | 109.6 | C5—N2—H21 | 111 (2) |
N2—C5—H5B | 109.6 | C4—N2—H22 | 108 (2) |
C6—C5—H5B | 109.6 | C5—N2—H22 | 110.3 (19) |
H5A—C5—H5B | 108.1 | H21—N2—H22 | 108 (3) |
N1—C6—C5 | 111.54 (18) | O3—N3—O4 | 124.2 (2) |
N1—C6—H6A | 109.3 | O3—N3—C9 | 117.8 (2) |
C5—C6—H6A | 109.3 | O4—N3—C9 | 118.0 (2) |
N1—C6—H6B | 109.3 | O6—N4—O5 | 123.5 (2) |
C5—C6—H6B | 109.3 | O6—N4—C11 | 118.33 (18) |
H6A—C6—H6B | 108 | O5—N4—C11 | 118.2 (2) |
N1—C3—C4—N2 | −57.7 (2) | C12—C7—C13—O2 | 15.6 (3) |
N2—C5—C6—N1 | 57.5 (2) | C4—C3—N1—C6 | 58.2 (2) |
C12—C7—C8—C9 | −1.2 (3) | C4—C3—N1—C2 | 178.59 (18) |
C13—C7—C8—C9 | 179.11 (18) | C5—C6—N1—C3 | −58.3 (2) |
C7—C8—C9—C10 | 2.1 (3) | C5—C6—N1—C2 | 179.54 (18) |
C7—C8—C9—N3 | −177.62 (17) | C1—C2—N1—C3 | 65.2 (3) |
C8—C9—C10—C11 | −1.2 (3) | C1—C2—N1—C6 | −173.8 (2) |
N3—C9—C10—C11 | 178.58 (18) | C3—C4—N2—C5 | 56.1 (2) |
C9—C10—C11—C12 | −0.6 (3) | C6—C5—N2—C4 | −55.9 (2) |
C9—C10—C11—N4 | 179.50 (18) | C10—C9—N3—O3 | 165.7 (2) |
C8—C7—C12—C11 | −0.5 (3) | C8—C9—N3—O3 | −14.5 (3) |
C13—C7—C12—C11 | 179.18 (18) | C10—C9—N3—O4 | −15.0 (3) |
C10—C11—C12—C7 | 1.5 (3) | C8—C9—N3—O4 | 164.7 (2) |
N4—C11—C12—C7 | −178.69 (18) | C10—C11—N4—O6 | −174.2 (2) |
C8—C7—C13—O1 | 16.0 (3) | C12—C11—N4—O6 | 5.9 (3) |
C12—C7—C13—O1 | −163.64 (18) | C10—C11—N4—O5 | 6.0 (3) |
C8—C7—C13—O2 | −164.73 (18) | C12—C11—N4—O5 | −173.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O1 | 0.91 (2) | 1.88 (2) | 2.768 (2) | 168 (3) |
N2—H22···O2i | 0.92 (2) | 1.77 (2) | 2.684 (2) | 171 (3) |
Symmetry code: (i) −x, −y, −z. |
C5H13N2+·C7H3N2O6− | Z = 2 |
Mr = 312.29 | F(000) = 328 |
Triclinic, P1 | Dx = 1.367 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8023 (6) Å | Cell parameters from 4819 reflections |
b = 10.3920 (8) Å | θ = 2.6–25.4° |
c = 10.4770 (8) Å | µ = 0.11 mm−1 |
α = 73.578 (8)° | T = 293 K |
β = 74.289 (8)° | Prism, orange |
γ = 71.828 (7)° | 0.48 × 0.48 × 0.44 mm |
V = 758.49 (11) Å3 |
Oxford Diffraction Xcalibur diffractometer | 1935 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.010 |
ω scans | θmax = 25.4°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −9→7 |
Tmin = 0.948, Tmax = 0.952 | k = −12→8 |
4819 measured reflections | l = −12→12 |
2774 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.1428P] where P = (Fo2 + 2Fc2)/3 |
2774 reflections | (Δ/σ)max < 0.001 |
206 parameters | Δρmax = 0.28 e Å−3 |
2 restraints | Δρmin = −0.15 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4259 (3) | −0.25601 (14) | 0.60539 (19) | 0.1005 (6) | |
O2 | 0.3187 (2) | −0.28191 (15) | 0.44153 (17) | 0.0950 (5) | |
O3 | 0.2206 (3) | 0.1945 (2) | 0.7260 (2) | 0.1219 (7) | |
O4 | 0.1284 (3) | 0.37901 (16) | 0.5805 (2) | 0.1139 (7) | |
O5 | 0.0144 (3) | 0.3389 (2) | 0.16451 (19) | 0.1237 (7) | |
O6 | 0.0455 (3) | 0.1363 (3) | 0.1329 (2) | 0.1293 (8) | |
N3 | 0.1771 (3) | 0.25321 (19) | 0.6173 (2) | 0.0806 (5) | |
N4 | 0.0540 (3) | 0.2122 (3) | 0.1988 (2) | 0.0877 (6) | |
C6 | 0.2667 (2) | −0.05607 (17) | 0.47269 (17) | 0.0500 (4) | |
C7 | 0.2608 (2) | 0.02602 (17) | 0.55809 (18) | 0.0535 (4) | |
H7 | 0.307549 | −0.013627 | 0.637091 | 0.064* | |
C8 | 0.1847 (2) | 0.16762 (17) | 0.52500 (19) | 0.0569 (4) | |
C9 | 0.1152 (2) | 0.23142 (19) | 0.4090 (2) | 0.0625 (5) | |
H9 | 0.064143 | 0.326656 | 0.38815 | 0.075* | |
C10 | 0.1249 (2) | 0.1477 (2) | 0.32539 (19) | 0.0606 (5) | |
C11 | 0.1974 (2) | 0.00621 (19) | 0.35514 (18) | 0.0568 (5) | |
H11 | 0.199786 | −0.047271 | 0.29663 | 0.068* | |
C12 | 0.3453 (3) | −0.21207 (18) | 0.5093 (2) | 0.0606 (5) | |
N1 | 0.4346 (2) | 0.71225 (17) | 0.02379 (16) | 0.0702 (5) | |
N2 | 0.4591 (3) | 0.52702 (16) | 0.28262 (17) | 0.0687 (5) | |
C1 | 0.3857 (4) | 0.8479 (3) | −0.0671 (3) | 0.1066 (9) | |
H1A | 0.493157 | 0.865009 | −0.133097 | 0.16* | |
H1B | 0.338418 | 0.918742 | −0.015173 | 0.16* | |
H1C | 0.293597 | 0.849066 | −0.112598 | 0.16* | |
C2 | 0.2725 (3) | 0.6783 (2) | 0.1169 (2) | 0.0697 (5) | |
H2A | 0.184008 | 0.681477 | 0.06581 | 0.084* | |
H2B | 0.21612 | 0.74668 | 0.172715 | 0.084* | |
C3 | 0.3197 (3) | 0.5366 (2) | 0.2067 (2) | 0.0739 (6) | |
H3A | 0.209494 | 0.517861 | 0.270132 | 0.089* | |
H3B | 0.366896 | 0.467313 | 0.15165 | 0.089* | |
C4 | 0.6227 (3) | 0.5678 (2) | 0.1885 (2) | 0.0809 (6) | |
H4A | 0.684243 | 0.501297 | 0.131159 | 0.097* | |
H4B | 0.708662 | 0.568073 | 0.240126 | 0.097* | |
C5 | 0.5641 (3) | 0.7102 (2) | 0.1016 (2) | 0.0767 (6) | |
H5A | 0.50716 | 0.777105 | 0.15895 | 0.092* | |
H5B | 0.671413 | 0.736436 | 0.040146 | 0.092* | |
H21 | 0.412 (3) | 0.586 (2) | 0.340 (2) | 0.092* | |
H22 | 0.494 (3) | 0.4374 (18) | 0.329 (2) | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1400 (15) | 0.0432 (8) | 0.1110 (13) | 0.0019 (8) | −0.0587 (12) | −0.0017 (8) |
O2 | 0.1243 (14) | 0.0579 (9) | 0.0982 (12) | −0.0057 (8) | −0.0139 (10) | −0.0373 (9) |
O3 | 0.188 (2) | 0.0895 (13) | 0.1115 (15) | −0.0329 (13) | −0.0574 (15) | −0.0344 (12) |
O4 | 0.1277 (14) | 0.0523 (10) | 0.1664 (18) | −0.0016 (9) | −0.0407 (13) | −0.0441 (11) |
O5 | 0.1127 (14) | 0.1017 (15) | 0.1015 (13) | 0.0206 (11) | −0.0330 (11) | 0.0208 (11) |
O6 | 0.1450 (19) | 0.149 (2) | 0.0972 (14) | −0.0207 (14) | −0.0625 (13) | −0.0148 (14) |
N3 | 0.0813 (12) | 0.0582 (11) | 0.1069 (16) | −0.0145 (9) | −0.0177 (11) | −0.0297 (11) |
N4 | 0.0675 (12) | 0.0988 (16) | 0.0703 (13) | −0.0021 (10) | −0.0176 (9) | 0.0047 (12) |
C6 | 0.0438 (9) | 0.0429 (9) | 0.0544 (10) | −0.0084 (7) | −0.0007 (7) | −0.0086 (8) |
C7 | 0.0489 (9) | 0.0469 (10) | 0.0578 (10) | −0.0098 (7) | −0.0088 (8) | −0.0053 (8) |
C8 | 0.0514 (10) | 0.0439 (10) | 0.0721 (12) | −0.0111 (7) | −0.0067 (9) | −0.0140 (9) |
C9 | 0.0484 (10) | 0.0435 (10) | 0.0788 (13) | −0.0071 (7) | −0.0067 (9) | 0.0018 (9) |
C10 | 0.0448 (10) | 0.0617 (12) | 0.0590 (11) | −0.0073 (8) | −0.0074 (8) | 0.0023 (9) |
C11 | 0.0487 (10) | 0.0597 (11) | 0.0562 (10) | −0.0122 (8) | −0.0013 (8) | −0.0142 (9) |
C12 | 0.0630 (11) | 0.0420 (10) | 0.0627 (12) | −0.0068 (8) | 0.0020 (9) | −0.0110 (9) |
N1 | 0.0768 (11) | 0.0689 (11) | 0.0543 (9) | −0.0116 (8) | −0.0144 (8) | −0.0036 (8) |
N2 | 0.0975 (13) | 0.0401 (8) | 0.0587 (10) | 0.0023 (8) | −0.0235 (9) | −0.0102 (7) |
C1 | 0.123 (2) | 0.0942 (19) | 0.0786 (16) | −0.0234 (15) | −0.0293 (15) | 0.0223 (14) |
C2 | 0.0695 (13) | 0.0647 (12) | 0.0737 (13) | −0.0130 (10) | −0.0253 (10) | −0.0075 (10) |
C3 | 0.0870 (15) | 0.0604 (12) | 0.0751 (13) | −0.0214 (10) | −0.0180 (11) | −0.0115 (10) |
C4 | 0.0717 (14) | 0.0743 (14) | 0.0922 (16) | 0.0063 (11) | −0.0325 (12) | −0.0237 (12) |
C5 | 0.0638 (12) | 0.0790 (14) | 0.0780 (14) | −0.0189 (10) | −0.0099 (11) | −0.0061 (11) |
O1—C12 | 1.233 (2) | N1—C5 | 1.452 (3) |
O2—C12 | 1.241 (2) | N1—C1 | 1.464 (3) |
O3—N3 | 1.213 (3) | N2—C3 | 1.477 (3) |
O4—N3 | 1.219 (2) | N2—C4 | 1.483 (3) |
O5—N4 | 1.224 (3) | N2—H21 | 0.906 (16) |
O6—N4 | 1.212 (3) | N2—H22 | 0.913 (16) |
N3—C8 | 1.467 (3) | C1—H1A | 0.96 |
N4—C10 | 1.475 (3) | C1—H1B | 0.96 |
C6—C7 | 1.384 (2) | C1—H1C | 0.96 |
C6—C11 | 1.386 (2) | C2—C3 | 1.502 (3) |
C6—C12 | 1.519 (2) | C2—H2A | 0.97 |
C7—C8 | 1.384 (2) | C2—H2B | 0.97 |
C7—H7 | 0.93 | C3—H3A | 0.97 |
C8—C9 | 1.374 (3) | C3—H3B | 0.97 |
C9—C10 | 1.373 (3) | C4—C5 | 1.506 (3) |
C9—H9 | 0.93 | C4—H4A | 0.97 |
C10—C11 | 1.377 (2) | C4—H4B | 0.97 |
C11—H11 | 0.93 | C5—H5A | 0.97 |
N1—C2 | 1.446 (2) | C5—H5B | 0.97 |
O3—N3—O4 | 123.6 (2) | C3—N2—H22 | 108.4 (15) |
O3—N3—C8 | 117.95 (18) | C4—N2—H22 | 109.2 (14) |
O4—N3—C8 | 118.4 (2) | H21—N2—H22 | 111 (2) |
O6—N4—O5 | 124.2 (2) | N1—C1—H1A | 109.5 |
O6—N4—C10 | 117.9 (2) | N1—C1—H1B | 109.5 |
O5—N4—C10 | 117.8 (2) | H1A—C1—H1B | 109.5 |
C7—C6—C11 | 118.91 (16) | N1—C1—H1C | 109.5 |
C7—C6—C12 | 120.13 (16) | H1A—C1—H1C | 109.5 |
C11—C6—C12 | 120.95 (17) | H1B—C1—H1C | 109.5 |
C6—C7—C8 | 119.47 (17) | N1—C2—C3 | 111.25 (17) |
C6—C7—H7 | 120.3 | N1—C2—H2A | 109.4 |
C8—C7—H7 | 120.3 | C3—C2—H2A | 109.4 |
C9—C8—C7 | 122.55 (18) | N1—C2—H2B | 109.4 |
C9—C8—N3 | 118.53 (17) | C3—C2—H2B | 109.4 |
C7—C8—N3 | 118.92 (18) | H2A—C2—H2B | 108 |
C10—C9—C8 | 116.73 (16) | N2—C3—C2 | 110.67 (16) |
C10—C9—H9 | 121.6 | N2—C3—H3A | 109.5 |
C8—C9—H9 | 121.6 | C2—C3—H3A | 109.5 |
C9—C10—C11 | 122.66 (18) | N2—C3—H3B | 109.5 |
C9—C10—N4 | 118.52 (19) | C2—C3—H3B | 109.5 |
C11—C10—N4 | 118.8 (2) | H3A—C3—H3B | 108.1 |
C10—C11—C6 | 119.67 (18) | N2—C4—C5 | 109.78 (16) |
C10—C11—H11 | 120.2 | N2—C4—H4A | 109.7 |
C6—C11—H11 | 120.2 | C5—C4—H4A | 109.7 |
O1—C12—O2 | 126.92 (18) | N2—C4—H4B | 109.7 |
O1—C12—C6 | 116.25 (18) | C5—C4—H4B | 109.7 |
O2—C12—C6 | 116.81 (19) | H4A—C4—H4B | 108.2 |
C2—N1—C5 | 108.81 (15) | N1—C5—C4 | 110.61 (18) |
C2—N1—C1 | 110.74 (18) | N1—C5—H5A | 109.5 |
C5—N1—C1 | 110.91 (18) | C4—C5—H5A | 109.5 |
C3—N2—C4 | 110.66 (16) | N1—C5—H5B | 109.5 |
C3—N2—H21 | 110.0 (15) | C4—C5—H5B | 109.5 |
C4—N2—H21 | 107.1 (14) | H5A—C5—H5B | 108.1 |
C11—C6—C7—C8 | 0.5 (2) | C9—C10—C11—C6 | −1.0 (3) |
C12—C6—C7—C8 | −178.42 (15) | N4—C10—C11—C6 | 179.18 (15) |
C6—C7—C8—C9 | −0.6 (3) | C7—C6—C11—C10 | 0.2 (2) |
C6—C7—C8—N3 | 179.23 (15) | C12—C6—C11—C10 | 179.17 (15) |
O3—N3—C8—C9 | 172.3 (2) | C7—C6—C12—O1 | −10.5 (2) |
O4—N3—C8—C9 | −8.0 (3) | C11—C6—C12—O1 | 170.56 (17) |
O3—N3—C8—C7 | −7.5 (3) | C7—C6—C12—O2 | 168.17 (16) |
O4—N3—C8—C7 | 172.18 (18) | C11—C6—C12—O2 | −10.8 (2) |
C7—C8—C9—C10 | −0.2 (3) | C5—N1—C2—C3 | −60.3 (2) |
N3—C8—C9—C10 | −179.99 (15) | C1—N1—C2—C3 | 177.52 (19) |
C8—C9—C10—C11 | 1.0 (3) | C4—N2—C3—C2 | −54.0 (2) |
C8—C9—C10—N4 | −179.21 (15) | N1—C2—C3—N2 | 57.2 (2) |
O6—N4—C10—C9 | −172.5 (2) | C3—N2—C4—C5 | 54.9 (2) |
O5—N4—C10—C9 | 10.3 (3) | C2—N1—C5—C4 | 61.4 (2) |
O6—N4—C10—C11 | 7.3 (3) | C1—N1—C5—C4 | −176.53 (19) |
O5—N4—C10—C11 | −169.91 (18) | N2—C4—C5—N1 | −59.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O2i | 0.91 (2) | 1.82 (2) | 2.728 (2) | 175 (2) |
N2—H22···O1ii | 0.91 (2) | 1.78 (2) | 2.691 (2) | 172 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1. |
C5H13N2+·C7H4IO2− | Z = 2 |
Mr = 348.17 | F(000) = 344 |
Triclinic, P1 | Dx = 1.695 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.2418 (4) Å | Cell parameters from 4189 reflections |
b = 9.5465 (8) Å | θ = 3.3–25.4° |
c = 12.5346 (9) Å | µ = 2.34 mm−1 |
α = 110.708 (8)° | T = 293 K |
β = 90.235 (5)° | Rods, colourless |
γ = 101.559 (6)° | 0.48 × 0.24 × 0.2 mm |
V = 682.19 (9) Å3 |
Oxford Diffraction Xcalibur diffractometer | 2324 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
ω scans | θmax = 25.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −7→7 |
Tmin = 0.515, Tmax = 0.626 | k = −11→11 |
4189 measured reflections | l = −15→14 |
2492 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: mixed |
wR(F2) = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2845P] where P = (Fo2 + 2Fc2)/3 |
2492 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.37 e Å−3 |
2 restraints | Δρmin = −0.95 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.2514 (5) | 0.7762 (5) | 0.1396 (3) | 0.0712 (11) | |
H1A | 1.242455 | 0.690853 | 0.068934 | 0.107* | |
H1B | 1.283901 | 0.870031 | 0.124947 | 0.107* | |
H1C | 1.365551 | 0.776131 | 0.19115 | 0.107* | |
C2 | 1.0513 (4) | 0.8911 (3) | 0.2981 (2) | 0.0429 (6) | |
H2A | 1.085517 | 0.986567 | 0.284191 | 0.051* | |
H2B | 1.167221 | 0.892502 | 0.350502 | 0.051* | |
C3 | 0.8371 (4) | 0.8786 (3) | 0.3512 (2) | 0.0428 (6) | |
H3A | 0.847548 | 0.963711 | 0.423379 | 0.051* | |
H3B | 0.722435 | 0.883465 | 0.301016 | 0.051* | |
C4 | 0.7745 (4) | 0.6017 (3) | 0.2629 (2) | 0.0432 (6) | |
H4A | 0.656473 | 0.596833 | 0.210215 | 0.052* | |
H4B | 0.745692 | 0.506984 | 0.277895 | 0.052* | |
C5 | 0.9887 (4) | 0.6188 (3) | 0.2099 (2) | 0.0424 (6) | |
H5A | 1.10447 | 0.614721 | 0.259906 | 0.051* | |
H5B | 0.980005 | 0.534325 | 0.137531 | 0.051* | |
C6 | 0.6076 (4) | 0.2567 (3) | 0.3636 (2) | 0.0296 (5) | |
C7 | 0.6850 (4) | 0.1909 (3) | 0.2577 (2) | 0.0339 (5) | |
H7 | 0.812059 | 0.153084 | 0.253927 | 0.041* | |
C8 | 0.5770 (4) | 0.1804 (3) | 0.1574 (2) | 0.0355 (5) | |
H8 | 0.629598 | 0.134593 | 0.086951 | 0.043* | |
C9 | 0.3881 (4) | 0.2396 (3) | 0.1635 (2) | 0.0312 (5) | |
C10 | 0.3100 (4) | 0.3057 (3) | 0.2684 (2) | 0.0332 (5) | |
H10 | 0.184232 | 0.345025 | 0.272511 | 0.04* | |
C11 | 0.4189 (4) | 0.3135 (3) | 0.3679 (2) | 0.0336 (5) | |
H11 | 0.364548 | 0.357276 | 0.438151 | 0.04* | |
C12 | 0.7285 (4) | 0.2674 (3) | 0.4722 (2) | 0.0345 (5) | |
I1 | 0.22668 (3) | 0.23210 (2) | 0.01333 (2) | 0.03947 (7) | |
N1 | 1.0417 (3) | 0.7631 (3) | 0.19094 (18) | 0.0384 (5) | |
N2 | 0.7815 (3) | 0.7327 (3) | 0.37083 (19) | 0.0393 (5) | |
O1 | 0.6295 (3) | 0.2895 (3) | 0.56080 (16) | 0.0567 (6) | |
O2 | 0.9237 (3) | 0.2528 (3) | 0.46569 (16) | 0.0467 (5) | |
H21 | 0.876 (4) | 0.728 (4) | 0.420 (2) | 0.056* | |
H22 | 0.653 (4) | 0.728 (4) | 0.400 (3) | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0331 (15) | 0.135 (3) | 0.056 (2) | 0.0112 (18) | 0.0100 (14) | 0.051 (2) |
C2 | 0.0390 (14) | 0.0381 (14) | 0.0506 (16) | −0.0024 (11) | −0.0094 (12) | 0.0208 (12) |
C3 | 0.0459 (14) | 0.0405 (14) | 0.0395 (14) | 0.0171 (12) | −0.0055 (11) | 0.0075 (12) |
C4 | 0.0434 (14) | 0.0365 (14) | 0.0484 (16) | −0.0033 (11) | −0.0035 (12) | 0.0204 (12) |
C5 | 0.0455 (15) | 0.0428 (14) | 0.0373 (14) | 0.0159 (12) | 0.0009 (11) | 0.0092 (12) |
C6 | 0.0241 (10) | 0.0347 (12) | 0.0346 (12) | 0.0059 (9) | 0.0019 (9) | 0.0183 (10) |
C7 | 0.0272 (11) | 0.0423 (13) | 0.0378 (13) | 0.0142 (10) | 0.0040 (9) | 0.0174 (11) |
C8 | 0.0362 (13) | 0.0404 (13) | 0.0311 (12) | 0.0142 (10) | 0.0056 (10) | 0.0110 (11) |
C9 | 0.0291 (11) | 0.0343 (12) | 0.0326 (12) | 0.0050 (9) | −0.0031 (9) | 0.0162 (10) |
C10 | 0.0239 (11) | 0.0430 (13) | 0.0380 (13) | 0.0108 (10) | 0.0029 (9) | 0.0193 (11) |
C11 | 0.0299 (11) | 0.0446 (14) | 0.0321 (12) | 0.0117 (10) | 0.0066 (9) | 0.0186 (11) |
C12 | 0.0258 (11) | 0.0471 (14) | 0.0354 (13) | 0.0087 (10) | 0.0017 (9) | 0.0203 (11) |
I1 | 0.03737 (10) | 0.05212 (12) | 0.03188 (10) | 0.01315 (7) | −0.00148 (7) | 0.01691 (8) |
N1 | 0.0269 (10) | 0.0595 (14) | 0.0346 (11) | 0.0059 (9) | 0.0023 (8) | 0.0260 (10) |
N2 | 0.0279 (10) | 0.0639 (14) | 0.0327 (11) | 0.0124 (10) | 0.0036 (8) | 0.0241 (11) |
O1 | 0.0371 (10) | 0.1100 (18) | 0.0370 (11) | 0.0261 (11) | 0.0097 (8) | 0.0379 (12) |
O2 | 0.0319 (9) | 0.0780 (14) | 0.0400 (10) | 0.0216 (9) | 0.0035 (8) | 0.0278 (10) |
C1—N1 | 1.464 (3) | C5—H5B | 0.97 |
C1—H1A | 0.96 | C6—C11 | 1.386 (3) |
C1—H1B | 0.96 | C6—C7 | 1.388 (3) |
C1—H1C | 0.96 | C6—C12 | 1.514 (3) |
C2—N1 | 1.453 (4) | C7—C8 | 1.386 (4) |
C2—C3 | 1.498 (4) | C7—H7 | 0.93 |
C2—H2A | 0.97 | C8—C9 | 1.398 (3) |
C2—H2B | 0.97 | C8—H8 | 0.93 |
C3—N2 | 1.474 (4) | C9—C10 | 1.381 (3) |
C3—H3A | 0.97 | C9—I1 | 2.103 (2) |
C3—H3B | 0.97 | C10—C11 | 1.389 (3) |
C4—N2 | 1.475 (4) | C10—H10 | 0.93 |
C4—C5 | 1.501 (4) | C11—H11 | 0.93 |
C4—H4A | 0.97 | C12—O1 | 1.246 (3) |
C4—H4B | 0.97 | C12—O2 | 1.254 (3) |
C5—N1 | 1.454 (4) | N2—H21 | 0.874 (18) |
C5—H5A | 0.97 | N2—H22 | 0.881 (18) |
N1—C1—H1A | 109.5 | C11—C6—C7 | 118.6 (2) |
N1—C1—H1B | 109.5 | C11—C6—C12 | 120.8 (2) |
H1A—C1—H1B | 109.5 | C7—C6—C12 | 120.6 (2) |
N1—C1—H1C | 109.5 | C8—C7—C6 | 121.5 (2) |
H1A—C1—H1C | 109.5 | C8—C7—H7 | 119.3 |
H1B—C1—H1C | 109.5 | C6—C7—H7 | 119.3 |
N1—C2—C3 | 110.8 (2) | C7—C8—C9 | 119.1 (2) |
N1—C2—H2A | 109.5 | C7—C8—H8 | 120.4 |
C3—C2—H2A | 109.5 | C9—C8—H8 | 120.4 |
N1—C2—H2B | 109.5 | C10—C9—C8 | 119.9 (2) |
C3—C2—H2B | 109.5 | C10—C9—I1 | 120.07 (17) |
H2A—C2—H2B | 108.1 | C8—C9—I1 | 120.00 (18) |
N2—C3—C2 | 110.0 (2) | C9—C10—C11 | 120.1 (2) |
N2—C3—H3A | 109.7 | C9—C10—H10 | 119.9 |
C2—C3—H3A | 109.7 | C11—C10—H10 | 119.9 |
N2—C3—H3B | 109.7 | C6—C11—C10 | 120.8 (2) |
C2—C3—H3B | 109.7 | C6—C11—H11 | 119.6 |
H3A—C3—H3B | 108.2 | C10—C11—H11 | 119.6 |
N2—C4—C5 | 110.2 (2) | O1—C12—O2 | 124.5 (2) |
N2—C4—H4A | 109.6 | O1—C12—C6 | 118.7 (2) |
C5—C4—H4A | 109.6 | O2—C12—C6 | 116.7 (2) |
N2—C4—H4B | 109.6 | C2—N1—C5 | 110.3 (2) |
C5—C4—H4B | 109.6 | C2—N1—C1 | 110.5 (2) |
H4A—C4—H4B | 108.1 | C5—N1—C1 | 109.6 (2) |
N1—C5—C4 | 111.1 (2) | C3—N2—C4 | 110.6 (2) |
N1—C5—H5A | 109.4 | C3—N2—H21 | 112 (2) |
C4—C5—H5A | 109.4 | C4—N2—H21 | 108 (2) |
N1—C5—H5B | 109.4 | C3—N2—H22 | 108 (2) |
C4—C5—H5B | 109.4 | C4—N2—H22 | 111 (2) |
H5A—C5—H5B | 108 | H21—N2—H22 | 108 (3) |
N1—C2—C3—N2 | 58.1 (3) | C9—C10—C11—C6 | 0.6 (4) |
N2—C4—C5—N1 | −56.7 (3) | C11—C6—C12—O1 | 18.7 (4) |
C11—C6—C7—C8 | −0.4 (4) | C7—C6—C12—O1 | −161.8 (2) |
C12—C6—C7—C8 | −179.8 (2) | C11—C6—C12—O2 | −161.4 (2) |
C6—C7—C8—C9 | 1.0 (4) | C7—C6—C12—O2 | 18.0 (4) |
C7—C8—C9—C10 | −0.8 (4) | C3—C2—N1—C5 | −58.7 (3) |
C7—C8—C9—I1 | 177.94 (18) | C3—C2—N1—C1 | 180.0 (2) |
C8—C9—C10—C11 | 0.0 (4) | C4—C5—N1—C2 | 58.0 (3) |
I1—C9—C10—C11 | −178.72 (18) | C4—C5—N1—C1 | 179.9 (2) |
C7—C6—C11—C10 | −0.4 (4) | C2—C3—N2—C4 | −56.8 (3) |
C12—C6—C11—C10 | 179.0 (2) | C5—C4—N2—C3 | 56.1 (3) |
Cg2 is the centroid of the C6–C11 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O2i | 0.97 | 2.56 | 3.272 (3) | 130 |
C5—H5A···O1ii | 0.97 | 2.56 | 3.469 (3) | 156 |
N2—H21···O2ii | 0.87 (2) | 1.83 (2) | 2.696 (3) | 172 (3) |
N2—H22···O1iii | 0.88 (2) | 1.83 (2) | 2.700 (3) | 172 (3) |
C4—H4B···Cg2iv | 0.97 | 2.59 | 3.473 (3) | 152 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y, −z. |
Acknowledgements
SDA is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years. SGG gratefully acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (PID2020–113558RB-C41) and Gobierno del Principado de Asturias (GRUPIN-ID2018–170).
Funding information
Funding for this research was provided by: Spanish Ministerio de Ciencia e Innovación (grant No. PID2020-113558RB-C41 to Santiago Garcia-Granda); Gobierno del Principado de Asturias (grant No. GRUPIN-ID2018-170 to Santiago Garcia-Granda); University of Mysore (grant to Sriramapura D. Archana); Darmstadt University of Technology (studentship to Hemmige S. Yathirajan).
References
Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371. Web of Science CrossRef CAS Google Scholar
Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. Web of Science CrossRef PubMed CAS Google Scholar
Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. Web of Science CrossRef PubMed CAS Google Scholar
Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826. Web of Science CrossRef PubMed CAS Google Scholar
Dhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m166. CSD CrossRef IUCr Journals Google Scholar
Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390–o391. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Elliott, S. (2011). Drug Test. Anal. 3, 430–438. Web of Science CrossRef CAS PubMed Google Scholar
Essid, M., Marouani, H. & Rzaigui, M. (2014). Acta Cryst. E70, o326–o327. CSD CrossRef CAS IUCr Journals Google Scholar
Fu, J.-H., Wang, Z.-Y., Yang, K. & Mao, C.-X. (2010). Acta Cryst. E66, o2022. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, M.-L. (2004). Acta Cryst. C60, o690–o692. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488. CAS Google Scholar
Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J.-Y. & Li, T.-D. (2007). Acta Cryst. E63, m708–m709. CSD CrossRef IUCr Journals Google Scholar
Li, Y.-F. (2011). Acta Cryst. E67, o2574. CSD CrossRef IUCr Journals Google Scholar
Lu, C. & Jiang, Q. (2011). Acta Cryst. E67, o223. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mallevais, M. L., Delacourte, A., Lesieur, I., Lesieur, D., Cazin, M., Brunet, C. & Luyckx, M. (1984). Biochimie, 66, 477. CrossRef PubMed Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Peng, C.-H. (2010). Acta Cryst. E66, o2114. CSD CrossRef IUCr Journals Google Scholar
Qandil, A. M. (2012). Pharmaceuticals. 5, 460. CrossRef PubMed Google Scholar
Qiao, H.-Y., Xu, S.-H. & Jiang, H.-X. (2010). Acta Cryst. E66, o1861. CSD CrossRef IUCr Journals Google Scholar
Shahani, T., Fun, H.-K., Vijayakumar, V., Ragavan, R. V. & Sarveswari, S. (2011). Acta Cryst. E67, o1747–o1748. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. Web of Science CrossRef PubMed CAS Google Scholar
Wecharine, I., Valkonen, A., Rzaigui, M. & Smirani Sta, W. (2015). Acta Cryst. E71, o193–o194. CSD CrossRef IUCr Journals Google Scholar
Wecharine, I., Valkonen, A., Rzaigui, M. & Smirani Sta, W. (2015). Acta Cryst. E71, o193–o194. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, M.-L. & Guo, M.-L. (2005). Acta Cryst. E61, o3310–o3311. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.