research communications
Synthesis and α-aminooxime nickel(II) complex
of a new chiralaLaboratoire de Chimie Organique Appliquée, Faculté des Sciences, BP 2121, Université Abdelmalek Essaadi, Tétouan, Morocco, and bUniv. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
*Correspondence e-mail: mathieu.sauthier@univ-lille.fr
A dinuclear nickel complex with (S)-limonene based aminooxime ligand has been isolated and its determined. The resolved structure of dichloridobis{(2S,5R)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methylamino]cyclohexan-1-one oxime}dinickel(II), [Ni2Cl2(C16H23ClN3O)2], at 100 K has monoclinic (P21) symmetry. The two NiII ions in the dinuclear complex are each coordinated in a distorted octahedral environment by three nitrogen atoms, a terminal chloride and two μ bridging chlorides. Each oxime ligand is coordinated to nickel(II) by the three nitrogen atoms, leading to two five-membered chelate rings, each displaying an In the crystal, numerous intermolecular and intramolecular hydrogen bonds lead to the formation of a three-dimensional network structure.
Keywords: Nickel; α-aminooxime; (R)-limonene; crystal structure.
CCDC reference: 2115017
1. Chemical context
). This latter method is particularly attractive as it contributes to the development of green chemistry, which maximizes efficiency and minimizes hazardous effects on human health and the environment (Anastas & Zimmerman, 2013). Thus, asymmetric catalysis avoids synthetic steps and only catalytic amounts of the optically pure auxiliary are needed (Ojima, 2010). As part of the development of this chemistry, the synthesis of new chiral organometallic complexes is always challenging. The pivotal point is then the synthesis of optically pure ligands, which will be coordinated to the metal center. In terms of sustainable chemistry, using the chiral pool to develop new ligands is most interesting (Elalami et al., 2015). Coordination metal complexes containing terpenoid fragments are widely used in the pharmaceutical field and in catalysis. We have therefore developed ligands based on such as pinene and limonene (El Alami et al., 2009, 2015; Chahboun et al., 2012). In particular, the synthesis of optically pure amino-oxime ligands has been performed successfully from (R)-limonene (El Alami et al., 2012). These compounds possess structures with two or three nitrogen atoms as donor heteroatoms that could coordinate to the metal center. They have advantageously replaced phosphine ligands, which are generally unstable under air. Ruthenium (Benabdelouahab et al., 2015) and palladium (de la Cueva-Alique et al., 2019) complexes have already been synthezised with these ligands. Here we report the first synthesis of a limonene-based α-aminooxime nickel complex and its In the dinuclear title complex, each nickel ion is coordinated by (1S,4R)-1-picolylamino-p-menth-8-en-2-one oxime. The ligand was first synthesized from (R)-limonene through the addition of nitrosyl chloride, NOCl, to a picolylamine moiety, allowing the formation of the oxime moiety.
allows the preparation of enantiomerically enriched compounds either by using a chiral auxiliary, which will be temporarily introduced, or by using catalytic procedures (Gawley & Aubé, 20122. Structural commentary
The title compound (Fig. 1) crystallizes in the monoclinic P21 with two chiral molecules per The two NiII ions in the dinuclear complex are each coordinated by three nitrogen atoms, a terminal chloride and two μ bridging chlorides. The environment around each metal center can then be described as a distorted octahedron with N1—Ni1—N2 and Cl1—Ni1—Cl3 angles of 79.91 (13) and 91.99 (4)°, respectively, together with Cl1—Ni1—N2 and Cl2—Ni1—N1 angles of 165.04 (11) and 88.69 (10)°, respectively. A similar arrangement can be found around the Ni2 atom [N4—Ni2—N5, Cl2—Ni2—Cl4, Cl4—Ni2—N5 and Cl4—Ni2—N4 = 79.7 (2), 99.38 (4), 166.04 (12) and 93.24 (16)°, respectively].
Each aminooxime ligand is coordinated to nickel(II) by the three nitrogen atoms, leading to two five-membered chelate rings, each displaying an trans-position at distances of 2.4408 (12) and 2.4077 (14) Å from the metal centers Ni1 and Ni2, respectively. The two metal centers are linked by two bridging Cl atoms with an average Ni—Cl distance of 2.42 Å, which is normal for these bond lengths. All these values compare well with literature values. The two nickel ions are separated by a distance of 3.5198 (7) Å, which is similar to average values (Zheng et al., 2010; Cheng et al., 2012).
(with N2 as the flap for Ni1/N1/C5/C6/N2 and N5 for Ni2/N4/C21/C22/N5). The six-membered carbocycles of the limonene units adopt a chair conformation. The lengths of the Ni1—N1, Ni1—N2 and Ni1—N3 bonds are 2.077 (3), 2.126 (4) and 2.041 (3) Å, respectively, while Ni2—N4, Ni2—N5 and Ni2—N6 are 2.095 (4), 2.103 (4) and 2.027 (3) Å. Atoms Cl1 and Cl4 are in a3. Supramolecular features
The ), which link the component into a three-dimensional network (Figs. 2 and 3). In particular, the two {Ni(aminoxime)μ-Cl}Cl units are slightly asymmetrical with the existence of a hydrogen-bonding interaction between the amine N2—H2 linked to Ni1 and the chlorine atom Cl4 linked to Ni2. In addition, the two oxygen atoms O1 and O2 of the oxime groups are involved in intramolecular O1—H1⋯Cl1 and O2—H2A⋯Cl4 hydrogen bonds and in intermolecular C3—H3⋯O1 and C26—H26⋯O2 interactions.
is stabilized by numerous intermolecular and intramolecular hydrogen bonds (Table 14. Database survey
The aminooxime ligand used in this study was previously reacted with palladium and platinum precursors, generating three N-coordinated cationic complexes as enantiopure compounds (de la Cueva-Alique et al., 2019). A heteronuclear TiIV/PdII complex has also been described. The compounds were studied to assess their potential biological activity, a high anticancer activity (de la Cueva-Alique et al., 2019).
5. Synthesis and crystallization
To a solution of NiII chloride ethylene glycol dimethyl ether (0.15 g, 1.48 mmol) in MeOH (5 mL) was added (1S,4R)-1-picolylamino-p-menth-8-en-2-one-oxime (0.101 g, 0.36 mmol) dissolved in MeOH (3 mL). The solution turned green. The mixture was stirred overnight at room temperature during which time the mixture changed color to blue–green. The solvent was then evaporated to produce a crude solid that was washed with diethyl ether before crystallization. Single crystals were grown by slow diffusion at room temperature of diethyl ether into a dichloromethane solution. Elemental analysis calculated for C32H46Cl4N6Ni2O2: C, 46.33; H, 5.54; N, 9.65. Found: C, 46.35; H, 5.672; N, 9.77.
6. Refinement
Crystal data, data collection and structure . N- and O-bound atoms were refined with the restraint Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). H atoms were positioned geometrically(C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl)
details are summarized in Table 2
|
Supporting information
CCDC reference: 2115017
https://doi.org/10.1107/S2056989021010537/ex2048sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010537/ex2048Isup2.hkl
Data collection: APEX2 (Bruker, 2019); cell
SAINT (Bruker, 2019); data reduction: SAINT(Bruker, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ni2Cl2(C16H23ClN3O)2] | F(000) = 840 |
Mr = 805.97 | Dx = 1.493 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3729 (9) Å | Cell parameters from 9996 reflections |
b = 8.9363 (7) Å | θ = 2.7–30.0° |
c = 16.4248 (16) Å | µ = 1.39 mm−1 |
β = 114.014 (2)° | T = 100 K |
V = 1792.9 (3) Å3 | Block, green |
Z = 2 | 0.21 × 0.17 × 0.12 mm |
Bruker APEXII CCD diffractometer | 9436 reflections with I > 2σ(I) |
Radiation source: microfocus sealed X-ray tube | Rint = 0.037 |
φ and ω scans | θmax = 30.5°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −17→19 |
Tmin = 0.669, Tmax = 0.746 | k = −12→12 |
42747 measured reflections | l = −23→21 |
10769 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0581P)2 + 0.9636P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
10769 reflections | Δρmax = 1.50 e Å−3 |
431 parameters | Δρmin = −1.18 e Å−3 |
13 restraints | Absolute structure: Flack x determined using 3850 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.009 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.66455 (4) | 0.50226 (6) | 0.35327 (3) | 0.01526 (11) | |
Ni2 | 0.41917 (4) | 0.48960 (6) | 0.15985 (3) | 0.01813 (12) | |
Cl2 | 0.61155 (8) | 0.45928 (14) | 0.19208 (7) | 0.0259 (2) | |
Cl3 | 0.48342 (7) | 0.60270 (12) | 0.30567 (7) | 0.0212 (2) | |
Cl1 | 0.74487 (8) | 0.75170 (12) | 0.37010 (7) | 0.0249 (2) | |
Cl4 | 0.38501 (9) | 0.25191 (13) | 0.21270 (9) | 0.0336 (3) | |
O1 | 0.7388 (3) | 0.6301 (4) | 0.5389 (2) | 0.0244 (7) | |
H1 | 0.740 (5) | 0.705 (7) | 0.507 (4) | 0.037* | |
N1 | 0.8111 (3) | 0.3926 (4) | 0.3786 (2) | 0.0182 (7) | |
N3 | 0.6939 (2) | 0.5043 (5) | 0.4853 (2) | 0.0183 (6) | |
N2 | 0.6216 (3) | 0.2811 (4) | 0.3745 (2) | 0.0183 (7) | |
H2 | 0.563 (4) | 0.289 (6) | 0.339 (3) | 0.022* | |
O2 | 0.1908 (3) | 0.4533 (5) | 0.1497 (2) | 0.0339 (9) | |
H2A | 0.226 (6) | 0.389 (9) | 0.176 (5) | 0.051* | |
C8 | 0.6846 (3) | 0.3877 (5) | 0.5258 (3) | 0.0203 (8) | |
C5 | 0.8008 (3) | 0.2431 (5) | 0.3699 (3) | 0.0202 (8) | |
N6 | 0.2619 (3) | 0.5471 (4) | 0.1318 (2) | 0.0212 (8) | |
N5 | 0.4081 (3) | 0.6943 (5) | 0.0936 (3) | 0.0394 (12) | |
H5 | 0.468 (5) | 0.736 (8) | 0.140 (4) | 0.047* | |
C12 | 0.7001 (3) | 0.1123 (6) | 0.5107 (3) | 0.0250 (9) | |
H12A | 0.660298 | 0.022653 | 0.478112 | 0.030* | |
H12B | 0.770464 | 0.117488 | 0.504159 | 0.030* | |
C14 | 0.9033 (3) | 0.2356 (6) | 0.6758 (3) | 0.0257 (9) | |
C3 | 0.9925 (4) | 0.2136 (6) | 0.4131 (3) | 0.0301 (11) | |
H3 | 1.054899 | 0.151943 | 0.425362 | 0.036* | |
C9 | 0.7192 (4) | 0.3765 (6) | 0.6253 (3) | 0.0279 (10) | |
H9A | 0.653362 | 0.378843 | 0.638523 | 0.034* | |
H9B | 0.764996 | 0.464264 | 0.654444 | 0.034* | |
C1 | 0.9109 (3) | 0.4531 (5) | 0.4044 (3) | 0.0220 (9) | |
H1A | 0.918464 | 0.558677 | 0.410777 | 0.026* | |
C30 | 0.0369 (4) | 0.6416 (7) | −0.1114 (4) | 0.0357 (12) | |
N4 | 0.3669 (3) | 0.4143 (6) | 0.0282 (3) | 0.0361 (11) | |
C2 | 1.0041 (3) | 0.3660 (6) | 0.4222 (3) | 0.0277 (10) | |
H2B | 1.074096 | 0.411370 | 0.440161 | 0.033* | |
C25 | 0.1029 (4) | 0.7072 (7) | 0.0546 (4) | 0.0384 (13) | |
H25A | 0.095090 | 0.786671 | 0.093629 | 0.046* | |
H25B | 0.059972 | 0.619493 | 0.058673 | 0.046* | |
C7 | 0.6314 (3) | 0.2540 (5) | 0.4678 (3) | 0.0206 (8) | |
C4 | 0.8897 (4) | 0.1499 (6) | 0.3860 (3) | 0.0278 (10) | |
H4 | 0.880183 | 0.044699 | 0.378533 | 0.033* | |
C24 | 0.2208 (4) | 0.6641 (5) | 0.0869 (3) | 0.0258 (10) | |
C6 | 0.6855 (3) | 0.1848 (5) | 0.3402 (3) | 0.0218 (8) | |
H6A | 0.649955 | 0.182503 | 0.274260 | 0.026* | |
H6B | 0.687313 | 0.081400 | 0.362311 | 0.026* | |
C10 | 0.7844 (4) | 0.2319 (6) | 0.6644 (3) | 0.0281 (10) | |
H10 | 0.785669 | 0.219265 | 0.725250 | 0.034* | |
C23 | 0.2999 (4) | 0.7724 (5) | 0.0732 (4) | 0.0365 (12) | |
C15 | 0.9419 (4) | 0.3220 (6) | 0.6296 (3) | 0.0301 (10) | |
H15A | 1.016603 | 0.314817 | 0.638711 | 0.036* | |
H15B | 0.894916 | 0.391186 | 0.587469 | 0.036* | |
C31 | 0.0663 (3) | 0.5006 (7) | −0.0931 (3) | 0.0322 (10) | |
H31A | 0.053020 | 0.430999 | −0.140077 | 0.039* | |
H31B | 0.100801 | 0.468485 | −0.032826 | 0.039* | |
C13 | 0.5139 (3) | 0.2394 (7) | 0.4628 (3) | 0.0314 (11) | |
H13A | 0.471161 | 0.327732 | 0.433110 | 0.047* | |
H13B | 0.516636 | 0.231714 | 0.523147 | 0.047* | |
H13C | 0.479378 | 0.149469 | 0.428806 | 0.047* | |
C11 | 0.7236 (4) | 0.0951 (6) | 0.6094 (3) | 0.0306 (11) | |
H11A | 0.768517 | 0.004325 | 0.633040 | 0.037* | |
H11B | 0.653697 | 0.081821 | 0.615749 | 0.037* | |
C16 | 0.9776 (4) | 0.1259 (6) | 0.7427 (3) | 0.0313 (11) | |
H16A | 0.980940 | 0.149758 | 0.802043 | 0.047* | |
H16B | 1.051172 | 0.132186 | 0.743621 | 0.047* | |
H16C | 0.948965 | 0.024270 | 0.726130 | 0.047* | |
C18 | 0.2741 (6) | 0.2441 (10) | −0.0937 (4) | 0.0582 (18) | |
H18 | 0.234602 | 0.153747 | −0.115022 | 0.070* | |
C17 | 0.3151 (5) | 0.2832 (8) | −0.0055 (4) | 0.0493 (16) | |
H17 | 0.306660 | 0.213712 | 0.035033 | 0.059* | |
C26 | 0.0565 (4) | 0.7638 (7) | −0.0421 (4) | 0.0423 (14) | |
H26 | −0.016160 | 0.810447 | −0.054167 | 0.051* | |
C21 | 0.3804 (4) | 0.5139 (10) | −0.0254 (4) | 0.0504 (17) | |
C28 | 0.2479 (5) | 0.8323 (7) | −0.0237 (4) | 0.0486 (16) | |
H28A | 0.293285 | 0.915184 | −0.030027 | 0.058* | |
H28B | 0.247256 | 0.751483 | −0.065083 | 0.058* | |
C32 | −0.0176 (7) | 0.6926 (9) | −0.2067 (4) | 0.068 (2) | |
H32A | 0.032890 | 0.756035 | −0.220891 | 0.101* | |
H32B | −0.083660 | 0.749858 | −0.215141 | 0.101* | |
H32C | −0.037751 | 0.605256 | −0.246168 | 0.101* | |
C22 | 0.4373 (5) | 0.6511 (10) | 0.0162 (4) | 0.064 (2) | |
H22A | 0.416191 | 0.732765 | −0.028357 | 0.077* | |
H22B | 0.517365 | 0.635850 | 0.038173 | 0.077* | |
C27 | 0.1312 (6) | 0.8883 (7) | −0.0493 (4) | 0.0552 (18) | |
H27A | 0.101814 | 0.926492 | −0.111198 | 0.066* | |
H27B | 0.132010 | 0.972060 | −0.009604 | 0.066* | |
C29 | 0.3272 (7) | 0.8968 (8) | 0.1403 (5) | 0.068 (2) | |
H29A | 0.368891 | 0.856492 | 0.200143 | 0.102* | |
H29B | 0.259425 | 0.942465 | 0.137844 | 0.102* | |
H29C | 0.371164 | 0.972534 | 0.126705 | 0.102* | |
C19 | 0.2927 (7) | 0.3391 (10) | −0.1474 (5) | 0.069 (2) | |
H19 | 0.270015 | 0.312455 | −0.208304 | 0.082* | |
C20 | 0.3427 (6) | 0.4734 (12) | −0.1196 (4) | 0.070 (2) | |
H20 | 0.353114 | 0.539853 | −0.160608 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01393 (19) | 0.0171 (2) | 0.0136 (2) | 0.0000 (2) | 0.00431 (17) | 0.0017 (2) |
Ni2 | 0.0158 (2) | 0.0210 (3) | 0.0153 (2) | −0.0019 (2) | 0.00406 (17) | −0.0011 (2) |
Cl2 | 0.0180 (4) | 0.0431 (7) | 0.0155 (4) | 0.0016 (4) | 0.0057 (3) | 0.0037 (4) |
Cl3 | 0.0178 (4) | 0.0225 (5) | 0.0194 (5) | 0.0017 (4) | 0.0034 (4) | −0.0031 (4) |
Cl1 | 0.0240 (5) | 0.0198 (5) | 0.0244 (5) | −0.0048 (4) | 0.0031 (4) | 0.0052 (4) |
Cl4 | 0.0301 (5) | 0.0180 (5) | 0.0367 (7) | −0.0042 (4) | −0.0027 (5) | 0.0021 (5) |
O1 | 0.0275 (15) | 0.0233 (17) | 0.0205 (16) | 0.0014 (13) | 0.0077 (13) | −0.0051 (13) |
N1 | 0.0159 (14) | 0.0249 (19) | 0.0133 (16) | 0.0017 (13) | 0.0054 (13) | 0.0017 (14) |
N3 | 0.0163 (13) | 0.0206 (17) | 0.0170 (15) | 0.0001 (15) | 0.0056 (12) | 0.0000 (16) |
N2 | 0.0122 (13) | 0.0204 (19) | 0.0200 (18) | 0.0019 (13) | 0.0044 (13) | 0.0019 (14) |
O2 | 0.0186 (14) | 0.052 (3) | 0.0312 (19) | −0.0003 (14) | 0.0099 (13) | 0.0128 (17) |
C8 | 0.0184 (18) | 0.026 (2) | 0.020 (2) | 0.0079 (16) | 0.0113 (16) | 0.0058 (17) |
C5 | 0.0221 (18) | 0.025 (2) | 0.0146 (19) | 0.0034 (17) | 0.0086 (15) | 0.0006 (17) |
N6 | 0.0182 (15) | 0.028 (2) | 0.0163 (17) | 0.0011 (13) | 0.0055 (14) | −0.0007 (14) |
N5 | 0.029 (2) | 0.040 (3) | 0.033 (2) | −0.0178 (19) | −0.0040 (18) | 0.020 (2) |
C12 | 0.0200 (18) | 0.025 (2) | 0.027 (2) | −0.0009 (17) | 0.0064 (17) | 0.0088 (19) |
C14 | 0.0249 (19) | 0.033 (3) | 0.016 (2) | 0.0063 (18) | 0.0045 (16) | 0.0044 (19) |
C3 | 0.025 (2) | 0.036 (3) | 0.029 (3) | 0.0125 (19) | 0.0111 (19) | 0.004 (2) |
C9 | 0.032 (2) | 0.037 (3) | 0.018 (2) | 0.011 (2) | 0.0145 (18) | 0.006 (2) |
C1 | 0.0194 (17) | 0.028 (2) | 0.019 (2) | 0.0006 (16) | 0.0077 (15) | 0.0024 (17) |
C30 | 0.035 (2) | 0.041 (3) | 0.033 (3) | 0.006 (2) | 0.015 (2) | 0.000 (2) |
N4 | 0.0223 (18) | 0.061 (3) | 0.021 (2) | 0.0157 (19) | 0.0044 (16) | −0.005 (2) |
C2 | 0.0149 (17) | 0.041 (3) | 0.028 (2) | 0.0019 (18) | 0.0097 (17) | 0.007 (2) |
C25 | 0.033 (2) | 0.047 (3) | 0.031 (3) | 0.022 (2) | 0.009 (2) | −0.001 (2) |
C7 | 0.0174 (16) | 0.025 (2) | 0.022 (2) | 0.0014 (16) | 0.0105 (15) | 0.0077 (18) |
C4 | 0.025 (2) | 0.032 (3) | 0.027 (2) | 0.0106 (18) | 0.0114 (18) | 0.002 (2) |
C24 | 0.029 (2) | 0.025 (2) | 0.017 (2) | 0.0080 (18) | 0.0041 (18) | −0.0052 (18) |
C6 | 0.0243 (19) | 0.017 (2) | 0.024 (2) | 0.0046 (16) | 0.0094 (17) | −0.0026 (17) |
C10 | 0.030 (2) | 0.034 (3) | 0.024 (2) | 0.007 (2) | 0.0142 (18) | 0.012 (2) |
C23 | 0.048 (3) | 0.015 (2) | 0.032 (3) | −0.003 (2) | 0.001 (2) | 0.006 (2) |
C15 | 0.0204 (19) | 0.036 (3) | 0.028 (2) | 0.0014 (18) | 0.0032 (18) | 0.008 (2) |
C31 | 0.0267 (19) | 0.033 (2) | 0.032 (2) | −0.005 (2) | 0.0058 (18) | 0.001 (3) |
C13 | 0.0198 (19) | 0.040 (3) | 0.034 (3) | −0.001 (2) | 0.0108 (18) | 0.010 (2) |
C11 | 0.026 (2) | 0.033 (3) | 0.035 (3) | 0.0008 (19) | 0.015 (2) | 0.018 (2) |
C16 | 0.033 (2) | 0.037 (3) | 0.024 (2) | 0.009 (2) | 0.0120 (19) | 0.011 (2) |
C18 | 0.059 (4) | 0.067 (4) | 0.032 (3) | 0.026 (4) | 0.003 (3) | −0.011 (3) |
C17 | 0.040 (3) | 0.057 (4) | 0.032 (3) | 0.025 (3) | −0.004 (2) | −0.020 (3) |
C26 | 0.043 (3) | 0.047 (4) | 0.028 (3) | 0.027 (3) | 0.005 (2) | 0.002 (2) |
C21 | 0.030 (2) | 0.091 (5) | 0.031 (3) | 0.024 (3) | 0.013 (2) | 0.016 (3) |
C28 | 0.053 (3) | 0.029 (3) | 0.043 (3) | −0.005 (3) | −0.002 (3) | 0.018 (3) |
C32 | 0.115 (7) | 0.050 (4) | 0.026 (3) | 0.028 (4) | 0.016 (4) | 0.002 (3) |
C22 | 0.033 (3) | 0.113 (7) | 0.049 (4) | 0.010 (3) | 0.020 (3) | 0.057 (4) |
C27 | 0.069 (4) | 0.029 (3) | 0.041 (3) | 0.017 (3) | −0.004 (3) | 0.007 (3) |
C29 | 0.091 (5) | 0.027 (3) | 0.051 (4) | 0.000 (3) | −0.007 (4) | −0.001 (3) |
C19 | 0.093 (6) | 0.071 (5) | 0.055 (4) | 0.014 (4) | 0.044 (4) | −0.020 (4) |
C20 | 0.068 (4) | 0.104 (6) | 0.040 (3) | 0.030 (4) | 0.025 (3) | 0.035 (4) |
Ni1—Cl2 | 2.4762 (11) | C2—H2B | 0.9500 |
Ni1—Cl3 | 2.3964 (10) | C25—H25A | 0.9900 |
Ni1—Cl1 | 2.4408 (12) | C25—H25B | 0.9900 |
Ni1—N1 | 2.077 (3) | C25—C24 | 1.495 (6) |
Ni1—N3 | 2.041 (3) | C25—C26 | 1.536 (8) |
Ni1—N2 | 2.126 (4) | C7—C13 | 1.545 (5) |
Ni2—Cl2 | 2.4216 (10) | C4—H4 | 0.9500 |
Ni2—Cl3 | 2.4128 (12) | C24—C23 | 1.516 (7) |
Ni2—Cl4 | 2.4077 (14) | C6—H6A | 0.9900 |
Ni2—N6 | 2.027 (3) | C6—H6B | 0.9900 |
Ni2—N5 | 2.103 (4) | C10—H10 | 1.0000 |
Ni2—N4 | 2.095 (4) | C10—C11 | 1.540 (8) |
O1—H1 | 0.85 (7) | C23—C28 | 1.550 (8) |
O1—N3 | 1.403 (5) | C23—C29 | 1.502 (9) |
N1—C5 | 1.345 (6) | C15—H15A | 0.9500 |
N1—C1 | 1.338 (5) | C15—H15B | 0.9500 |
N3—C8 | 1.269 (6) | C31—H31A | 0.9500 |
N2—H2 | 0.77 (5) | C31—H31B | 0.9500 |
N2—C7 | 1.503 (5) | C13—H13A | 0.9800 |
N2—C6 | 1.477 (5) | C13—H13B | 0.9800 |
O2—H2A | 0.76 (8) | C13—H13C | 0.9800 |
O2—N6 | 1.385 (5) | C11—H11A | 0.9900 |
C8—C9 | 1.509 (6) | C11—H11B | 0.9900 |
C8—C7 | 1.513 (7) | C16—H16A | 0.9800 |
C5—C4 | 1.385 (6) | C16—H16B | 0.9800 |
C5—C6 | 1.508 (6) | C16—H16C | 0.9800 |
N6—C24 | 1.269 (6) | C18—H18 | 0.9500 |
N5—H5 | 0.93 (7) | C18—C17 | 1.370 (8) |
N5—C23 | 1.517 (7) | C18—C19 | 1.318 (12) |
N5—C22 | 1.524 (9) | C17—H17 | 0.9500 |
C12—H12A | 0.9900 | C26—H26 | 1.0000 |
C12—H12B | 0.9900 | C26—C27 | 1.532 (10) |
C12—C7 | 1.555 (6) | C21—C22 | 1.457 (12) |
C12—C11 | 1.528 (7) | C21—C20 | 1.465 (10) |
C14—C10 | 1.523 (6) | C28—H28A | 0.9900 |
C14—C15 | 1.326 (7) | C28—H28B | 0.9900 |
C14—C16 | 1.506 (7) | C28—C27 | 1.525 (9) |
C3—H3 | 0.9500 | C32—H32A | 0.9800 |
C3—C2 | 1.373 (8) | C32—H32B | 0.9800 |
C3—C4 | 1.384 (7) | C32—H32C | 0.9800 |
C9—H9A | 0.9900 | C22—H22A | 0.9900 |
C9—H9B | 0.9900 | C22—H22B | 0.9900 |
C9—C10 | 1.545 (7) | C27—H27A | 0.9900 |
C1—H1A | 0.9500 | C27—H27B | 0.9900 |
C1—C2 | 1.396 (6) | C29—H29A | 0.9800 |
C30—C31 | 1.318 (8) | C29—H29B | 0.9800 |
C30—C26 | 1.521 (8) | C29—H29C | 0.9800 |
C30—C32 | 1.503 (8) | C19—H19 | 0.9500 |
N4—C17 | 1.359 (8) | C19—C20 | 1.360 (13) |
N4—C21 | 1.314 (8) | C20—H20 | 0.9500 |
Cl3—Ni1—Cl2 | 84.13 (4) | C8—C7—C13 | 108.0 (4) |
Cl3—Ni1—Cl1 | 91.99 (4) | C13—C7—C12 | 110.9 (4) |
Cl1—Ni1—Cl2 | 100.61 (4) | C5—C4—H4 | 120.7 |
N1—Ni1—Cl2 | 88.69 (10) | C3—C4—C5 | 118.5 (5) |
N1—Ni1—Cl3 | 171.31 (10) | C3—C4—H4 | 120.7 |
N1—Ni1—Cl1 | 94.14 (11) | N6—C24—C25 | 124.3 (5) |
N1—Ni1—N2 | 79.91 (13) | N6—C24—C23 | 116.7 (4) |
N3—Ni1—Cl2 | 170.10 (12) | C25—C24—C23 | 118.8 (4) |
N3—Ni1—Cl3 | 94.30 (9) | N2—C6—C5 | 110.5 (4) |
N3—Ni1—Cl1 | 89.21 (12) | N2—C6—H6A | 109.6 |
N3—Ni1—N1 | 91.94 (13) | N2—C6—H6B | 109.6 |
N3—Ni1—N2 | 77.38 (15) | C5—C6—H6A | 109.6 |
N2—Ni1—Cl2 | 93.02 (10) | C5—C6—H6B | 109.6 |
N2—Ni1—Cl3 | 95.56 (9) | H6A—C6—H6B | 108.1 |
N2—Ni1—Cl1 | 165.04 (11) | C14—C10—C9 | 114.7 (4) |
Cl3—Ni2—Cl2 | 84.97 (4) | C14—C10—H10 | 106.7 |
Cl4—Ni2—Cl2 | 99.38 (4) | C14—C10—C11 | 111.4 (4) |
Cl4—Ni2—Cl3 | 93.14 (5) | C9—C10—H10 | 106.7 |
N6—Ni2—Cl2 | 171.72 (12) | C11—C10—C9 | 110.3 (4) |
N6—Ni2—Cl3 | 92.13 (11) | C11—C10—H10 | 106.7 |
N6—Ni2—Cl4 | 88.51 (11) | N5—C23—C28 | 112.0 (5) |
N6—Ni2—N5 | 79.29 (16) | C24—C23—N5 | 109.5 (4) |
N6—Ni2—N4 | 88.11 (15) | C24—C23—C28 | 108.9 (4) |
N5—Ni2—Cl2 | 93.15 (13) | C29—C23—N5 | 104.7 (5) |
N5—Ni2—Cl3 | 94.06 (15) | C29—C23—C24 | 109.9 (5) |
N5—Ni2—Cl4 | 166.04 (12) | C29—C23—C28 | 111.8 (5) |
N4—Ni2—Cl2 | 93.92 (11) | C14—C15—H15A | 120.0 |
N4—Ni2—Cl3 | 173.62 (15) | C14—C15—H15B | 120.0 |
N4—Ni2—Cl4 | 93.24 (16) | H15A—C15—H15B | 120.0 |
N4—Ni2—N5 | 79.7 (2) | C30—C31—H31A | 120.0 |
Ni2—Cl2—Ni1 | 91.88 (4) | C30—C31—H31B | 120.0 |
Ni1—Cl3—Ni2 | 94.09 (4) | H31A—C31—H31B | 120.0 |
N3—O1—H1 | 111 (4) | C7—C13—H13A | 109.5 |
C5—N1—Ni1 | 113.6 (3) | C7—C13—H13B | 109.5 |
C1—N1—Ni1 | 127.6 (3) | C7—C13—H13C | 109.5 |
C1—N1—C5 | 118.8 (4) | H13A—C13—H13B | 109.5 |
O1—N3—Ni1 | 121.4 (3) | H13A—C13—H13C | 109.5 |
C8—N3—Ni1 | 122.2 (3) | H13B—C13—H13C | 109.5 |
C8—N3—O1 | 115.9 (3) | C12—C11—C10 | 112.0 (4) |
Ni1—N2—H2 | 93 (4) | C12—C11—H11A | 109.2 |
C7—N2—Ni1 | 113.6 (3) | C12—C11—H11B | 109.2 |
C7—N2—H2 | 116 (4) | C10—C11—H11A | 109.2 |
C6—N2—Ni1 | 104.0 (2) | C10—C11—H11B | 109.2 |
C6—N2—H2 | 109 (4) | H11A—C11—H11B | 107.9 |
C6—N2—C7 | 118.1 (3) | C14—C16—H16A | 109.5 |
N6—O2—H2A | 105 (5) | C14—C16—H16B | 109.5 |
N3—C8—C9 | 124.7 (4) | C14—C16—H16C | 109.5 |
N3—C8—C7 | 116.1 (4) | H16A—C16—H16B | 109.5 |
C9—C8—C7 | 119.2 (4) | H16A—C16—H16C | 109.5 |
N1—C5—C4 | 122.3 (4) | H16B—C16—H16C | 109.5 |
N1—C5—C6 | 115.1 (4) | C17—C18—H18 | 121.9 |
C4—C5—C6 | 122.6 (4) | C19—C18—H18 | 121.9 |
O2—N6—Ni2 | 122.4 (3) | C19—C18—C17 | 116.1 (8) |
C24—N6—Ni2 | 120.3 (3) | N4—C17—C18 | 124.7 (7) |
C24—N6—O2 | 116.7 (4) | N4—C17—H17 | 117.7 |
Ni2—N5—H5 | 94 (4) | C18—C17—H17 | 117.7 |
C23—N5—Ni2 | 112.0 (3) | C30—C26—C25 | 114.3 (5) |
C23—N5—H5 | 115 (4) | C30—C26—H26 | 107.1 |
C23—N5—C22 | 118.6 (4) | C30—C26—C27 | 112.5 (5) |
C22—N5—Ni2 | 102.9 (4) | C25—C26—H26 | 107.1 |
C22—N5—H5 | 110 (4) | C27—C26—C25 | 108.5 (5) |
H12A—C12—H12B | 107.8 | C27—C26—H26 | 107.1 |
C7—C12—H12A | 109.0 | N4—C21—C22 | 116.4 (5) |
C7—C12—H12B | 109.0 | N4—C21—C20 | 117.2 (8) |
C11—C12—H12A | 109.0 | C22—C21—C20 | 126.3 (7) |
C11—C12—H12B | 109.0 | C23—C28—H28A | 109.2 |
C11—C12—C7 | 113.0 (4) | C23—C28—H28B | 109.2 |
C15—C14—C10 | 124.9 (4) | H28A—C28—H28B | 107.9 |
C15—C14—C16 | 120.2 (4) | C27—C28—C23 | 112.2 (6) |
C16—C14—C10 | 114.9 (4) | C27—C28—H28A | 109.2 |
C2—C3—H3 | 120.1 | C27—C28—H28B | 109.2 |
C2—C3—C4 | 119.7 (4) | C30—C32—H32A | 109.5 |
C4—C3—H3 | 120.1 | C30—C32—H32B | 109.5 |
C8—C9—H9A | 109.2 | C30—C32—H32C | 109.5 |
C8—C9—H9B | 109.2 | H32A—C32—H32B | 109.5 |
C8—C9—C10 | 112.2 (4) | H32A—C32—H32C | 109.5 |
H9A—C9—H9B | 107.9 | H32B—C32—H32C | 109.5 |
C10—C9—H9A | 109.2 | N5—C22—H22A | 109.7 |
C10—C9—H9B | 109.2 | N5—C22—H22B | 109.7 |
N1—C1—H1A | 119.0 | C21—C22—N5 | 110.0 (4) |
N1—C1—C2 | 122.1 (4) | C21—C22—H22A | 109.7 |
C2—C1—H1A | 119.0 | C21—C22—H22B | 109.7 |
C31—C30—C26 | 124.8 (5) | H22A—C22—H22B | 108.2 |
C31—C30—C32 | 120.1 (5) | C26—C27—H27A | 109.3 |
C32—C30—C26 | 115.1 (5) | C26—C27—H27B | 109.3 |
C17—N4—Ni2 | 126.7 (4) | C28—C27—C26 | 111.5 (5) |
C21—N4—Ni2 | 113.2 (4) | C28—C27—H27A | 109.3 |
C21—N4—C17 | 119.9 (5) | C28—C27—H27B | 109.3 |
C3—C2—C1 | 118.6 (4) | H27A—C27—H27B | 108.0 |
C3—C2—H2B | 120.7 | C23—C29—H29A | 109.5 |
C1—C2—H2B | 120.7 | C23—C29—H29B | 109.5 |
H25A—C25—H25B | 107.9 | C23—C29—H29C | 109.5 |
C24—C25—H25A | 109.2 | H29A—C29—H29B | 109.5 |
C24—C25—H25B | 109.2 | H29A—C29—H29C | 109.5 |
C24—C25—C26 | 112.1 (4) | H29B—C29—H29C | 109.5 |
C26—C25—H25A | 109.2 | C18—C19—H19 | 118.5 |
C26—C25—H25B | 109.2 | C18—C19—C20 | 123.0 (7) |
N2—C7—C8 | 109.8 (3) | C20—C19—H19 | 118.5 |
N2—C7—C12 | 112.5 (3) | C21—C20—H20 | 120.5 |
N2—C7—C13 | 107.1 (3) | C19—C20—C21 | 119.0 (7) |
C8—C7—C12 | 108.5 (3) | C19—C20—H20 | 120.5 |
Ni1—N1—C5—C4 | −178.5 (3) | N4—C21—C20—C19 | 2.4 (9) |
Ni1—N1—C5—C6 | 2.4 (4) | C2—C3—C4—C5 | −0.9 (7) |
Ni1—N1—C1—C2 | 177.8 (3) | C25—C24—C23—N5 | −168.7 (4) |
Ni1—N3—C8—C9 | 171.5 (3) | C25—C24—C23—C28 | −45.9 (6) |
Ni1—N3—C8—C7 | −10.6 (5) | C25—C24—C23—C29 | 76.9 (6) |
Ni1—N2—C7—C8 | −7.7 (4) | C25—C26—C27—C28 | 59.6 (6) |
Ni1—N2—C7—C12 | −128.6 (3) | C7—N2—C6—C5 | −83.5 (4) |
Ni1—N2—C7—C13 | 109.3 (4) | C7—C8—C9—C10 | 47.9 (5) |
Ni1—N2—C6—C5 | 43.4 (4) | C7—C12—C11—C10 | −57.9 (5) |
Ni2—N6—C24—C25 | 173.2 (4) | C4—C5—C6—N2 | 148.6 (4) |
Ni2—N6—C24—C23 | −12.5 (6) | C4—C3—C2—C1 | 0.6 (7) |
Ni2—N5—C23—C24 | −13.2 (5) | C24—C25—C26—C30 | 73.6 (6) |
Ni2—N5—C23—C28 | −134.2 (4) | C24—C25—C26—C27 | −52.8 (6) |
Ni2—N5—C23—C29 | 104.5 (5) | C24—C23—C28—C27 | 49.5 (6) |
Ni2—N5—C22—C21 | 44.6 (5) | C6—N2—C7—C8 | 114.5 (4) |
Ni2—N4—C17—C18 | 174.2 (4) | C6—N2—C7—C12 | −6.5 (5) |
Ni2—N4—C21—C22 | 5.4 (6) | C6—N2—C7—C13 | −128.6 (4) |
Ni2—N4—C21—C20 | −178.0 (4) | C6—C5—C4—C3 | 180.0 (4) |
O1—N3—C8—C9 | −0.7 (6) | C23—N5—C22—C21 | −79.6 (6) |
O1—N3—C8—C7 | 177.3 (3) | C23—C28—C27—C26 | −59.7 (7) |
N1—C5—C4—C3 | 1.0 (7) | C15—C14—C10—C9 | −24.5 (7) |
N1—C5—C6—N2 | −32.3 (5) | C15—C14—C10—C11 | 101.6 (6) |
N1—C1—C2—C3 | −0.2 (7) | C31—C30—C26—C25 | −6.7 (8) |
N3—C8—C9—C10 | −134.2 (4) | C31—C30—C26—C27 | 117.5 (6) |
N3—C8—C7—N2 | 11.5 (5) | C11—C12—C7—N2 | 172.3 (3) |
N3—C8—C7—C12 | 134.8 (4) | C11—C12—C7—C8 | 50.6 (4) |
N3—C8—C7—C13 | −104.9 (4) | C11—C12—C7—C13 | −67.8 (5) |
O2—N6—C24—C25 | 1.3 (6) | C16—C14—C10—C9 | 158.2 (4) |
O2—N6—C24—C23 | 175.6 (4) | C16—C14—C10—C11 | −75.7 (5) |
C8—C9—C10—C14 | 77.6 (5) | C18—C19—C20—C21 | 1.5 (12) |
C8—C9—C10—C11 | −49.1 (5) | C17—N4—C21—C22 | −179.7 (5) |
C5—N1—C1—C2 | 0.3 (6) | C17—N4—C21—C20 | −3.0 (7) |
N6—C24—C23—N5 | 16.7 (6) | C17—C18—C19—C20 | −4.4 (11) |
N6—C24—C23—C28 | 139.5 (5) | C26—C25—C24—N6 | −136.7 (5) |
N6—C24—C23—C29 | −97.7 (5) | C26—C25—C24—C23 | 49.2 (7) |
N5—C23—C28—C27 | 170.8 (5) | C21—N4—C17—C18 | 0.0 (8) |
C14—C10—C11—C12 | −72.9 (5) | C32—C30—C26—C25 | 174.8 (6) |
C9—C8—C7—N2 | −170.4 (3) | C32—C30—C26—C27 | −60.9 (7) |
C9—C8—C7—C12 | −47.1 (5) | C22—N5—C23—C24 | 106.3 (6) |
C9—C8—C7—C13 | 73.2 (5) | C22—N5—C23—C28 | −14.6 (6) |
C9—C10—C11—C12 | 55.6 (5) | C22—N5—C23—C29 | −135.9 (6) |
C1—N1—C5—C4 | −0.6 (6) | C22—C21—C20—C19 | 178.6 (6) |
C1—N1—C5—C6 | −179.7 (4) | C29—C23—C28—C27 | −72.1 (7) |
C30—C26—C27—C28 | −67.9 (6) | C19—C18—C17—N4 | 3.8 (9) |
N4—C21—C22—N5 | −35.0 (7) | C20—C21—C22—N5 | 148.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1 | 0.85 (7) | 2.32 (6) | 3.009 (4) | 139 (6) |
N2—H2···Cl4 | 0.77 (5) | 2.46 (5) | 3.209 (4) | 166 (5) |
O2—H2A···Cl4 | 0.76 (8) | 2.31 (7) | 2.978 (4) | 147 (7) |
C3—H3···O1i | 0.95 | 2.58 | 3.432 (5) | 149 |
C1—H1A···Cl1 | 0.95 | 2.75 | 3.369 (5) | 124 |
C6—H6A···Cl2 | 0.99 | 2.76 | 3.309 (5) | 115 |
C11—H11B···Cl3ii | 0.99 | 2.64 | 3.573 (5) | 156 |
C17—H17···Cl4 | 0.95 | 2.69 | 3.327 (6) | 125 |
C26—H26···O2iii | 1.00 | 2.56 | 3.489 (6) | 154 |
C22—H22B···Cl2 | 0.99 | 2.81 | 3.352 (6) | 115 |
C19—H19···Cl1iv | 0.95 | 2.64 | 3.570 (7) | 167 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x, y+1/2, −z; (iv) −x+1, y−1/2, −z. |
Acknowledgements
We would like to thank Céline Delabre for the elemental analysis.
Funding information
The authors thank the Ministère de l'Enseignement Supérieur de la Recherche et de l'Innovation (France) and the Ministère de la Recherche (Morocco) for financial support. The Chevreul Institute (FR 2638), Ministry of Higher Education, Research and Innovation, Région Hauts de France and FEDER are recognized for funding of X-ray diffractometers.
References
Anastas, P. T. & Zimmerman, J. B. (2013). Environ. Sci. Technol. 37, 95A–101A. Google Scholar
Benabdelouahab, Y., Muñoz-Moreno, L., Frik, M., de la Cueva-Alique, I., El Amrani, M. A., Contel, M., Bajo, A. M., Cuenca, T. & Royo, E. (2015). Eur. J. Inorg. Chem. pp. 2295–2307. CrossRef Google Scholar
Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Chahboun, G., Brito, J. A., Royo, B., El Amrani, M. A., Gómez-Bengoa, E., Mosquera, M. E. G., Cuenca, T. & Royo, E. (2012). Eur. J. Inorg. Chem. pp. 2940–2949. CSD CrossRef Google Scholar
Cheng, T.-P., Liao, B.-S., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2012). Dalton Trans. 41, 3468–3473. CSD CrossRef CAS PubMed Google Scholar
Cueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). Dalton Trans. 48, 14279–14293. PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elalami, M. S., Dahdouh, A. A., Mansour, A. I., ElAmrani, M. A., Suisse, I., Mortreux, A. & Agbossou-Niedercorn, F. (2009). C. R. Chim. 12, 1253–1258. CrossRef CAS Google Scholar
El Alami, M. S. I., El Amrani, M. A., Agbossou-Niedercorn, F., Suisse, I. & Mortreux, A. (2015). Chem. Eur. J. 21, 1398–1413. PubMed Google Scholar
Gawley, R. E. & Aubé, J. (2012). Principles and applications of asymmetric synthesis, 2nd ed. Amsterdam: Elsevier Science Google Scholar
El Alami, M. S. I., El Amrani, M. A., Dahdouh, A., Roussel, P., Suisse, I. & Mortreux, A. (2012). Chirality, 24, 675–682. PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ojima, I. (2010). Catalytic asymmetric synthesis, 3rd ed. Hoboken: Wiley Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zheng, L., Zhang, S., Li, K., Chen, W., Chen, Y., Xu, B., Hu, B., Li, Y. & Li, W. (2010). J. Mol. Struct. 984, 153–156. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.