research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a solvated CoIII complex with 2-hy­dr­oxy-3-meth­­oxy­benzaldehyde thio­semicarbazone ligands

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine
*Correspondence e-mail: plyutanataliya@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 30 September 2021; accepted 13 October 2021; online 21 October 2021)

The title CoIII complex, bis­[bis­(2-hy­droxy-3-meth­oxy­benzaldehyde thio­semi­carbazonato)cobalt(III)] di­thio­nate–dimethylformamide–methanol (1/4/3), [Co(C9H10N3O2S)2]2(S2O6)·4C3H7NO·3CH3OH, with monodeprotonated 2-hy­droxy-3-meth­oxy­benzaldehyde thio­semicarbazone as ligands crystallizes in the space group P[\overline{1}]. The asymmetric unit consists of two mononuclear [CoL2]+ cations, one di­thio­nate anion (S2O6)2− as counter-anion and seven solvate mol­ecules (four di­methyl­methanamide and three methanol). Each CoIII ion has a moderately distorted octa­hedral S2N2O2 geometry. In the crystal, the components are linked by numerous N—H⋯O and O—H⋯O contacts.

1. Chemical context

In recent years, Schiff bases have played a vital role in the progress of modern coordination chemistry, in the improvement of the areas of magnetism, luminescence, chirality, catalysis, cytotoxicity and ferroelectricity (Andruh et al., 2015[Andruh, M. (2015). Dalton Trans. 44, 16633-16653.]; Mishra et al., 2016[Mishra, N., Poonia, K., Soni, S. K. & Kumar, D. (2016). Polyhedron, 120, 60-68.]; Aazam & El-Said, 2014[Aazam, E. S. & El-Said, W. A. (2014). Bioorg. Chem. 57, 5-12.]). Thio­semicarbazones represent an important class of Schiff base sulfur-donor ligands, particularly for many transition-metal ions. These metal complexes have received considerable attention, primarily because of their bioinorganic relevance (Gupta et al., 2003[Gupta, P., Basuli, F., Peng, S. M., Lee, G. H. & Bhattacharya, S. (2003). Inorg. Chem. 42, 2069-2074.]; Singh et al., 2000[Singh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Trans. Met. Chem. 25, 133-140.]): they are promising drug candidates, biomarkers and biocatalysts (Hayne et al., 2014[Hayne, D. J., Lim, S. & Donnelly, P. S. (2014). Chem. Soc. Rev. 43, 6701-6715.]; Lim et al., 2010[Lim, S., Paterson, B. M., Fodero-Tavoletti, M. T., O'Keefe, G. J., Cappai, R., Barnham, K. J., Villemagne, V. L. & Donnelly, P. S. (2010). Chem. Commun. 46, 5437-5439.]). It has been noted that some metal(II) complexes with thio­semicarbazone-derived ligands have the ability to induce apoptosis in cancerous cell lines (Ferrari et al., 2004[Ferrari, M. B., Bisceglie, F., Pelosi, G., Tarasconi, P., Albertini, R., Dall'Aglio, P. P., Pinelli, S., Bergamo, A. & Sava, G. J. (2004). J. Inorg. Biochem. 98, 301-312.]; Santini et al., 2014[Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815-862.]).

[Scheme 1]

Despite the attention towards Schiff bases, thio­semi­carbazones and their metal complexes, very few studies have been devoted to the synthesis and crystal-structure determinations of Co complexes. In this work, we present the synthesis, crystal structure and spectroscopic characterization of the novel and, according to our knowledge, the first to be obtained in crystalline, form CoIII complex with the multidentate NSO-containing mixed-ligand 2-hy­droxy-3-meth­oxy­benzaldehyde thio­semicarbazone.

2. Structural commentary

The title complex crystallizes in the triclinic space group P[\overline{1}]. The asymmetric unit (Fig. 1[link]) consists of two independent mononuclear complex cations, a di­thio­nate anion as counter-anion and seven solvent mol­ecules of crystallization (four di­methyl­methanamide and three methanol). Each CoIII ion is coordinated by two monodeprotonated (by the phenol group) ONS tridentate thio­semicarbazone ligands through the phenoxo oxygen, imine nitro­gen and thione sulfur atoms. Thus, the coordination geometry around each CoIII ion can be described as moderately distorted octa­hedral with an S2N2O2 coordination sphere with N,O,N and S atoms in the equatorial plane and O and S atoms in the apical positions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Solvent mol­ecules (di­methyl­formamide and methanol) are omitted for clarity.

In the title compound, the two Co—N, Co—O and Co—S distances are each almost identical (the mean values being 1.89, 1.92 and 2.22 Å, respectively) to those in an analogous chromium complex with a similar ligand (CCDC refcode YIMPER; Chumakov et al., 2013[Chumakov, Yu. M., Tsapkov, V. I., Petrenko, P. A., Palomares-Sànchez, S. A. & Gulea, A. P. (2013). J. Struct. Chem. 54, 824-828.]). At the same time, the Co—O and Co—N distances in the title complex are shorter than in analogous CoII complexes with related semicarbazone ligands (Co—N = 2.041 Å and Co—O = 2.056 Å in VAYZUT, VAYZON and VAZBAC; Wu et al., 2017[Wu, H., Li, M., Zhang, S., Ke, H., Zhang, Y., Zhuang, G., Wang, W., Wei, Q., Xie, G. & Chen, S. (2017). Inorg. Chem. 56, 11387-11397.]). The Co—S distances in the title complex are in the range 2.2202 (19)-2.2269 (17) Å, which is generally comparable to the range 2.23–2.24 Å observed for a CoIII complex (VENDIB; Burstein et al., 1988[Burstein, I. F., Gerbeleu, N. V., Bologa, O. A., Verezhan, A. V. & Malinovskii, T. I. (1988). Dokl. Akad. Nauk SSSR, 300, 1382.]) and shorter than was found for the CoII complex of glyoxylic acid with thio­semicarbazone (2.419–2.424 Å; ODOWUC; Huseynova et al., 2018[Huseynova, M., Taslimi, P., Medjidov, A., Farzaliyev, V., Aliyeva, M., Gondolova, G., Şahin, O., Yalçın, B., Sujayev, A., Orman, E. B., Özkaya, A. R. & Gulçin, İ (2018). Polyhedron, 155, 25-33.]).

Despite the ligands coordinating to the CoIII cations through the thione sulfur atoms, the C—S bond length of the thio­semicarbazone moiety (average length of 1.71 Å) approaches the standard C=S double-bond value and differs only slightly from the distance observed in the corresponding neutral ligand [1.688 Å in BIZYAL (Zhao et al., 2008[Zhao, R.-G., Zhang, W., Li, J.-K. & Zhang, L.-Y. (2008). Acta Cryst. E64, o1113.]) and 1.697 Å in BIZYAL01 (Vrdoljak et al., 2010[Vrdoljak, V., Đilović, I., Rubčić, M., Kraljević Pavelić, S., Kralj, M., Matković-Čalogović, D., Piantanida, I., Novak, P., Rožman, A. & Cindrić, M. (2010). Eur. J. Med. Chem. 45, 38-48.])].

The ligands coordinated to the CoIII ions are almost planar (r.m.s. deviations of fitted atoms are 0.0793 and 0.0917 Å for the ligands coordinated to Co1 and 0.0862 and 0.0785 Å for the ligands coordinated to Co2) and twisted, as defined by the dihedral angles of 83.42 (7)° between the mean planes of atoms O1/C1/C6/C8/N1/N2/C9/S1 and O3/C10/C15/C17/N4/N5/C18/S2 around Co1, and 86.3 (1)° between the mean planes of atoms O7/C28/C33/C35/N10/N11/C36/S4 and O5/C19/C24/C26/N10/N8/C27/S3 around Co2.

3. Supra­molecular features

The solid-state organization of the complex can be described as an insertion of the anions and solvent mol­ecules within the crystallographically independent complexes (Fig. 2[link]). In the crystal, the components are linked by numerous N–H⋯O and O–H⋯O contacts (Table 1[link]), giving a three-dimensional hydrogen-bonded network. Overall, the amino groups of the coordinated ligands are involved in eleven N—H⋯O contacts:

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯O8i 0.88 2.28 2.969 (7) 135
N2—H2⋯O3ii 0.88 2.27 2.999 (5) 140
N2—H2⋯O4ii 0.88 2.01 2.740 (6) 140
N11—H11⋯O14iii 0.88 2.02 2.877 (7) 165
N5—H5A⋯O11 0.88 1.98 2.813 (6) 157
N12—H12B⋯O9iv 0.88 2.12 2.911 (7) 150
N3—H3B⋯O17v 0.88 1.98 2.839 (8) 166
N3—H3A⋯O15ii 0.88 2.05 2.881 (7) 156
N9—H9A⋯O18i 0.88 1.89 2.756 (8) 168
N6—H6B⋯O16vi 0.88 1.95 2.822 (6) 169
N9—H9B⋯O19vii 0.88 1.97 2.834 (9) 165
N12—H12A⋯O21Aiv 0.88 2.06 2.878 (12) 155
O19—H19⋯O20 0.84 1.90 2.720 (9) 167
O20—H20⋯O12 0.84 2.01 2.722 (8) 142
Symmetry codes: (i) [-x+1, -y, -z]; (ii) [-x+1, -y+2, -z+1]; (iii) x+1, y, z; (iv) [-x+1, -y+1, -z]; (v) [x-1, y, z]; (vi) [-x+1, -y+1, -z+1]; (vii) [x+1, y-1, z].
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. N—H⋯O and O—H⋯O hydrogen bonds, which link the components in the crystal, are shown as dashed lines. C-bound hydrogen atoms are omitted for clarity.

N8—H8A⋯O8, N2—H2⋯O3 and N2—H2⋯O4 are contacts between ligands through the nitro­gen of the secondary amino group and meth­oxy group oxygen;

N11—H11⋯O14, N5—H5A⋯O11 and N12—H12B⋯O9 are contacts between the nitro­gen of the secondary and primary (terminal) amino groups of the ligands and oxygen atoms of the S2O6 anions (Fig. 3[link]);

[Figure 3]
Figure 3
A fragment of the packing of the title compound demonstrating the N–H⋯O contacts that link three complex cations and an S2O62− anion as an hydrogen-bond acceptor. Hydrogen bonds are shown as dashed lines. Methanol solvate mol­ecules bonded to S2O62− by O—H⋯O hydrogen bonds, dimethyformamide solvent mol­ecules and C-bound hydrogen atoms are omitted for clarity.

N3—H3B⋯O17, N3—H3A⋯O15, N9—H9A⋯O18, N6—H6B⋯O16, N9—H9B⋯O19 and N12—H12A⋯O21A are contacts between nitro­gen of the primary amino groups of the ligands and the oxygen atoms of solvent mol­ecules (O15, O16, O17, O18 of di­methyl­methanamide and O19, O21 of methanol).

The (S2O6)2− anions act as a multiple-acceptor species for N,O donor atoms of neighboring complexes (by N—H⋯O inter­actions) and methanol solvent mol­ecules (by O—H⋯O contacts). The oxygen atoms (O16) of the di­methyl­methanamide mol­ecules bridge adjacent cationic complexes (Fig. 4[link]).

[Figure 4]
Figure 4
A fragment of the crystal packing of the title compound showing the double NH2⋯O(DMF)⋯H2N contacts that link the complex cations with two dimethyformamide mol­ecules through bridging oxygen atoms. C-bound hydrogen atoms and rest of the solvent mol­ecules are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.42; last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related transition-metal complexes with 2-hy­droxy-3-meth­oxy­benzaldehyde thio­semicarbazone gave 33 hits and only two hits for Co complexes with thio­semicarbazones, viz. ODOWUC (Huseynova et al., 2018[Huseynova, M., Taslimi, P., Medjidov, A., Farzaliyev, V., Aliyeva, M., Gondolova, G., Şahin, O., Yalçın, B., Sujayev, A., Orman, E. B., Özkaya, A. R. & Gulçin, İ (2018). Polyhedron, 155, 25-33.]) and VENDIB (Burstein, et al., 1988[Burstein, I. F., Gerbeleu, N. V., Bologa, O. A., Verezhan, A. V. & Malinovskii, T. I. (1988). Dokl. Akad. Nauk SSSR, 300, 1382.]).

5. Synthesis and crystallization

The title compound was prepared according to a previously published procedure (Rusanov et al., 2003[Rusanov, E. B., Ponomarova, V. V., Komarchuk, V. V., Stoeckli-Evans, H., Fernandez-Ibañez, E., Stoeckli, F., Sieler, J. & Domasevitch, K. V. (2003). Angew. Chem. Int. Ed. 42, 2499-2501.]) by slow inter­diffusion of a solution of 0.086 g (0.26 mmol) of CoS2O6·6H2O in 1ml of methanol and 0.117g (0.52 mmol) of the ligand in 1ml of di­methyl­formamide and 1ml of chloro­form. Dark-brown crystals of the title compound, suitable for X-ray analysis, were formed within a few days (yield: 60%).

The IR spectrum of the title compound (as KBr pellets) is consistent with the above structural data. In the range 4000–400 cm−1 it shows all characteristic peaks: υ(CH) due to aromatic =C—H stretching at 3000–3100 cm−1, the aromatic ring vibrations in the 1600–1400 cm−1 region, weak absorption band at 738 cm−1 due to υ(C—S) vibrations and the characteristic peak at 1608 cm−1 assigned to azomethine υ(C=N) group. The weak band at 3308 cm−1 can be assigned to the N—H group vibrations. All these data are in good agreement with literature data (Seena & Kurup, 2007[Seena, E. B. & Kurup, M. R. P. (2007). Polyhedron, 26, 829-836.]; Kalaivany et al., 2014[Kalaivani, P., Saranya, S., Poornima, P., Prabhakaran, R., Dallemer, F., Padma, V. V. & Natarajan, K. (2014). Eur. J. Med. Chem. 82, 584-599.]). Analysis calculated for C51H80Co2N16O21S6 (M = 1563.53): C 38.19; N 14.33; H 5.16%. Found: C 38.21; N 14.40; H 5.21%.

The CoII di­thio­nate used in this work was prepared by mixing aqueous solutions containing stoichiometric amounts of cobalt sulfate and BaS2O6·2H2O. The white precipitate of BaSO4 was removed by filtration and the solution containing the metal di­thio­nate was evaporated to a small volume on a rotary evaporator and then cooled for crystallization. BaS2O6·2H2O was prepared using the method described by Pfanstiel (1946[Pfanstiel, R. (1946). Inorg. Synt. 2, 167-172.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. One of the methanol mol­ecules is disordered over two positions with relative occupancies of 0.597 (17) and 0.403 (17) for the major and minor components. The hydrogen atoms bonded to carbon were included at geometrically calculated positions and as riding with Uiso(H) = 1.2Ueq(C) for aromatic CH and Uiso(H) = 1.5Ueq(C) for methyl groups. The H atoms of the NH and OH groups were also placed at calculated position using the corresponding AFIX instruction with Uiso(H) = 1.2Ueq(N) for NH/NH2 and Uiso(H) = 1.5Ueq(O) for OH hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C9H10N3O2S)2]2(S2O6)·4C3H7NO·3CH4O
Mr 1563.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 133
a, b, c (Å) 13.0652 (8), 14.1171 (9), 19.9233 (12)
α, β, γ (°) 93.179 (2), 106.381 (2), 99.884 (2)
V3) 3452.2 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.46 × 0.14 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.632, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 51207, 12244, 8043
Rint 0.077
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.203, 1.02
No. of reflections 12244
No. of parameters 896
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.66
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[bis(2-hydroxy-3-methoxybenzaldehyde thiosemicarbazonato)cobalt(III)] dithionate–dimethyformamide–methanol (1/4/3) top
Crystal data top
[Co(C9H10N3O2S)2]2(S2O6)·4C3H7NO·3CH4OZ = 2
Mr = 1563.53F(000) = 1632
Triclinic, P1Dx = 1.504 Mg m3
a = 13.0652 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.1171 (9) ÅCell parameters from 6474 reflections
c = 19.9233 (12) Åθ = 2.3–23.7°
α = 93.179 (2)°µ = 0.74 mm1
β = 106.381 (2)°T = 133 K
γ = 99.884 (2)°Plate, brown
V = 3452.2 (4) Å30.46 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
8043 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.077
φ and ω scansθmax = 25.1°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.632, Tmax = 0.745k = 1616
51207 measured reflectionsl = 2323
12244 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.0952P)2 + 6.9557P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.011
12244 reflectionsΔρmax = 1.08 e Å3
896 parametersΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
CO10.36292 (5)0.79760 (5)0.45380 (4)0.02529 (19)
CO20.66130 (7)0.20873 (6)0.02449 (4)0.0409 (2)
S10.24082 (11)0.88224 (10)0.40004 (7)0.0314 (3)
S20.25632 (11)0.73953 (10)0.51759 (7)0.0341 (3)
S30.80002 (14)0.13375 (13)0.06047 (9)0.0506 (4)
S40.72076 (14)0.26612 (14)0.06245 (8)0.0528 (5)
S50.07958 (12)0.47129 (12)0.21986 (8)0.0398 (4)
S60.02347 (13)0.57359 (12)0.21385 (10)0.0494 (4)
N10.4248 (3)0.9061 (3)0.5223 (2)0.0240 (9)
N20.3674 (3)0.9807 (3)0.5189 (2)0.0297 (10)
H20.3901351.0302460.5516790.036*
N30.2201 (4)1.0455 (4)0.4645 (2)0.0407 (12)
H3A0.2412401.0932230.4987560.049*
H3B0.1606321.0434790.4295460.049*
N40.2907 (3)0.6901 (3)0.3861 (2)0.0258 (10)
N50.1999 (3)0.6318 (3)0.3964 (2)0.0290 (10)
H5A0.1590200.5852970.3638010.035*
N60.0909 (4)0.5908 (3)0.4661 (2)0.0394 (12)
H6A0.0512000.5436410.4337100.047*
H6B0.0742400.6005130.5054120.047*
N70.5832 (4)0.0923 (4)0.0333 (2)0.0439 (13)
N80.6391 (5)0.0187 (4)0.0361 (3)0.0542 (15)
H8A0.6073070.0351710.0640200.065*
N90.7951 (5)0.0403 (4)0.0014 (3)0.0645 (17)
H9A0.7623130.0924070.0309880.077*
H9B0.8630820.0350640.0244440.077*
N100.7434 (4)0.3243 (4)0.0811 (2)0.0358 (11)
N110.8075 (4)0.3890 (4)0.0522 (3)0.0461 (13)
H110.8531890.4396350.0782980.055*
N120.8491 (4)0.4405 (5)0.0457 (3)0.0621 (17)
H12A0.8879220.4944620.0202010.075*
H12B0.8441180.4313750.0906330.075*
N130.6870 (5)0.6158 (5)0.4054 (3)0.0684 (18)
N140.9538 (4)0.2600 (4)0.3482 (3)0.0477 (13)
N150.9533 (6)0.8744 (6)0.3513 (4)0.093 (2)
N160.3835 (5)0.3449 (5)0.1472 (3)0.0570 (15)
O10.4674 (3)0.7212 (2)0.49697 (18)0.0310 (8)
O20.5854 (3)0.5945 (3)0.5397 (2)0.0443 (11)
O30.4626 (3)0.8491 (2)0.40128 (17)0.0265 (8)
O40.6132 (3)0.9329 (3)0.3504 (2)0.0391 (10)
O50.5439 (3)0.2761 (3)0.0030 (2)0.0408 (10)
O60.4170 (3)0.3980 (3)0.0349 (2)0.0541 (12)
O70.6011 (3)0.1588 (3)0.09775 (19)0.0404 (10)
O80.4994 (3)0.0714 (3)0.1780 (2)0.0427 (10)
O90.1597 (3)0.5116 (4)0.1872 (2)0.0555 (12)
O100.0089 (3)0.3821 (3)0.1837 (2)0.0507 (11)
O110.1252 (3)0.4690 (3)0.2951 (2)0.0398 (10)
O120.0495 (4)0.6657 (3)0.2445 (3)0.0614 (13)
O130.0965 (4)0.5396 (3)0.2531 (3)0.0623 (13)
O140.0773 (4)0.5671 (3)0.1380 (3)0.0672 (15)
O150.7544 (4)0.7731 (4)0.4530 (3)0.0691 (15)
O160.9759 (4)0.4050 (3)0.4111 (2)0.0515 (12)
O171.0408 (5)1.0151 (5)0.3403 (4)0.112 (3)
O180.3242 (4)0.1861 (4)0.1059 (3)0.0703 (15)
C10.5495 (4)0.7517 (4)0.5534 (3)0.0287 (12)
C20.6197 (5)0.6846 (4)0.5779 (3)0.0348 (13)
C30.7122 (5)0.7107 (4)0.6340 (3)0.0371 (14)
H30.7580270.6654330.6483160.045*
C40.7392 (5)0.8034 (4)0.6703 (3)0.0385 (14)
H40.8036810.8211820.7087850.046*
C50.6729 (4)0.8686 (4)0.6503 (3)0.0316 (12)
H50.6907780.9309850.6759730.038*
C60.5771 (4)0.8439 (4)0.5914 (3)0.0285 (12)
C70.6537 (5)0.5261 (4)0.5604 (4)0.0503 (17)
H7A0.7246500.5496120.5534840.075*
H7B0.6199950.4639040.5318000.075*
H7C0.6633630.5178790.6101830.075*
C80.5115 (4)0.9156 (4)0.5748 (3)0.0267 (12)
H80.5336240.9747950.6047730.032*
C90.2776 (4)0.9767 (4)0.4656 (3)0.0314 (12)
C100.4698 (4)0.8044 (4)0.3434 (3)0.0273 (12)
C110.5519 (4)0.8451 (4)0.3137 (3)0.0322 (13)
C120.5678 (5)0.8018 (4)0.2549 (3)0.0395 (14)
H120.6248720.8310310.2374400.047*
C130.4999 (5)0.7150 (4)0.2209 (3)0.0447 (15)
H130.5108780.6845790.1804250.054*
C140.4173 (5)0.6737 (4)0.2460 (3)0.0390 (14)
H140.3698510.6154720.2220750.047*
C150.4022 (4)0.7172 (4)0.3073 (3)0.0299 (12)
C160.7002 (5)0.9797 (5)0.3260 (3)0.0508 (17)
H16A0.7523270.9369710.3275020.076*
H16B0.7368761.0400780.3562490.076*
H16C0.6707120.9939650.2775010.076*
C170.3140 (4)0.6663 (4)0.3287 (3)0.0286 (12)
H170.2690260.6109550.2988010.034*
C180.1763 (4)0.6476 (4)0.4556 (3)0.0291 (12)
C190.4478 (5)0.2412 (5)0.0481 (3)0.0450 (16)
C200.3731 (5)0.3045 (5)0.0657 (3)0.0471 (16)
C210.2696 (5)0.2727 (6)0.1089 (4)0.0584 (19)
H210.2211080.3165800.1193740.070*
C220.2344 (5)0.1760 (6)0.1380 (4)0.058 (2)
H220.1620610.1541360.1676220.070*
C230.3036 (6)0.1136 (6)0.1239 (3)0.059 (2)
H230.2791870.0483050.1443470.070*
C240.4119 (5)0.1435 (5)0.0791 (3)0.0476 (17)
C250.3450 (5)0.4635 (5)0.0450 (4)0.063 (2)
H25A0.3165140.4690710.0953980.094*
H25B0.3839310.5271130.0202520.094*
H25C0.2846070.4398630.0263920.094*
C260.4791 (6)0.0752 (5)0.0702 (3)0.0481 (17)
H260.4475680.0113540.0923570.058*
C270.7424 (6)0.0299 (5)0.0043 (4)0.0540 (18)
C280.6151 (5)0.2070 (4)0.1586 (3)0.0356 (13)
C290.5593 (5)0.1622 (4)0.2048 (3)0.0386 (14)
C300.5682 (5)0.2089 (4)0.2694 (3)0.0419 (15)
H300.5303610.1775770.2989310.050*
C310.6312 (5)0.3003 (5)0.2920 (3)0.0471 (16)
H310.6351180.3321210.3362320.057*
C320.6883 (5)0.3454 (5)0.2502 (3)0.0425 (15)
H320.7328350.4076410.2663260.051*
C330.6813 (5)0.3000 (4)0.1836 (3)0.0367 (14)
C340.4267 (6)0.0293 (5)0.2142 (3)0.0508 (17)
H34A0.4676110.0244540.2629650.076*
H34B0.3896210.0353950.1908360.076*
H34C0.3728300.0698960.2138620.076*
C350.7429 (5)0.3530 (4)0.1439 (3)0.0371 (14)
H350.7867060.4139150.1652080.044*
C360.7979 (5)0.3725 (5)0.0161 (3)0.0453 (16)
C370.6794 (6)0.7046 (6)0.4303 (3)0.0557 (18)
H370.6090800.7142920.4300650.067*
C380.5916 (6)0.5410 (5)0.3769 (4)0.081 (3)
H38A0.6009580.4834860.4015550.122*
H38B0.5809800.5246240.3266480.122*
H38C0.5279040.5640640.3831440.122*
C390.7921 (7)0.5879 (8)0.4104 (6)0.105 (3)
H39A0.7849590.5180920.4132940.158*
H39B0.8472030.6228400.4526180.158*
H39C0.8140010.6040520.3686180.158*
C400.9538 (5)0.3536 (5)0.3548 (4)0.0463 (16)
H400.9353920.3837760.3127590.056*
C410.9841 (6)0.2112 (5)0.4108 (4)0.065 (2)
H41A0.9541100.1417870.3991350.097*
H41B0.9552400.2373290.4467030.097*
H41C1.0636060.2215600.4289530.097*
C420.9213 (6)0.2051 (5)0.2787 (4)0.0608 (19)
H42A0.9796810.1724140.2741030.091*
H42B0.9072920.2492390.2423900.091*
H42C0.8550070.1568770.2731440.091*
C430.9957 (7)0.9360 (6)0.3131 (5)0.082 (3)
H430.9900490.9171260.2654680.098*
C440.9070 (10)0.7712 (6)0.3267 (6)0.128 (5)
H44A0.8434980.7508830.3431530.192*
H44B0.9618810.7324110.3455270.192*
H44C0.8849710.7618420.2751610.192*
C450.9639 (10)0.8940 (11)0.4248 (5)0.154 (6)
H45A0.9002800.8575480.4351070.231*
H45B0.9688650.9633880.4362480.231*
H45C1.0298500.8744930.4530270.231*
C460.3776 (6)0.2670 (6)0.1059 (4)0.0589 (19)
H460.4180460.2737160.0730160.071*
C470.3316 (8)0.3430 (7)0.2019 (5)0.106 (4)
H47A0.3459260.4081690.2264490.159*
H47B0.2529540.3205680.1811710.159*
H47C0.3603780.2988460.2354240.159*
C480.4471 (7)0.4373 (6)0.1424 (4)0.070 (2)
H48A0.4411790.4859840.1774000.105*
H48B0.5234500.4319300.1512950.105*
H48C0.4197180.4566820.0951470.105*
C490.0678 (8)1.0578 (7)0.1412 (6)0.103 (3)
H49A0.1422611.0588310.1395130.154*
H49B0.0667491.0601610.1902270.154*
H49C0.0421461.1138940.1204300.154*
O190.0023 (5)0.9702 (5)0.1020 (4)0.108 (2)
H190.0213070.9221500.1187530.080*
C500.1834 (6)0.8513 (7)0.1979 (5)0.083 (3)
H50A0.2070860.9004430.2387670.125*
H50B0.2088450.8772980.1595980.125*
H50C0.2140140.7938710.2109660.125*
O200.0699 (5)0.8261 (6)0.1758 (5)0.132 (3)
H200.0506000.7664600.1770740.198*
C51A0.069 (3)0.2782 (11)0.0211 (10)0.071 (6)0.597 (17)
H51A0.1297320.2449350.0242980.106*0.597 (17)
H51B0.0004210.2341400.0042590.106*0.597 (17)
H51C0.0672570.2985140.0685850.106*0.597 (17)
O21A0.0821 (9)0.3611 (7)0.0157 (6)0.077 (4)0.597 (17)
H21A0.0780700.3433580.0574900.116*0.597 (17)
C51B0.043 (4)0.2762 (16)0.0017 (16)0.071 (6)0.403 (17)
H51D0.0763910.2782810.0367620.106*0.403 (17)
H51E0.0361750.2607640.0179450.106*0.403 (17)
H51F0.0675020.2265390.0314000.106*0.403 (17)
O21B0.0752 (17)0.3683 (12)0.0429 (10)0.098 (7)0.403 (17)
H21B0.1002730.4100810.0203170.146*0.403 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
CO10.0263 (4)0.0218 (4)0.0233 (4)0.0016 (3)0.0025 (3)0.0000 (3)
CO20.0425 (5)0.0503 (6)0.0267 (4)0.0048 (4)0.0078 (4)0.0030 (4)
S10.0314 (7)0.0277 (8)0.0296 (7)0.0071 (6)0.0003 (6)0.0016 (6)
S20.0382 (8)0.0312 (8)0.0276 (7)0.0058 (6)0.0093 (6)0.0005 (6)
S30.0560 (10)0.0562 (11)0.0396 (9)0.0177 (9)0.0108 (8)0.0019 (8)
S40.0524 (10)0.0721 (13)0.0316 (8)0.0032 (9)0.0135 (8)0.0073 (8)
S50.0348 (8)0.0428 (9)0.0329 (8)0.0039 (7)0.0001 (6)0.0040 (7)
S60.0367 (8)0.0374 (10)0.0634 (11)0.0060 (7)0.0021 (8)0.0088 (8)
N10.026 (2)0.017 (2)0.029 (2)0.0034 (18)0.0072 (19)0.0040 (18)
N20.034 (2)0.024 (2)0.027 (2)0.006 (2)0.003 (2)0.0037 (19)
N30.041 (3)0.045 (3)0.034 (3)0.018 (2)0.004 (2)0.005 (2)
N40.026 (2)0.017 (2)0.031 (2)0.0037 (18)0.0035 (19)0.0031 (19)
N50.030 (2)0.019 (2)0.031 (2)0.0073 (19)0.005 (2)0.0014 (19)
N60.044 (3)0.033 (3)0.036 (3)0.008 (2)0.014 (2)0.005 (2)
N70.052 (3)0.048 (3)0.032 (3)0.009 (3)0.013 (3)0.006 (2)
N80.068 (4)0.050 (4)0.041 (3)0.009 (3)0.013 (3)0.005 (3)
N90.083 (4)0.059 (4)0.058 (4)0.024 (4)0.025 (3)0.003 (3)
N100.029 (2)0.045 (3)0.029 (3)0.002 (2)0.003 (2)0.009 (2)
N110.035 (3)0.063 (4)0.035 (3)0.003 (3)0.007 (2)0.010 (3)
N120.047 (3)0.091 (5)0.043 (3)0.004 (3)0.014 (3)0.016 (3)
N130.054 (4)0.070 (5)0.073 (4)0.021 (3)0.004 (3)0.013 (4)
N140.044 (3)0.040 (3)0.054 (3)0.007 (3)0.007 (3)0.005 (3)
N150.084 (5)0.110 (7)0.084 (6)0.019 (5)0.024 (5)0.012 (5)
N160.055 (4)0.070 (4)0.057 (4)0.027 (3)0.024 (3)0.021 (3)
O10.035 (2)0.020 (2)0.028 (2)0.0018 (16)0.0023 (17)0.0023 (16)
O20.048 (2)0.023 (2)0.048 (2)0.0123 (19)0.011 (2)0.0023 (19)
O30.0283 (18)0.0203 (19)0.0271 (19)0.0009 (15)0.0064 (16)0.0025 (15)
O40.037 (2)0.039 (2)0.036 (2)0.0066 (19)0.0124 (18)0.0034 (18)
O50.034 (2)0.045 (3)0.036 (2)0.0006 (19)0.0032 (18)0.0029 (19)
O60.032 (2)0.057 (3)0.064 (3)0.005 (2)0.001 (2)0.015 (3)
O70.051 (2)0.041 (2)0.028 (2)0.007 (2)0.0118 (19)0.0003 (18)
O80.055 (3)0.039 (3)0.033 (2)0.000 (2)0.018 (2)0.0006 (19)
O90.042 (2)0.084 (4)0.035 (2)0.003 (2)0.009 (2)0.004 (2)
O100.048 (3)0.039 (3)0.045 (3)0.003 (2)0.007 (2)0.015 (2)
O110.039 (2)0.034 (2)0.036 (2)0.0010 (18)0.0015 (18)0.0002 (18)
O120.059 (3)0.036 (3)0.076 (3)0.006 (2)0.001 (3)0.005 (2)
O130.056 (3)0.052 (3)0.085 (4)0.018 (2)0.027 (3)0.003 (3)
O140.049 (3)0.057 (3)0.070 (3)0.004 (2)0.016 (2)0.020 (3)
O150.051 (3)0.068 (4)0.079 (4)0.008 (3)0.012 (3)0.022 (3)
O160.059 (3)0.038 (3)0.053 (3)0.014 (2)0.025 (2)0.006 (2)
O170.080 (4)0.089 (5)0.128 (6)0.033 (4)0.036 (4)0.007 (4)
O180.058 (3)0.075 (4)0.060 (3)0.001 (3)0.004 (3)0.017 (3)
C10.029 (3)0.024 (3)0.028 (3)0.001 (2)0.004 (2)0.000 (2)
C20.039 (3)0.024 (3)0.033 (3)0.007 (3)0.002 (3)0.001 (2)
C30.039 (3)0.029 (3)0.037 (3)0.009 (3)0.002 (3)0.006 (3)
C40.040 (3)0.034 (3)0.032 (3)0.003 (3)0.002 (3)0.002 (3)
C50.033 (3)0.026 (3)0.030 (3)0.001 (2)0.003 (2)0.001 (2)
C60.025 (3)0.027 (3)0.027 (3)0.002 (2)0.003 (2)0.003 (2)
C70.055 (4)0.026 (3)0.057 (4)0.014 (3)0.007 (3)0.000 (3)
C80.033 (3)0.019 (3)0.024 (3)0.002 (2)0.004 (2)0.001 (2)
C90.037 (3)0.025 (3)0.031 (3)0.006 (3)0.008 (3)0.001 (2)
C100.029 (3)0.028 (3)0.023 (3)0.010 (2)0.002 (2)0.002 (2)
C110.029 (3)0.032 (3)0.031 (3)0.001 (3)0.005 (2)0.000 (3)
C120.039 (3)0.046 (4)0.033 (3)0.001 (3)0.014 (3)0.001 (3)
C130.054 (4)0.043 (4)0.036 (3)0.002 (3)0.018 (3)0.006 (3)
C140.044 (3)0.033 (3)0.034 (3)0.002 (3)0.008 (3)0.006 (3)
C150.034 (3)0.026 (3)0.027 (3)0.004 (2)0.005 (2)0.004 (2)
C160.043 (4)0.052 (4)0.051 (4)0.011 (3)0.019 (3)0.007 (3)
C170.027 (3)0.024 (3)0.026 (3)0.002 (2)0.003 (2)0.005 (2)
C180.030 (3)0.026 (3)0.029 (3)0.001 (2)0.007 (2)0.005 (2)
C190.038 (3)0.057 (4)0.033 (3)0.007 (3)0.011 (3)0.003 (3)
C200.038 (3)0.054 (4)0.042 (4)0.004 (3)0.006 (3)0.008 (3)
C210.037 (4)0.075 (6)0.056 (4)0.000 (4)0.009 (3)0.012 (4)
C220.030 (3)0.084 (6)0.049 (4)0.006 (4)0.004 (3)0.004 (4)
C230.053 (4)0.069 (5)0.041 (4)0.020 (4)0.016 (3)0.014 (4)
C240.049 (4)0.062 (5)0.029 (3)0.000 (4)0.014 (3)0.008 (3)
C250.039 (4)0.064 (5)0.074 (5)0.006 (4)0.001 (4)0.012 (4)
C260.058 (4)0.050 (4)0.031 (3)0.006 (3)0.016 (3)0.008 (3)
C270.074 (5)0.052 (4)0.045 (4)0.019 (4)0.027 (4)0.009 (3)
C280.038 (3)0.043 (4)0.027 (3)0.012 (3)0.010 (3)0.003 (3)
C290.043 (3)0.036 (4)0.034 (3)0.011 (3)0.007 (3)0.004 (3)
C300.057 (4)0.042 (4)0.034 (3)0.016 (3)0.020 (3)0.012 (3)
C310.060 (4)0.046 (4)0.034 (3)0.009 (3)0.014 (3)0.001 (3)
C320.046 (4)0.037 (4)0.041 (4)0.009 (3)0.006 (3)0.000 (3)
C330.042 (3)0.036 (4)0.032 (3)0.015 (3)0.006 (3)0.008 (3)
C340.064 (4)0.046 (4)0.042 (4)0.002 (3)0.021 (3)0.001 (3)
C350.035 (3)0.037 (4)0.033 (3)0.004 (3)0.002 (3)0.003 (3)
C360.029 (3)0.059 (4)0.042 (4)0.003 (3)0.003 (3)0.013 (3)
C370.054 (4)0.067 (5)0.038 (4)0.020 (4)0.000 (3)0.009 (4)
C380.089 (6)0.070 (6)0.065 (5)0.020 (5)0.008 (5)0.010 (4)
C390.079 (6)0.113 (8)0.127 (9)0.035 (6)0.033 (6)0.019 (7)
C400.039 (3)0.046 (4)0.052 (4)0.003 (3)0.013 (3)0.005 (3)
C410.083 (5)0.048 (5)0.069 (5)0.017 (4)0.026 (4)0.012 (4)
C420.063 (5)0.048 (4)0.062 (5)0.011 (4)0.006 (4)0.011 (4)
C430.074 (6)0.085 (7)0.084 (7)0.023 (5)0.015 (5)0.007 (6)
C440.155 (11)0.081 (8)0.146 (10)0.028 (8)0.078 (9)0.018 (7)
C450.131 (10)0.274 (18)0.099 (9)0.093 (11)0.064 (8)0.046 (10)
C460.050 (4)0.082 (6)0.042 (4)0.018 (4)0.005 (3)0.014 (4)
C470.133 (9)0.106 (8)0.131 (9)0.060 (7)0.098 (8)0.035 (7)
C480.085 (6)0.066 (5)0.055 (5)0.015 (5)0.014 (4)0.002 (4)
C490.087 (7)0.076 (7)0.136 (9)0.008 (6)0.034 (7)0.008 (6)
O190.085 (4)0.071 (4)0.146 (6)0.010 (4)0.000 (4)0.027 (4)
C500.063 (5)0.095 (7)0.092 (7)0.011 (5)0.027 (5)0.010 (5)
O200.062 (4)0.134 (7)0.200 (8)0.019 (4)0.026 (5)0.105 (7)
C51A0.053 (16)0.071 (7)0.078 (12)0.009 (6)0.005 (13)0.014 (8)
O21A0.099 (8)0.059 (7)0.069 (8)0.010 (6)0.034 (7)0.010 (5)
C51B0.053 (16)0.071 (7)0.078 (12)0.009 (6)0.005 (13)0.014 (8)
O21B0.140 (16)0.069 (12)0.073 (14)0.009 (11)0.024 (11)0.002 (9)
Geometric parameters (Å, º) top
CO1—N41.892 (4)C8—H80.9500
CO1—N11.893 (4)C10—C151.408 (7)
CO1—O11.927 (4)C10—C111.421 (7)
CO1—O31.962 (3)C11—C121.376 (8)
CO1—S22.2247 (15)C12—C131.394 (8)
CO1—S12.2254 (15)C12—H120.9500
CO2—N101.897 (5)C13—C141.369 (8)
CO2—N71.902 (5)C13—H130.9500
CO2—O51.909 (4)C14—C151.414 (8)
CO2—O71.954 (4)C14—H140.9500
CO2—S32.2202 (19)C15—C171.434 (7)
CO2—S42.2269 (17)C16—H16A0.9800
S1—C91.718 (5)C16—H16B0.9800
S2—C181.711 (5)C16—H16C0.9800
S3—C271.711 (7)C17—H170.9500
S4—C361.710 (7)C19—C201.420 (9)
S5—O91.437 (4)C19—C241.423 (9)
S5—O101.442 (4)C20—C211.365 (9)
S5—O111.453 (4)C21—C221.400 (10)
S5—S62.123 (2)C21—H210.9500
S6—O131.434 (5)C22—C231.352 (10)
S6—O121.460 (5)C22—H220.9500
S6—O141.467 (5)C23—C241.420 (9)
N1—C81.289 (6)C23—H230.9500
N1—N21.387 (6)C24—C261.398 (9)
N2—C91.331 (7)C25—H25A0.9800
N2—H20.8800C25—H25B0.9800
N3—C91.323 (7)C25—H25C0.9800
N3—H3A0.8800C26—H260.9500
N3—H3B0.8800C28—C331.419 (8)
N4—C171.305 (7)C28—C291.437 (8)
N4—N51.395 (6)C29—C301.378 (8)
N5—C181.318 (7)C30—C311.382 (9)
N5—H5A0.8800C30—H300.9500
N6—C181.332 (6)C31—C321.379 (8)
N6—H6A0.8800C31—H310.9500
N6—H6B0.8800C32—C331.413 (8)
N7—C261.323 (8)C32—H320.9500
N7—N81.376 (7)C33—C351.432 (8)
N8—C271.340 (9)C34—H34A0.9800
N8—H8A0.8800C34—H34B0.9800
N9—C271.317 (8)C34—H34C0.9800
N9—H9A0.8800C35—H350.9500
N9—H9B0.8800C37—H370.9500
N10—C351.295 (7)C38—H38A0.9800
N10—N111.391 (6)C38—H38B0.9800
N11—C361.335 (8)C38—H38C0.9800
N11—H110.8800C39—H39A0.9800
N12—C361.334 (8)C39—H39B0.9800
N12—H12A0.8800C39—H39C0.9800
N12—H12B0.8800C40—H400.9500
N13—C371.353 (9)C41—H41A0.9800
N13—C381.440 (6)C41—H41B0.9800
N13—C391.470 (10)C41—H41C0.9800
N14—C401.319 (8)C42—H42A0.9800
N14—C411.448 (8)C42—H42B0.9800
N14—C421.461 (8)C42—H42C0.9800
N15—C431.337 (6)C43—H430.9500
N15—C451.438 (6)C44—H44A0.9800
N15—C441.477 (6)C44—H44B0.9800
N16—C461.315 (9)C44—H44C0.9800
N16—C471.436 (9)C45—H45A0.9800
N16—C481.445 (9)C45—H45B0.9800
O1—C11.307 (6)C45—H45C0.9800
O2—C21.380 (6)C46—H460.9500
O2—C71.424 (7)C47—H47A0.9800
O3—C101.317 (6)C47—H47B0.9800
O4—C111.393 (6)C47—H47C0.9800
O4—C161.433 (7)C48—H48A0.9800
O5—C191.314 (7)C48—H48B0.9800
O6—C201.378 (8)C48—H48C0.9800
O6—C251.412 (8)C49—O191.441 (10)
O7—C281.306 (6)C49—H49A0.9800
O8—C291.373 (7)C49—H49B0.9800
O8—C341.419 (7)C49—H49C0.9800
O15—C371.215 (8)O19—H190.8400
O16—C401.234 (7)C50—O201.398 (9)
O17—C431.189 (6)C50—H50A0.9800
O18—C461.232 (9)C50—H50B0.9800
C1—C61.404 (7)C50—H50C0.9800
C1—C21.441 (8)O20—H200.8400
C2—C31.373 (7)C51A—O21A1.427 (7)
C3—C41.397 (8)C51A—H51A0.9800
C3—H30.9500C51A—H51B0.9800
C4—C51.371 (8)C51A—H51C0.9800
C4—H40.9500O21A—H21A0.8400
C5—C61.430 (7)C51B—O21B1.428 (7)
C5—H50.9500C51B—H51D0.9800
C6—C81.429 (7)C51B—H51E0.9800
C7—H7A0.9800C51B—H51F0.9800
C7—H7B0.9800O21B—H21B0.8400
C7—H7C0.9800
N4—CO1—N1175.64 (18)H16B—C16—H16C109.5
N4—CO1—O188.27 (16)N4—C17—C15125.0 (5)
N1—CO1—O194.70 (16)N4—C17—H17117.5
N4—CO1—O394.34 (16)C15—C17—H17117.5
N1—CO1—O388.98 (15)N5—C18—N6119.0 (5)
O1—CO1—O387.66 (15)N5—C18—S2119.5 (4)
N4—CO1—S287.23 (13)N6—C18—S2121.4 (4)
N1—CO1—S289.55 (13)O5—C19—C20117.9 (6)
O1—CO1—S290.33 (12)O5—C19—C24124.7 (6)
O3—CO1—S2177.41 (11)C20—C19—C24117.4 (6)
N4—CO1—S189.69 (13)C21—C20—O6125.6 (7)
N1—CO1—S187.39 (13)C21—C20—C19121.6 (7)
O1—CO1—S1177.78 (11)O6—C20—C19112.8 (5)
O3—CO1—S191.61 (11)C20—C21—C22120.5 (7)
S2—CO1—S190.46 (6)C20—C21—H21119.8
N10—CO2—N7178.0 (2)C22—C21—H21119.8
N10—CO2—O587.05 (18)C23—C22—C21119.9 (6)
N7—CO2—O594.4 (2)C23—C22—H22120.0
N10—CO2—O794.30 (18)C21—C22—H22120.0
N7—CO2—O787.10 (18)C22—C23—C24121.6 (7)
O5—CO2—O788.64 (17)C22—C23—H23119.2
N10—CO2—S391.06 (15)C24—C23—H23119.2
N7—CO2—S387.51 (17)C26—C24—C23117.5 (7)
O5—CO2—S3177.80 (13)C26—C24—C19123.4 (6)
O7—CO2—S390.38 (13)C23—C24—C19119.0 (7)
N10—CO2—S487.04 (14)O6—C25—H25A109.5
N7—CO2—S491.63 (15)O6—C25—H25B109.5
O5—CO2—S488.63 (13)H25A—C25—H25B109.5
O7—CO2—S4176.89 (13)O6—C25—H25C109.5
S3—CO2—S492.41 (7)H25A—C25—H25C109.5
C9—S1—CO196.31 (19)H25B—C25—H25C109.5
C18—S2—CO196.30 (18)N7—C26—C24125.2 (6)
C27—S3—CO296.4 (3)N7—C26—H26117.4
C36—S4—CO296.9 (2)C24—C26—H26117.4
O9—S5—O10115.0 (3)N9—C27—N8117.8 (7)
O9—S5—O11112.7 (2)N9—C27—S3123.1 (6)
O10—S5—O11113.9 (2)N8—C27—S3119.1 (5)
O9—S5—S6105.1 (2)O7—C28—C33125.8 (5)
O10—S5—S6105.2 (2)O7—C28—C29117.5 (5)
O11—S5—S6103.40 (19)C33—C28—C29116.7 (5)
O13—S6—O12114.0 (3)O8—C29—C30125.4 (5)
O13—S6—O14113.2 (3)O8—C29—C28113.4 (5)
O12—S6—O14114.8 (3)C30—C29—C28121.2 (6)
O13—S6—S5105.7 (2)C29—C30—C31121.1 (6)
O12—S6—S5105.1 (2)C29—C30—H30119.4
O14—S6—S5102.4 (2)C31—C30—H30119.4
C8—N1—N2116.1 (4)C32—C31—C30119.8 (6)
C8—N1—CO1126.7 (4)C32—C31—H31120.1
N2—N1—CO1117.0 (3)C30—C31—H31120.1
C9—N2—N1119.6 (4)C31—C32—C33120.8 (6)
C9—N2—H2120.2C31—C32—H32119.6
N1—N2—H2120.2C33—C32—H32119.6
C9—N3—H3A120.0C32—C33—C28120.4 (5)
C9—N3—H3B120.0C32—C33—C35116.6 (5)
H3A—N3—H3B120.0C28—C33—C35123.0 (5)
C17—N4—N5115.8 (4)O8—C34—H34A109.5
C17—N4—CO1126.9 (4)O8—C34—H34B109.5
N5—N4—CO1117.3 (3)H34A—C34—H34B109.5
C18—N5—N4118.9 (4)O8—C34—H34C109.5
C18—N5—H5A120.5H34A—C34—H34C109.5
N4—N5—H5A120.5H34B—C34—H34C109.5
C18—N6—H6A120.0N10—C35—C33125.1 (6)
C18—N6—H6B120.0N10—C35—H35117.4
H6A—N6—H6B120.0C33—C35—H35117.4
C26—N7—N8117.0 (5)N12—C36—N11118.2 (6)
C26—N7—CO2125.7 (5)N12—C36—S4122.6 (5)
N8—N7—CO2117.3 (4)N11—C36—S4119.2 (5)
C27—N8—N7119.2 (6)O15—C37—N13125.8 (7)
C27—N8—H8A120.4O15—C37—H37117.1
N7—N8—H8A120.4N13—C37—H37117.1
C27—N9—H9A120.0N13—C38—H38A109.5
C27—N9—H9B120.0N13—C38—H38B109.5
H9A—N9—H9B120.0H38A—C38—H38B109.5
C35—N10—N11115.0 (5)N13—C38—H38C109.5
C35—N10—CO2126.9 (4)H38A—C38—H38C109.5
N11—N10—CO2118.0 (4)H38B—C38—H38C109.5
C36—N11—N10118.4 (5)N13—C39—H39A109.5
C36—N11—H11120.8N13—C39—H39B109.5
N10—N11—H11120.8H39A—C39—H39B109.5
C36—N12—H12A120.0N13—C39—H39C109.5
C36—N12—H12B120.0H39A—C39—H39C109.5
H12A—N12—H12B120.0H39B—C39—H39C109.5
C37—N13—C38121.0 (6)O16—C40—N14125.4 (6)
C37—N13—C39122.6 (7)O16—C40—H40117.3
C38—N13—C39116.3 (7)N14—C40—H40117.3
C40—N14—C41119.4 (6)N14—C41—H41A109.5
C40—N14—C42120.8 (6)N14—C41—H41B109.5
C41—N14—C42119.9 (6)H41A—C41—H41B109.5
C43—N15—C45125.0 (9)N14—C41—H41C109.5
C43—N15—C44123.6 (8)H41A—C41—H41C109.5
C45—N15—C44110.6 (9)H41B—C41—H41C109.5
C46—N16—C47122.4 (7)N14—C42—H42A109.5
C46—N16—C48121.8 (6)N14—C42—H42B109.5
C47—N16—C48115.7 (7)H42A—C42—H42B109.5
C1—O1—CO1124.2 (3)N14—C42—H42C109.5
C2—O2—C7116.1 (4)H42A—C42—H42C109.5
C10—O3—CO1124.4 (3)H42B—C42—H42C109.5
C11—O4—C16117.5 (4)O17—C43—N15118.2 (9)
C19—O5—CO2126.0 (4)O17—C43—H43120.9
C20—O6—C25116.2 (5)N15—C43—H43120.9
C28—O7—CO2124.5 (4)N15—C44—H44A109.5
C29—O8—C34116.8 (4)N15—C44—H44B109.5
O1—C1—C6126.5 (5)H44A—C44—H44B109.5
O1—C1—C2116.5 (5)N15—C44—H44C109.5
C6—C1—C2117.1 (5)H44A—C44—H44C109.5
C3—C2—O2124.6 (5)H44B—C44—H44C109.5
C3—C2—C1121.6 (5)N15—C45—H45A109.5
O2—C2—C1113.8 (4)N15—C45—H45B109.5
C2—C3—C4120.4 (5)H45A—C45—H45B109.5
C2—C3—H3119.8N15—C45—H45C109.5
C4—C3—H3119.8H45A—C45—H45C109.5
C5—C4—C3120.1 (5)H45B—C45—H45C109.5
C5—C4—H4120.0O18—C46—N16125.9 (7)
C3—C4—H4120.0O18—C46—H46117.0
C4—C5—C6120.7 (5)N16—C46—H46117.0
C4—C5—H5119.6N16—C47—H47A109.5
C6—C5—H5119.6N16—C47—H47B109.5
C1—C6—C8122.7 (5)H47A—C47—H47B109.5
C1—C6—C5120.1 (5)N16—C47—H47C109.5
C8—C6—C5117.1 (5)H47A—C47—H47C109.5
O2—C7—H7A109.5H47B—C47—H47C109.5
O2—C7—H7B109.5N16—C48—H48A109.5
H7A—C7—H7B109.5N16—C48—H48B109.5
O2—C7—H7C109.5H48A—C48—H48B109.5
H7A—C7—H7C109.5N16—C48—H48C109.5
H7B—C7—H7C109.5H48A—C48—H48C109.5
N1—C8—C6125.0 (5)H48B—C48—H48C109.5
N1—C8—H8117.5O19—C49—H49A109.5
C6—C8—H8117.5O19—C49—H49B109.5
N3—C9—N2119.4 (5)H49A—C49—H49B109.5
N3—C9—S1122.1 (4)O19—C49—H49C109.5
N2—C9—S1118.5 (4)H49A—C49—H49C109.5
O3—C10—C15125.5 (5)H49B—C49—H49C109.5
O3—C10—C11119.0 (5)C49—O19—H19109.5
C15—C10—C11115.5 (5)O20—C50—H50A109.5
C12—C11—O4124.3 (5)O20—C50—H50B109.5
C12—C11—C10123.0 (5)H50A—C50—H50B109.5
O4—C11—C10112.7 (5)O20—C50—H50C109.5
C11—C12—C13119.8 (5)H50A—C50—H50C109.5
C11—C12—H12120.1H50B—C50—H50C109.5
C13—C12—H12120.1C50—O20—H20109.5
C14—C13—C12119.8 (5)O21A—C51A—H51A109.5
C14—C13—H13120.1O21A—C51A—H51B109.5
C12—C13—H13120.1H51A—C51A—H51B109.5
C13—C14—C15120.4 (5)O21A—C51A—H51C109.5
C13—C14—H14119.8H51A—C51A—H51C109.5
C15—C14—H14119.8H51B—C51A—H51C109.5
C10—C15—C14121.4 (5)C51A—O21A—H21A109.5
C10—C15—C17123.5 (5)O21B—C51B—H51D109.5
C14—C15—C17115.1 (5)O21B—C51B—H51E109.5
O4—C16—H16A109.5H51D—C51B—H51E109.5
O4—C16—H16B109.5O21B—C51B—H51F109.5
H16A—C16—H16B109.5H51D—C51B—H51F109.5
O4—C16—H16C109.5H51E—C51B—H51F109.5
H16A—C16—H16C109.5C51B—O21B—H21B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O8i0.882.282.969 (7)135
N2—H2···O3ii0.882.272.999 (5)140
N2—H2···O4ii0.882.012.740 (6)140
N11—H11···O14iii0.882.022.877 (7)165
N5—H5A···O110.881.982.813 (6)157
N12—H12B···O9iv0.882.122.911 (7)150
N3—H3B···O17v0.881.982.839 (8)166
N3—H3A···O15ii0.882.052.881 (7)156
N9—H9A···O18i0.881.892.756 (8)168
N6—H6B···O16vi0.881.952.822 (6)169
N9—H9B···O19vii0.881.972.834 (9)165
N12—H12A···O21Aiv0.882.062.878 (12)155
O19—H19···O200.841.902.720 (9)167
O20—H20···O120.842.012.722 (8)142
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x1, y, z; (vi) x+1, y+1, z+1; (vii) x+1, y1, z.
 

Funding information

Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for prospective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.

References

First citationAazam, E. S. & El-Said, W. A. (2014). Bioorg. Chem. 57, 5–12.  CrossRef CAS PubMed Google Scholar
First citationAndruh, M. (2015). Dalton Trans. 44, 16633–16653.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurstein, I. F., Gerbeleu, N. V., Bologa, O. A., Verezhan, A. V. & Malinovskii, T. I. (1988). Dokl. Akad. Nauk SSSR, 300, 1382.  Google Scholar
First citationChumakov, Yu. M., Tsapkov, V. I., Petrenko, P. A., Palomares-Sànchez, S. A. & Gulea, A. P. (2013). J. Struct. Chem. 54, 824–828.  CrossRef CAS Google Scholar
First citationFerrari, M. B., Bisceglie, F., Pelosi, G., Tarasconi, P., Albertini, R., Dall'Aglio, P. P., Pinelli, S., Bergamo, A. & Sava, G. J. (2004). J. Inorg. Biochem. 98, 301–312.  CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, P., Basuli, F., Peng, S. M., Lee, G. H. & Bhattacharya, S. (2003). Inorg. Chem. 42, 2069–2074.  CSD CrossRef PubMed CAS Google Scholar
First citationHayne, D. J., Lim, S. & Donnelly, P. S. (2014). Chem. Soc. Rev. 43, 6701–6715.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuseynova, M., Taslimi, P., Medjidov, A., Farzaliyev, V., Aliyeva, M., Gondolova, G., Şahin, O., Yalçın, B., Sujayev, A., Orman, E. B., Özkaya, A. R. & Gulçin, İ (2018). Polyhedron, 155, 25–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalaivani, P., Saranya, S., Poornima, P., Prabhakaran, R., Dallemer, F., Padma, V. V. & Natarajan, K. (2014). Eur. J. Med. Chem. 82, 584–599.  CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLim, S., Paterson, B. M., Fodero-Tavoletti, M. T., O'Keefe, G. J., Cappai, R., Barnham, K. J., Villemagne, V. L. & Donnelly, P. S. (2010). Chem. Commun. 46, 5437–5439.  Web of Science CrossRef CAS Google Scholar
First citationMishra, N., Poonia, K., Soni, S. K. & Kumar, D. (2016). Polyhedron, 120, 60–68.  CrossRef CAS Google Scholar
First citationPfanstiel, R. (1946). Inorg. Synt. 2, 167–172.  Google Scholar
First citationRusanov, E. B., Ponomarova, V. V., Komarchuk, V. V., Stoeckli-Evans, H., Fernandez-Ibañez, E., Stoeckli, F., Sieler, J. & Domasevitch, K. V. (2003). Angew. Chem. Int. Ed. 42, 2499–2501.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSeena, E. B. & Kurup, M. R. P. (2007). Polyhedron, 26, 829–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Trans. Met. Chem. 25, 133–140.  CrossRef CAS Google Scholar
First citationVrdoljak, V., Đilović, I., Rubčić, M., Kraljević Pavelić, S., Kralj, M., Matković–Čalogović, D., Piantanida, I., Novak, P., Rožman, A. & Cindrić, M. (2010). Eur. J. Med. Chem. 45, 38–48.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Li, M., Zhang, S., Ke, H., Zhang, Y., Zhuang, G., Wang, W., Wei, Q., Xie, G. & Chen, S. (2017). Inorg. Chem. 56, 11387–11397.  CSD CrossRef CAS PubMed Google Scholar
First citationZhao, R.-G., Zhang, W., Li, J.-K. & Zhang, L.-Y. (2008). Acta Cryst. E64, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds