research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­[(eth­­oxy­methane­thio­yl)sulfanido](N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine)­mercury(II)

crossmark logo

aDepartment of Chemistry, College of Science, Salahaddin University, Erbil, 44001, Iraq, bSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, dDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, and eDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

Edited by D. Gray, University of Illinois Urbana-Champaign, USA (Received 28 May 2021; accepted 11 October 2021; online 19 October 2021)

The title four-coordinate mononuclear complex, [Hg(C3H5OS2)2(C6H16N2)] or [Hg(C3H5OS2)2(tmeda)] (tmeda: N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine), has a distorted tetra­hedral geometry. The HgII ion is coordinated to two N atoms of the N,N,N′,N′-tetra­methyl­ethylenedi­amine ligand and two S atoms from two ethylxanthate xanthate ligands. In the crystal, mol­ecules are linked by weak C—H⋯S hydrogen bonds, forming a two-dimensional supra­molecular architecture in the ab plane. The most important contributions for the crystal packing are from H⋯H (59.3%), S⋯H (27.4%) and O⋯H (7.5%) inter­actions.

1. Chemical context

Xanthates (di­thio­carbonates) attract the inter­est of many researchers in the field of coordination chemistry owing to their anti­dotal, anti­oxidant and anti­tumor activities (Shahzadi et al., 2009[Shahzadi, S., Ali, S., Jabeen, R. & Khosa, M. K. (2009). Turk. J. Chem. 33, 307-312.]; Perluigi et al., 2006[Perluigi, M., Joshi, G., Sultana, R., Calabrese, V., De Marco, C., Coccia, R. & Butterfield, D. A. (2006). Neuroscience, 138, 1161-1170.]; Larsson & Oberg, 2011[Larsson, A. C. & Öberg, S. (2011). J. Phys. Chem. A, 115, 1396-1407.]). These ligands exhibit different coordination modes such as monodentate, isobidentate or anisobidentate. Cellulose xanthate has been used for the separation of alcohols by the chromatographic method (Friebolin et al., 2004[Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2004). J. Med. Chem. 47, 2256-2263.]). It has been reported that metal xanthates exhibit cytotoxic activity on human cancer cells and have the ability to inhibit both DNA and RNA viruses in vitro (Efrima & Pradhan, 2003[Efrima, S. & Pradhan, N. (2003). C. R. Chim. 6, 1035-1045.]). Mercury represents one of the most toxic heavy metals found in solid and liquid waste from oil refineries and the mining industry. We report herein the synthesis and crystal structure of a new HgII xanthate containing N,N,N′,N′-tetra­methyl­ethylenedi­amine, including the results of a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title complex (Fig. 1[link]) comprises one HgII ion, one half N,N,N′,N′-tetra­methyl­ethylenedi­amine ligand and one ethylxanthate ligand. The HgII ion is coordinated by two N atoms of the N,N,N′,N′-tetra­methyl­ethylenedi­amine ligand and two S atoms from two ethylxanthate xanthate ligands in a distorted tetra­hedral environment. The Hg—N and Hg—S bond lengths (Table 1[link]) are 2.531 (8) and 2.416 (3) Å, respectively, whereas the bond angles around the central HgII ion are in the range 73.8 (3)–149.91 (18)°. The bond lengths and angles of the HgN2S2 coordination units correspond to those in the structures of mixed-ligand HgII coordination compounds (see Database survey). The C1—O1 and C2—O1 bond lengths are 1.355 (11) to 1.460 (12) Å, respectively, although all of the C—O bonds show single-bond character. In the {S2C} section of the xanthate ligands, the C1—S1 distance is 1.727 (9) Å, which is typical of a single bond, whereas the C1=S2 distance of 1.633 (10) Å is typical of a carbon-to-sulfur double bond. The C—N and C—C bond lengths in the N,N,N′,N′-tetra­methyl­ethylenedi­amine ligand are normal (Qadir et al., 2020[Qadir, A. M., Kansiz, S., Dege, N., Rosair, G. M. & Iskenderov, T. S. (2020). Acta Cryst. E76, 1038-1041.]).

Table 1
Selected bond lengths (Å)

Hg1—S1 2.416 (3) O1—C1 1.355 (11)
Hg1—N1 2.531 (8) O1—C2 1.460 (12)
S1—C1 1.727 (9) N1—C5 1.452 (13)
S2—C1 1.633 (10) N1—C4 1.479 (13)
[Figure 1]
Figure 1
The mol­ecular structure of [Hg(C3H5S2O1)2(tmeda)], with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) −x + 1, y, −z + [{3\over 2}].

3. Supra­molecular features

In the crystal, there is a weak inter­molecular hydrogen bonding (Table 2[link]) between S atoms and the H atoms of the methyl­ene groups [C4—H4B⋯S1 (x − [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}])]. Fig. 2[link] illustrates the two-dimensional wave-like structure extending in the ab plane formed by hydrogen-bonding inter­actions in [Hg(C3H5S2O1)2(tmeda)].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯S1i 0.97 2.92 3.845 (11) 160
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Two-dimensional wave-like structure extending in the ab plane formed by hydrogen-bonding inter­actions in [Hg(C3H5S2O1)2(tmeda)].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title complex revealed five similar complexes: [Hg(C14H26O2S4)]n (BATXOJ; Cox & Tiekink, 1999[Cox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. Cryst. Mater. 214, 486-491.]), [Hg(C5H4NSe)2(C6H16N2)] (EKODAK; Sharma et al., 2011[Sharma, R. K., Kedarnath, G., Wadawale, A., Jain, V. K. & Vishwanadh, B. (2011). Inorg. Chim. Acta, 365, 333-339.]), [Hg(C6H16N2)(C9H13NS)2](PF6)2 (POTJOY; Tang et al., 2009[Tang, X.-Y., Yuan, R. X., Ren, Z.-G., Li, H.-X., Zhang, Y. & Lang, J.-P. (2009). Inorg. Chem. 48, 2639-2651.]), [HgCl(C7H7S)(C6H16N2)] (TEVQAM; Kräuter et al., 1996[Kräuter, G., Neumüller, B., Goedken, V. L. & Rees, W. S. (1996). Chem. Mater. 8, 360-368.]) and [HgCl2(C6H16N2)] (ZZZAJM; Htoon & Ladd, 1976[Htoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55-58.]). In BATXOJ, the coordination geometry is distorted tetra­hedral with the independent Hg—S distances being 2.413 (5) and 2.842 (5) Å. The range of S—Hg—S angles is 81.8 (2)–150.8 (3)° with the wider angle involving the more tightly bound S1 atoms. In EKODAK, the corresponding mercury complex adopts a severely distorted tetra­hedral configuration defined by the two monodentate seleno­late and chelating tmeda ligands. The Hg—N bond lengths are in the range 2.573 (17)–2.601 (18) Å. In POTJOY, inter­molecular C—H⋯S hydrogen bonds are important in the crystal packing. Similarly, the mol­ecules are connected to each other via C—H⋯S hydrogen bonds in the title complex. In TEVQAM, the Hg—N and Hg—S bond lengths are 2.54 and 2.34 Å, respectively, comparable to those in the title compound.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]) to qu­antify the various inter­molecular inter­actions. The Hirshfeld surface mapped over dnorm is illustrated in Fig. 3[link] and the associated two-dimensional fingerprint plots in Fig. 4[link]. The major contributions to the crystal structure are from H⋯H (59.3%), S⋯H (27.4%) and O⋯H inter­actions (7.5%. The large number of H⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing. C⋯H (3.4%) and S⋯O (1.9%) contacts are also observed.

[Figure 3]
Figure 3
Hirshfeld surface mapped with dnorm.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for [Hg(C3H5S2O1)2(tmeda)].

6. Synthesis and crystallization

Potassium ethylxanthate (4 mmol, 0.64 g) in hot ethanol (10 mL) was added to a hot solution of Hg(CH3CO2)2 (2 mmol, 0.64 g) in ethanol (10 mL) under stirring. The formed precipitate was filtered off, washed with water and air-dried. The precipitate was suspended in hot ethanol (10 mL) and tetra­methyl­ethylenedi­amine (2 mmol, 0.23 g) was added under stirring. The colour changed to dark brown. The precipitate was filtered off and dried and then recrystallized from ethanol. Brown rods were formed.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.96 and 0.97 Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all others

Table 3
Experimental details

Crystal data
Chemical formula [Hg(C3H5OS2)2(C6H16N2)]
Mr 559.18
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 12.235 (7), 8.017 (5), 21.251 (17)
V3) 2084 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.79
Crystal size (mm) 0.71 × 0.38 × 0.06
 
Data collection
Diffractometer Bruker D8 Quest with Photon II CPADs detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.041, 0.627
No. of measured, independent and observed [I > 2σ(I)] reflections 8974, 1946, 1265
Rint 0.139
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.147, 1.00
No. of reflections 1946
No. of parameters 99
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −2.73
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis[(ethoxymethanethioyl)sulfanido](N,N,N',N'-\ tetramethylethane-1,2-diamine)mercury(II) top
Crystal data top
[Hg(C3H5OS2)2(C6H16N2)]Dx = 1.782 Mg m3
Mr = 559.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 379 reflections
a = 12.235 (7) Åθ = 2.0–24.7°
b = 8.017 (5) ŵ = 7.79 mm1
c = 21.251 (17) ÅT = 296 K
V = 2084 (2) Å3Rod, brown
Z = 40.71 × 0.38 × 0.06 mm
F(000) = 1088
Data collection top
Bruker D8 Quest with Photon II CPADs detector
diffractometer
1946 independent reflections
Radiation source: Incoatec microfocus source1265 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.139
phi and ω scansθmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1412
Tmin = 0.041, Tmax = 0.627k = 69
8974 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0768P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1946 reflectionsΔρmax = 1.01 e Å3
99 parametersΔρmin = 2.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.5000000.59649 (6)0.7500000.0605 (2)
S10.6620 (2)0.6747 (4)0.69202 (12)0.0807 (9)
S20.4722 (2)0.7975 (5)0.61444 (14)0.0815 (8)
O10.6840 (6)0.8337 (10)0.5917 (3)0.0753 (19)
N10.4366 (6)0.3441 (10)0.6885 (3)0.0580 (18)
C10.6025 (8)0.7760 (12)0.6290 (4)0.063 (2)
C60.5057 (9)0.3204 (18)0.6319 (5)0.087 (4)
H6A0.5022450.4184810.6061010.131*
H6B0.4796860.2260950.6084540.131*
H6C0.5799680.3011910.6445950.131*
C40.4462 (8)0.1997 (13)0.7314 (5)0.069 (2)
H4A0.4413670.0976080.7071180.083*
H4B0.3854920.2012160.7607780.083*
C30.7614 (16)0.9572 (16)0.5016 (5)0.101 (5)
H3A0.7475251.0153260.4628950.152*
H3B0.7959960.8523580.4926160.152*
H3C0.8085051.0232990.5277060.152*
C50.3232 (9)0.3668 (17)0.6701 (5)0.090 (4)
H5A0.2800860.3909500.7067570.136*
H5B0.2967500.2666720.6506170.136*
H5C0.3178990.4578180.6409420.136*
C20.6563 (11)0.9271 (15)0.5349 (5)0.091 (4)
H2A0.6215921.0319880.5456530.109*
H2B0.6068860.8632210.5085460.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0589 (4)0.0689 (4)0.0536 (3)0.0000.0023 (2)0.000
S10.0618 (15)0.113 (2)0.0676 (13)0.0248 (17)0.0088 (11)0.0231 (15)
S20.0674 (17)0.096 (2)0.0811 (16)0.0098 (16)0.0023 (13)0.0141 (16)
O10.082 (5)0.085 (5)0.059 (3)0.011 (4)0.009 (3)0.013 (3)
N10.056 (5)0.064 (5)0.054 (4)0.000 (4)0.002 (3)0.000 (3)
C10.075 (6)0.059 (6)0.056 (5)0.015 (5)0.004 (4)0.000 (4)
C60.103 (9)0.088 (9)0.071 (6)0.008 (8)0.012 (5)0.024 (6)
C40.057 (6)0.067 (6)0.084 (6)0.023 (6)0.006 (5)0.010 (5)
C30.142 (13)0.083 (10)0.079 (7)0.005 (8)0.037 (7)0.015 (7)
C50.075 (8)0.123 (11)0.073 (6)0.013 (7)0.019 (6)0.003 (6)
C20.115 (10)0.090 (8)0.067 (6)0.005 (8)0.018 (7)0.025 (5)
Geometric parameters (Å, º) top
Hg1—S12.416 (3)C6—H6C0.9600
Hg1—S1i2.416 (3)C4—C4i1.53 (2)
Hg1—N12.531 (8)C4—H4A0.9700
Hg1—N1i2.531 (8)C4—H4B0.9700
S1—C11.727 (9)C3—C21.49 (2)
S2—C11.633 (10)C3—H3A0.9600
O1—C11.355 (11)C3—H3B0.9600
O1—C21.460 (12)C3—H3C0.9600
N1—C51.452 (13)C5—H5A0.9600
N1—C41.479 (13)C5—H5B0.9600
N1—C61.481 (13)C5—H5C0.9600
C6—H6A0.9600C2—H2A0.9700
C6—H6B0.9600C2—H2B0.9700
S1—Hg1—S1i149.91 (18)N1—C4—H4A109.1
S1—Hg1—N1101.26 (18)C4i—C4—H4A109.1
S1i—Hg1—N1102.70 (19)N1—C4—H4B109.1
S1—Hg1—N1i102.70 (19)C4i—C4—H4B109.1
S1i—Hg1—N1i101.26 (18)H4A—C4—H4B107.8
N1—Hg1—N1i73.8 (3)C2—C3—H3A109.5
C1—S1—Hg199.9 (3)C2—C3—H3B109.5
C1—O1—C2119.2 (9)H3A—C3—H3B109.5
C5—N1—C4109.8 (9)C2—C3—H3C109.5
C5—N1—C6110.1 (8)H3A—C3—H3C109.5
C4—N1—C6110.8 (9)H3B—C3—H3C109.5
C5—N1—Hg1109.3 (7)N1—C5—H5A109.5
C4—N1—Hg1106.4 (5)N1—C5—H5B109.5
C6—N1—Hg1110.3 (6)H5A—C5—H5B109.5
O1—C1—S2124.9 (7)N1—C5—H5C109.5
O1—C1—S1107.7 (7)H5A—C5—H5C109.5
S2—C1—S1127.4 (5)H5B—C5—H5C109.5
N1—C6—H6A109.5O1—C2—C3106.0 (11)
N1—C6—H6B109.5O1—C2—H2A110.5
H6A—C6—H6B109.5C3—C2—H2A110.5
N1—C6—H6C109.5O1—C2—H2B110.5
H6A—C6—H6C109.5C3—C2—H2B110.5
H6B—C6—H6C109.5H2A—C2—H2B108.7
N1—C4—C4i112.7 (7)
C2—O1—C1—S21.9 (13)C5—N1—C4—C4i162.2 (10)
C2—O1—C1—S1179.2 (8)C6—N1—C4—C4i75.9 (12)
Hg1—S1—C1—O1178.2 (6)Hg1—N1—C4—C4i44.0 (11)
Hg1—S1—C1—S23.0 (7)C1—O1—C2—C3174.4 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···S1ii0.972.923.845 (11)160
Symmetry code: (ii) x1/2, y1/2, z+3/2.
 

Acknowledgements

Author contributions are as follows. Conceptualization, SK, AMQ and ES; synthesis, AMQ; writing (review and editing of the manuscript), SK and AMQ, formal analysis, SK, AMQ and ND, validation, SK, AMQ and ND, project administration, SK, AMQ and ES.

Funding information

Funding for this research was provided by: Ondokuz Mayıs University under Project No. PYO.FEN.1906.19.001.

References

First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. Cryst. Mater. 214, 486–491.  CSD CrossRef CAS Google Scholar
First citationEfrima, S. & Pradhan, N. (2003). C. R. Chim. 6, 1035–1045.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2004). J. Med. Chem. 47, 2256–2263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHtoon, S. & Ladd, M. F. C. (1976). J. Cryst. Mol. Struct. 6, 55–58.  CSD CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKräuter, G., Neumüller, B., Goedken, V. L. & Rees, W. S. (1996). Chem. Mater. 8, 360–368.  Google Scholar
First citationLarsson, A. C. & Öberg, S. (2011). J. Phys. Chem. A, 115, 1396–1407.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPerluigi, M., Joshi, G., Sultana, R., Calabrese, V., De Marco, C., Coccia, R. & Butterfield, D. A. (2006). Neuroscience, 138, 1161–1170.  CrossRef PubMed CAS Google Scholar
First citationQadir, A. M., Kansiz, S., Dege, N., Rosair, G. M. & Iskenderov, T. S. (2020). Acta Cryst. E76, 1038–1041.  CrossRef IUCr Journals Google Scholar
First citationShahzadi, S., Ali, S., Jabeen, R. & Khosa, M. K. (2009). Turk. J. Chem. 33, 307–312.  CAS Google Scholar
First citationSharma, R. K., Kedarnath, G., Wadawale, A., Jain, V. K. & Vishwanadh, B. (2011). Inorg. Chim. Acta, 365, 333–339.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, X.-Y., Yuan, R. X., Ren, Z.-G., Li, H.-X., Zhang, Y. & Lang, J.-P. (2009). Inorg. Chem. 48, 2639–2651.  CSD CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds