research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Role of pKa in establishing the crystal structures of six hydrogen-bonded compounds of 4-methyl­quinoline with different isomers of chloro- and nitro-substituted benzoic acids

crossmark logo

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 October 2021; accepted 20 October 2021; online 26 October 2021)

The structures of the six hydrogen-bonded 1:1 compounds of 4-methyl­quinoline (C10H9N) with chloro- and nitro-substituted benzoic acids (C7H4ClNO4), namely, 4-methyl­quinolinium 2-chloro-4-nitro­benzoate, C10H10N+·C7H3ClNO4, (I), 4-methyl­quinoline–2-chloro-5-nitro­benzoic acid (1/1), C10H9N·C7H4ClNO4, (II), 4-methyl­quinolinium 2-chloro-6-nitro­benzoate, C10H9.63N0.63+·C7H3.37ClNO40.63−, (III), 4-methyl­quinolinium 3-chloro-2-nitro­benzoate, C10H9.54N0.54+·C7H3.46ClNO40.54−, (IV), 4-methyl­quinolinium 4-chloro-2-nitro­benzoate, C10H10N+·C7H3ClNO4, (V), and 4-methyl­quinolinium 5-chloro-2-nitro­benzoate, C10H10N+·C7H3ClNO4, have been determined at 185–190 K. In each compound, the acid and base mol­ecules are linked by a short hydrogen bond between a carb­oxy (or carboxyl­ate) O atom and an N atom of the base. The O⋯N distances are 2.5652 (14), 2.556 (3), 2.5485 (13), 2.5364 (13), 2.5568 (13) and 2.5252 (11) Å, respectively, for compounds (I)–(VI). In the hydrogen-bonded acid–base units of (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.37 (3):0.63 (3) and 0.46 (3):0.54 (4), respectively, for (III) and (IV). The H atoms in the hydrogen-bonded units of (I), (V) and (VI) are located at the N-atom site, while the H atom in (II) is located at the O-atom site. In all the crystals of (I)–(VI), ππ stacking inter­actions between the quinoline ring systems and C—H⋯O hydrogen bonds are observed. Similar layer structures are constructed in (IV)–(VI) through these inter­actions together with ππ inter­actions between the benzene rings of the adjacent acid mol­ecules. A short Cl⋯Cl contact and an N—O⋯π inter­action are present in (I), while a C—H⋯Cl hydrogen bond and a ππ inter­action between the benzene ring of the acid mol­ecule and the quinoline ring system in (II), and a C—H⋯π inter­action in (III) are observed. Hirshfeld surfaces for the title compounds mapped over dnorm and shape index were generated to visualize the weak inter­molecular inter­actions.

1. Chemical context

The properties of hydrogen bonds formed between organic acids and organic bases depend on the pKa values of the acids and bases as well as the inter­molecular inter­actions in the crystals. In our ongoing studies of crystal structures for the system of quinoline derivatives–chloro- and nitro-substituted benzoic acids, we have shown that three compounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), and three compounds of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid (Gotoh & Ishida, 2020[Gotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701-1707.]) have a short double-well O—H⋯N/O⋯H—N hydrogen bond between the carb­oxy O atom and the aromatic N atom. The ΔpKa [pKa(base) – pKa(acid)] values of these compounds are in the range 2.93–3.38. Although the pKa value of 4-methyl­quinoline is 5.66, which is slight larger than quinoline (pKa = 4.90) and 6-methyl­quinoline (pKa = 5.20), the system of 4-methyl­quinoline–chloro- and nitro-substituted benzoic acids is an attractive candidate for studying short hydrogen bonds and also weak inter­molecular inter­actions. We report here crystal structures of six hydrogen-bonded compounds, namely, 4-methyl­quinolinium 2-chloro-4-nitro­benzoate, (I)[link], 2-chloro-5-nitro­benzoic acid–4-methyl­quinoline, (II)[link], 2-chloro-6-nitro­benzoic acid–4-methyl­quinoline, (III)[link], 3-chloro-2-nitro­benzoic acid–4-methyl­quinoline, (IV)[link], 4-methyl­quinolinium 4-chloro-2-nitro­benzoate, (V)[link], and 4-methyl­quinolinium 5-chloro-2-nitro­benzoate, (VI)[link]. The ΔpKa values are 3.62, 3.44, 4.04, 3.84, 3.69 and 3.80, respectively, for (I)–(VI) (Table 1[link]).

[Scheme 1]

Table 1
Dihedral angles in the acid-base unit (°), hydrogen position and ΔpKa

A, B, C, D and E are the dihedral angles between the C1–C6 ring and the N2/C8–C16 ring system, between the O1/C7/O2 plane and the N2/C8–C16 ring system, between the C1–C6 ring and the O1/C7/O2 plane, between the C1–C6 ring and the O3/N1/O4 plane, and between the N2/C8–C16 ring system and the nitro group attached to it, respectively.

  A B C D E H-atom site ΔpKa
2-Chloro-4-nitro­benzoic acid              
(I) 69.15 (5) 26.60 (16) 51.29 (17) 17.77 (14)   N 3.62
a 3.15 (7) 43.0 (2) 39.9 (2) 12.2 (2)   O 2.86
b 1.11 (4) 28.59 (12) 29.36 (12) 8.24 (11)   O/N 3.16
c 3.94 (17) 7.5 (5) 4.3 (5) 2.5 (5) 36.2 (5) O 0.76
2-Chloro-5-nitro­benzoic acid              
(II) 13.81 (10) 14.1 (3) 24.6 (3) 9.7 (3)   O 3.44
a 1.92 (4) 22.48 (14) 21.02 (14) 0.50 (13)   O 2.68
b 2.15 (4) 24.51 (15) 22.63 (15) 0.77 (14)   O 2.98
2-Chloro-6-nitro­benzoic acid              
(III) 61.05 (5) 35.42 (16) 84.53 (16) 21.7 (8), 14.7 (14)   O/N 4.04
3-Chloro-2-nitro­benzoic acid              
(IV) 59.45 (4) 37.30 (13) 22.39 (13) 75.20 (13)   O/N 3.84
a 4.71 (5) 6.18 (16) 9.22 (16) 84.97 (13)   O/N 3.08
b 14.50 (5) 12.55 (18) 3.14 (18) 85.04 (11)   O/N 3.38
c 2.59 (4) 9.95 (12) 9.45 (12) 86.14 (13) 31.67 (11) O 0.98
d 10.99 (4) 12.08 (13) 2.40 (13) 88.54 (13) 5.58 (12) O 1.42
4-Chloro-2-nitro­benzoic acid              
(V) 61.21 (5) 67.42 (14) 10.22 (14) 80.76 (15)   N 3.69
a 31.65 (4) 18.77 (13) 13.71 (13) 76.44 (17)   O/N 2.93
b 30.39 (9) 21.7 (3) 16.4 (3) 74.4 (3)   O/N 3.23
5-Chloro-2-nitro­benzoic acid              
(VI) 58.90 (4) 23.54 (13) 35.43 (13) 57.13 (11)   N 3.80
a 54.43 (5) 5.41 (15) 49.95 (15) 33.31 (13)   O/N 3.04
c 37.37 (6) 2.9 (2) 40.3 (2) 47.12 (19) 11.3 (2) O 0.94
Notes: a: quinoline compounds (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.], 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.]), b: 6-methyl­quinoline compounds (Gotoh & Ishida, 2020[Gotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701-1707.]), c: 5-nitro­quinoline compounds (Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.],b[Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694-1699.]) and d: 6-nitro­quinoline–3-chloro-2-nitro­benzoic acid (Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]).

2. Structural commentary

The mol­ecular structures of compounds (I)–(VI) are shown in Fig. 1[link]. In each compound, the acid and base mol­ecules are linked by a short hydrogen bond between the O atom of the carb­oxy (or carboxyl­ate) group and the N atom of the base with O⋯N distances of 2.5652 (14), 2.556 (3), 2.5485 (13), 2.5364 (13), 2.5568 (13) and 2.5252 (11) Å, respectively, for compounds (1)–(VI) (Tables 2[link]–7[link][link][link][link][link]). In (III)[link] and (IV)[link], the H atoms in these hydrogen bonds are each disordered over two sites with O site:N site occupancies of 0.37 (3):0.63 (3) and 0.46 (3):0.54 (3), respectively, for (III)[link] and (IV)[link]. In (I)[link], (V)[link] and (VI)[link], the H atoms in the hydrogen bonds are located at the N site, while in (II)[link] they are located at the O-atom site. In addition, a weak C—H⋯O hydrogen bond is observed in each of the acid–base units of (I)[link] and (VI)[link] (C15—H15⋯O2; Tables 2[link] and 7[link]). The nitro group in (III)[link] is disordered over two orientations around the N1—C6 bond with occupancies of 0.46 (3) and 0.54 (3).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.900 (19) 1.678 (19) 2.5652 (14) 167.7 (18)
C6—H6⋯O2i 0.95 2.39 3.3066 (16) 163
C8—H8⋯O3ii 0.95 2.56 3.4199 (16) 151
C9—H9⋯O2iii 0.95 2.44 3.3360 (16) 158
C15—H15⋯O2 0.95 2.36 3.2835 (17) 163
N1—O3⋯Cg3iv 1.22 (1) 3.26 (1) 4.3171 (13) 145 (1)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x, -y+1, -z+2]; (iii) x, y+1, z; (iv) [x, y-1, z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.91 (7) 1.68 (7) 2.556 (3) 162 (7)
C3—H3⋯O4i 0.95 2.40 3.280 (4) 154
C4—H4⋯O3ii 0.95 2.54 3.188 (3) 126
C17—H17A⋯O2iii 0.98 2.57 3.479 (4) 155
C17—H17C⋯Cl1iv 0.98 2.81 3.535 (4) 131
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+3, -z+1]; (iii) [x, y-1, z]; (iv) [-x, -y+1, -z].

Table 4
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 (4) 1.71 (4) 2.5485 (13) 177 (6)
N2—H2⋯O1 0.89 (2) 1.66 (2) 2.5485 (13) 176 (2)
C5—H5⋯O1i 0.95 2.49 3.1489 (15) 126
C13—H13⋯O2ii 0.95 2.36 3.2889 (17) 165
C14—H14⋯Cg1ii 0.95 2.89 3.6596 (15) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, y, z-1].

Table 5
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 (3) 1.70 (3) 2.5364 (13) 175 (3)
N2—H2⋯O1 0.89 (2) 1.65 (2) 2.5364 (13) 175 (3)
C6—H6⋯O3i 0.95 2.59 3.4705 (14) 155
C9—H9⋯O2ii 0.95 2.41 3.1739 (15) 137
C17—H17C⋯O2iii 0.98 2.47 3.4155 (17) 162
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1].

Table 6
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 1.06 (2) 1.50 (2) 2.5568 (13) 179 (4)
C8—H8⋯O2i 0.95 2.56 3.2779 (16) 132
C12—H12⋯O2ii 0.95 2.52 3.3391 (18) 144
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+1, -z+1].

Table 7
Hydrogen-bond geometry (Å, °) for (VI)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 1.03 (2) 1.52 (2) 2.5252 (11) 165 (2)
C9—H9⋯O2i 0.95 2.34 3.2856 (13) 171
C12—H12⋯O3ii 0.95 2.58 3.5065 (14) 166
C15—H15⋯O2 0.95 2.57 3.4583 (13) 155
C17—H17A⋯O2ii 0.98 2.41 3.3524 (16) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
Mol­ecular structures of the title compounds (I)–(VI), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. In the hydrogen bonds between the carb­oxy O atom and the base N atom of compounds (III)[link] and (IV)[link], the H atoms are each disordered over two positions. The nitro group in (III)[link] is disordered around the N1—C6 bond. Dashed lines in (I)[link], (II)[link], (V)[link] and (VI)[link] indicate the N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds.

The dihedral angles made by the benzene C1–C6 ring, the carb­oxy/carboxyl­ate O1/C7/O2 plane and the nitro O3/N1/O4 plane of the acid, and the quinoline N2/C8–C16 ring system of the base in each hydrogen-bonded acid-base unit of (I)–(VI) are summarized in Table 1[link], together with those in compounds of other quinoline derivatives with chloro- and nitro-substituted benzoic acids, which contain similar hydrogen-bonded acid-base units (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.], 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.], 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.],b[Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694-1699.], 2020[Gotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701-1707.]). The H-atom position in the short hydrogen bond and the ΔpKa value of each compound are also given in Table 1[link]. In each acid–base unit of compounds of (I)[link] and (III)–(VI), the acid C1–C6 ring and the quinoline N2/C8–C16 ring system are considerably twisted with respect to each other with dihedral angles of 58.90 (4)–69.15 (5)°, which are much larger than those of other compounds. In the acid–base unit of (II)[link], the acid ring and the quinoline ring system are slightly twisted by 13.18 (10)°, which is still larger compared with those of quinoline–2-chloro-5-nitro­benzoic acid [1.92 (4)°] and 6-methyl­quinoline–2-chloro-5-nitro­benzoic acid [2.15 (4)°]. These results suggest that the methyl group substituted to the quinoline ring system at the 4-position has an effect on the mol­ecular packing, which prevents the aromatic rings of the acid and base lying in the same plane in the crystal.

In all the compounds of 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid, the nitro O3/N1/O4 group is approximately perpendicular to the benzene C1–C6 ring with dihedral angles of 74.4 (3)–88.54 (13)°, while in the 2-chloro-6-nitro­benzoic acid mol­ecule of compound (III)[link], where the nitro group and the Cl atom are adjacent to the carb­oxy group, the carb­oxy O1/C7/O2 group is almost perpendicular to the benzene ring with a dihedral angle of 84.53 (16)°. In the compounds of 5-chloro-2-nitro­benzoic acid, the nitro and carb­oxy/carboxyl­ate groups are both twisted by 33.31 (13)–57.13 (11)° out of the benzene ring plane. These large twists are mainly ascribable to intra­molecular steric repulsion between the nitro group and the carb­oxy/carboxyl­ate group.

The correlation between the H-atom position in the short hydrogen bond and the ΔpKa value is observed for each system of quinoline and 6-methyl­quinoline compounds, while for the title compounds (I)–(VI) this correlation is somewhat low.

3. Supra­molecular features

In all the crystals of (I)–(VI), ππ inter­actions between the quinoline ring systems, related by an inversion centre to each other, are observed. The centroid–centroid distances between the quinoline ring systems, namely, Cg2⋯Cg2, Cg2⋯Cg3 and Cg3⋯Cg3, are 3.4323 (7)–3.7751 (8), 3.5878 (7)–3.9304 (9) and 3.7719 (8)–3.9227 (9) Å, respectively, where Cg2 and Cg3 are the centroids of the N2/C8–C11/C16 and C11–C16 rings of the quinoline ring system, respectively. The base mol­ecules in the crystals of (I)[link] and (II)[link] form dimeric units via these ππ inter­actions, while in (III)–(VI) inversion-related base mol­ecules are alternately stacked in column-like structures. On the other hand, ππ inter­actions between the inversion-related acid mol­ecules are only observed in crystals (IV)–(VI); the centroid-centroid distances, Cg1⋯Cg1, are 3.5702 (7)–3.8602 (6) Å, where Cg1 is the centroid of the C1–C6 ring. Detailed supra­molecular features in the crystals formed through these ππ inter­actions combined with other weak inter­molecular inter­actions are described below.

In the crystal of (I)[link], the hydrogen-bonded acid–base units, which are related by an inversion centre to each other, are linked into a centrosymmetric dimeric unit via ππ inter­actions between the quinoline ring systems [Cg2⋯Cg2vi = 3.7318 (7) Å and Cg2⋯Cg3vi = 3.5955 (7) Å; symmetry code: (vi) −x + 1, −y + 2, −z + 1]. The dimeric units are further linked via a C—H⋯O hydrogen bond (C9—H9⋯O2iii; symmetry code as given in Table 2[link]), forming a ribbon structure propagating along the b-axis direction (Fig. 2[link]). The ribbons are connected into a layer lying parallel to the (101) plane (Fig. 3[link]) via another C—H⋯O hydrogen bond (C8—H8⋯O3ii; Table 2[link]). In the layer, the acid mol­ecules are arranged in an anti­parallel manner with Cg1⋯Cg1ii = 4.0685 (7) Å. Between the layers, an N—O⋯π inter­action (N1—O3⋯Cg3iv; Table 2[link]), a short Cl⋯Cl contact [Cl1⋯Cl1v = 3.3391 (5) Å; symmetry code: (v) −x + 1, −y + 1, −z + 2] and a C—H⋯O hydrogen bond (C6—H6⋯O2i; Table 2[link]) are observed.

[Figure 2]
Figure 2
A packing diagram of (I)[link], showing the ribbon structure running along the b-axis direction formed via the N—H⋯O and C—H⋯O hydrogen bonds (green dashed lines) and ππ inter­actions (magenta dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Cg2 and Cg3 are the centroids of the N2/C8–C11/C16 and C11–C16 rings, respectively. [Symmetry codes: (vi) −x + 1, −y + 2, −z + 1; (vii) x, y − 1, z.]
[Figure 3]
Figure 3
A packing diagram of (I)[link], showing a layer structure parallel to (101) formed via the N—H⋯O and C—H⋯O hydrogen bonds (green dashed lines) and ππ inter­actions (magenta dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Cg1 is the centroid of the C1–C6 ring. [Symmetry codes: (ii) −x, −y + 1, −z + 2; (iii) x, y + 1, z.]

In the crystal of (II)[link], the acid–base units are linked via C—H⋯O hydrogen bonds (C3—H3⋯O4i and C4—H4⋯O3ii; symmetry codes as given in Table 3[link]), forming a tape structure propagating along the a-axis direction (Fig. 4[link]). The tapes are further linked into a three-dimensional network through C—H⋯O and C—H⋯Cl hydrogen bonds (C17—H17A⋯O2iii and C17—H17C⋯Cl1iv; Table 3[link]). In addition, ππ inter­actions are observed between the acid and base aromatic rings and between the base ring systems; the centroid–centroid distances are 3.8339 (16), 3.5056 (15) and 3.8381 (15) Å, respectively, for Cg1⋯Cg3v, Cg2⋯Cg2vi and Cg2⋯Cg3vi [symmetry codes: (v) x, y + 1, z; (vi) −x + 1, −y + 1, −z]. The acid–base units are linked via these ππ inter­actions, forming a ribbon structure along the b-axis direction (Fig. 5[link]).

[Figure 4]
Figure 4
A packing diagram of (II)[link] viewed along the c axis, showing the tape structure formed via the C—H⋯O hydrogen bonds (green dashed lines). [Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 3, −z + 1.]
[Figure 5]
Figure 5
A packing diagram of (II)[link], showing the ribbon structure running along the b-axis direction formed via the O—H⋯N hydrogen bonds (green dashed lines) and ππ inter­actions (magenta dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. [Symmetry codes: (v) x, y + 1, z; (vi) −x + 1, −y + 1, −z; (vii) x, y − 1, z.]

In the crystal of (III)[link], the acid–base units are linked by C—H⋯O hydrogen bonds and a C—H⋯π inter­action (C5—H5⋯O1i, C13—H13⋯O2ii and C14—H14⋯Cg1ii; symmetry codes as in Table 4[link]), forming a ribbon structure along the c-axis direction (Fig. 6[link]). The base mol­ecules are further stacked in a column along the a axis via ππ inter­actions between the quinoline ring systems (Fig. 7[link]), and thus the hydrogen-bonded acid–base units form a three-dimensional network. The centroid–centroid distances are 3.4323 (7), 3.4850 (7), 3.6810 (7) and 3.5878 (7) Å, respectively, for Cg2⋯Cg2iv, Cg2⋯Cg2v, Cg2⋯Cg3iv and Cg2⋯Cg3v [symmetry codes: (iv) −x, −y, −z + 1; (v) −x + 1, −y, −z + 1].

[Figure 6]
Figure 6
A partial packing diagram of (III)[link] viewed along the a axis, showing the ribbon structure formed by the O—H⋯N/O⋯H—N and C—H⋯O hydrogen bonds (green dashed lines), and C—H⋯π inter­actions (magenta dashed lines). H atoms not involved in the inter­molecular inter­actions and the disordered O atoms of the minor component of the nitro group are omitted for clarity. [Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) x, y, z − 1; (iii) x, −y + [{1\over 2}], z − [{1\over 2}].]
[Figure 7]
Figure 7
A packing diagram of (III)[link], showing the column structure of the base mol­ecules formed via the ππ inter­actions (magenta dashed lines). H atoms not involved in the O—H⋯N/O⋯H—N hydrogen bonds (green dashed lines) and the disordered O atoms of the minor component of the nitro group are omitted for clarity. Cg2 and Cg3 are the centroids of the N2/C8–C11/C16 and C11–C16 rings, respectively. [Symmetry codes: (iv) −x, −y, −z + 1; (v) −x + 1, −y, −z + 1.]

In the crystal of (IV)[link], the hydrogen-bonded acid–base units are linked into a ribbon structure along the a-axis direction (Fig. 8[link]) via C—H⋯O hydrogen bonds (C6—H3⋯O3i and C17—H17C⋯O2iii; symmetry codes as in Table 5[link]) and ππ inter­actions between the quinoline ring systems. The centroid–centroid distances are 3.5037 (8), 3.6022 (8) and 3.9227 (9) Å, respectively, for Cg2⋯Cg2iii, Cg2⋯Cg3iv and Cg3⋯Cg3iv [symmetry codes: (iii) −x + 1, −y, z + 1; (iv) −x, −y, −z + 1]. The ribbons are further linked into a layer parallel to the (011) plane (Fig. 9[link]) via a ππ inter­action between the acid rings with a centroid–centroid distance (Cg1⋯Cg1v) of 3.6685 (8) Å [symmetry code: (v) −x + 1, −y + 1, −z]. The layers are linked by a C—H⋯O hydrogen bond (C9—H9⋯O2ii; Table 5[link]).

[Figure 8]
Figure 8
A packing diagram of (IV)[link], showing the ribbon structure formed via the ππ inter­actions (magenta dashed lines), and the O—H⋯N/O⋯H—N and C—H⋯O hydrogen bonds (green dashed lines). Except for the methyl group, H atoms not involved in the hydrogen bonds are omitted for clarity. Cg2 and Cg3 are the centroids of the N2/C8–C11/C16 and C11–C16 rings, respectively. [Symmetry codes: (i) x − 1, y, z; (iii) −x + 1, −y, −z + 1; (iv) −x, −y, −z + 1.]
[Figure 9]
Figure 9
A packing diagram of (IV)[link], showing the layer structure formed via the ππ inter­actions (magenta dashed lines), and the O—H⋯N/O⋯H—N and C—H⋯O hydrogen bonds (green dashed lines). Except for the methyl group, H atoms not involved in the hydrogen bonds are omitted for clarity. Cg1 is the centroid of the C1–C6 ring. [Symmetry codes: (iii) −x + 1, −y, −z + 1; (v) −x + 1, −y + 1, −z + 1.]

In the crystal of (V)[link], the acid and base mol­ecules are arranged in a similar manner to those in (IV)[link] as shown in Figs. 8[link] and 9[link]. The hydrogen-bonded acid–base units in (V)[link] are linked into a ribbon structure along the a-axis direction (Fig. 10[link]) via a C—H⋯O hydrogen bond (C12—H12⋯O2ii; symmetry code as in Table 6[link]) and ππ inter­actions between the quinoline ring systems. The ribbons are further linked into a layer parallel to the (011) plane via a ππ inter­action between the acid rings. The centroid–centroid distances of the ππ inter­actions are 3.5702 (7), 3.7751 (8), 3.7870 (8), 3.9304 (9) and 3.7719 (8) Å, respectively, for Cg1⋯Cg1vi, Cg2⋯Cg2iii, Cg2⋯Cg3ii, Cg2⋯Cg3iii and Cg3⋯Cg3ii [symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y, −z + 2]. Between the layers, a C—H⋯O hydrogen bond is observed (C8—H8⋯O2i; Table 6[link]).

[Figure 10]
Figure 10
A packing diagram of (V)[link], showing the ribbon structure formed via the ππ inter­actions (magenta dashed lines), and the N—H⋯O and C—H⋯O hydrogen bonds (green dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Cg2 and Cg3 are the centroids of the N2/C8–C11/C16 and C11–C16 rings, respectively. [Symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z + 1.]

Although the crystal system of (VI)[link] (monoclinic, C2/c) is different from those of (IV)[link] and (V)[link] (triclinic, P[\overline{1}]), the mol­ecules in the crystal of (VI)[link] are arranged in a similar manner to those in (IV)[link] and (V)[link]. The acid–base units, which are related by an inversion centre to each other, are linked together via ππ inter­actions between the quinoline ring systems and C—H⋯O hydrogen bonds [Cg2⋯Cg3ii = 3.8048 (7) Å; C12—H12⋯O3ii and C17—H17A⋯O2ii; symmetry code as given in Table 7[link]], forming a centrosymmetric dimeric unit. The dimeric units are further linked into a ribbon structure along the b-axis direction (Fig. 11[link]) via other ππ inter­actions between the quinoline ring systems with Cg2⋯Cg2iii = 3.4710 (6) Å and Cg2⋯Cg3iii = 3.8841 (7) Å [symmetry code: (iii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1]. The ribbons are connected into a layer parallel to (10[\overline{1}]) via a weak ππ inter­action between adjacent acid rings with Cg1⋯Cg1iv = 3.8602 (6) Å [symmetry code: (iv) −x + 1, y, −z + [{1\over 2}]]. Between the layers, a C—H⋯O hydrogen bond (C9—H9⋯O2i; Table 7[link]) is observed.

[Figure 11]
Figure 11
A packing diagram of (VI)[link], showing the ribbon structure formed via the ππ inter­actions (magenta dashed lines), and the N—H⋯O and C—H⋯O hydrogen bonds (green dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Cg2 and Cg3 are the centroids of the N2/C8–C11/C16 and C11–C16 rings, respectively. [Symmetry codes: (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (iii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1.]

Hirshfeld surfaces for compounds (I)–(VI) mapped over dnorm and shape index (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 12[link]. The ππ inter­actions are indicated by blue and red triangles on the shape-index surfaces (white circles in Fig. 12[link]). On all the surfaces of the quinoline ring systems except one of the back view of (II)[link], the ππ inter­actions between the quinoline ring systems are observed. On the surfaces of both acid and base mol­ecules of the back view of (II)[link], the ππ inter­actions between the acid ring and the quinoline ring system are shown, while the inter­actions between the acid rings are observed on the acid ring surfaces of (IV)–(VI). The C—H⋯O inter­actions in (I)–(VI) are indicated by faint-red spots on the dnorm surfaces (black arrows). In addition, the short Cl⋯Cl contact and the N—O⋯π inter­action in (I)[link], and the C—H⋯Cl inter­action in (II)[link] are shown as faint-red spots on the dnorm surfaces (green, magenta and cyan arrows, respectively). On the shape-index surfaces of (I)[link] and (III)[link], large red areas corresponding to the N—O⋯π and C—H⋯π inter­actions (magenta and violet arrows, respectively) are observed.

[Figure 12]
Figure 12
Hirshfeld surfaces [front (top) and back (bottom) views] for compounds (I)–(VI) mapped over dnorm and shape index. Each surface is viewed approximately perpendicular to the mol­ecular plane. The ππ inter­actions are shown by white circles, and the Cl⋯Cl contacts, the C—H⋯O, C—H⋯Cl, N—O⋯π and C—H⋯π inter­actions are indicated by green, black, green cyan, magenta and violet arrows, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, last update September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic co-crystals/salts of 4-methyl­quinoline with carb­oxy­lic acid derivatives showed one structure, namely, 4-methyl­quinoline hydrogensquarate (CSD refcode GUKWAN; Kotov et al., 2018[Kotov, S., Mayer-Figge, H. & Zareva, S. (2018). Bulg. Chem. Commun. (Izvestiya po Khimiya), 50, 260.]). A search for organic co-crystals/salts of 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 2-chloro-6-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid gave 76, 19, 0, 11, 15 and 11 structures, respectively. Limiting the search for quinoline derivatives of these compounds gave 4, 3, 0, 5, 3 and 2 compounds, namely, for 2-chloro-4-nitro­benzoic acid: 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (BUZNIW; Gotoh & Ishida, 2020[Gotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701-1707.]), 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (NUBHEA; Gotoh & Ishida, 2019b[Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694-1699.]), 8-hy­droxy­quinolinium 2-chloro-4-nitro­benzoate (WOPDEM; Babu & Chandrasekaran, 2014[Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.]), 2-chloro-4-nitro­benzoic acid–quinoline (YAGFAP; Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.]), for 2-chloro-5-nitro­benzoic acid: 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (BUZNOC; Gotoh & Ishida, 2020[Gotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701-1707.]), 2-chloro-5-nitro­benzoic acid–quinoline (AJIWIA; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), 8-hy­droxy-2-methyl­quinolinium 2-chloro-5-nitro­benzoate dihydrate (HIHPIY; Tan, 2007[Tan, T. (2007). J. Mol. Struct. 840, 6-13.]), for 3-chloro-2-nitro­benzoic acid: 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (BUZNUI; Gotoh & Ishida, 2020[Gotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701-1707.]), 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (XOWVUD; Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]), 3-chloro-2-nitro­benzoic acid–6-nitro­quinoline (XOWWAK, Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]), 8-hy­droxy­quinolin-1-ium 3-chloro-2-nitro­benzoate (XOWWEO; Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]), 3-chloro-2-nitro­benzoic acid–quinoline (AJIWOG, Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), for 4-chloro-2-nitro­benzoic acid: 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (BUZPAQ; Gotoh & Ishida, 2020[Gotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701-1707.]), 4-hy­droxy­quinolin-1-ium 4-chloro-2-nitro­benzoate (WOVZOZ; Gotoh & Ishida, 2019c[Gotoh, K. & Ishida, H. (2019c). Acta Cryst. E75, 1853-1856.]), 4-chloro-2-nitro­benzoic acid–quinoline (AJIWUM; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), and for 5-chloro-2-nitro­benzoic acid: 5-chloro-2-nitro­benzic acid–quinoline (AJIXAT, Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]) and 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (NUBHIE; Gotoh & Ishida, 2019b[Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694-1699.]).

Of these compounds, AJIWOG, AJIWUM, AJIXAT, BUZNIW, BUZNUI and BUZPAQ show disordered O—H⋯N/O⋯H—N hydrogen bonds, while WOVZOZ shows a disorder structure in the O—H⋯O hydrogen bond accompanied by a keto-enol tautomerization in the base mol­ecule.

5. Synthesis and crystallization

Single crystals of the title compounds (I)–(VI) were obtained by slow evaporation from aceto­nitrile solutions of 4-methyl­quinoline with the appropriate chloro-nitro­benzoic acid in a 1:1 molar ratio at room temperature [120 ml of an aceto­nitrile solution of 4-methyl­quinoline (0.20 g) and chloro-nitro­benzoic acid (0.28 g for each acid)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8[link]. All H atoms in compounds (I)–(VI) were found in difference-Fourier maps. The O-bound H atom in (II)[link] and the N-bound H atoms in (I)[link], (V)[link] and (VI)[link] were refined freely; the refined O—H and N—H distances are given in Tables 2[link], 3[link], 6[link] and 7[link]. For (III)[link] and (IV)[link], H atoms in the N⋯H⋯O hydrogen bonds were found to be disordered over two positions in difference-Fourier maps. The positional parameters and occupancy factors were refined, with bond-length restraints of N—H = 0.88 (1) Å and O—H = 0.84 (1) Å, and with Uiso(H) = 1.5Ueq(N or O); the refined distances are given in Tables 4[link] and 5[link]. Other H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and treated as riding, with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 8
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C10H10N+·C7H3ClNO4 C10H9N·C7H4ClNO4 C10H9.63N0.63+·C7H3.37ClNO40.63−
Mr 344.75 344.75 344.75
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 185 185 185
a, b, c (Å) 8.6975 (4), 9.2527 (4), 10.1865 (5) 7.6353 (4), 9.3827 (6), 11.3756 (7) 6.6401 (3), 23.2126 (5), 10.3386 (3)
α, β, γ (°) 72.7483 (15), 86.4281 (16), 74.5728 (15) 91.453 (3), 95.204 (3), 107.773 (3) 90, 99.3926 (15), 90
V3) 754.55 (6) 771.65 (8) 1572.16 (9)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.28 0.27 0.27
Crystal size (mm) 0.55 × 0.50 × 0.32 0.30 × 0.25 × 0.05 0.35 × 0.28 × 0.25
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.868, 0.915 0.938, 0.986 0.909, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 22243, 4404, 3822 14544, 4486, 2563 32362, 4588, 3854
Rint 0.043 0.038 0.022
(sin θ/λ)max−1) 0.704 0.703 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.13 0.068, 0.257, 1.19 0.044, 0.125, 1.07
No. of reflections 4404 4486 4588
No. of parameters 222 222 244
No. of restraints 0 0 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.28 0.91, −0.58 0.52, −0.40
  (IV) (V) (VI)
Crystal data
Chemical formula C10H9.54N0.54+·C7H3.46ClNO40.54− C10H10N+·C7H3ClNO4 C10H10N+.C7H3ClNO4
Mr 344.75 344.75 344.75
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 185 185 190
a, b, c (Å) 7.5234 (10), 7.8017 (11), 13.6341 (17) 7.6858 (3), 8.3615 (3), 13.5746 (5) 16.2625 (10), 7.5099 (4), 25.3105 (15)
α, β, γ (°) 80.934 (4), 80.227 (3), 89.150 (4) 82.5485 (13), 80.8927 (12), 65.0929 (11) 90, 99.4086 (19), 90
V3) 778.73 (18) 779.33 (5) 3049.6 (3)
Z 2 2 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.27 0.27 0.28
Crystal size (mm) 0.35 × 0.29 × 0.22 0.51 × 0.45 × 0.15 0.30 × 0.21 × 0.12
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.914, 0.942 0.868, 0.960 0.916, 0.968
No. of measured, independent and observed [I > 2σ(I)] reflections 16767, 4544, 4017 18635, 3566, 3290 29037, 4457, 3913
Rint 0.028 0.027 0.022
(sin θ/λ)max−1) 0.704 0.649 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.07 0.036, 0.102, 1.04 0.036, 0.099, 1.05
No. of reflections 4544 3566 4457
No. of parameters 225 222 222
No. of restraints 2 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.38 0.38, −0.18 0.47, −0.16
Computer programs: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (II), (IV); SIR92 (Altomare et al., 1993) for (III), (V), (VI). For all structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2020).

4-Methylquinolinium 2-chloro-4-nitrobenzoate (I) top
Crystal data top
C10H10N+·C7H3ClNO4Z = 2
Mr = 344.75F(000) = 356.00
Triclinic, P1Dx = 1.517 Mg m3
a = 8.6975 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.2527 (4) ÅCell parameters from 20962 reflections
c = 10.1865 (5) Åθ = 3.2–30.2°
α = 72.7483 (15)°µ = 0.28 mm1
β = 86.4281 (16)°T = 185 K
γ = 74.5728 (15)°Block, colorless
V = 754.55 (6) Å30.55 × 0.50 × 0.32 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3822 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.043
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1212
Tmin = 0.868, Tmax = 0.915k = 1313
22243 measured reflectionsl = 1414
4404 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.0819P]
where P = (Fo2 + 2Fc2)/3
4404 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.28 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32990 (4)0.49410 (3)0.93689 (3)0.03079 (11)
O10.14650 (13)0.72397 (10)0.67810 (9)0.0348 (2)
O20.17832 (14)0.56790 (11)0.54222 (9)0.0379 (2)
O30.06312 (12)0.05267 (11)1.18988 (10)0.0363 (2)
O40.15473 (12)0.09130 (11)1.07952 (11)0.0371 (2)
N10.02872 (13)0.12105 (11)1.09235 (11)0.0273 (2)
N20.22641 (12)0.95808 (11)0.50904 (10)0.0252 (2)
H20.193 (2)0.874 (2)0.558 (2)0.058 (6)*
C10.10772 (13)0.47157 (12)0.77222 (11)0.0220 (2)
C20.17864 (13)0.42010 (12)0.90230 (11)0.0222 (2)
C30.13592 (13)0.30429 (12)1.00803 (11)0.0239 (2)
H30.1871200.2678331.0958100.029*
C40.01662 (13)0.24410 (12)0.98114 (12)0.0239 (2)
C50.05810 (14)0.29108 (13)0.85435 (12)0.0259 (2)
H50.1408050.2479590.8393350.031*
C60.00900 (14)0.40299 (13)0.74954 (12)0.0251 (2)
H60.0557550.4336930.6603790.030*
C70.14979 (14)0.59753 (13)0.65289 (12)0.0241 (2)
C80.18122 (15)1.08320 (14)0.55384 (12)0.0274 (2)
H80.1085301.0830300.6274310.033*
C90.23804 (14)1.21539 (13)0.49531 (12)0.0268 (2)
H90.2031261.3044560.5282830.032*
C100.34486 (14)1.21633 (13)0.38964 (11)0.0240 (2)
C110.39172 (13)1.08266 (13)0.33915 (11)0.0239 (2)
C120.49945 (15)1.07123 (15)0.22966 (13)0.0300 (2)
H120.5443421.1561190.1857420.036*
C130.53934 (17)0.93898 (17)0.18668 (14)0.0360 (3)
H130.6117350.9331670.1134830.043*
C140.47410 (17)0.81181 (17)0.24992 (15)0.0361 (3)
H140.5017070.7215730.2182260.043*
C150.37123 (16)0.81710 (14)0.35670 (13)0.0300 (2)
H150.3285860.7304720.3999480.036*
C160.32896 (13)0.95269 (13)0.40207 (11)0.0240 (2)
C170.41066 (16)1.35602 (14)0.32995 (13)0.0297 (2)
H17A0.5274721.3219400.3316570.045*
H17B0.3754561.4298690.3843850.045*
H17C0.3720321.4074860.2348190.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03215 (17)0.03700 (18)0.02937 (16)0.01980 (13)0.00018 (11)0.00912 (12)
O10.0553 (6)0.0235 (4)0.0299 (4)0.0195 (4)0.0110 (4)0.0083 (3)
O20.0618 (7)0.0351 (5)0.0256 (4)0.0271 (5)0.0103 (4)0.0110 (4)
O30.0435 (5)0.0304 (5)0.0294 (5)0.0118 (4)0.0015 (4)0.0013 (4)
O40.0384 (5)0.0358 (5)0.0410 (5)0.0222 (4)0.0093 (4)0.0076 (4)
N10.0320 (5)0.0225 (4)0.0283 (5)0.0115 (4)0.0071 (4)0.0059 (4)
N20.0284 (5)0.0233 (4)0.0237 (4)0.0109 (4)0.0018 (4)0.0031 (4)
C10.0248 (5)0.0192 (4)0.0228 (5)0.0082 (4)0.0023 (4)0.0055 (4)
C20.0233 (5)0.0219 (5)0.0243 (5)0.0094 (4)0.0020 (4)0.0078 (4)
C30.0262 (5)0.0228 (5)0.0224 (5)0.0074 (4)0.0012 (4)0.0053 (4)
C40.0266 (5)0.0186 (5)0.0260 (5)0.0087 (4)0.0048 (4)0.0040 (4)
C50.0264 (5)0.0230 (5)0.0304 (6)0.0117 (4)0.0003 (4)0.0062 (4)
C60.0283 (5)0.0229 (5)0.0248 (5)0.0102 (4)0.0024 (4)0.0044 (4)
C70.0273 (5)0.0223 (5)0.0240 (5)0.0111 (4)0.0012 (4)0.0049 (4)
C80.0307 (6)0.0265 (5)0.0246 (5)0.0113 (4)0.0052 (4)0.0044 (4)
C90.0313 (6)0.0221 (5)0.0269 (5)0.0092 (4)0.0032 (4)0.0056 (4)
C100.0246 (5)0.0220 (5)0.0235 (5)0.0080 (4)0.0016 (4)0.0016 (4)
C110.0240 (5)0.0245 (5)0.0217 (5)0.0085 (4)0.0012 (4)0.0024 (4)
C120.0294 (6)0.0327 (6)0.0265 (5)0.0109 (5)0.0032 (4)0.0049 (5)
C130.0355 (7)0.0431 (7)0.0315 (6)0.0110 (6)0.0085 (5)0.0148 (5)
C140.0392 (7)0.0349 (6)0.0389 (7)0.0094 (5)0.0037 (5)0.0184 (5)
C150.0336 (6)0.0262 (5)0.0324 (6)0.0105 (5)0.0001 (5)0.0093 (5)
C160.0254 (5)0.0238 (5)0.0228 (5)0.0083 (4)0.0014 (4)0.0046 (4)
C170.0326 (6)0.0240 (5)0.0314 (6)0.0128 (5)0.0027 (5)0.0020 (4)
Geometric parameters (Å, º) top
Cl1—C21.7331 (11)C8—C91.3957 (15)
O1—C71.2628 (13)C8—H80.9500
O2—C71.2329 (14)C9—C101.3770 (16)
O3—N11.2176 (14)C9—H90.9500
O4—N11.2221 (14)C10—C111.4294 (16)
N1—C41.4674 (14)C10—C171.5007 (15)
N2—C81.3236 (16)C11—C161.4155 (15)
N2—C161.3686 (15)C11—C121.4213 (17)
N2—H20.90 (2)C12—C131.3721 (19)
C1—C21.3908 (15)C12—H120.9500
C1—C61.3948 (15)C13—C141.408 (2)
C1—C71.5169 (14)C13—H130.9500
C2—C31.3869 (15)C14—C151.3686 (19)
C3—C41.3766 (16)C14—H140.9500
C3—H30.9500C15—C161.4142 (16)
C4—C51.3787 (17)C15—H150.9500
C5—C61.3846 (15)C17—H17A0.9800
C5—H50.9500C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
O3—N1—O4124.18 (10)C10—C9—C8119.81 (11)
O3—N1—C4118.01 (10)C10—C9—H9120.1
O4—N1—C4117.78 (10)C8—C9—H9120.1
C8—N2—C16121.80 (10)C9—C10—C11118.97 (10)
C8—N2—H2115.9 (13)C9—C10—C17119.91 (11)
C16—N2—H2122.1 (13)C11—C10—C17121.12 (10)
C2—C1—C6118.15 (10)C16—C11—C12117.55 (11)
C2—C1—C7124.07 (10)C16—C11—C10118.54 (10)
C6—C1—C7117.78 (10)C12—C11—C10123.91 (10)
C3—C2—C1121.81 (10)C13—C12—C11120.75 (12)
C3—C2—Cl1117.20 (9)C13—C12—H12119.6
C1—C2—Cl1120.94 (8)C11—C12—H12119.6
C4—C3—C2117.58 (10)C12—C13—C14120.68 (12)
C4—C3—H3121.2C12—C13—H13119.7
C2—C3—H3121.2C14—C13—H13119.7
C3—C4—C5123.04 (10)C15—C14—C13120.54 (12)
C3—C4—N1117.88 (10)C15—C14—H14119.7
C5—C4—N1119.05 (10)C13—C14—H14119.7
C4—C5—C6118.01 (10)C14—C15—C16119.41 (12)
C4—C5—H5121.0C14—C15—H15120.3
C6—C5—H5121.0C16—C15—H15120.3
C5—C6—C1121.33 (11)N2—C16—C15119.51 (10)
C5—C6—H6119.3N2—C16—C11119.42 (10)
C1—C6—H6119.3C15—C16—C11121.08 (11)
O2—C7—O1127.32 (10)C10—C17—H17A109.5
O2—C7—C1117.26 (9)C10—C17—H17B109.5
O1—C7—C1115.38 (10)H17A—C17—H17B109.5
N2—C8—C9121.44 (11)C10—C17—H17C109.5
N2—C8—H8119.3H17A—C17—H17C109.5
C9—C8—H8119.3H17B—C17—H17C109.5
C6—C1—C2—C30.18 (17)C16—N2—C8—C90.99 (18)
C7—C1—C2—C3179.94 (10)N2—C8—C9—C100.74 (19)
C6—C1—C2—Cl1177.53 (8)C8—C9—C10—C111.89 (18)
C7—C1—C2—Cl12.23 (16)C8—C9—C10—C17177.80 (11)
C1—C2—C3—C41.77 (17)C9—C10—C11—C161.39 (16)
Cl1—C2—C3—C4179.56 (8)C17—C10—C11—C16178.29 (11)
C2—C3—C4—C51.57 (17)C9—C10—C11—C12179.23 (11)
C2—C3—C4—N1179.74 (9)C17—C10—C11—C121.09 (18)
O3—N1—C4—C317.00 (15)C16—C11—C12—C130.49 (18)
O4—N1—C4—C3164.68 (11)C10—C11—C12—C13179.88 (12)
O3—N1—C4—C5161.25 (11)C11—C12—C13—C140.1 (2)
O4—N1—C4—C517.08 (16)C12—C13—C14—C150.9 (2)
C3—C4—C5—C60.61 (18)C13—C14—C15—C160.9 (2)
N1—C4—C5—C6177.54 (10)C8—N2—C16—C15178.90 (11)
C4—C5—C6—C12.68 (18)C8—N2—C16—C111.46 (17)
C2—C1—C6—C52.47 (17)C14—C15—C16—N2179.84 (12)
C7—C1—C6—C5177.75 (10)C14—C15—C16—C110.21 (19)
C2—C1—C7—O2130.38 (13)C12—C11—C16—N2179.17 (10)
C6—C1—C7—O249.38 (16)C10—C11—C16—N20.25 (16)
C2—C1—C7—O151.76 (16)C12—C11—C16—C150.47 (17)
C6—C1—C7—O1128.48 (12)C10—C11—C16—C15179.89 (10)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.900 (19)1.678 (19)2.5652 (14)167.7 (18)
C6—H6···O2i0.952.393.3066 (16)163
C8—H8···O3ii0.952.563.4199 (16)151
C9—H9···O2iii0.952.443.3360 (16)158
C15—H15···O20.952.363.2835 (17)163
N1—O3···Cg3iv1.22 (1)3.26 (1)4.3171 (13)145 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2; (iii) x, y+1, z; (iv) x, y1, z+1.
4-Methylquinoline–2-chloro-5-nitrobenzoic acid (1/1) (II) top
Crystal data top
C10H9N·C7H4ClNO4Z = 2
Mr = 344.75F(000) = 356.00
Triclinic, P1Dx = 1.484 Mg m3
a = 7.6353 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.3827 (6) ÅCell parameters from 9512 reflections
c = 11.3756 (7) Åθ = 3.0–30.1°
α = 91.453 (3)°µ = 0.27 mm1
β = 95.204 (3)°T = 185 K
γ = 107.773 (3)°Platelet, colorless
V = 771.65 (8) Å30.30 × 0.25 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2563 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.038
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 910
Tmin = 0.938, Tmax = 0.986k = 1313
14544 measured reflectionsl = 1515
4486 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: mixed
wR(F2) = 0.257H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.1416P)2]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.58 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03754 (10)0.97793 (9)0.28787 (8)0.0688 (3)
O10.4426 (3)0.8113 (2)0.27937 (18)0.0550 (5)
H10.401 (10)0.721 (8)0.238 (6)0.17 (3)*
O20.1900 (4)0.8238 (2)0.1691 (2)0.0705 (7)
O30.7457 (3)1.4293 (2)0.54603 (18)0.0510 (5)
O40.8405 (2)1.2413 (2)0.50002 (19)0.0515 (5)
N10.7203 (3)1.3046 (2)0.49943 (18)0.0386 (5)
N20.3941 (3)0.5596 (2)0.1685 (2)0.0465 (5)
C10.3346 (4)1.0135 (3)0.3225 (2)0.0384 (5)
C20.1888 (3)1.0712 (3)0.3399 (2)0.0420 (5)
C30.2183 (4)1.2039 (3)0.4056 (2)0.0445 (6)
H30.1174941.2407950.4160340.053*
C40.3935 (3)1.2831 (3)0.4562 (2)0.0384 (5)
H40.4155781.3757000.4997460.046*
C50.5360 (3)1.2245 (2)0.4418 (2)0.0346 (5)
C60.5106 (3)1.0921 (2)0.3766 (2)0.0366 (5)
H60.6118161.0548820.3687610.044*
C70.3130 (4)0.8720 (3)0.2488 (2)0.0462 (6)
C80.2387 (4)0.4902 (3)0.1035 (2)0.0493 (6)
H80.1462500.5389360.0965410.059*
C90.1990 (4)0.3519 (3)0.0444 (2)0.0467 (6)
H90.0837580.3085310.0018360.056*
C100.3317 (4)0.2774 (3)0.0539 (2)0.0460 (6)
C110.5048 (3)0.3480 (2)0.12444 (19)0.0352 (5)
C120.6504 (4)0.2871 (4)0.1402 (3)0.0545 (7)
H120.6367630.1925420.1020770.065*
C130.8077 (5)0.3570 (4)0.2068 (3)0.0643 (9)
H130.9032990.3116880.2164320.077*
C140.8312 (4)0.4947 (4)0.2615 (3)0.0581 (8)
H140.9444870.5427070.3084770.070*
C150.6987 (4)0.5661 (3)0.2515 (2)0.0494 (6)
H150.7192220.6617670.2898910.059*
C160.5265 (4)0.4906 (3)0.1804 (2)0.0407 (5)
C170.2954 (6)0.1291 (3)0.0083 (3)0.0663 (9)
H17A0.3084350.0558940.0490690.099*
H17B0.3842470.1365180.0666350.099*
H17C0.1695330.0967810.0485320.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0441 (4)0.0620 (5)0.0871 (6)0.0058 (3)0.0173 (4)0.0221 (4)
O10.0728 (14)0.0406 (10)0.0539 (11)0.0230 (9)0.0045 (9)0.0123 (8)
O20.0988 (18)0.0491 (12)0.0566 (12)0.0232 (12)0.0230 (12)0.0203 (10)
O30.0466 (10)0.0364 (9)0.0627 (12)0.0073 (7)0.0089 (8)0.0114 (8)
O40.0359 (9)0.0534 (11)0.0668 (12)0.0176 (8)0.0023 (8)0.0033 (9)
N10.0352 (10)0.0369 (10)0.0432 (11)0.0113 (8)0.0030 (8)0.0016 (8)
N20.0537 (13)0.0396 (11)0.0455 (12)0.0131 (9)0.0075 (9)0.0053 (9)
C10.0492 (13)0.0284 (10)0.0344 (11)0.0085 (9)0.0017 (9)0.0028 (9)
C20.0384 (12)0.0390 (12)0.0450 (13)0.0101 (9)0.0065 (10)0.0047 (10)
C30.0371 (12)0.0416 (12)0.0542 (14)0.0138 (10)0.0017 (10)0.0087 (11)
C40.0356 (11)0.0323 (11)0.0463 (13)0.0109 (9)0.0009 (9)0.0079 (9)
C50.0390 (12)0.0291 (10)0.0338 (10)0.0084 (8)0.0017 (8)0.0009 (8)
C60.0429 (13)0.0319 (11)0.0358 (11)0.0124 (9)0.0061 (9)0.0006 (9)
C70.0654 (17)0.0331 (11)0.0380 (12)0.0129 (11)0.0035 (11)0.0028 (10)
C80.0437 (14)0.0566 (16)0.0452 (13)0.0122 (12)0.0048 (11)0.0001 (12)
C90.0461 (14)0.0491 (14)0.0397 (12)0.0094 (11)0.0028 (10)0.0008 (11)
C100.0552 (15)0.0412 (13)0.0337 (11)0.0039 (11)0.0039 (10)0.0050 (10)
C110.0413 (12)0.0340 (11)0.0300 (10)0.0109 (9)0.0050 (9)0.0012 (9)
C120.0601 (17)0.0626 (18)0.0518 (15)0.0310 (14)0.0171 (13)0.0137 (14)
C130.0526 (17)0.084 (2)0.0628 (19)0.0265 (16)0.0152 (15)0.0222 (18)
C140.0385 (14)0.078 (2)0.0502 (15)0.0075 (13)0.0007 (11)0.0121 (15)
C150.0504 (15)0.0489 (14)0.0374 (12)0.0006 (11)0.0022 (10)0.0039 (11)
C160.0452 (13)0.0404 (12)0.0355 (11)0.0112 (10)0.0071 (9)0.0006 (10)
C170.092 (2)0.0448 (15)0.0506 (16)0.0073 (15)0.0014 (15)0.0109 (13)
Geometric parameters (Å, º) top
Cl1—C21.723 (2)C8—C91.380 (4)
O1—C71.310 (4)C8—H80.9500
O1—H10.91 (7)C9—C101.395 (4)
O2—C71.214 (3)C9—H90.9500
O3—N11.224 (3)C10—C111.440 (3)
O4—N11.235 (3)C10—C171.481 (4)
N1—C51.462 (3)C11—C121.397 (4)
N2—C81.313 (4)C11—C161.423 (3)
N2—C161.356 (3)C12—C131.333 (5)
C1—C61.397 (3)C12—H120.9500
C1—C21.405 (4)C13—C141.373 (5)
C1—C71.509 (3)C13—H130.9500
C2—C31.383 (3)C14—C151.372 (4)
C3—C41.380 (3)C14—H140.9500
C3—H30.9500C15—C161.446 (4)
C4—C51.380 (3)C15—H150.9500
C4—H40.9500C17—H17A0.9800
C5—C61.383 (3)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C7—O1—H1102 (4)C8—C9—H9120.7
O3—N1—O4123.8 (2)C10—C9—H9120.7
O3—N1—C5118.12 (19)C9—C10—C11118.8 (2)
O4—N1—C5118.0 (2)C9—C10—C17120.4 (3)
C8—N2—C16118.2 (2)C11—C10—C17120.8 (3)
C6—C1—C2118.0 (2)C12—C11—C16118.7 (2)
C6—C1—C7117.9 (2)C12—C11—C10124.7 (2)
C2—C1—C7124.1 (2)C16—C11—C10116.6 (2)
C3—C2—C1121.4 (2)C13—C12—C11122.4 (3)
C3—C2—Cl1115.90 (19)C13—C12—H12118.8
C1—C2—Cl1122.63 (19)C11—C12—H12118.8
C4—C3—C2120.3 (2)C12—C13—C14119.8 (3)
C4—C3—H3119.9C12—C13—H13120.1
C2—C3—H3119.9C14—C13—H13120.1
C5—C4—C3118.4 (2)C15—C14—C13123.1 (3)
C5—C4—H4120.8C15—C14—H14118.5
C3—C4—H4120.8C13—C14—H14118.5
C4—C5—C6122.6 (2)C14—C15—C16117.6 (3)
C4—C5—N1118.62 (19)C14—C15—H15121.2
C6—C5—N1118.8 (2)C16—C15—H15121.2
C5—C6—C1119.3 (2)N2—C16—C11122.8 (2)
C5—C6—H6120.4N2—C16—C15118.7 (2)
C1—C6—H6120.4C11—C16—C15118.5 (2)
O2—C7—O1125.0 (2)C10—C17—H17A109.5
O2—C7—C1122.6 (3)C10—C17—H17B109.5
O1—C7—C1112.4 (2)H17A—C17—H17B109.5
N2—C8—C9125.2 (3)C10—C17—H17C109.5
N2—C8—H8117.4H17A—C17—H17C109.5
C9—C8—H8117.4H17B—C17—H17C109.5
C8—C9—C10118.5 (2)
C6—C1—C2—C31.9 (4)C16—N2—C8—C90.8 (4)
C7—C1—C2—C3178.0 (2)N2—C8—C9—C100.6 (4)
C6—C1—C2—Cl1174.82 (18)C8—C9—C10—C110.3 (4)
C7—C1—C2—Cl15.2 (4)C8—C9—C10—C17179.8 (3)
C1—C2—C3—C40.2 (4)C9—C10—C11—C12179.0 (2)
Cl1—C2—C3—C4176.8 (2)C17—C10—C11—C120.4 (4)
C2—C3—C4—C51.6 (4)C9—C10—C11—C160.4 (3)
C3—C4—C5—C61.6 (4)C17—C10—C11—C16179.8 (2)
C3—C4—C5—N1177.4 (2)C16—C11—C12—C130.8 (4)
O3—N1—C5—C48.7 (3)C10—C11—C12—C13179.8 (3)
O4—N1—C5—C4170.1 (2)C11—C12—C13—C140.8 (4)
O3—N1—C5—C6172.3 (2)C12—C13—C14—C150.1 (5)
O4—N1—C5—C69.0 (3)C13—C14—C15—C160.5 (4)
C4—C5—C6—C10.1 (4)C8—N2—C16—C110.8 (4)
N1—C5—C6—C1179.15 (19)C8—N2—C16—C15179.8 (2)
C2—C1—C6—C51.9 (3)C12—C11—C16—N2178.8 (2)
C7—C1—C6—C5178.1 (2)C10—C11—C16—N20.6 (3)
C6—C1—C7—O2154.9 (3)C12—C11—C16—C150.1 (3)
C2—C1—C7—O225.1 (4)C10—C11—C16—C15179.6 (2)
C6—C1—C7—O123.9 (3)C14—C15—C16—N2179.5 (2)
C2—C1—C7—O1156.2 (2)C14—C15—C16—C110.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.91 (7)1.68 (7)2.556 (3)162 (7)
C3—H3···O4i0.952.403.280 (4)154
C4—H4···O3ii0.952.543.188 (3)126
C17—H17A···O2iii0.982.573.479 (4)155
C17—H17C···Cl1iv0.982.813.535 (4)131
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3, z+1; (iii) x, y1, z; (iv) x, y+1, z.
4-Methylquinolinium 2-chloro-6-nitrobenzoate (III) top
Crystal data top
C10H9.63N0.63+·C7H3.37ClNO40.63F(000) = 712.00
Mr = 344.75Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 6.6401 (3) ÅCell parameters from 25957 reflections
b = 23.2126 (5) Åθ = 3.1–30.1°
c = 10.3386 (3) ŵ = 0.27 mm1
β = 99.3926 (15)°T = 185 K
V = 1572.16 (9) Å3Block, colorless
Z = 40.35 × 0.28 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3854 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 99
Tmin = 0.909, Tmax = 0.935k = 3232
32362 measured reflectionsl = 1414
4588 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.4164P]
where P = (Fo2 + 2Fc2)/3
4588 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.52 e Å3
2 restraintsΔρmin = 0.40 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.71027 (7)0.10339 (2)1.02427 (4)0.05678 (15)
O10.34983 (15)0.13094 (4)0.76226 (8)0.0326 (2)
H10.328 (8)0.1007 (14)0.717 (5)0.049*0.37 (3)
O20.18762 (19)0.08197 (5)0.89869 (10)0.0468 (3)
O3A0.0115 (12)0.2046 (4)0.8201 (5)0.0463 (13)0.54 (3)
O4A0.0751 (8)0.2537 (6)0.9776 (7)0.0623 (19)0.54 (3)
O3B0.0248 (19)0.1914 (7)0.8468 (19)0.078 (3)0.46 (3)
O4B0.021 (3)0.2723 (4)0.9405 (16)0.076 (4)0.46 (3)
N10.04842 (19)0.22525 (5)0.92742 (12)0.0376 (3)
N20.28090 (14)0.04202 (4)0.61720 (9)0.02414 (19)
H20.300 (4)0.0736 (7)0.666 (2)0.036*0.63 (3)
C10.36395 (19)0.16626 (5)0.97746 (10)0.0258 (2)
C20.5557 (2)0.15998 (6)1.05519 (12)0.0324 (3)
C30.6290 (2)0.19756 (7)1.15678 (14)0.0401 (3)
H30.7611070.1920601.2065000.048*
C40.5092 (2)0.24273 (6)1.18481 (14)0.0412 (3)
H40.5577200.2683281.2546730.049*
C50.3182 (2)0.25079 (5)1.11112 (13)0.0365 (3)
H50.2340470.2817051.1302550.044*
C60.25041 (19)0.21305 (5)1.00842 (11)0.0283 (2)
C70.28934 (19)0.12224 (5)0.87118 (11)0.0266 (2)
C80.28861 (17)0.00796 (5)0.67783 (11)0.0266 (2)
H80.3088420.0088560.7709170.032*
C90.26769 (18)0.05958 (5)0.60825 (12)0.0283 (2)
H90.2739350.0951080.6543300.034*
C100.23797 (17)0.05958 (5)0.47294 (12)0.0272 (2)
C110.22837 (16)0.00558 (5)0.40662 (11)0.0244 (2)
C120.19706 (19)0.00027 (6)0.26760 (12)0.0335 (3)
H120.1806850.0332000.2140190.040*
C130.1903 (2)0.05339 (7)0.21055 (13)0.0395 (3)
H130.1698840.0566670.1177310.047*
C140.2134 (2)0.10307 (6)0.28825 (14)0.0373 (3)
H140.2080840.1397700.2471450.045*
C150.24365 (18)0.09990 (5)0.42260 (13)0.0301 (2)
H150.2589870.1339660.4741930.036*
C160.25156 (16)0.04526 (5)0.48282 (11)0.0233 (2)
C170.2150 (2)0.11468 (6)0.39687 (16)0.0402 (3)
H17A0.0818190.1152950.3398000.060*
H17B0.2247270.1473240.4576810.060*
H17C0.3235330.1175150.3432930.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0537 (2)0.0714 (3)0.0417 (2)0.0315 (2)0.00294 (16)0.00849 (18)
O10.0511 (5)0.0267 (4)0.0208 (4)0.0049 (4)0.0088 (4)0.0020 (3)
O20.0706 (7)0.0442 (5)0.0286 (5)0.0253 (5)0.0173 (5)0.0089 (4)
O3A0.041 (2)0.064 (3)0.0298 (17)0.0180 (18)0.0048 (11)0.0085 (14)
O4A0.0501 (18)0.068 (4)0.069 (2)0.0233 (19)0.0096 (17)0.023 (2)
O3B0.047 (3)0.086 (6)0.092 (6)0.014 (3)0.020 (4)0.050 (5)
O4B0.076 (5)0.048 (3)0.088 (5)0.032 (3)0.031 (4)0.021 (3)
N10.0447 (6)0.0327 (5)0.0347 (6)0.0086 (5)0.0043 (5)0.0038 (4)
N20.0241 (4)0.0274 (4)0.0211 (4)0.0004 (3)0.0041 (3)0.0024 (3)
C10.0332 (6)0.0250 (5)0.0191 (5)0.0005 (4)0.0040 (4)0.0011 (4)
C20.0344 (6)0.0360 (6)0.0259 (5)0.0040 (5)0.0020 (4)0.0015 (5)
C30.0396 (7)0.0467 (7)0.0306 (6)0.0056 (6)0.0040 (5)0.0030 (6)
C40.0567 (9)0.0334 (6)0.0308 (6)0.0102 (6)0.0011 (6)0.0079 (5)
C50.0545 (8)0.0237 (5)0.0308 (6)0.0003 (5)0.0052 (5)0.0048 (5)
C60.0365 (6)0.0240 (5)0.0236 (5)0.0005 (4)0.0030 (4)0.0012 (4)
C70.0343 (6)0.0249 (5)0.0202 (5)0.0015 (4)0.0033 (4)0.0026 (4)
C80.0253 (5)0.0323 (6)0.0225 (5)0.0015 (4)0.0050 (4)0.0023 (4)
C90.0253 (5)0.0272 (5)0.0330 (6)0.0007 (4)0.0068 (4)0.0035 (4)
C100.0214 (5)0.0273 (5)0.0340 (6)0.0012 (4)0.0073 (4)0.0056 (4)
C110.0191 (4)0.0316 (5)0.0229 (5)0.0006 (4)0.0042 (4)0.0040 (4)
C120.0277 (6)0.0504 (7)0.0227 (5)0.0010 (5)0.0044 (4)0.0072 (5)
C130.0325 (6)0.0636 (9)0.0226 (5)0.0020 (6)0.0047 (5)0.0072 (6)
C140.0334 (6)0.0450 (7)0.0343 (6)0.0041 (5)0.0076 (5)0.0147 (5)
C150.0288 (5)0.0300 (6)0.0321 (6)0.0010 (4)0.0063 (4)0.0043 (4)
C160.0200 (5)0.0281 (5)0.0222 (5)0.0003 (4)0.0044 (4)0.0009 (4)
C170.0390 (7)0.0321 (6)0.0505 (8)0.0048 (5)0.0106 (6)0.0155 (6)
Geometric parameters (Å, º) top
Cl1—C21.7288 (13)C5—H50.9500
O1—C71.2720 (14)C8—C91.3928 (17)
O1—H10.841 (10)C8—H80.9500
O2—C71.2140 (16)C9—C101.3805 (17)
O3A—N11.196 (7)C9—H90.9500
O4A—N11.232 (4)C10—C111.4251 (16)
O3B—N11.190 (9)C10—C171.4961 (17)
O4B—N11.201 (5)C11—C161.4134 (15)
N1—C61.4879 (17)C11—C121.4248 (16)
N2—C81.3157 (15)C12—C131.365 (2)
N2—C161.3731 (14)C12—H120.9500
N2—H20.887 (10)C13—C141.399 (2)
C1—C61.3888 (16)C13—H130.9500
C1—C21.3978 (17)C14—C151.3726 (18)
C1—C71.5229 (15)C14—H140.9500
C2—C31.3908 (19)C15—C161.4100 (16)
C3—C41.375 (2)C15—H150.9500
C3—H30.9500C17—H17A0.9800
C4—C51.382 (2)C17—H17B0.9800
C4—H40.9500C17—H17C0.9800
C5—C61.3934 (17)
C7—O1—H1108 (4)N2—C8—H8119.3
O3B—N1—O4B124.0 (7)C9—C8—H8119.3
O3A—N1—O4A123.7 (4)C10—C9—C8120.61 (11)
O3B—N1—C6119.8 (5)C10—C9—H9119.7
O3A—N1—C6118.4 (3)C8—C9—H9119.7
O4B—N1—C6115.8 (4)C9—C10—C11118.37 (10)
O4A—N1—C6117.8 (3)C9—C10—C17121.21 (12)
C8—N2—C16121.22 (10)C11—C10—C17120.42 (12)
C8—N2—H2117.8 (18)C16—C11—C12117.86 (11)
C16—N2—H2120.9 (18)C16—C11—C10118.30 (10)
C6—C1—C2115.27 (10)C12—C11—C10123.84 (11)
C6—C1—C7124.47 (11)C13—C12—C11120.75 (12)
C2—C1—C7120.22 (10)C13—C12—H12119.6
C3—C2—C1122.86 (12)C11—C12—H12119.6
C3—C2—Cl1118.09 (11)C12—C13—C14120.25 (12)
C1—C2—Cl1119.05 (9)C12—C13—H13119.9
C4—C3—C2119.60 (13)C14—C13—H13119.9
C4—C3—H3120.2C15—C14—C13121.39 (12)
C2—C3—H3120.2C15—C14—H14119.3
C3—C4—C5119.84 (12)C13—C14—H14119.3
C3—C4—H4120.1C14—C15—C16118.94 (12)
C5—C4—H4120.1C14—C15—H15120.5
C4—C5—C6119.24 (13)C16—C15—H15120.5
C4—C5—H5120.4N2—C16—C15119.01 (10)
C6—C5—H5120.4N2—C16—C11120.18 (10)
C1—C6—C5123.18 (12)C15—C16—C11120.81 (10)
C1—C6—N1119.51 (10)C10—C17—H17A109.5
C5—C6—N1117.30 (11)C10—C17—H17B109.5
O2—C7—O1126.71 (11)H17A—C17—H17B109.5
O2—C7—C1118.40 (10)C10—C17—H17C109.5
O1—C7—C1114.82 (10)H17A—C17—H17C109.5
N2—C8—C9121.31 (10)H17B—C17—H17C109.5
C6—C1—C2—C30.13 (19)C6—C1—C7—O198.00 (14)
C7—C1—C2—C3177.61 (12)C2—C1—C7—O184.49 (14)
C6—C1—C2—Cl1179.59 (9)C16—N2—C8—C90.11 (17)
C7—C1—C2—Cl12.68 (16)N2—C8—C9—C100.05 (17)
C1—C2—C3—C40.9 (2)C8—C9—C10—C110.28 (17)
Cl1—C2—C3—C4179.40 (12)C8—C9—C10—C17179.94 (11)
C2—C3—C4—C50.7 (2)C9—C10—C11—C160.54 (16)
C3—C4—C5—C60.5 (2)C17—C10—C11—C16179.80 (11)
C2—C1—C6—C51.36 (18)C9—C10—C11—C12179.58 (11)
C7—C1—C6—C5176.26 (12)C17—C10—C11—C120.08 (17)
C2—C1—C6—N1177.02 (11)C16—C11—C12—C130.15 (17)
C7—C1—C6—N15.35 (18)C10—C11—C12—C13179.73 (11)
C4—C5—C6—C11.6 (2)C11—C12—C13—C140.2 (2)
C4—C5—C6—N1176.84 (12)C12—C13—C14—C150.1 (2)
O3B—N1—C6—C18.6 (14)C13—C14—C15—C160.05 (19)
O3A—N1—C6—C119.0 (5)C8—N2—C16—C15179.75 (10)
O4B—N1—C6—C1164.4 (14)C8—N2—C16—C110.17 (16)
O4A—N1—C6—C1157.3 (8)C14—C15—C16—N2179.72 (11)
O3B—N1—C6—C5172.9 (14)C14—C15—C16—C110.15 (18)
O3A—N1—C6—C5159.4 (5)C12—C11—C16—N2179.62 (10)
O4B—N1—C6—C514.1 (14)C10—C11—C16—N20.49 (16)
O4A—N1—C6—C524.2 (8)C12—C11—C16—C150.05 (16)
C6—C1—C7—O284.88 (16)C10—C11—C16—C15179.94 (10)
C2—C1—C7—O292.63 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.84 (4)1.71 (4)2.5485 (13)177 (6)
N2—H2···O10.89 (2)1.66 (2)2.5485 (13)176 (2)
C5—H5···O1i0.952.493.1489 (15)126
C13—H13···O2ii0.952.363.2889 (17)165
C14—H14···Cg1ii0.952.893.6596 (15)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z1.
4-Methylquinolinium 3-chloro-2-nitrobenzoate (IV) top
Crystal data top
C10H9.54N0.54+·C7H3.46ClNO40.54Z = 2
Mr = 344.75F(000) = 356.00
Triclinic, P1Dx = 1.470 Mg m3
a = 7.5234 (10) ÅMo Kα radiation, λ = 0.71075 Å
b = 7.8017 (11) ÅCell parameters from 14620 reflections
c = 13.6341 (17) Åθ = 3.1–30.2°
α = 80.934 (4)°µ = 0.27 mm1
β = 80.227 (3)°T = 185 K
γ = 89.150 (4)°Block, colorless
V = 778.73 (18) Å30.35 × 0.29 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4017 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.028
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.914, Tmax = 0.942k = 1010
16767 measured reflectionsl = 1919
4544 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1388P]
where P = (Fo2 + 2Fc2)/3
4544 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.38 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.86435 (3)0.88078 (4)0.07310 (2)0.03700 (9)
O10.32371 (11)0.40966 (11)0.26115 (7)0.0398 (2)
H10.318 (6)0.339 (4)0.3152 (18)0.060*0.46 (3)
O20.56467 (12)0.53822 (11)0.29489 (6)0.03676 (18)
O30.87768 (12)0.52646 (12)0.12927 (8)0.0450 (2)
O40.86170 (12)0.78937 (12)0.16317 (6)0.0410 (2)
N10.80578 (11)0.66730 (12)0.13027 (7)0.02921 (18)
N20.30583 (11)0.21139 (11)0.42899 (7)0.02971 (18)
H20.318 (4)0.278 (3)0.3693 (12)0.045*0.54 (3)
C10.47878 (12)0.61791 (12)0.13339 (7)0.02463 (18)
C20.64206 (12)0.69496 (12)0.08391 (7)0.02335 (18)
C30.65928 (13)0.79149 (12)0.01201 (7)0.02544 (18)
C40.51016 (14)0.81598 (14)0.06009 (8)0.0305 (2)
H40.5202250.8837720.1251380.037*
C50.34671 (14)0.74038 (14)0.01204 (9)0.0318 (2)
H50.2440610.7561400.0444450.038*
C60.33155 (13)0.64142 (13)0.08340 (8)0.0288 (2)
H60.2187880.5890690.1149300.035*
C70.45882 (13)0.51586 (13)0.23876 (8)0.02791 (19)
C80.34235 (14)0.26031 (14)0.51192 (9)0.0334 (2)
H80.3829780.3760700.5088000.040*
C90.32371 (15)0.14881 (15)0.60416 (9)0.0336 (2)
H90.3505230.1896580.6621390.040*
C100.26665 (13)0.01971 (14)0.61092 (8)0.0293 (2)
C110.23111 (12)0.07674 (12)0.52147 (7)0.02621 (19)
C120.17762 (15)0.24889 (14)0.51777 (9)0.0347 (2)
H120.1638220.3330390.5771110.042*
C130.14562 (17)0.29488 (16)0.42911 (10)0.0403 (3)
H130.1109500.4109640.4277490.048*
C140.16351 (16)0.17203 (17)0.33985 (10)0.0395 (3)
H140.1394550.2056110.2793280.047*
C150.21525 (14)0.00529 (15)0.34041 (8)0.0329 (2)
H150.2273520.0771700.2803830.039*
C160.25086 (12)0.04439 (13)0.43088 (7)0.02605 (19)
C170.24210 (18)0.14002 (17)0.70976 (9)0.0420 (3)
H17A0.1168980.1821380.7272820.063*
H17B0.2701850.0777020.7623870.063*
H17C0.3231990.2387640.7041280.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02892 (13)0.04837 (17)0.02927 (14)0.01052 (10)0.00070 (10)0.00234 (10)
O10.0339 (4)0.0411 (4)0.0395 (4)0.0140 (3)0.0068 (3)0.0110 (3)
O20.0414 (4)0.0382 (4)0.0302 (4)0.0095 (3)0.0086 (3)0.0001 (3)
O30.0310 (4)0.0465 (5)0.0587 (6)0.0088 (3)0.0142 (4)0.0051 (4)
O40.0398 (4)0.0503 (5)0.0349 (4)0.0183 (4)0.0104 (3)0.0065 (3)
N10.0232 (4)0.0370 (4)0.0265 (4)0.0061 (3)0.0045 (3)0.0013 (3)
N20.0233 (4)0.0298 (4)0.0324 (4)0.0037 (3)0.0010 (3)0.0027 (3)
C10.0232 (4)0.0226 (4)0.0273 (4)0.0020 (3)0.0026 (3)0.0029 (3)
C20.0211 (4)0.0241 (4)0.0254 (4)0.0013 (3)0.0045 (3)0.0049 (3)
C30.0240 (4)0.0259 (4)0.0255 (4)0.0036 (3)0.0013 (3)0.0040 (3)
C40.0318 (5)0.0327 (5)0.0265 (4)0.0001 (4)0.0067 (4)0.0010 (4)
C50.0264 (5)0.0354 (5)0.0350 (5)0.0005 (4)0.0103 (4)0.0041 (4)
C60.0219 (4)0.0291 (5)0.0350 (5)0.0025 (3)0.0043 (4)0.0038 (4)
C70.0263 (4)0.0258 (4)0.0292 (5)0.0017 (3)0.0010 (4)0.0009 (3)
C80.0259 (5)0.0310 (5)0.0428 (6)0.0037 (4)0.0042 (4)0.0056 (4)
C90.0287 (5)0.0403 (6)0.0339 (5)0.0020 (4)0.0074 (4)0.0103 (4)
C100.0244 (4)0.0352 (5)0.0261 (4)0.0056 (4)0.0021 (4)0.0015 (4)
C110.0211 (4)0.0279 (4)0.0269 (4)0.0010 (3)0.0004 (3)0.0007 (3)
C120.0340 (5)0.0270 (5)0.0388 (6)0.0009 (4)0.0016 (4)0.0004 (4)
C130.0370 (6)0.0336 (5)0.0506 (7)0.0034 (4)0.0027 (5)0.0126 (5)
C140.0342 (5)0.0488 (7)0.0385 (6)0.0007 (5)0.0064 (5)0.0164 (5)
C150.0286 (5)0.0429 (6)0.0259 (5)0.0003 (4)0.0032 (4)0.0029 (4)
C160.0190 (4)0.0299 (5)0.0268 (4)0.0007 (3)0.0002 (3)0.0009 (3)
C170.0474 (7)0.0469 (7)0.0275 (5)0.0104 (5)0.0033 (5)0.0028 (4)
Geometric parameters (Å, º) top
Cl1—C31.7240 (10)C8—C91.3990 (16)
O1—C71.2857 (12)C8—H80.9500
O1—H10.843 (10)C9—C101.3735 (16)
O2—C71.2261 (13)C9—H90.9500
O3—N11.2185 (13)C10—C111.4289 (14)
O4—N11.2230 (12)C10—C171.5010 (15)
N1—C21.4753 (12)C11—C121.4186 (14)
N2—C81.3206 (15)C11—C161.4194 (13)
N2—C161.3678 (13)C12—C131.3733 (18)
N2—H20.885 (10)C12—H120.9500
C1—C61.3913 (14)C13—C141.4137 (19)
C1—C21.3922 (13)C13—H130.9500
C1—C71.5134 (14)C14—C151.3649 (17)
C2—C31.3891 (13)C14—H140.9500
C3—C41.3887 (14)C15—C161.4176 (14)
C4—C51.3840 (15)C15—H150.9500
C4—H40.9500C17—H17A0.9800
C5—C61.3921 (15)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—H60.9500
C7—O1—H1116 (3)C10—C9—C8120.01 (10)
O3—N1—O4125.42 (10)C10—C9—H9120.0
O3—N1—C2117.11 (9)C8—C9—H9120.0
O4—N1—C2117.42 (9)C9—C10—C11118.16 (9)
C8—N2—C16119.82 (9)C9—C10—C17120.72 (10)
C8—N2—H2125 (2)C11—C10—C17121.12 (10)
C16—N2—H2115 (2)C12—C11—C16117.78 (9)
C6—C1—C2117.57 (9)C12—C11—C10123.60 (9)
C6—C1—C7120.60 (8)C16—C11—C10118.62 (9)
C2—C1—C7121.81 (8)C13—C12—C11120.54 (10)
C3—C2—C1121.74 (9)C13—C12—H12119.7
C3—C2—N1117.82 (8)C11—C12—H12119.7
C1—C2—N1120.35 (8)C12—C13—C14120.97 (11)
C4—C3—C2119.89 (9)C12—C13—H13119.5
C4—C3—Cl1119.23 (8)C14—C13—H13119.5
C2—C3—Cl1120.88 (7)C15—C14—C13120.16 (11)
C5—C4—C3119.16 (9)C15—C14—H14119.9
C5—C4—H4120.4C13—C14—H14119.9
C3—C4—H4120.4C14—C15—C16119.76 (10)
C4—C5—C6120.51 (9)C14—C15—H15120.1
C4—C5—H5119.7C16—C15—H15120.1
C6—C5—H5119.7N2—C16—C15118.62 (9)
C1—C6—C5121.11 (9)N2—C16—C11120.61 (9)
C1—C6—H6119.4C15—C16—C11120.78 (9)
C5—C6—H6119.4C10—C17—H17A109.5
O2—C7—O1125.49 (10)C10—C17—H17B109.5
O2—C7—C1120.78 (9)H17A—C17—H17B109.5
O1—C7—C1113.73 (9)C10—C17—H17C109.5
N2—C8—C9122.75 (10)H17A—C17—H17C109.5
N2—C8—H8118.6H17B—C17—H17C109.5
C9—C8—H8118.6
C6—C1—C2—C30.26 (14)C16—N2—C8—C91.42 (16)
C7—C1—C2—C3178.70 (9)N2—C8—C9—C100.53 (17)
C6—C1—C2—N1176.66 (9)C8—C9—C10—C111.18 (15)
C7—C1—C2—N14.90 (14)C8—C9—C10—C17178.68 (10)
O3—N1—C2—C3101.75 (11)C9—C10—C11—C12177.75 (10)
O4—N1—C2—C375.67 (12)C17—C10—C11—C122.39 (15)
O3—N1—C2—C174.79 (12)C9—C10—C11—C161.95 (14)
O4—N1—C2—C1107.78 (11)C17—C10—C11—C16177.91 (9)
C1—C2—C3—C41.32 (15)C16—C11—C12—C130.30 (15)
N1—C2—C3—C4177.81 (9)C10—C11—C12—C13180.00 (10)
C1—C2—C3—Cl1178.25 (7)C11—C12—C13—C140.57 (18)
N1—C2—C3—Cl11.76 (12)C12—C13—C14—C150.76 (18)
C2—C3—C4—C51.27 (15)C13—C14—C15—C160.06 (17)
Cl1—C3—C4—C5178.31 (8)C8—N2—C16—C15179.04 (9)
C3—C4—C5—C60.19 (16)C8—N2—C16—C110.56 (14)
C2—C1—C6—C50.84 (15)C14—C15—C16—N2178.77 (10)
C7—C1—C6—C5177.62 (9)C14—C15—C16—C110.82 (15)
C4—C5—C6—C10.89 (16)C12—C11—C16—N2178.59 (9)
C6—C1—C7—O2156.92 (10)C10—C11—C16—N21.12 (14)
C2—C1—C7—O221.48 (15)C12—C11—C16—C150.99 (14)
C6—C1—C7—O122.59 (14)C10—C11—C16—C15179.29 (9)
C2—C1—C7—O1159.02 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.84 (3)1.70 (3)2.5364 (13)175 (3)
N2—H2···O10.89 (2)1.65 (2)2.5364 (13)175 (3)
C6—H6···O3i0.952.593.4705 (14)155
C9—H9···O2ii0.952.413.1739 (15)137
C17—H17C···O2iii0.982.473.4155 (17)162
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
4-Methylquinolinium 4-chloro-2-nitrobenzoate (V) top
Crystal data top
C10H10N+·C7H3ClNO4Z = 2
Mr = 344.75F(000) = 356.00
Triclinic, P1Dx = 1.469 Mg m3
a = 7.6858 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.3615 (3) ÅCell parameters from 19686 reflections
c = 13.5746 (5) Åθ = 3.0–30.1°
α = 82.5485 (13)°µ = 0.27 mm1
β = 80.8927 (12)°T = 185 K
γ = 65.0929 (11)°Platelet, colorless
V = 779.33 (5) Å30.51 × 0.45 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3290 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 99
Tmin = 0.868, Tmax = 0.960k = 1010
18635 measured reflectionsl = 1717
3566 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.2103P]
where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max = 0.002
222 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.18 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68899 (5)0.41758 (5)1.09613 (2)0.04437 (12)
O10.55730 (12)0.11536 (12)0.67899 (7)0.0343 (2)
O20.27487 (13)0.08937 (13)0.70351 (7)0.0361 (2)
O30.04742 (14)0.09528 (15)0.90266 (8)0.0491 (3)
O40.12351 (16)0.15067 (16)0.83652 (9)0.0518 (3)
N10.16299 (14)0.04644 (15)0.87379 (8)0.0336 (2)
N20.42785 (14)0.30577 (13)0.52175 (7)0.0270 (2)
H20.483 (3)0.226 (3)0.5866 (16)0.075 (6)*
C10.49025 (15)0.04440 (14)0.82541 (8)0.0237 (2)
C20.36650 (16)0.10303 (15)0.89062 (8)0.0255 (2)
C30.42201 (17)0.21590 (16)0.97438 (9)0.0291 (2)
H30.3340840.2538091.0171350.035*
C40.61139 (17)0.27175 (16)0.99359 (9)0.0289 (2)
C50.73961 (17)0.21407 (16)0.93296 (9)0.0294 (2)
H50.8680570.2519660.9482610.035*
C60.67764 (16)0.10049 (15)0.84981 (9)0.0271 (2)
H60.7646640.0597680.8084010.033*
C70.43193 (16)0.06384 (15)0.72882 (8)0.0261 (2)
C80.50883 (17)0.25320 (16)0.43209 (9)0.0304 (2)
H80.6154160.1416730.4260680.036*
C90.44242 (18)0.35661 (17)0.34601 (9)0.0314 (3)
H90.5049960.3153980.2823670.038*
C100.28780 (17)0.51732 (16)0.35173 (9)0.0291 (2)
C110.19978 (16)0.57586 (15)0.44844 (9)0.0264 (2)
C120.04213 (18)0.74036 (17)0.46435 (11)0.0350 (3)
H120.0113980.8173440.4087440.042*
C130.03350 (19)0.78908 (18)0.55913 (12)0.0400 (3)
H130.1387110.9004180.5689960.048*
C140.0424 (2)0.67651 (19)0.64235 (10)0.0393 (3)
H140.0124240.7124640.7078520.047*
C150.19339 (18)0.51667 (17)0.63033 (9)0.0327 (3)
H150.2434340.4407170.6869080.039*
C160.27446 (16)0.46528 (15)0.53306 (8)0.0253 (2)
C170.2148 (2)0.6286 (2)0.25939 (10)0.0405 (3)
H17A0.0750110.6650440.2635520.061*
H17B0.2786160.5600520.2007440.061*
H17C0.2430440.7335580.2532980.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0431 (2)0.0486 (2)0.03629 (19)0.01563 (16)0.01541 (14)0.01651 (14)
O10.0291 (4)0.0417 (5)0.0307 (4)0.0157 (4)0.0063 (3)0.0105 (4)
O20.0291 (4)0.0476 (5)0.0321 (4)0.0169 (4)0.0112 (3)0.0094 (4)
O30.0271 (5)0.0596 (7)0.0399 (5)0.0006 (5)0.0017 (4)0.0002 (5)
O40.0427 (6)0.0587 (7)0.0673 (7)0.0319 (5)0.0236 (5)0.0105 (5)
N10.0237 (5)0.0446 (6)0.0295 (5)0.0139 (5)0.0045 (4)0.0094 (4)
N20.0260 (5)0.0278 (5)0.0268 (5)0.0114 (4)0.0037 (4)0.0016 (4)
C10.0229 (5)0.0244 (5)0.0231 (5)0.0086 (4)0.0033 (4)0.0019 (4)
C20.0213 (5)0.0285 (5)0.0254 (5)0.0085 (4)0.0039 (4)0.0018 (4)
C30.0275 (6)0.0331 (6)0.0257 (5)0.0127 (5)0.0026 (4)0.0017 (4)
C40.0313 (6)0.0283 (5)0.0243 (5)0.0089 (5)0.0073 (4)0.0013 (4)
C50.0240 (5)0.0328 (6)0.0303 (6)0.0094 (4)0.0079 (4)0.0000 (5)
C60.0244 (5)0.0298 (5)0.0277 (5)0.0116 (4)0.0036 (4)0.0010 (4)
C70.0252 (5)0.0262 (5)0.0245 (5)0.0083 (4)0.0038 (4)0.0003 (4)
C80.0270 (6)0.0286 (5)0.0333 (6)0.0096 (4)0.0013 (4)0.0035 (5)
C90.0334 (6)0.0371 (6)0.0255 (5)0.0168 (5)0.0003 (4)0.0042 (5)
C100.0305 (6)0.0346 (6)0.0272 (5)0.0189 (5)0.0057 (4)0.0031 (5)
C110.0249 (5)0.0275 (5)0.0294 (5)0.0135 (4)0.0044 (4)0.0007 (4)
C120.0295 (6)0.0293 (6)0.0450 (7)0.0105 (5)0.0086 (5)0.0014 (5)
C130.0295 (6)0.0317 (6)0.0548 (8)0.0079 (5)0.0006 (5)0.0104 (6)
C140.0362 (7)0.0434 (7)0.0386 (7)0.0168 (6)0.0054 (5)0.0141 (6)
C150.0345 (6)0.0379 (6)0.0278 (6)0.0173 (5)0.0010 (5)0.0035 (5)
C160.0246 (5)0.0268 (5)0.0270 (5)0.0131 (4)0.0027 (4)0.0016 (4)
C170.0429 (7)0.0485 (8)0.0309 (6)0.0212 (6)0.0104 (5)0.0106 (6)
Geometric parameters (Å, º) top
Cl1—C41.7291 (12)C8—C91.3887 (17)
O1—C71.2804 (14)C8—H80.9500
O2—C71.2313 (14)C9—C101.3699 (18)
O3—N11.2127 (15)C9—H90.9500
O4—N11.2220 (16)C10—C111.4239 (16)
N1—C21.4780 (14)C10—C171.4938 (17)
N2—C81.3156 (15)C11—C161.4107 (16)
N2—C161.3652 (15)C11—C121.4132 (17)
N2—H21.06 (2)C12—C131.364 (2)
C1—C21.3936 (15)C12—H120.9500
C1—C61.3948 (15)C13—C141.405 (2)
C1—C71.5085 (15)C13—H130.9500
C2—C31.3790 (16)C14—C151.3601 (19)
C3—C41.3859 (17)C14—H140.9500
C3—H30.9500C15—C161.4062 (16)
C4—C51.3863 (17)C15—H150.9500
C5—C61.3834 (16)C17—H17A0.9800
C5—H50.9500C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
O3—N1—O4125.32 (12)C10—C9—C8120.82 (11)
O3—N1—C2117.47 (11)C10—C9—H9119.6
O4—N1—C2117.09 (11)C8—C9—H9119.6
C8—N2—C16120.67 (10)C9—C10—C11117.95 (11)
C8—N2—H2120.5 (12)C9—C10—C17121.06 (11)
C16—N2—H2118.8 (12)C11—C10—C17120.99 (11)
C2—C1—C6116.89 (10)C16—C11—C12118.02 (11)
C2—C1—C7122.38 (10)C16—C11—C10118.57 (10)
C6—C1—C7120.58 (10)C12—C11—C10123.40 (11)
C3—C2—C1123.52 (10)C13—C12—C11120.30 (12)
C3—C2—N1115.15 (10)C13—C12—H12119.9
C1—C2—N1121.33 (10)C11—C12—H12119.9
C2—C3—C4117.23 (10)C12—C13—C14120.75 (12)
C2—C3—H3121.4C12—C13—H13119.6
C4—C3—H3121.4C14—C13—H13119.6
C3—C4—C5121.84 (11)C15—C14—C13120.82 (12)
C3—C4—Cl1118.83 (9)C15—C14—H14119.6
C5—C4—Cl1119.33 (9)C13—C14—H14119.6
C6—C5—C4118.97 (11)C14—C15—C16119.15 (12)
C6—C5—H5120.5C14—C15—H15120.4
C4—C5—H5120.5C16—C15—H15120.4
C5—C6—C1121.49 (11)N2—C16—C15118.72 (11)
C5—C6—H6119.3N2—C16—C11120.32 (10)
C1—C6—H6119.3C15—C16—C11120.96 (11)
O2—C7—O1126.25 (11)C10—C17—H17A109.5
O2—C7—C1118.37 (10)C10—C17—H17B109.5
O1—C7—C1115.33 (10)H17A—C17—H17B109.5
N2—C8—C9121.66 (11)C10—C17—H17C109.5
N2—C8—H8119.2H17A—C17—H17C109.5
C9—C8—H8119.2H17B—C17—H17C109.5
C6—C1—C2—C32.12 (17)C16—N2—C8—C90.01 (17)
C7—C1—C2—C3173.58 (10)N2—C8—C9—C100.70 (18)
C6—C1—C2—N1177.81 (10)C8—C9—C10—C111.00 (17)
C7—C1—C2—N16.48 (16)C8—C9—C10—C17179.56 (11)
O3—N1—C2—C397.04 (13)C9—C10—C11—C160.65 (16)
O4—N1—C2—C379.28 (14)C17—C10—C11—C16179.91 (10)
O3—N1—C2—C182.90 (14)C9—C10—C11—C12178.67 (11)
O4—N1—C2—C1100.78 (14)C17—C10—C11—C120.77 (18)
C1—C2—C3—C40.31 (18)C16—C11—C12—C130.21 (17)
N1—C2—C3—C4179.63 (10)C10—C11—C12—C13179.11 (11)
C2—C3—C4—C51.49 (18)C11—C12—C13—C140.6 (2)
C2—C3—C4—Cl1178.45 (9)C12—C13—C14—C150.2 (2)
C3—C4—C5—C61.37 (18)C13—C14—C15—C160.49 (19)
Cl1—C4—C5—C6178.58 (9)C8—N2—C16—C15179.53 (11)
C4—C5—C6—C10.58 (18)C8—N2—C16—C110.35 (16)
C2—C1—C6—C52.23 (16)C14—C15—C16—N2179.02 (11)
C7—C1—C6—C5173.56 (10)C14—C15—C16—C110.86 (18)
C2—C1—C7—O25.64 (16)C12—C11—C16—N2179.37 (10)
C6—C1—C7—O2169.91 (11)C10—C11—C16—N20.01 (16)
C2—C1—C7—O1176.77 (10)C12—C11—C16—C150.51 (16)
C6—C1—C7—O17.68 (15)C10—C11—C16—C15179.86 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O11.06 (2)1.50 (2)2.5568 (13)179 (4)
C8—H8···O2i0.952.563.2779 (16)132
C12—H12···O2ii0.952.523.3391 (18)144
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
4-Methylquinolinium 5-chloro-2-nitrobenzoate (VI) top
Crystal data top
C10H10N+.C7H3ClNO4F(000) = 1424.00
Mr = 344.75Dx = 1.502 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 16.2625 (10) ÅCell parameters from 24067 reflections
b = 7.5099 (4) Åθ = 3.0–30.0°
c = 25.3105 (15) ŵ = 0.28 mm1
β = 99.4086 (19)°T = 190 K
V = 3049.6 (3) Å3Prism, colorless
Z = 80.30 × 0.21 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3913 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 2222
Tmin = 0.916, Tmax = 0.968k = 1010
29037 measured reflectionsl = 3535
4457 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.3567P]
where P = (Fo2 + 2Fc2)/3
4457 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.16 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35497 (2)0.25440 (3)0.21927 (2)0.03174 (9)
O10.58343 (5)0.52232 (13)0.37347 (3)0.0379 (2)
O20.51224 (5)0.73265 (12)0.40930 (3)0.03410 (19)
O30.50836 (5)1.00336 (12)0.32498 (4)0.0393 (2)
O40.38124 (6)1.04110 (12)0.33823 (3)0.03630 (19)
N10.43689 (6)0.95186 (12)0.32389 (3)0.02602 (17)
N20.70950 (5)0.49554 (12)0.44591 (3)0.02496 (17)
C10.45930 (6)0.62497 (13)0.32235 (4)0.02159 (18)
C20.41499 (6)0.77444 (13)0.30138 (4)0.02245 (18)
C30.35187 (7)0.76754 (14)0.25743 (4)0.0276 (2)
H30.3224490.8724010.2447020.033*
C40.33229 (6)0.60562 (15)0.23234 (4)0.0279 (2)
H40.2892650.5974310.2021460.033*
C50.37668 (6)0.45573 (13)0.25212 (4)0.02356 (18)
C60.43909 (6)0.46287 (13)0.29667 (4)0.02320 (18)
H60.4679280.3575320.3095870.028*
C70.52359 (6)0.63089 (13)0.37316 (4)0.02337 (18)
C80.77132 (6)0.42632 (14)0.42468 (4)0.0276 (2)
H80.7634970.4066930.3871110.033*
C90.84757 (6)0.38107 (14)0.45538 (4)0.0267 (2)
H90.8908200.3326390.4386940.032*
C100.86007 (6)0.40684 (13)0.51013 (4)0.02478 (19)
C110.79365 (6)0.48165 (13)0.53362 (4)0.02323 (18)
C120.79902 (7)0.51180 (16)0.58948 (4)0.0313 (2)
H120.8492070.4854260.6130720.038*
C130.73200 (8)0.57880 (18)0.60938 (5)0.0362 (2)
H130.7359420.5964650.6468790.043*
C140.65709 (7)0.62213 (17)0.57515 (5)0.0335 (2)
H140.6114550.6692170.5897730.040*
C150.64983 (6)0.59662 (15)0.52088 (4)0.0283 (2)
H150.5996730.6267370.4977740.034*
C160.71795 (6)0.52500 (13)0.49994 (4)0.02273 (18)
C170.94142 (7)0.35605 (17)0.54355 (5)0.0340 (2)
H17A0.9676770.4620340.5615850.051*
H17B0.9782650.3048700.5205280.051*
H17C0.9315370.2680160.5704010.051*
H20.6559 (13)0.524 (3)0.4196 (9)0.074 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03751 (15)0.02625 (13)0.03075 (14)0.00503 (9)0.00350 (11)0.00484 (9)
O10.0330 (4)0.0476 (5)0.0287 (4)0.0189 (4)0.0077 (3)0.0084 (3)
O20.0337 (4)0.0406 (5)0.0259 (4)0.0105 (3)0.0015 (3)0.0072 (3)
O30.0335 (4)0.0350 (4)0.0470 (5)0.0106 (3)0.0008 (4)0.0006 (4)
O40.0455 (5)0.0292 (4)0.0349 (4)0.0063 (3)0.0084 (4)0.0037 (3)
N10.0308 (4)0.0231 (4)0.0224 (4)0.0004 (3)0.0007 (3)0.0023 (3)
N20.0237 (4)0.0265 (4)0.0234 (4)0.0025 (3)0.0004 (3)0.0026 (3)
C10.0187 (4)0.0252 (4)0.0205 (4)0.0016 (3)0.0021 (3)0.0008 (3)
C20.0220 (4)0.0225 (4)0.0222 (4)0.0001 (3)0.0018 (3)0.0002 (3)
C30.0257 (5)0.0259 (5)0.0282 (5)0.0033 (3)0.0041 (4)0.0019 (4)
C40.0249 (4)0.0299 (5)0.0261 (4)0.0000 (4)0.0044 (4)0.0005 (4)
C50.0233 (4)0.0238 (4)0.0237 (4)0.0025 (3)0.0043 (3)0.0021 (3)
C60.0218 (4)0.0238 (4)0.0240 (4)0.0022 (3)0.0038 (3)0.0015 (3)
C70.0220 (4)0.0262 (4)0.0208 (4)0.0016 (3)0.0001 (3)0.0020 (3)
C80.0283 (5)0.0294 (5)0.0248 (4)0.0018 (4)0.0038 (4)0.0015 (4)
C90.0234 (4)0.0270 (5)0.0300 (5)0.0023 (3)0.0049 (4)0.0009 (4)
C100.0213 (4)0.0212 (4)0.0303 (5)0.0004 (3)0.0004 (3)0.0018 (4)
C110.0220 (4)0.0216 (4)0.0247 (4)0.0012 (3)0.0005 (3)0.0020 (3)
C120.0300 (5)0.0361 (6)0.0252 (5)0.0005 (4)0.0028 (4)0.0005 (4)
C130.0389 (6)0.0431 (6)0.0258 (5)0.0008 (5)0.0026 (4)0.0053 (5)
C140.0321 (5)0.0360 (6)0.0333 (5)0.0040 (4)0.0084 (4)0.0044 (4)
C150.0247 (4)0.0290 (5)0.0307 (5)0.0040 (4)0.0029 (4)0.0001 (4)
C160.0226 (4)0.0208 (4)0.0238 (4)0.0002 (3)0.0008 (3)0.0021 (3)
C170.0226 (5)0.0376 (6)0.0387 (6)0.0040 (4)0.0042 (4)0.0001 (5)
Geometric parameters (Å, º) top
Cl1—C51.7338 (10)C8—C91.3935 (14)
O1—C71.2686 (12)C8—H80.9500
O2—C71.2288 (13)C9—C101.3811 (15)
O3—N11.2211 (12)C9—H90.9500
O4—N11.2277 (12)C10—C111.4303 (14)
N1—C21.4698 (13)C10—C171.4985 (14)
N2—C81.3215 (13)C11—C161.4159 (13)
N2—C161.3700 (13)C11—C121.4204 (14)
N2—H21.03 (2)C12—C131.3691 (17)
C1—C21.3913 (13)C12—H120.9500
C1—C61.3938 (14)C13—C141.4128 (17)
C1—C71.5197 (13)C13—H130.9500
C2—C31.3858 (14)C14—C151.3726 (16)
C3—C41.3847 (15)C14—H140.9500
C3—H30.9500C15—C161.4105 (14)
C4—C51.3859 (14)C15—H150.9500
C4—H40.9500C17—H17A0.9800
C5—C61.3893 (14)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
O3—N1—O4124.43 (10)C10—C9—C8119.80 (9)
O3—N1—C2117.73 (9)C10—C9—H9120.1
O4—N1—C2117.77 (9)C8—C9—H9120.1
C8—N2—C16120.70 (9)C9—C10—C11118.34 (9)
C8—N2—H2116.0 (12)C9—C10—C17120.16 (9)
C16—N2—H2123.3 (12)C11—C10—C17121.50 (9)
C2—C1—C6117.31 (8)C16—C11—C12117.94 (9)
C2—C1—C7122.75 (9)C16—C11—C10118.79 (9)
C6—C1—C7119.82 (8)C12—C11—C10123.27 (9)
C3—C2—C1123.05 (9)C13—C12—C11120.11 (10)
C3—C2—N1116.47 (9)C13—C12—H12119.9
C1—C2—N1120.40 (8)C11—C12—H12119.9
C4—C3—C2119.06 (9)C12—C13—C14121.17 (10)
C4—C3—H3120.5C12—C13—H13119.4
C2—C3—H3120.5C14—C13—H13119.4
C3—C4—C5118.71 (9)C15—C14—C13120.40 (10)
C3—C4—H4120.6C15—C14—H14119.8
C5—C4—H4120.6C13—C14—H14119.8
C4—C5—C6122.02 (9)C14—C15—C16119.00 (10)
C4—C5—Cl1118.81 (8)C14—C15—H15120.5
C6—C5—Cl1119.16 (8)C16—C15—H15120.5
C5—C6—C1119.83 (9)N2—C16—C15118.68 (9)
C5—C6—H6120.1N2—C16—C11119.95 (9)
C1—C6—H6120.1C15—C16—C11121.37 (9)
O2—C7—O1127.13 (9)C10—C17—H17A109.5
O2—C7—C1118.80 (9)C10—C17—H17B109.5
O1—C7—C1114.03 (8)H17A—C17—H17B109.5
N2—C8—C9122.41 (10)C10—C17—H17C109.5
N2—C8—H8118.8H17A—C17—H17C109.5
C9—C8—H8118.8H17B—C17—H17C109.5
C6—C1—C2—C31.16 (15)C16—N2—C8—C90.41 (16)
C7—C1—C2—C3174.95 (9)N2—C8—C9—C100.62 (17)
C6—C1—C2—N1175.55 (8)C8—C9—C10—C110.59 (15)
C7—C1—C2—N18.33 (14)C8—C9—C10—C17179.10 (10)
O3—N1—C2—C3120.32 (11)C9—C10—C11—C160.39 (14)
O4—N1—C2—C356.69 (13)C17—C10—C11—C16179.29 (10)
O3—N1—C2—C156.60 (13)C9—C10—C11—C12179.10 (10)
O4—N1—C2—C1126.39 (10)C17—C10—C11—C120.58 (16)
C1—C2—C3—C41.07 (16)C16—C11—C12—C130.76 (16)
N1—C2—C3—C4175.77 (9)C10—C11—C12—C13177.96 (11)
C2—C3—C4—C50.02 (16)C11—C12—C13—C141.11 (19)
C3—C4—C5—C60.97 (16)C12—C13—C14—C150.4 (2)
C3—C4—C5—Cl1177.60 (8)C13—C14—C15—C160.59 (18)
C4—C5—C6—C10.86 (15)C8—N2—C16—C15179.05 (10)
Cl1—C5—C6—C1177.70 (7)C8—N2—C16—C110.20 (15)
C2—C1—C6—C50.20 (14)C14—C15—C16—N2178.31 (10)
C7—C1—C6—C5176.04 (9)C14—C15—C16—C110.93 (16)
C2—C1—C7—O234.14 (15)C12—C11—C16—N2178.97 (9)
C6—C1—C7—O2141.88 (10)C10—C11—C16—N20.19 (14)
C2—C1—C7—O1147.73 (10)C12—C11—C16—C150.25 (15)
C6—C1—C7—O136.25 (13)C10—C11—C16—C15179.04 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O11.03 (2)1.52 (2)2.5252 (11)165 (2)
C9—H9···O2i0.952.343.2856 (13)171
C12—H12···O3ii0.952.583.5065 (14)166
C15—H15···O20.952.573.4583 (13)155
C17—H17A···O2ii0.982.413.3524 (16)160
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+3/2, z+1.
Dihedral angles in the acid-base unit (°), hydrogen position and ΔpKa top
A, B, C, D and E are the dihedral angles between the C1–C6 ring and the N2/C8–C16 ring system, between the O1/C7/O2 plane and the N2/C8–C16 ring system, between the C1–C6 ring and the O1/C7/O2 plane, between the C1–C6 ring and the O3/N1/O4 plane, and between the N2/C8–C16 ring system and the nitro group attached to it, respectively.
ABCDEH-atom siteΔpKa
2-Chloro-4-nitrobenzoic acid
(I)69.15 (5)26.60 (16)51.29 (17)17.77 (14)N3.62
a3.15 (7)43.0 (2)39.9 (2)12.2 (2)O2.86
b1.11 (4)28.59 (12)29.36 (12)8.24 (11)O/N3.16
c3.94 (17)7.5 (5)4.3 (5)2.5 (5)36.2 (5)O0.76
2-Chloro-5-nitrobenzoic acid
(II)13.81 (10)14.1 (3)24.6 (3)9.7 (3)O3.44
a1.92 (4)22.48 (14)21.02 (14)0.50 (13)O2.68
b2.15 (4)24.51 (15)22.63 (15)0.77 (14)O2.98
2-Chloro-6-nitrobenzoic acid
(III)61.05 (5)35.42 (16)84.53 (16)21.7 (8), 14.7 (14)O/N4.04
3-Chloro-2-nitrobenzoic acid
(IV)59.45 (4)37.30 (13)22.39 (13)75.20 (13)O/N3.84
a4.71 (5)6.18 (16)9.22 (16)84.97 (13)O/N3.08
b14.50 (5)12.55 (18)3.14 (18)85.04 (11)O/N3.38
c2.59 (4)9.95 (12)9.45 (12)86.14 (13)31.67 (11)O0.98
d10.99 (4)12.08 (13)2.40 (13)88.54 (13)5.58 (12)O1.42
4-Chloro-2-nitrobenzoic acid
(V)61.21 (5)67.42 (14)10.22 (14)80.76 (15)N3.69
a31.65 (4)18.77 (13)13.71 (13)76.44 (17)O/N2.93
b30.39 (9)21.7 (3)16.4 (3)74.4 (3)O/N3.23
5-Chloro-2-nitrobenzoic acid
(VI)58.90 (4)23.54 (13)35.43 (13)57.13 (11)N3.80
a54.43 (5)5.41 (15)49.95 (15)33.31 (13)O/N3.04
c37.37 (6)2.9 (2)40.3 (2)47.12 (19)11.3 (2)O0.94
Notes: a: quinoline compounds (Gotoh & Ishida, 2009, 2011), b: 6-methylquinoline compounds (Gotoh & Ishida, 2020), c: 5-nitroquinoline compounds (Gotoh & Ishida, 2019a,b) and d: 6-nitroquinoline–3-chloro-2-nitrobenzoic acid (Gotoh & Ishida, 2019a).
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552–1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694–1699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019c). Acta Cryst. E75, 1853–1856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2020). Acta Cryst. E76, 1701–1707.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKotov, S., Mayer-Figge, H. & Zareva, S. (2018). Bulg. Chem. Commun. (Izvestiya po Khimiya), 50, 260.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, T. (2007). J. Mol. Struct. 840, 6–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds