research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Comparison of the crystal structures of the low- and high-temperature forms of bis­­[4-(di­methyl­amino)­pyridine]­di­thio­cyanato­cobalt(II)

crossmark logo

aInstitute of Inorganic Chemistry, University of Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: ckrebs@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 September 2021; accepted 7 October 2021; online 19 October 2021)

Single crystals of the high-temperature form I of [Co(NCS)2(DMAP)2] (DMAP = 4-di­methyl­amino­pyridine, C7H10N2) were obtained accidentally by the reaction of Co(NCS)2 with DMAP at slightly elevated temperatures under kinetic control. This modification crystallizes in the monoclinic space group P21/m and is isotypic with the corresponding Zn compound. The asymmetric unit consists of one crystallographically independent Co cation and two crystallographically independent thio­cyanate anions that are located on a crystallographic mirror plane and one DMAP ligand (general position). In its crystal structure the discrete complexes are linked by C—H⋯S hydrogen bonds into a three-dimensional network. For comparison, the crystal structure of the known low-temperature form II, which is already thermodynamically stable at room temperature, was redetermined at the same temperature. In this polymorph the complexes are connected by C—H⋯S and C—H⋯N hydrogen bonds into a three-dimensional network. At 100 K the density of the high-temperature form I (ρ = 1.462 g cm−3) is higher than that of the low-temperature form II (ρ = 1.457 g cm−3), which is in contrast to the values determined by XRPD at room temperature. Therefore, these two forms represent an exception to the Kitaigorodskii density rule, for which extensive inter­molecular hydrogen bonding in form II might be responsible.

1. Chemical context

Polymorphism and isomerism is a widespread phenomenon in coordination chemistry (Braga & Grepioni, 2000[Braga, D. & Grepioni, F. (2000). Chem. Soc. Rev. 29, 229-238.]; Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Batten et al., 1998[Batten, Sr, R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.]; Zhang et al., 2009[Zhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385-2396.]). On one hand, these phenomena are a disadvantage for rational crystal design, but on the other hand they are of advantage for studying structure–property relationships (Braga et al., 2001[Braga, D., Grepioni, F. & Desiraju, G. (1998). Chem. Rev. 98, 1375-1406.]; Tao et al., 2012[Tao, J., Wei, R. J., Huang, R. B. & Zheng, L. S. (2012). Chem. Soc. Rev. 41, 703-737.]; Ossinger et al., 2020[Ossinger, S., Näther, C., Buchholz, A., Schmidtmann, M., Mangelsen, S., Beckhaus, R., Plass, W. & Tuczek, F. (2020). Inorg. Chem. 59, 7966-7979.]; Sheu et al., 2009[Sheu, C. F., Chen, K., Chen, S. M., Wen, Y. S., Lee, G. H., Chen, J. M., Lee, J. F., Cheng, B. M., Sheu, H. S., Yasuda, N., Ozawa, Y., Toriumi, K. & Wang, Y. (2009). Chem. Eur. J. 15, 2384-2393.]). Because in such a case the composition of the different forms is identical, all changes in the physical properties can be directly correlated with the structural changes. One class of compounds in which polymorphism and especially isomerism is observed are coordination compounds based on transition-metal thio­cyanates, because this anionic ligand shows several different coordination modes leading to a large structural variability (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Jochim et al., 2020[Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020). Dalton Trans. 49, 15310-15322.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Neumann et al., 2020a[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020a). CrystEngComm, 22, 184-194.]; Wellm et al., 2020a[Wellm, C., Neumann, T., Gallo, G., Dziubyna, A. M., Rams, M., Dinnebier, R. E. & Näther, C. (2020a). Cryst. Growth Des. 20, 3374-3385.]; Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. pp. 3236-3245.]; Buckingham, 1994[Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.]; Barnett et al., 2002[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640-1641.]).

In this context, we have recently reported the crystal structure of form II of Co(NCS)2(DMAP)2 (DMAP = 4-di­methyl­amino­pyridine, C7H10N2), which crystallizes as discrete complexes in which the cobalt cations are tetra­hedrally coordinated. This modification can directly be obtained from the reaction of Co(NCS)2 and 4-di­methyl­amino­pyridine in aqueous solution or by thermal decomposition of Co(NCS)2(DMAP)2(H2O)2-dihydrate (Neumann et al., 2018a[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018a). Eur. J. Inorg. Chem. pp. 4972-4981.]). In contrast, if the methanol complex Co(NCS)2(DMAP)2(MeOH)2 is thermally decomposed, a new polymorphic modification of Co(NCS)2(DMAP)2 (form I) is obtained. Because we were not able to prepare single crystals of this form, the corresponding Zn complex was prepared and XRPD indicates that it is isotypic to form I of the Co compound (Neumann et al., 2018b[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020-6027.]). Solvent-mediated conversion experiments reveal that form II is the thermodynamically stable form at room temperature and transforms into form I upon heating. Both forms are related by enanti­otropism and the thermodynamic transition temperature was determined to be above 135°C. The metastability of form I at room temperature might be the reason why no single crystals were obtained. It is noted that in contrast to the Co modification I, the corresponding Zn form is already thermodynamically stable at room temperature, which might be the reason that single crystals of this form can easily be prepared from solution (Neumann et al., 2020a[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020a). CrystEngComm, 22, 184-194.],b[Neumann, T., Jess, I., German, L. S., Dinnebier, R. E. & Näther, C. (2020b). Cryst. Growth Des. 19, 1143-1143.]).

[Scheme 1]

Later on, we investigated whether the physical properties of thio­cyanate coordination compounds can be influenced by mixed crystal formation and we found out that, for example, the critical temperature in layered thio­cyanate networks can be tuned by preparing mixed crystals with Co(NCS)2 and Ni(NCS)2 where a linear increase of Tc with increasing Co content was observed (Neumann et al., 2018b[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020-6027.]; Wellm et al., 2018[Wellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.], 2020b[Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020b). Dalton Trans. 49, 16707-16714.]). In the course of our systematic work, we are currently investigating whether mixed crystals of Ni(NCS)2(DMAP)2 and Co(NCS)2(DMAP)2 can be prepared. As already noted, the Co compound forms discrete complexes whereas the Ni compound shows a chain structure (Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). Preliminary XRPD investigations indicate that, in those cases where more than 50% Co(NCS)2 is used in the synthesis, a very small amount of form I of Co(NCS)2(DMAP)2 is formed as a side phase. This is in agreement with crystallization experiments to obtain single crystals where Co(NCS)2 and Ni(NCS)2 were used in a 90:10 ratio, because block-shaped and needle-like crystal are visible. Both of them were identified by single crystal X-ray diffraction, which proves that the block-like crystals correspond to the unit cell of the Ni compound, whereas the needle-like crystals correspond to the metastable form I of Co(NCS)2(DMAP)2, which was obviously obtained accidentally under kinetic control. To exclude the possibility that mixed crystals of form I have formed, the crystallization reaction was repeated with only Co(NCS)2 and in this case the same crystalline phase was obtained. As mentioned above, its single-crystal structure is unknown and it is therefore presented here for the first time. For better comparison, we also present the structure of form II at 100 K, because in our previous work it was measured at 170 K (Neumann et al., 2018b[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020-6027.]).

2. Structural commentary

Form I of Co(NCS)2(DMAP)2 crystallizes in the monoclinic space group P21/m with Z = 2 and the Co cation as well as the thio­cyanate anions are located on a crystallographic mirror plane, whereas the known form II crystallizes in space group P21/c with Z = 4 with all atoms in general positions. In both modifications, the CoII cations are fourfold coordinated by two terminal N-bonded thio­cyanate anions and two DMAP ligands within slightly distorted tetra­hedral environments (Figs. 1[link] and 2[link] and Table 1[link]). In form I, the two Co—N bond lengths to the thio­cyanate anions are slightly different, which is not the case in form II (Table 2[link]). Usually this is reflected in the values of the CN stretching vibrations but this is not the case for form I, because two bands are expected but only one is visible in its IR spectrum (Neumann et al., 2018b[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020-6027.]). Moreover, the Co—N bond lengths to the DMAP ligands are slightly longer in form I compared to form II (Table 2[link]). From the N—Co—N bond angles, it is obvious that both tetra­hedra are slightly distorted (Table 1[link]). In both modifications, the Co—N—C bond angle is close to linear. Finally, it is noted that the density of form I at 100 K of 1.462 g cm−3 is significantly greater than that of form II (1.457 g cm−3). This is surprising because form I was proven to be thermodynamically stable at a lower temperature and should have the higher density according to the density rule (Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York.: Consultants Bureau,]). This was determined from a Pawley fit of a powder pattern measured at room temperature (Neumann et al., 2018b[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020-6027.]) and therefore, the current findings are somehow in contradiction to the previous findings. Other exceptions to this rule are known if the crystal structure is dominated by inter­molecular hydrogen bonding, as already discussed in the literature (Burger & Ramberger, 1979[Burger, A. & Ramberger, R. (1979). Mikrochim. Acta, 72, 259-271.]).

Table 1
Selected geometric parameters (Å, °) for form I[link]

Co1—N1 1.9429 (18) Co1—N11 2.0148 (12)
Co1—N2 1.9672 (19)    
       
N1—Co1—N2 118.16 (8) N11—Co1—N11i 109.04 (7)
N1—Co1—N11 111.03 (4) C1—N1—Co1 179.48 (17)
N2—Co1—N11 103.47 (4) C2—N2—Co1 166.24 (16)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

Table 2
Selected geometric parameters (Å, °) for form II[link]

Co1—N1 1.9521 (13) Co1—N11 2.0057 (12)
Co1—N2 1.9535 (14) Co1—N21 2.0013 (12)
       
N1—Co1—N2 117.81 (6) N2—Co1—N21 106.71 (5)
N1—Co1—N11 105.83 (5) N21—Co1—N11 112.36 (5)
N1—Co1—N21 105.41 (5) C1—N1—Co1 168.56 (12)
N2—Co1—N11 108.82 (5) C2—N2—Co1 175.34 (13)
[Figure 1]
Figure 1
Crystal structure of form I with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) = x, 3/2 − y, z.
[Figure 2]
Figure 2
Crystal structure of form II with labeling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of form I, the discrete complexes are linked by C—H⋯S hydrogen bonds between one of the DMAP methyl H atoms and the thio­cyanate S atoms into layers that lie parallel to the bc plane (Fig. 3[link]). In this arrangement, each of the two S atoms acts as an acceptor for two hydrogen bonds to two symmetry-equivalent DMAP ligands (Fig. 3[link]). The C—H⋯S angles are close to 180°, indicating a relatively strong inter­action (Table 3[link]). These layers are further connected by weaker C—H⋯S contacts involving the thio­cyanate S atom S1 and the methyl H atoms of the DMAP ligands (Fig. 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for form I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯S2ii 0.98 2.91 3.8367 (15) 158
C17—H17B⋯S1iii 0.98 2.94 3.7291 (16) 138
C17—H17C⋯S1iv 0.98 2.89 3.8018 (18) 155
Symmetry codes: (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [-x+2, -y+1, -z].
[Figure 3]
Figure 3
Crystal structure of form I with a view of a layer in the direction of the crystallographic a-axis. Inter­molecular C—H⋯S hydrogen bonding is shown as dashed lines.
[Figure 4]
Figure 4
Crystal structure of form I viewed in the direction of the crystallographic c-axis. Inter­molecular C—H⋯S hydrogen bonding is shown as dashed lines.

In contrast to form I, both hydrogen bonds, C—H⋯S and C—H⋯N, are present in form II. In this modification, the mol­ecules are linked by pairs of C—H⋯N hydrogen bonds between the thio­cyanate N atoms and the H atoms of the DMAP ligands into chains that propagate along the crystallographic c-axis direction (Fig. 5[link]). These chains are further linked into a complicated three-dimensional network by four different C—H⋯S hydrogen bonds between the hydrogen atoms of the DMAP ligands and the thio­cyanate S atoms (Fig. 6[link] and Table 4[link]). For three of these hydrogen bonds, the C—H⋯S angle is close to linearity, which indicates that it is a relatively strong inter­action. This extensive inter­molecular hydrogen bonding might be responsible for the fact that the density of the low-temperature form II at 100 K is lower than that of the high-temperature form I, which is an exception to the density rule.

Table 4
Hydrogen-bond geometry (Å, °) for form II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S1i 0.95 2.87 3.7312 (15) 152
C16—H16C⋯S2ii 0.98 3.01 3.9663 (16) 166
C21—H21⋯S1iii 0.95 2.92 3.7888 (15) 153
C22—H22⋯N1iv 0.95 2.64 3.5448 (19) 159
C26—H26A⋯N2iv 0.98 2.70 3.531 (2) 143
C27—H27B⋯S2iv 0.98 2.98 3.7568 (17) 137
Symmetry codes: (i) [-x+2, -y+1, -z+2]; (ii) [-x+1, -y+1, -z+2]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
Crystal structure of form II with a view of a chain with inter­molecular C—H⋯S hydrogen bonding shown as dashed lines.
[Figure 6]
Figure 6
Crystal structure of form II with view in the direction of the crystallographic b-axis. Inter­molecular C—H⋯S and C—H⋯N hydrogen bonds are shown as dashed lines.

4. Database survey

As mentioned in the Chemical context section, the single-crystal structure of form II and the thermodynamic relations between form I and form II have already been reported (Neumann et al., 2018b[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020-6027.]). Also related are the corresponding Zn(NCS)2 modifications, but in contrast to Co, three different forms were observed with Zn (Neumann et al., 2018a[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018a). Eur. J. Inorg. Chem. pp. 4972-4981.],b[Neumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020-6027.]).

However, compounds with DMAP and other transition-metal thio­cyanates also exist. This includes the compound Zn(NCS)2(DMAP)2·chloro­benzene (Cambridge Structural Database refcode: QIPXES; Secondo et al., 2000[Secondo, P. M., Land, J. M., Baughman, R. G. & Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13-22.]), where the metal center is tetra­hedrally coordinated. In addition, some octa­hedral complexes are known in the literature. Cu(NCS)2(DMAP)2(di­methyl­formamide)2 (HIVZAO; Chen et al., 2007[Chen, F., Liu, G. & Zeng, Z. (2007). Anal. Sci. X, 23, X253-X254.]), Mn(NCS)2(DMAP)2(CH3OH)2 (NUKCON; Suckert et al., 2015[Suckert, S., Jess, I. & Näther, C. (2015). Acta Cryst. E71, m126.]) and Cd(NCS)2(DMAP)2(DMSO)2 (QIPXOC; Secondo et al., 2000[Secondo, P. M., Land, J. M., Baughman, R. G. & Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13-22.]) all consist of a metal center with two thio­cyanate anions, two DMAP co-ligands and two additional identical co-ligands each.

In [Cd(NCS)2(DMAP)2]n (QIPXIW; Secondo et al., 2000[Secondo, P. M., Land, J. M., Baughman, R. G. & Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13-22.]) and [Ni(NCS)2(DMAP)2]n (GIQQOP; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]), two non-isotypical linear chains are reported, in which the cations have an all-trans MN4S2 octa­hedral coordination of two N-bonded and two S-bonded bridging thio­cyanate anions and two DMAP co-ligands.

5. Synthesis and crystallization

Co(NCS)2 and DMAP were purchased from Merck. All chemicals were used without further purification.

Blue single crystals of form I suitable for single crystal X-ray analysis were obtained three days after storing 0.15 mmol Co(NCS)2 (26.3 mg) and 0.30 mmol DMAP (36.6 mg) in 1.0 ml H2O at 333 K followed by slow cooling.

Single crystals of form II were obtained as described in the literature (Neumann et al., 2018a[Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018a). Eur. J. Inorg. Chem. pp. 4972-4981.]).

6. Refinement

The C-bound H atoms were located in the difference map but positioned with idealized geometry (C—H = 0.95–0.98 Å; methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms] using a riding model. Crystal data, data collection and structure refinement details are summarized in Table 5[link].

Table 5
Experimental details

  Form I Form II
Crystal data
Chemical formula [Co(NCS)2(C7H10N2)2] C16H20CoN6S2
Mr 419.43 419.43
Crystal system, space group Monoclinic, P121/m1 Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 5.3708 (1), 15.2200 (2), 11.8014 (1) 13.9171 (1), 9.5114 (1), 14.4487 (1)
β (°) 99.076 (1) 90.489 (1)
V3) 952.61 (2) 1912.52 (3)
Z 2 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 9.20 9.17
Crystal size (mm) 0.2 × 0.12 × 0.04 0.18 × 0.1 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.311, 1.000 0.476, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16411, 2100, 2081 57319, 4151, 4079
Rint 0.025 0.025
(sin θ/λ)max−1) 0.635 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.14 0.026, 0.073, 1.13
No. of reflections 2100 4151
No. of parameters 126 231
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.37 0.29, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[4-(dimethylamino)pyridine]dithiocyanatocobalt(II) (Form_I) top
Crystal data top
[Co(NCS)2(C7H10N2)2]F(000) = 434
Mr = 419.43Dx = 1.462 Mg m3
Monoclinic, P121/m1Cu Kα radiation, λ = 1.54184 Å
a = 5.3708 (1) ÅCell parameters from 13880 reflections
b = 15.2200 (2) Åθ = 3.8–77.3°
c = 11.8014 (1) ŵ = 9.20 mm1
β = 99.076 (1)°T = 100 K
V = 952.61 (2) Å3Block, light blue
Z = 20.2 × 0.12 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2100 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2081 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 78.1°, θmin = 3.8°
ω scansh = 65
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
k = 1919
Tmin = 0.311, Tmax = 1.000l = 1414
16411 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.4033P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2100 reflectionsΔρmax = 0.25 e Å3
126 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.93113 (6)0.7500000.27609 (3)0.01820 (10)
N11.1349 (3)0.7500000.15392 (15)0.0236 (4)
C11.2586 (4)0.7500000.08142 (17)0.0197 (4)
S11.43347 (10)0.7500000.01905 (4)0.02516 (13)
N21.1055 (3)0.7500000.43574 (15)0.0228 (4)
C21.2525 (4)0.7500000.52018 (17)0.0202 (4)
S21.46184 (10)0.7500000.63528 (4)0.02618 (13)
N110.7113 (2)0.64220 (8)0.26788 (10)0.0186 (2)
C110.5802 (3)0.62788 (9)0.35490 (12)0.0194 (3)
H110.6140760.6648790.4203440.023*
C120.4021 (3)0.56372 (9)0.35509 (12)0.0197 (3)
H120.3183720.5567800.4196710.024*
C130.3428 (3)0.50769 (9)0.25904 (12)0.0196 (3)
C140.4861 (3)0.52099 (10)0.16919 (12)0.0216 (3)
H140.4608070.4839520.1035870.026*
C150.6609 (3)0.58727 (9)0.17704 (12)0.0203 (3)
H150.7521190.5950550.1150200.024*
N120.1612 (2)0.44622 (8)0.25328 (11)0.0229 (3)
C160.0279 (3)0.43142 (10)0.34987 (14)0.0265 (3)
H16A0.1472100.4109130.4160770.040*
H16B0.1032200.3869370.3290580.040*
H16C0.0498660.4864590.3694910.040*
C170.1036 (3)0.38967 (11)0.15329 (15)0.0320 (4)
H17A0.0536750.4258000.0847310.048*
H17B0.0348800.3499980.1635080.048*
H17C0.2531020.3550950.1442300.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01752 (17)0.01727 (17)0.02091 (17)0.0000.00643 (12)0.000
N10.0219 (8)0.0256 (9)0.0246 (9)0.0000.0077 (7)0.000
C10.0170 (9)0.0193 (9)0.0220 (9)0.0000.0007 (7)0.000
S10.0251 (3)0.0307 (3)0.0215 (2)0.0000.00917 (19)0.000
N20.0225 (8)0.0226 (9)0.0246 (9)0.0000.0076 (7)0.000
C20.0223 (9)0.0160 (9)0.0248 (10)0.0000.0108 (8)0.000
S20.0249 (3)0.0292 (3)0.0237 (2)0.0000.00158 (19)0.000
N110.0187 (5)0.0172 (5)0.0203 (5)0.0012 (4)0.0043 (4)0.0012 (4)
C110.0211 (6)0.0187 (6)0.0190 (6)0.0022 (5)0.0047 (5)0.0010 (5)
C120.0218 (6)0.0195 (7)0.0191 (6)0.0030 (5)0.0071 (5)0.0015 (5)
C130.0179 (6)0.0179 (6)0.0229 (6)0.0021 (5)0.0027 (5)0.0015 (5)
C140.0242 (7)0.0221 (7)0.0187 (6)0.0011 (6)0.0041 (5)0.0030 (5)
C150.0220 (6)0.0217 (7)0.0181 (6)0.0023 (6)0.0062 (5)0.0003 (5)
N120.0222 (6)0.0196 (6)0.0275 (6)0.0022 (5)0.0055 (5)0.0016 (5)
C160.0234 (7)0.0246 (7)0.0324 (8)0.0020 (6)0.0067 (6)0.0059 (6)
C170.0302 (8)0.0280 (8)0.0379 (9)0.0072 (7)0.0056 (7)0.0099 (7)
Geometric parameters (Å, º) top
Co1—N11.9429 (18)C13—C141.4195 (19)
Co1—N21.9672 (19)C13—N121.3454 (19)
Co1—N112.0148 (12)C14—H140.9500
Co1—N11i2.0148 (12)C14—C151.371 (2)
N1—C11.163 (3)C15—H150.9500
C1—S11.625 (2)N12—C161.4559 (19)
N2—C21.170 (3)N12—C171.454 (2)
C2—S21.621 (2)C16—H16A0.9800
N11—C111.3512 (17)C16—H16B0.9800
N11—C151.3529 (18)C16—H16C0.9800
C11—H110.9500C17—H17A0.9800
C11—C121.367 (2)C17—H17B0.9800
C12—H120.9500C17—H17C0.9800
C12—C131.414 (2)
N1—Co1—N2118.16 (8)C13—C14—H14120.0
N1—Co1—N11111.03 (4)C15—C14—C13120.05 (13)
N1—Co1—N11i111.03 (4)C15—C14—H14120.0
N2—Co1—N11103.47 (4)N11—C15—C14123.86 (13)
N2—Co1—N11i103.47 (4)N11—C15—H15118.1
N11—Co1—N11i109.04 (7)C14—C15—H15118.1
C1—N1—Co1179.48 (17)C13—N12—C16120.66 (12)
N1—C1—S1179.51 (19)C13—N12—C17120.83 (13)
C2—N2—Co1166.24 (16)C17—N12—C16118.42 (12)
N2—C2—S2178.57 (18)N12—C16—H16A109.5
C11—N11—Co1117.81 (9)N12—C16—H16B109.5
C11—N11—C15116.08 (12)N12—C16—H16C109.5
C15—N11—Co1125.71 (9)H16A—C16—H16B109.5
N11—C11—H11117.8H16A—C16—H16C109.5
N11—C11—C12124.41 (13)H16B—C16—H16C109.5
C12—C11—H11117.8N12—C17—H17A109.5
C11—C12—H12120.0N12—C17—H17B109.5
C11—C12—C13119.91 (13)N12—C17—H17C109.5
C13—C12—H12120.0H17A—C17—H17B109.5
C12—C13—C14115.63 (13)H17A—C17—H17C109.5
N12—C13—C12121.99 (13)H17B—C17—H17C109.5
N12—C13—C14122.38 (13)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···S2ii0.982.913.8367 (15)158
C17—H17B···S1iii0.982.943.7291 (16)138
C17—H17C···S1iv0.982.893.8018 (18)155
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z.
(Form_II) top
Crystal data top
C16H20CoN6S2F(000) = 868
Mr = 419.43Dx = 1.457 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.9171 (1) ÅCell parameters from 41675 reflections
b = 9.5114 (1) Åθ = 3.2–79.4°
c = 14.4487 (1) ŵ = 9.17 mm1
β = 90.489 (1)°T = 100 K
V = 1912.52 (3) Å3Block, dark blue
Z = 40.18 × 0.1 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4151 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4079 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 80.2°, θmin = 3.2°
ω scansh = 1717
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
k = 1212
Tmin = 0.476, Tmax = 1.000l = 1818
57319 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.8179P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.002
S = 1.13Δρmax = 0.29 e Å3
4151 reflectionsΔρmin = 0.35 e Å3
231 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00076 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.77328 (2)0.36737 (2)0.79003 (2)0.01802 (8)
N10.89733 (9)0.40269 (14)0.84966 (9)0.0228 (3)
C10.97734 (11)0.42519 (15)0.87028 (9)0.0203 (3)
S11.08865 (3)0.45439 (4)0.89675 (3)0.02797 (10)
N20.72639 (9)0.17383 (14)0.78687 (9)0.0249 (3)
C20.69467 (10)0.06052 (16)0.79023 (10)0.0225 (3)
S20.64780 (3)0.09564 (4)0.79675 (3)0.02997 (10)
N110.67807 (8)0.48667 (13)0.85774 (8)0.0203 (2)
C110.69896 (10)0.53200 (16)0.94415 (10)0.0213 (3)
H110.7593380.5066480.9703920.026*
C120.63811 (11)0.61250 (16)0.99628 (10)0.0218 (3)
H120.6561000.6394101.0573330.026*
C130.54861 (10)0.65531 (15)0.95897 (10)0.0199 (3)
C140.52571 (10)0.60389 (16)0.86934 (10)0.0222 (3)
H140.4655170.6257310.8413730.027*
C150.59106 (10)0.52243 (16)0.82332 (10)0.0213 (3)
H150.5739770.4890800.7634270.026*
N120.48862 (9)0.74021 (14)1.00607 (9)0.0241 (3)
C160.51936 (12)0.80309 (19)1.09350 (12)0.0303 (3)
H16A0.5772750.8595331.0835720.045*
H16B0.5334160.7286031.1384800.045*
H16C0.4680410.8633881.1171980.045*
C170.40047 (11)0.79162 (19)0.96272 (12)0.0309 (3)
H17A0.3607130.7116360.9433680.046*
H17B0.4164510.8486790.9085120.046*
H17C0.3649530.8491211.0071200.046*
N210.78919 (8)0.42769 (13)0.65835 (8)0.0189 (2)
C210.82983 (10)0.33442 (16)0.59926 (10)0.0196 (3)
H210.8341190.2389490.6181670.024*
C220.86504 (11)0.36954 (15)0.51404 (10)0.0209 (3)
H220.8916320.2990610.4753350.025*
C230.86172 (10)0.51100 (16)0.48379 (9)0.0200 (3)
C240.81437 (11)0.60652 (16)0.54359 (11)0.0227 (3)
H240.8050270.7014240.5251070.027*
C250.78214 (10)0.56180 (15)0.62799 (10)0.0211 (3)
H250.7531160.6290490.6675180.025*
N220.90343 (9)0.55389 (14)0.40487 (8)0.0231 (3)
C260.95644 (11)0.45537 (17)0.34714 (10)0.0248 (3)
H26A0.9116200.4064590.3055360.037*
H26B0.9895130.3865970.3866000.037*
H26C1.0037830.5068810.3105000.037*
C270.89616 (12)0.69988 (18)0.37410 (11)0.0290 (3)
H27A0.9278500.7612940.4194690.043*
H27B0.8283080.7262110.3682320.043*
H27C0.9274630.7100430.3139710.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01610 (13)0.02028 (13)0.01770 (13)0.00148 (8)0.00179 (9)0.00024 (8)
N10.0219 (6)0.0263 (6)0.0202 (6)0.0016 (5)0.0008 (5)0.0020 (5)
C10.0247 (7)0.0197 (7)0.0166 (6)0.0006 (5)0.0008 (5)0.0013 (5)
S10.02121 (18)0.0317 (2)0.03093 (19)0.00319 (14)0.00599 (14)0.00401 (15)
N20.0239 (6)0.0224 (6)0.0284 (6)0.0016 (5)0.0022 (5)0.0000 (5)
C20.0175 (6)0.0262 (8)0.0238 (7)0.0019 (6)0.0009 (5)0.0005 (6)
S20.02535 (19)0.02148 (19)0.0430 (2)0.00320 (14)0.00451 (16)0.00357 (16)
N110.0187 (6)0.0227 (6)0.0196 (5)0.0013 (5)0.0015 (4)0.0004 (5)
C110.0166 (6)0.0262 (7)0.0211 (6)0.0004 (5)0.0011 (5)0.0012 (6)
C120.0195 (7)0.0248 (7)0.0210 (7)0.0013 (5)0.0012 (5)0.0016 (5)
C130.0170 (6)0.0193 (6)0.0235 (7)0.0026 (5)0.0022 (5)0.0020 (5)
C140.0170 (6)0.0259 (7)0.0236 (7)0.0009 (5)0.0034 (5)0.0031 (6)
C150.0210 (7)0.0243 (7)0.0187 (6)0.0019 (5)0.0015 (5)0.0002 (5)
N120.0187 (6)0.0264 (6)0.0270 (6)0.0034 (5)0.0012 (5)0.0015 (5)
C160.0245 (7)0.0333 (9)0.0332 (8)0.0030 (6)0.0030 (6)0.0107 (7)
C170.0224 (7)0.0324 (8)0.0378 (8)0.0089 (6)0.0004 (6)0.0007 (7)
N210.0170 (5)0.0212 (6)0.0185 (5)0.0003 (4)0.0010 (4)0.0005 (4)
C210.0188 (6)0.0193 (6)0.0207 (6)0.0009 (5)0.0007 (5)0.0015 (5)
C220.0183 (7)0.0241 (7)0.0203 (7)0.0007 (5)0.0003 (5)0.0034 (5)
C230.0153 (6)0.0253 (7)0.0194 (6)0.0031 (5)0.0016 (5)0.0005 (5)
C240.0215 (7)0.0210 (7)0.0257 (7)0.0010 (5)0.0004 (6)0.0025 (6)
C250.0195 (6)0.0208 (7)0.0228 (7)0.0024 (5)0.0014 (5)0.0022 (5)
N220.0226 (6)0.0262 (7)0.0205 (6)0.0024 (5)0.0029 (5)0.0018 (5)
C260.0216 (7)0.0333 (8)0.0195 (7)0.0043 (6)0.0037 (5)0.0005 (6)
C270.0308 (8)0.0293 (8)0.0269 (7)0.0040 (6)0.0021 (6)0.0076 (6)
Geometric parameters (Å, º) top
Co1—N11.9521 (13)C16—H16C0.9800
Co1—N21.9535 (14)C17—H17A0.9800
Co1—N112.0057 (12)C17—H17B0.9800
Co1—N212.0013 (12)C17—H17C0.9800
N1—C11.170 (2)N21—C211.3579 (18)
C1—S11.6164 (15)N21—C251.3522 (19)
N2—C21.166 (2)C21—H210.9500
C2—S21.6253 (16)C21—C221.371 (2)
N11—C111.3502 (18)C22—H220.9500
N11—C151.3488 (19)C22—C231.415 (2)
C11—H110.9500C23—C241.420 (2)
C11—C121.372 (2)C23—N221.3472 (18)
C12—H120.9500C24—H240.9500
C12—C131.413 (2)C24—C251.370 (2)
C13—C141.418 (2)C25—H250.9500
C13—N121.3498 (19)N22—C261.4590 (19)
C14—H140.9500N22—C271.461 (2)
C14—C151.371 (2)C26—H26A0.9800
C15—H150.9500C26—H26B0.9800
N12—C161.459 (2)C26—H26C0.9800
N12—C171.457 (2)C27—H27A0.9800
C16—H16A0.9800C27—H27B0.9800
C16—H16B0.9800C27—H27C0.9800
N1—Co1—N2117.81 (6)N12—C17—H17B109.5
N1—Co1—N11105.83 (5)N12—C17—H17C109.5
N1—Co1—N21105.41 (5)H17A—C17—H17B109.5
N2—Co1—N11108.82 (5)H17A—C17—H17C109.5
N2—Co1—N21106.71 (5)H17B—C17—H17C109.5
N21—Co1—N11112.36 (5)C21—N21—Co1117.41 (10)
C1—N1—Co1168.56 (12)C25—N21—Co1124.79 (10)
N1—C1—S1178.72 (14)C25—N21—C21116.22 (12)
C2—N2—Co1175.34 (13)N21—C21—H21118.0
N2—C2—S2178.29 (15)N21—C21—C22124.03 (14)
C11—N11—Co1119.59 (10)C22—C21—H21118.0
C15—N11—Co1123.89 (10)C21—C22—H22120.1
C15—N11—C11116.49 (12)C21—C22—C23119.87 (13)
N11—C11—H11118.1C23—C22—H22120.1
N11—C11—C12123.84 (13)C22—C23—C24115.75 (13)
C12—C11—H11118.1N22—C23—C22122.41 (13)
C11—C12—H12120.1N22—C23—C24121.80 (14)
C11—C12—C13119.85 (14)C23—C24—H24120.0
C13—C12—H12120.1C25—C24—C23120.00 (14)
C12—C13—C14116.08 (13)C25—C24—H24120.0
N12—C13—C12121.80 (14)N21—C25—C24123.92 (13)
N12—C13—C14122.12 (14)N21—C25—H25118.0
C13—C14—H14120.2C24—C25—H25118.0
C15—C14—C13119.54 (13)C23—N22—C26120.87 (13)
C15—C14—H14120.2C23—N22—C27121.07 (13)
N11—C15—C14124.11 (13)C26—N22—C27118.06 (12)
N11—C15—H15117.9N22—C26—H26A109.5
C14—C15—H15117.9N22—C26—H26B109.5
C13—N12—C16120.26 (13)N22—C26—H26C109.5
C13—N12—C17120.40 (13)H26A—C26—H26B109.5
C17—N12—C16118.32 (13)H26A—C26—H26C109.5
N12—C16—H16A109.5H26B—C26—H26C109.5
N12—C16—H16B109.5N22—C27—H27A109.5
N12—C16—H16C109.5N22—C27—H27B109.5
H16A—C16—H16B109.5N22—C27—H27C109.5
H16A—C16—H16C109.5H27A—C27—H27B109.5
H16B—C16—H16C109.5H27A—C27—H27C109.5
N12—C17—H17A109.5H27B—C27—H27C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S1i0.952.873.7312 (15)152
C16—H16C···S2ii0.983.013.9663 (16)166
C21—H21···S1iii0.952.923.7888 (15)153
C22—H22···N1iv0.952.643.5448 (19)159
C26—H26A···N2iv0.982.703.531 (2)143
C27—H27B···S2iv0.982.983.7568 (17)137
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

Financial support by the State of Schleswig-Holstein is gratefully acknowledged.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA720/5-2).

References

First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640–1641.  Web of Science CSD CrossRef Google Scholar
First citationBatten, Sr, R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBraga, D. & Grepioni, F. (2000). Chem. Soc. Rev. 29, 229–238.  CrossRef CAS Google Scholar
First citationBraga, D., Grepioni, F. & Desiraju, G. (1998). Chem. Rev. 98, 1375–1406.  CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, D. A. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Web of Science Google Scholar
First citationBurger, A. & Ramberger, R. (1979). Mikrochim. Acta, 72, 259–271.  CrossRef Web of Science Google Scholar
First citationChen, F., Liu, G. & Zeng, Z. (2007). Anal. Sci. X, 23, X253–X254.  CAS Google Scholar
First citationJochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020). Dalton Trans. 49, 15310–15322.  CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationKitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York.: Consultants Bureau,  Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020a). CrystEngComm, 22, 184–194.  CSD CrossRef CAS Google Scholar
First citationNeumann, T., Jess, I., German, L. S., Dinnebier, R. E. & Näther, C. (2020b). Cryst. Growth Des. 19, 1143–1143.  Google Scholar
First citationNeumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018a). Eur. J. Inorg. Chem. pp. 4972–4981.  CSD CrossRef Google Scholar
First citationNeumann, T., Rams, M., Wellm, C. & Näther, C. (2018b). Cryst. Growth Des. 18, 6020–6027.  CrossRef CAS Google Scholar
First citationOssinger, S., Näther, C., Buchholz, A., Schmidtmann, M., Mangelsen, S., Beckhaus, R., Plass, W. & Tuczek, F. (2020). Inorg. Chem. 59, 7966–7979.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationSecondo, P. M., Land, J. M., Baughman, R. G. & Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheu, C. F., Chen, K., Chen, S. M., Wen, Y. S., Lee, G. H., Chen, J. M., Lee, J. F., Cheng, B. M., Sheu, H. S., Yasuda, N., Ozawa, Y., Toriumi, K. & Wang, Y. (2009). Chem. Eur. J. 15, 2384–2393.  CSD CrossRef PubMed CAS Google Scholar
First citationSuckert, S., Jess, I. & Näther, C. (2015). Acta Cryst. E71, m126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTao, J., Wei, R. J., Huang, R. B. & Zheng, L. S. (2012). Chem. Soc. Rev. 41, 703–737.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020b). Dalton Trans. 49, 16707–16714.  CrossRef CAS PubMed Google Scholar
First citationWellm, C., Neumann, T., Gallo, G., Dziubyna, A. M., Rams, M., Dinnebier, R. E. & Näther, C. (2020a). Cryst. Growth Des. 20, 3374–3385.  CSD CrossRef CAS Google Scholar
First citationWellm, C., Rams, M., Neumann, T., Ceglarska, M. & Näther, C. (2018). Cryst. Growth Des. 18, 3117–3123.  Web of Science CrossRef CAS Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. pp. 3236–3245.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385–2396.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds