research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of two copper(I)–halide π,σ-coordination compounds based on 2-[(prop-2-en-1-yl)sulfan­yl]pyridine

crossmark logo

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine, bDepartment of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya, 6, Lviv, 79005, Ukraine, and cDepartment of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: pokhodylo@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 October 2021; accepted 21 October 2021; online 29 October 2021)

The title compounds, di-μ-chlorido-bis­({2-[(η-2,3)-(prop-2-en-1-yl)sulfan­yl]pyridine-κN}copper(I)), [Cu2Cl2(C8H9NS)2], and di-μ-bromido-bis­({2-[(η-2,3)-(prop-2-en-1-yl)sulfan­yl]pyridine-κN}copper(I)), [Cu2Br2(C8H9NS)2], were obtained by alternating-current electrochemical synthesis starting from an ethano­lic solution of 2-[(prop-2-en-1-yl)sulfan­yl]pyridine (Psup) and the copper(II) halide. The isostructural crystals are built up from centrosymmetric [Cu2Hal2(Psup)2] dimers, which are formed due to the π,σ-chelating behavior of the organic ligand. In the crystals, the dimers are linked by C—H⋯Hal hydrogen bonds as well as by aromatic ππ stacking inter­actions into a three-dimensional network.

1. Chemical context

Cu-containing complexes have been found very promising regarding their catalytic activities in organic syntheses, non-linear optical properties and fluorescent activity (Wang et al., 2005[Wang, X.-S., Zhao, H., Li, Y.-H., Xiong, R.-G. & You, X.-Z. (2005). Top. Catal. 35, 43-61.]; Yoshikai & Nakamura, 2012[Yoshikai, N. & Nakamura, E. (2012). Chem. Rev. 112, 2339-2372.]; Slyvka et al., 2018a[Slyvka, Yu. I., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V. & Mys'kiv, M. G. (2018a). Polyhedron, 147, 86-93.]; Fedorchuk et al., 2020[Fedorchuk, A. A., Slyvka, Yu. I., Goreshnik, E. A., Kityk, I. V., Czaja, P. & Mys'kiv, M. G. (2018). J. Mol. Struct. 1171, 644-649.]). Copper complexes also exhibit considerable biochemical activities, ranging from anti­bacterial and anti-inflammatory properties to cytostatic and enzyme inhibitory (Iakovidis et al., 2011[Iakovidis, I., Delimaris, I. & Piperakis, S. M. (2011). Mol. Biol. Int. 2011, 1-13.]; Tisato et al., 2010[Tisato, F., Marzano, C., Porchia, M., Pellei, M. & Santini, C. (2010). Med. Res. Rev. 30, 708-749.]). Some of these compounds have been tested in vitro as potential anti­cancer drugs and found to be effective against A549 adenocarcinoma cells that are resistant to the widely used anti­cancer drug cisplatin (Marzano et al., 2006[Marzano, C., Pellei, M., Alidori, S., Brossa, A., Lobbia, G. G., Tisato, F. & Santini, C. (2006). J. Inorg. Biochem. 100, 299-304.]). It is worth noting that copper is an essential trace element with vital roles in many metalloenzymes participating in intra­cellular processes under normal and pathological conditions (Iakovidis et al., 2011[Iakovidis, I., Delimaris, I. & Piperakis, S. M. (2011). Mol. Biol. Int. 2011, 1-13.]).

Over the last two decades, increased inter­est has also been devoted to the crystal engineering of copper(I)–olefin complexes with allyl derivatives of heterocyclic compounds (Goreshnik et al., 2011[Goreshnik, E. A., Slyvka, Yu. I. & Mys'kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177-180.]; Slyvka et al., 2013[Slyvka, Yu., Goreshnik, E., Pavlyuk, O. & Mys'kiv, M. (2013). Open Chem. 11, 1875-1901.]; Hordiichuk et al., 2019[Hordiichuk, O. R., Slyvka, Yu. I., Kinzhybalo, V. V., Goreshnik, E. A., Bednarchuk, T. J., Bednarchuk, O., Jedryka, J., Kityk, I. & Mys'kiv, M. G. (2019). Inorg. Chim. Acta, 495, 119012.]). The presence of a C=C olefin bond in a substituent attached to the heterocyclic ring may serve as a key feature for the selective coordination of transition-metal ions due to metal–olefin π-bonding (Rourke, 2006[Rourke, J. (2006). Appl. Organomet. Chem. 20, 811-811.]; Slyvka et al., 2013[Slyvka, Yu., Goreshnik, E., Pavlyuk, O. & Mys'kiv, M. (2013). Open Chem. 11, 1875-1901.]; Kowalska et al., 2021[Kowalska, D. A., Kinzhybalo, V., Slyvka, Y. I. & Wołcyrz, M. (2021). Acta Cryst.. B77, 241-248.]). Allyl derivatives of some heterocyclic compounds were found to be suitable for the preparation of π-coordination compounds with CuI salts that are unknown (or less stable) in the free state. For instance, the first examples of Cu(C6H5SO3), Cu(p-CH3C6H4SO3) or CuHSO4 π-complexes as well as the direct CuI⋯F(SiF62–) inter­action have been observed in copper(I) π-compounds with allyl derivatives of triazole and thia­diazole (Goreshnik et al., 2016[Goreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys'kiv, M. G. (2016). J. Organomet. Chem. 810, 1-11.]; Ardan et al., 2017[Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36-46.]; Slyvka et al., 2018b[Slyvka, Yu., Fedorchuk, A. A., Goreshnik, E., Lakshminarayana, G., Kityk, I. V., Czaja, P. & Mys'kiv, M. (2018b). Chem. Phys. Lett. 694, 112-119.]; Fedorchuk et al., 2020[Fedorchuk, A., Goreshnik, E., Slyvka, Yu. & Mys'kiv, M. (2020). Acta Chim. Slov. 67, 1148-1154.]). N-Allyl derivatives of pyridine were found to be suitable ligands for the crystal engineering of CuI coordination compounds with inorganic fragments of different complexibility and related to the pKa values of the initial pyridine bases (Goreshnik et al., 2003[Goreshnik, E., Schollmeier, D. & Mys'kiv, M. (2003). Acta Cryst. C59, m478-m481.]; Pavlyuk et al., 2005[Pavlyuk, O. V., Goreshnik, E. A., Ciunik, Z. & Mys'kiv, M. G. (2005). ZAAC, 631, 793-797.]). Taking into account the fact that allyl­sulfanyl derivatives of pyridine have not been investigated for their coordination behavior regarding copper(I), in this work we present the synthesis and structural characterization of two novel copper(I) halide π-coordination compounds [Cu2Cl2(Psup)2] (I) & [Cu2Br2(Psup)2] (II) with 2-[(prop-2-en-1-yl)sulfan­yl]pyridine (Psup), C8H9NS.

[Scheme 1]

2. Structural commentary

The title compounds are isostructural and crystallize in the centrosymmetric space group P21/c with one Psup organic mol­ecule, one copper(I) ion and one halide ion in the asymmetric unit. As shown in Figs. 1[link] and 2[link], these structures are constructed from centrosymmetric [Cu2Hal2(Psup)2] [Hal = Cl (I) or Br (II)] dimers, which are formed due to the chelating behavior of the organic ligand. A close to trigonal–pyramidal coordination environment of the CuI cation includes the η2 allylic C=C bond, the pyridine N atom and a Hal1 ion in the basal plane (Tables 1[link] and 2[link]). The apical position of the CuI polyhedron is occupied by the Hal1i [symmetry code: (i) −x + 1, −y + 1, −z + 1) ion at 2.6186 (9) Å in I and at 2.7113 (6) Å in II. The corresponding four-coordinate geometry indices τ4 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) are 0.81 (I) and 0.83 (II). For comparison, in the structures of previously studied CuCl and CuBr π,σ-complexes with allyl­acetoneoxime, the Cu—Halap distances are slightly higher at 2.719 (5) and 2.778 (4) Å (Filinchuk et al., 1998[Filinchuk, Ya. E., Mys'kiv, M. G. & Davydov, V. N. (1998). Koord. Khim.(Russ.)(Coord. Chem.). 24, 771-775.]).

Table 1
Selected bond lengths (Å) for I[link]

Cu1—Cl1 2.2691 (9) Cu1—C8 2.037 (3)
Cu1—Cl1i 2.6186 (9) Cu1—C9 2.052 (3)
Cu1—N1 2.026 (2)    
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Selected bond lengths (Å) for II[link]

Cu1—Br1 2.4097 (6) Cu1—C8 2.048 (4)
Cu1—Br1i 2.7113 (6) Cu1—C9 2.065 (4)
Cu1—N1 2.025 (3)    
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of I with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
The mol­ecular structure of II with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

Being π-connected to the metal center, the C8=C9 bond of the ligand is elongated due to back-donation from an occupied 3d metal orbital to a low-lying empty π*-orbital of the olefin to 1.364 (4) Å (I) and to 1.354 (6) Å (II) in comparison with an uncoordinated allylic C=C bond (Slyvka et al., 2021[Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249-256.]). The allyl­sulfanyl group in (I) and (II) has synclinal conformation relative to the S1—C7 bond and an anti­periplanar conformation relative to the C7—C8 bond [the corresponding torsion angles C2—S1—C7—C8 and S1—C7—C8—C9 are 68.1 (3) and −152.1 (3)°, respectively, in I and 68.3 (3) and −151.7 (3)°(II)].

3. Supra­molecular features

As shown in Fig. 3[link] and listed in Tables 3[link] and 4[link], the crystal structures of (I) and (II) features several weak inter­molecular inter­actions. The hydrogen atom H6 of the pyridine ring participates in an intra­molecular C—H⋯Hal bond with the Hal ion of the inorganic subunit. The other hydrogen atom H6 of the pyridine ring and the methyl­ene hydrogen atom H7B of the allyl­sulfanyl substituent are involved in inter­molecular C—H⋯Hal bonding, linking the dimeric moieties into a three-dimensional network. The pyridine rings of adjacent dimers are also involved in face-to-face ππ stacking inter­actions with a centroid–centroid separation of 3.680 (4) Å in I and 3.693 (4) Å in II. The unit-cell packing for (I) is shown in Fig. 4[link].

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1ii 0.95 2.91 3.581 (3) 129
C6—H6⋯Cl1 0.95 2.80 3.447 (3) 126
C7—H7B⋯Cl1iii 0.99 2.89 3.676 (3) 137
Symmetry codes: (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1ii 0.95 3.02 3.696 (4) 129
C6—H6⋯Br1 0.95 2.94 3.576 (4) 126
C7—H7B⋯Br1iii 0.99 2.94 3.744 (4) 139
Symmetry codes: (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Fragment of the extended structure of I with hydrogen bonds shown as dashed lines. Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, y, z; (iii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (iv) x, −y + [{3\over 2}], −z + [{1\over 2}]. The packing for II is essentially identical.
[Figure 4]
Figure 4
A view along the a-axis direction of the crystal packing of I.

4. Database survey

The most closest related compounds to the title compounds, containing a similar {Cu2Hal2} dimer in which a π,σ-chelating ligand is bound to copper(I) are: di-μ-chloro­bis­[(1-allyl-3,5-di­methyl­pyrazole)­copper(I)] (III) [Cambridge Structural Database (Version 2021.1; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode ALMPCU; Fukushima et al., 1976[Fukushima, K., Kobayashi, A., Miyamoto, T. & Sasaki, Y. (1976). Bull. Chem. Soc. Jpn, 49, 143-146.]], bis­(μ2-chloro)-bis­(η2-allyl­acetoneoxime-N)dicopper(I) (IV) (GOKYAG; Filinchuk et al., 1998[Filinchuk, Ya. E., Mys'kiv, M. G. & Davydov, V. N. (1998). Koord. Khim.(Russ.)(Coord. Chem.). 24, 771-775.]), bis­(μ2-bromo)-bis­(η2-allyl­acetoneoxime-N)dicopper(I) (V) (GOKYEK; Filinchuk et al., 1998[Filinchuk, Ya. E., Mys'kiv, M. G. & Davydov, V. N. (1998). Koord. Khim.(Russ.)(Coord. Chem.). 24, 771-775.]), bis­[(μ2-bromo)(η2-2-(allyl­thio)­benzimidazole-N)copper(I)] (VI) (WUCRAN; Goreshnik et al., 2002[Goreshnik, E. A., Schollmeyer, D. & Myskiv, M. G. (2002). ZAAC, 628, 2118-2122.]) and bis­{(μ2-iodo)[(η2-all­yl)(2-pyrid­yl)di­methyl­silane]copper} (VII) (XAZGIP; Kamei et al., 2005[Kamei, T., Fujita, K., Itami, K. & Yoshida, J. (2005). Org. Lett. 7, 4725-4728.]).

Compounds (III) and (VII) crystallize in the triclinic crystal system in space group P[\overline{1}]. Compounds (IV), (V) and (VI) crystallize in the monoclinic crystal system in space group P21/c (settings P21/a, P21/c and P21/n, respectively). Structures (III), (IV), (V) and (VI) are built up from centrosymmetric [Cu2Hal2(Ligand)2] dimers. In the compounds bis­[(μ2-chloro)­chloro­(η2-1-allyl-2-amino­pyridinium)copper(I)] (XIII) (BEBFOE) and bis­[(μ2-chloro)­bromo­(η2-1-allyl-2-amino­pyridinium)copper(I)] (IX) (BEBGAR; Goreshnik et al., 2003[Goreshnik, E., Schollmeier, D. & Mys'kiv, M. (2003). Acta Cryst. C59, m478-m481.]), the 1-allyl-2-amino­pyridinium cation acts as a monodentate π-ligand, being attached to the centrosymmetic anionic {Cu2Hal4}2− part through the allylic C=C bond. An analogous monodentate 1-allyl­pyridinium cation in the structure of catena-[bis­(μ3-chloro)­bis­(μ2-chloro)­bis­(η2-1-allyl­pyridinium)di­chloro­tetra­copper(I)] (X) (YAPQIQ; Pavlyuk et al., 2005[Pavlyuk, O. V., Goreshnik, E. A., Ciunik, Z. & Mys'kiv, M. G. (2005). ZAAC, 631, 793-797.]) forces the realization of an infinite {Cu4Cl4}n inorganic chain.

5. Synthesis and crystallization

Crystals of the title compounds were obtained under conditions of alternating-current electrochemical synthesis (Slyvka et al., 2018a[Slyvka, Yu. I., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V. & Mys'kiv, M. G. (2018a). Polyhedron, 147, 86-93.]) starting from an ethano­lic solution of 2-[(prop-2-en-1-yl)sulfan­yl]pyridine (Psup) and the copper(II) halide. For this, a solution of Psup (1.5 mmol, 0.227 g) in 2.0 ml of 96% ethanol was added to a solution of CuCl2·2H2O (1.6 mmol, 0.273 g) or CuBr2 (1.6 mmol, 0.357 g) in 3.0 ml of 96% ethanol. The mixture was carefully stirred and then was placed into a small 5.5 ml test tube. A copper wire was wrapped into a spiral of 1 cm diameter. A straight copper wire was placed inside the spiral. These copper electrodes were inserted in a cork and immersed in the aforementioned mixture. The mixture was subjected to alternating current reduction (frequency 50 Hz, voltage 0.45 V) and after 3–4 days, good-quality slightly yellowish crystals of the title compounds appeared on the copper wire electrodes. Compound I: yield 12%, m.p. 413 K; compound II: yield 8%, m.p. 407 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms were positioned geometrically with C—H = 0.95–0.99 Å and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(C) was applied in all cases.

Table 5
Experimental details

  I II
Crystal data
Chemical formula [Cu2Cl2(C8H9NS)2] [Cu2Br2(C8H9NS)2]
Mr 500.42 589.34
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 9.2729 (16), 9.5740 (13), 11.037 (2) 9.5009 (6), 9.6022 (5), 11.0936 (8)
β (°) 108.52 (2) 107.257 (7)
V3) 929.1 (3) 966.50 (11)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.80 6.55
Crystal size (mm) 0.33 × 0.28 × 0.19 0.44 × 0.35 × 0.22
 
Data collection
Diffractometer Rigaku New Gemini, Dual, Atlas Rigaku New Gemini, Dual, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]) Analytical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.546, 0.693 0.191, 0.368
No. of measured, independent and observed [I > 2σ(I)] reflections 8088, 2161, 1730 6837, 2162, 1854
Rint 0.058 0.044
(sin θ/λ)max−1) 0.686 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.077, 1.08 0.034, 0.079, 1.08
No. of reflections 2161 2162
No. of parameters 109 109
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.64 0.82, −0.75
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) top
Crystal data top
[Cu2Cl2(C8H9NS)2]F(000) = 504
Mr = 500.42Dx = 1.789 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2729 (16) ÅCell parameters from 3255 reflections
b = 9.5740 (13) Åθ = 3.8–28.9°
c = 11.037 (2) ŵ = 2.80 mm1
β = 108.52 (2)°T = 150 K
V = 929.1 (3) Å3Irregular, yellowish
Z = 20.33 × 0.28 × 0.19 mm
Data collection top
New Gemini, Dual, Cu at home/near, Atlas
diffractometer
1730 reflections with I > 2σ(I)
Detector resolution: 10.6426 pixels mm-1Rint = 0.058
ω scansθmax = 29.2°, θmin = 2.9°
Absorption correction: analytical
(CrysalisPro; Rigaku OD, 2021)
h = 1212
Tmin = 0.546, Tmax = 0.693k = 1211
8088 measured reflectionsl = 1515
2161 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.6316P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2161 reflectionsΔρmax = 0.51 e Å3
109 parametersΔρmin = 0.64 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.57740 (4)0.64590 (4)0.46958 (4)0.01225 (12)
Cl10.36070 (8)0.54060 (8)0.34752 (7)0.01340 (18)
S10.91865 (9)0.82046 (8)0.47781 (8)0.01693 (19)
N10.7401 (3)0.5908 (2)0.3922 (2)0.0098 (5)
C20.8718 (3)0.6558 (3)0.4035 (3)0.0113 (6)
C30.9837 (3)0.5968 (3)0.3594 (3)0.0142 (7)
H31.0754310.6459980.3682560.017*
C40.9603 (4)0.4679 (3)0.3036 (3)0.0175 (7)
H41.0364500.4252810.2754000.021*
C50.8239 (4)0.4003 (3)0.2888 (3)0.0158 (7)
H50.8036940.3111390.2491950.019*
C60.7184 (3)0.4656 (3)0.3331 (3)0.0145 (7)
H60.6241820.4196330.3213610.017*
C70.7410 (4)0.8972 (3)0.4778 (3)0.0145 (7)
H7A0.7593190.9960200.5048120.017*
H7B0.6697540.8963750.3892940.017*
C80.6665 (4)0.8249 (3)0.5633 (3)0.0137 (7)
H80.7294070.7769050.6363050.016*
C90.5133 (4)0.8248 (3)0.5412 (3)0.0198 (8)
H9A0.4479510.8721130.4687650.024*
H9B0.4717920.7775300.5981430.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0103 (2)0.0106 (2)0.0177 (2)0.00093 (15)0.00702 (17)0.00293 (16)
Cl10.0082 (4)0.0164 (4)0.0146 (4)0.0007 (3)0.0022 (3)0.0002 (3)
S10.0130 (4)0.0140 (4)0.0249 (5)0.0034 (3)0.0076 (4)0.0022 (3)
N10.0066 (12)0.0092 (12)0.0125 (13)0.0009 (10)0.0013 (11)0.0005 (11)
C20.0131 (15)0.0132 (15)0.0063 (14)0.0031 (13)0.0013 (13)0.0022 (12)
C30.0097 (15)0.0187 (17)0.0160 (16)0.0024 (13)0.0064 (13)0.0057 (14)
C40.0147 (16)0.0270 (19)0.0129 (16)0.0101 (14)0.0073 (14)0.0026 (15)
C50.0192 (17)0.0145 (16)0.0128 (16)0.0050 (14)0.0037 (14)0.0029 (13)
C60.0117 (15)0.0160 (16)0.0162 (16)0.0010 (13)0.0049 (14)0.0018 (13)
C70.0176 (17)0.0091 (15)0.0184 (16)0.0004 (13)0.0079 (14)0.0004 (13)
C80.0182 (17)0.0080 (15)0.0154 (16)0.0003 (13)0.0059 (14)0.0017 (13)
C90.0245 (19)0.0091 (16)0.031 (2)0.0003 (14)0.0164 (16)0.0026 (14)
Geometric parameters (Å, º) top
Cu1—Cl12.2691 (9)C4—H40.9500
Cu1—Cl1i2.6186 (9)C4—C51.383 (4)
Cu1—N12.026 (2)C5—H50.9500
Cu1—C82.037 (3)C5—C61.375 (4)
Cu1—C92.052 (3)C6—H60.9500
S1—C21.766 (3)C7—H7A0.9900
S1—C71.804 (3)C7—H7B0.9900
N1—C21.340 (4)C7—C81.503 (4)
N1—C61.349 (4)C8—H80.9500
C2—C31.397 (4)C8—C91.364 (4)
C3—H30.9500C9—H9A0.9500
C3—C41.366 (4)C9—H9B0.9500
Cl1—Cu1—Cl1i95.20 (3)C4—C5—H5120.9
N1—Cu1—Cl1i97.91 (7)C6—C5—C4118.1 (3)
N1—Cu1—Cl1105.77 (7)C6—C5—H5120.9
N1—Cu1—C8101.34 (11)N1—C6—C5124.2 (3)
N1—Cu1—C9136.50 (12)N1—C6—H6117.9
C8—Cu1—Cl1i103.19 (9)C5—C6—H6117.9
C8—Cu1—Cl1144.63 (9)S1—C7—H7A108.7
C8—Cu1—C938.96 (12)S1—C7—H7B108.7
C9—Cu1—Cl1i106.96 (10)H7A—C7—H7B107.6
C9—Cu1—Cl1106.81 (10)C8—C7—S1114.4 (2)
Cu1—Cl1—Cu1i84.80 (3)C8—C7—H7A108.7
C2—S1—C7105.89 (15)C8—C7—H7B108.7
C2—N1—Cu1128.2 (2)Cu1—C8—H893.7
C2—N1—C6116.7 (3)C7—C8—Cu1105.2 (2)
C6—N1—Cu1114.72 (19)C7—C8—H8118.4
N1—C2—S1122.7 (2)C9—C8—Cu171.15 (18)
N1—C2—C3122.3 (3)C9—C8—C7123.2 (3)
C3—C2—S1115.0 (2)C9—C8—H8118.4
C2—C3—H3120.2Cu1—C9—H9A105.0
C4—C3—C2119.5 (3)Cu1—C9—H9B94.9
C4—C3—H3120.2C8—C9—Cu169.90 (18)
C3—C4—H4120.5C8—C9—H9A120.0
C3—C4—C5119.0 (3)C8—C9—H9B120.0
C5—C4—H4120.5H9A—C9—H9B120.0
Cu1—N1—C2—S17.6 (4)C2—C3—C4—C51.8 (5)
Cu1—N1—C2—C3171.1 (2)C3—C4—C5—C61.0 (5)
Cu1—N1—C6—C5171.2 (2)C4—C5—C6—N11.1 (5)
S1—C2—C3—C4178.2 (2)C6—N1—C2—S1179.9 (2)
S1—C7—C8—Cu175.0 (2)C6—N1—C2—C31.4 (4)
S1—C7—C8—C9152.1 (3)C7—S1—C2—N119.4 (3)
N1—C2—C3—C40.6 (5)C7—S1—C2—C3161.8 (2)
C2—S1—C7—C868.1 (3)C7—C8—C9—Cu196.2 (3)
C2—N1—C6—C52.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1ii0.952.913.581 (3)129
C6—H6···Cl10.952.803.447 (3)126
C7—H7B···Cl1iii0.992.893.676 (3)137
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) top
Crystal data top
[Cu2Br2(C8H9NS)2]F(000) = 576
Mr = 589.34Dx = 2.025 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5009 (6) ÅCell parameters from 3535 reflections
b = 9.6022 (5) Åθ = 3.1–29.0°
c = 11.0936 (8) ŵ = 6.55 mm1
β = 107.257 (7)°T = 150 K
V = 966.50 (11) Å3Irregular, yellowish
Z = 20.44 × 0.35 × 0.22 mm
Data collection top
New Gemini, Dual, Cu at home/near, Atlas
diffractometer
1854 reflections with I > 2σ(I)
Detector resolution: 10.6426 pixels mm-1Rint = 0.044
ω scansθmax = 29.0°, θmin = 2.9°
Absorption correction: analytical
(CrysalisPro; Rigaku OD, 2021)
h = 1212
Tmin = 0.191, Tmax = 0.368k = 1012
6837 measured reflectionsl = 1213
2162 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.3651P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2162 reflectionsΔρmax = 0.82 e Å3
109 parametersΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36045 (4)0.54960 (3)0.34080 (3)0.01538 (12)
Cu10.58645 (5)0.64663 (4)0.47542 (4)0.01478 (13)
S10.91726 (10)0.82315 (9)0.48313 (10)0.0201 (2)
N10.7467 (3)0.5936 (3)0.3976 (3)0.0135 (6)
C20.8735 (4)0.6601 (3)0.4079 (3)0.0127 (7)
C30.9838 (4)0.6033 (4)0.3631 (3)0.0176 (8)
H31.0727770.6529220.3721090.021*
C40.9622 (4)0.4747 (4)0.3060 (4)0.0191 (8)
H41.0368080.4337790.2764140.023*
C50.8301 (4)0.4056 (4)0.2920 (3)0.0186 (8)
H50.8114430.3175840.2513610.022*
C60.7270 (4)0.4681 (4)0.3387 (4)0.0168 (8)
H60.6366290.4206500.3291850.020*
C70.7453 (4)0.8986 (4)0.4850 (4)0.0171 (8)
H7A0.7629030.9968560.5124130.021*
H7B0.6778050.8987010.3977360.021*
C80.6700 (4)0.8262 (4)0.5692 (4)0.0192 (8)
H80.7296680.7782740.6411490.023*
C90.5222 (5)0.8253 (4)0.5484 (4)0.0247 (9)
H9A0.4596260.8723170.4772130.030*
H9B0.4810690.7776600.6050520.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01321 (19)0.0189 (2)0.0130 (2)0.00013 (14)0.00236 (14)0.00135 (13)
Cu10.0151 (2)0.0135 (2)0.0174 (3)0.00122 (17)0.00731 (19)0.00381 (16)
S10.0185 (5)0.0159 (5)0.0268 (5)0.0045 (4)0.0081 (4)0.0043 (4)
N10.0154 (15)0.0150 (14)0.0108 (15)0.0022 (12)0.0048 (12)0.0002 (11)
C20.0152 (18)0.0151 (17)0.0073 (17)0.0006 (14)0.0024 (14)0.0040 (13)
C30.0165 (19)0.0237 (19)0.0136 (19)0.0004 (15)0.0063 (15)0.0019 (14)
C40.0192 (19)0.023 (2)0.016 (2)0.0059 (16)0.0066 (16)0.0024 (15)
C50.021 (2)0.0209 (19)0.0142 (19)0.0041 (15)0.0054 (15)0.0011 (14)
C60.0167 (19)0.0165 (18)0.018 (2)0.0004 (15)0.0058 (15)0.0007 (14)
C70.022 (2)0.0116 (17)0.019 (2)0.0006 (15)0.0079 (16)0.0002 (14)
C80.030 (2)0.0103 (17)0.019 (2)0.0003 (15)0.0101 (17)0.0027 (14)
C90.033 (2)0.0115 (18)0.036 (2)0.0004 (16)0.020 (2)0.0065 (15)
Geometric parameters (Å, º) top
Cu1—Br12.4097 (6)C4—H40.9500
Cu1—Br1i2.7113 (6)C4—C51.387 (5)
Cu1—N12.025 (3)C5—H50.9500
Cu1—C82.048 (4)C5—C61.374 (5)
Cu1—C92.065 (4)C6—H60.9500
S1—C21.765 (4)C7—H7A0.9900
S1—C71.793 (4)C7—H7B0.9900
N1—C21.338 (5)C7—C81.505 (5)
N1—C61.357 (5)C8—H80.9500
C2—C31.397 (5)C8—C91.354 (6)
C3—H30.9500C9—H9A0.9500
C3—C41.375 (5)C9—H9B0.9500
Cu1—Br1—Cu1i82.521 (18)C4—C5—H5120.9
Br1—Cu1—Br1i97.479 (19)C6—C5—C4118.1 (4)
N1—Cu1—Br1i98.64 (8)C6—C5—H5120.9
N1—Cu1—Br1106.43 (9)N1—C6—C5123.9 (4)
N1—Cu1—C8101.60 (14)N1—C6—H6118.1
N1—Cu1—C9136.30 (14)C5—C6—H6118.1
C8—Cu1—Br1i104.22 (11)S1—C7—H7A108.5
C8—Cu1—Br1141.26 (11)S1—C7—H7B108.5
C8—Cu1—C938.43 (15)H7A—C7—H7B107.5
C9—Cu1—Br1104.57 (12)C8—C7—S1115.0 (3)
C9—Cu1—Br1i107.05 (12)C8—C7—H7A108.5
C2—S1—C7106.04 (17)C8—C7—H7B108.5
C2—N1—Cu1128.0 (2)Cu1—C8—H893.7
C2—N1—C6117.2 (3)C7—C8—Cu1104.9 (2)
C6—N1—Cu1114.5 (2)C7—C8—H8118.0
N1—C2—S1122.9 (3)C9—C8—Cu171.5 (2)
N1—C2—C3122.3 (3)C9—C8—C7123.9 (4)
C3—C2—S1114.7 (3)C9—C8—H8118.0
C2—C3—H3120.3Cu1—C9—H9A104.7
C4—C3—C2119.3 (4)Cu1—C9—H9B95.0
C4—C3—H3120.3C8—C9—Cu170.1 (2)
C3—C4—H4120.4C8—C9—H9A120.0
C3—C4—C5119.1 (4)C8—C9—H9B120.0
C5—C4—H4120.4H9A—C9—H9B120.0
Cu1—N1—C2—S16.5 (4)C2—C3—C4—C51.2 (5)
Cu1—N1—C2—C3171.5 (3)C3—C4—C5—C61.3 (6)
Cu1—N1—C6—C5172.5 (3)C4—C5—C6—N10.1 (6)
S1—C2—C3—C4178.3 (3)C6—N1—C2—S1179.3 (3)
S1—C7—C8—Cu174.2 (3)C6—N1—C2—C31.4 (5)
S1—C7—C8—C9151.7 (3)C7—S1—C2—N120.3 (3)
N1—C2—C3—C40.2 (5)C7—S1—C2—C3161.7 (3)
C2—S1—C7—C868.3 (3)C7—C8—C9—Cu195.9 (3)
C2—N1—C6—C51.3 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1ii0.953.023.696 (4)129
C6—H6···Br10.952.943.576 (4)126
C7—H7B···Br1iii0.992.943.744 (4)139
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (Grant Nos. 0120U101622 and 0120U102028) and the Slovenian Research Agency (ARRS) within the research program P1–0045 Inorganic Chemistry and Technology.

References

First citationArdan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36–46.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFedorchuk, A. A., Slyvka, Yu. I., Goreshnik, E. A., Kityk, I. V., Czaja, P. & Mys'kiv, M. G. (2018). J. Mol. Struct. 1171, 644–649.  CrossRef CAS Google Scholar
First citationFedorchuk, A., Goreshnik, E., Slyvka, Yu. & Mys'kiv, M. (2020). Acta Chim. Slov. 67, 1148–1154.  CrossRef CAS PubMed Google Scholar
First citationFilinchuk, Ya. E., Mys'kiv, M. G. & Davydov, V. N. (1998). Koord. Khim.(Russ.)(Coord. Chem.). 24, 771–775.  Google Scholar
First citationFukushima, K., Kobayashi, A., Miyamoto, T. & Sasaki, Y. (1976). Bull. Chem. Soc. Jpn, 49, 143–146.  CrossRef CAS Google Scholar
First citationGoreshnik, E. A., Schollmeyer, D. & Myskiv, M. G. (2002). ZAAC, 628, 2118–2122.  CAS Google Scholar
First citationGoreshnik, E. A., Slyvka, Yu. I. & Mys'kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys'kiv, M. G. (2016). J. Organomet. Chem. 810, 1–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoreshnik, E., Schollmeier, D. & Mys'kiv, M. (2003). Acta Cryst. C59, m478–m481.  CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHordiichuk, O. R., Slyvka, Yu. I., Kinzhybalo, V. V., Goreshnik, E. A., Bednarchuk, T. J., Bednarchuk, O., Jedryka, J., Kityk, I. & Mys'kiv, M. G. (2019). Inorg. Chim. Acta, 495, 119012.  CrossRef Google Scholar
First citationIakovidis, I., Delimaris, I. & Piperakis, S. M. (2011). Mol. Biol. Int. 2011, 1–13.  CrossRef Google Scholar
First citationKamei, T., Fujita, K., Itami, K. & Yoshida, J. (2005). Org. Lett. 7, 4725–4728.  CrossRef PubMed CAS Google Scholar
First citationKowalska, D. A., Kinzhybalo, V., Slyvka, Y. I. & Wołcyrz, M. (2021). Acta Cryst.. B77, 241–248.  CrossRef IUCr Journals Google Scholar
First citationMarzano, C., Pellei, M., Alidori, S., Brossa, A., Lobbia, G. G., Tisato, F. & Santini, C. (2006). J. Inorg. Biochem. 100, 299–304.  CrossRef PubMed CAS Google Scholar
First citationPavlyuk, O. V., Goreshnik, E. A., Ciunik, Z. & Mys'kiv, M. G. (2005). ZAAC, 631, 793–797.  CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationRourke, J. (2006). Appl. Organomet. Chem. 20, 811–811.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlyvka, Yu., Fedorchuk, A. A., Goreshnik, E., Lakshminarayana, G., Kityk, I. V., Czaja, P. & Mys'kiv, M. (2018b). Chem. Phys. Lett. 694, 112–119.  CrossRef CAS Google Scholar
First citationSlyvka, Yu., Goreshnik, E., Pavlyuk, O. & Mys'kiv, M. (2013). Open Chem. 11, 1875–1901.  CrossRef CAS Google Scholar
First citationSlyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249–256.  CrossRef IUCr Journals Google Scholar
First citationSlyvka, Yu. I., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V. & Mys'kiv, M. G. (2018a). Polyhedron, 147, 86–93.  CrossRef CAS Google Scholar
First citationTisato, F., Marzano, C., Porchia, M., Pellei, M. & Santini, C. (2010). Med. Res. Rev. 30, 708–749.  Web of Science PubMed CAS Google Scholar
First citationWang, X.-S., Zhao, H., Li, Y.-H., Xiong, R.-G. & You, X.-Z. (2005). Top. Catal. 35, 43–61.  Web of Science CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshikai, N. & Nakamura, E. (2012). Chem. Rev. 112, 2339–2372.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds