research communications
E)-1-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]-2-(2,4-dichlorophenyl)diazene
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the title compound, C14H7Cl4FN2, the dihedral angle between the 4-fluorophenyl ring and the 2,4-dichlorophenyl ring is 46.03 (19)°. In the crystal, the molecules are linked by C—H⋯N interactions along the a-axis direction, forming a C(6) chain. The molecules are further connected by C—Cl⋯π interactions and face-to-face π–π stacking interactions, forming ribbons along the a-axis direction. Hirshfeld surface analysis indicates that the greatest contributions to the crystal packing are from Cl⋯H/H⋯Cl (35.1%), H⋯H (10.6%), C⋯C (9.7%), Cl⋯Cl (9.4%) and C⋯H/H⋯C (9.2%) interactions.
Keywords: crystal structure; short inter HL⋯HL contact; C—Cl⋯π interactions; face-to-face π–π stacking interactions; Hirshfeld surface analysis.
CCDC reference: 2116300
1. Chemical context
Azo dyes find numerous applications in a diversity of areas, including as antimicrobial agents, in molecular recognition, optical data storage, molecular switches, non-linear optics, liquid crystals, dye-sensitized solar cells, color-changing materials, etc., mainly due to the possibility of the cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018; Viswanathan et al., 2019). Not only azo-hydrazone tautomerisim, but also E/Z isomerization are important phenomena in the synthetic chemistry of azo dyes (Ma et al., 2017a,b; Mahmoudi et al., 2018a,b). The design of azo dyes with functional groups led to multifunctional ligands, the corresponding transition-metal complexes of which have been used effectively as catalysts in C—C coupling and oxidation reactions (Ma et al., 2020, 2021; Mahmudov et al., 2013; Mizar et al., 2012). Moreover, the functional properties of azo dyes can be improved by attaching substituents with non-covalent bond donor or acceptor site(s) to the –N=N– synthon (Gurbanov et al., 2020a,b; Kopylovich et al., 2011; Mahmudov et al., 2020; Shixaliyev et al., 2014). Thus, we have attached halogen-bond donor centres to the –N=N– moiety, leading to a new azo dye, (E)-1-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]-2-(2,4-dichlorophenyl)diazene, which provides multiple intermolecular non-covalent interactions.
2. Structural commentary
In the title compound, (Fig. 1), the dihedral angle between the 4-fluorophenyl ring C3–C8 and the 2,4-dichlorophenyl ring C9–C14 is 46.0 (2)°. The N2/N1/C1/C2/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.029 (1) Å for Cl1, and makes dihedral angles of 50.53 (18) and 11.75 (18)° with the C3–C8 and C9–C14 rings, respectively. In the molecule, the aromatic ring and olefin synthon adopt a trans-configuration with respect to the N=N double bond and are almost coplanar with a C1—N1=N2—C9 torsion angle of 179.1 (4)°.
3. Supramolecular features
In the crystal, the molecules are linked by C—H⋯N interactions along the a-axis direction, forming a C(6) chain (Table 1; Fig. 2; Bernstein et al., 1995). Furthermore, molecules are connected by C—Cl⋯Cg2 interactions (Table 1) and face-to-face π-π stacking interactions [Cg1⋯Cg1i = 3.873 (3) Å, slippage = 1.831 Å; Cg2⋯Cg2i = 3.872 (3) Å, slippage = 1.554 Å; symmetry codes: (i) x − 1, y, z;; (ii) x + 1, y, z; where Cg1 and Cg2 are the centroids of the 4-fluorophenyl (C3–C8) and 2,4-dichlorophenyl ring (C9–C14) rings, respectively], forming ribbons along the a-axis direction (Figs. 2, 3 and 4).
4. Hirshfeld surface analysis
Crystal Explorer (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1450 (red) to 1.1580 (blue) a.u (Fig. 5). In the Hirshfeld surface mapped over dnorm (Fig. 5), the bright-red spots near atoms Cl1, Cl3, H4, N2 and F1 indicate the short C—H⋯N, C—H⋯Cl and Cl⋯F contacts (Table 2). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surface of the title compound mapped over the electrostatic potential (Spackman et al., 2008) is shown in Fig. 6. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).
|
The overall two-dimensional fingerprint plot and those delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯C, Cl⋯Cl and C⋯H/H⋯C contacts in the title molecule are illustrated in Fig. 7. The most important interaction is Cl⋯H/H⋯Cl, contributing 35.1% to the overall crystal packing (Fig. 7b). The secondary important H⋯H and C⋯C interactions contribute 10.6% (Fig. 7c) and 9.7% (Fig. 7d), respectively, to the Hirshfeld surface. The remaining contributions for the title compound are from Cl⋯Cl, C⋯H/H⋯C, Cl⋯F/F⋯Cl, Cl⋯C/C⋯Cl, F⋯H/H⋯F, N⋯H/H⋯N, N⋯N and F⋯C/ C⋯F contacts, which are less than 9.7% and have a negligible effect on the packing. The percentage contributions of all interactions are listed in Table 3.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for the (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit resulted in 28 hits. Nine compounds are closely related to the title compound, viz. LEQXOX (I; Shikhaliyev et al., 2018), LEQXIR (II; Shikhaliyev et al., 2018), XIZREG (III; Atioğlu et al., 2019), HODQAV (IV; Shikhaliyev et al., 2019), HONBUK (V; Akkurt et al., 2019), HONBOE (VI; Akkurt et al., 2019), DULTAI (VII; Özkaraca et al., 2020b), GUPHIL (VIII; Özkaraca et al., 2020a) and EBUCUD (IX; Shikhaliyev et al., 2021).
In the crystals of I and II, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In I, C—H⋯N and short Cl⋯Cl contacts are observed and in II, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur. In III, the benzene rings form a dihedral angle of 63.29 (8)° and the molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In IV, the benzene rings make a dihedral angle of 56.13 (13)°. Molecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In V and VI, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, molecules are linked through weak X⋯Cl contacts (X = Cl for V and Br for VI), C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. In VII, the dihedral angle between the two aromatic rings is 64.12 (14)°. The is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals interactions. In VIII, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In IX, the comprises two similar molecules, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°. The features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals interactions.
6. Synthesis and crystallization
The title dye was synthesized according to the reported method (Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(2,4-dichlorophenyl)-2-(4-fluorobenzylidene)hydrazine (283 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (44%); m.p. 345 K. Analysis calculated for C14H7Cl4FN2 (M = 364.02): C 46.19, H 1.94, N 7.70; found: C 46.11, H 1.98, N 7.67%. 1H NMR (300 MHz, CDCl3) δ 7.31–7.83 (7H, Ar). 13C NMR (75 MHz, CDCl3) δ 114.89, 115.12, 115.41, 115.74, 115.97, 118.33, 127.73, 128.08, 128.67, 129.17, 130.48, 132.04, 132.15 and 136.83. ESI–MS: m/z: 365.11 [M + H]+.
7. details
Crystal data, data collection and structure . The Moscow synchrotron radiation source was used for the data collection. H atoms were positioned geometrically and treated as riding atoms where C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). Five outliers 2 2, 2, 11 3, 2 1 and 1 were omitted during the final cycle because of large differences between observed and calculated intensities.
details are summarized in Table 4Supporting information
CCDC reference: 2116300
https://doi.org/10.1107/S2056989021010756/vm2255sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010756/vm2255Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010756/vm2255Isup3.cml
Data collection: Marccd (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C14H7Cl4FN2 | F(000) = 364 |
Mr = 364.02 | Dx = 1.656 Mg m−3 |
Monoclinic, P21 | Synchrotron radiation, λ = 0.79475 Å |
a = 3.8720 (8) Å | Cell parameters from 600 reflections |
b = 10.434 (2) Å | θ = 2.8–28.0° |
c = 18.138 (4) Å | µ = 1.12 mm−1 |
β = 95.03 (3)° | T = 100 K |
V = 730.0 (3) Å3 | Prism, colourless |
Z = 2 | 0.20 × 0.15 × 0.10 mm |
Rayonix SX165 CCD diffractometer | 2972 reflections with I > 2σ(I) |
/f scan | Rint = 0.027 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 31.0°, θmin = 2.5° |
Tmin = 0.800, Tmax = 0.880 | h = −5→5 |
8595 measured reflections | k = −12→13 |
3120 independent reflections | l = −23→23 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7552P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.036 | (Δ/σ)max < 0.001 |
wR(F2) = 0.106 | Δρmax = 0.61 e Å−3 |
S = 1.09 | Δρmin = −0.30 e Å−3 |
3120 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
191 parameters | Extinction coefficient: 0.044 (8) |
1 restraint | Absolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.04 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.3214 (3) | 0.89506 (12) | 0.70389 (6) | 0.0309 (3) | |
Cl2 | −0.0221 (4) | 0.81658 (13) | 0.84672 (7) | 0.0392 (3) | |
Cl3 | 0.2392 (3) | 0.19949 (12) | 0.70702 (6) | 0.0334 (3) | |
Cl4 | 0.8795 (3) | 0.10530 (13) | 0.97679 (6) | 0.0340 (3) | |
F1 | −0.2885 (9) | 0.5192 (3) | 0.42861 (16) | 0.0383 (7) | |
N1 | 0.1181 (11) | 0.5745 (4) | 0.7820 (2) | 0.0281 (9) | |
N2 | 0.1962 (11) | 0.4658 (4) | 0.7569 (2) | 0.0273 (8) | |
C1 | −0.0396 (12) | 0.6583 (5) | 0.7275 (3) | 0.0274 (9) | |
C2 | −0.1180 (12) | 0.7756 (5) | 0.7555 (3) | 0.0293 (10) | |
C3 | −0.1089 (12) | 0.6232 (5) | 0.6480 (2) | 0.0255 (9) | |
C4 | −0.2763 (12) | 0.5073 (5) | 0.6280 (3) | 0.0267 (9) | |
H4 | −0.347529 | 0.452035 | 0.665430 | 0.032* | |
C5 | −0.3391 (13) | 0.4726 (5) | 0.5540 (3) | 0.0288 (10) | |
H5 | −0.455606 | 0.394787 | 0.540530 | 0.035* | |
C6 | −0.2292 (13) | 0.5531 (5) | 0.5008 (3) | 0.0295 (10) | |
C7 | −0.0634 (12) | 0.6678 (5) | 0.5181 (3) | 0.0289 (10) | |
H7 | 0.006934 | 0.722093 | 0.480114 | 0.035* | |
C8 | −0.0016 (12) | 0.7022 (5) | 0.5920 (3) | 0.0281 (9) | |
H8 | 0.114818 | 0.780287 | 0.604727 | 0.034* | |
C9 | 0.3594 (11) | 0.3839 (5) | 0.8125 (2) | 0.0261 (9) | |
C10 | 0.3960 (12) | 0.2556 (5) | 0.7935 (3) | 0.0265 (9) | |
C11 | 0.5577 (13) | 0.1679 (5) | 0.8440 (3) | 0.0275 (9) | |
H11 | 0.581566 | 0.080365 | 0.830976 | 0.033* | |
C12 | 0.6813 (13) | 0.2120 (5) | 0.9131 (3) | 0.0291 (10) | |
C13 | 0.6495 (12) | 0.3405 (5) | 0.9334 (3) | 0.0289 (10) | |
H13 | 0.736480 | 0.368972 | 0.981195 | 0.035* | |
C14 | 0.4893 (13) | 0.4255 (5) | 0.8827 (3) | 0.0300 (10) | |
H14 | 0.467401 | 0.513039 | 0.895888 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0349 (6) | 0.0218 (6) | 0.0353 (6) | 0.0044 (5) | −0.0005 (4) | −0.0001 (4) |
Cl2 | 0.0528 (8) | 0.0325 (7) | 0.0312 (6) | 0.0116 (6) | −0.0029 (5) | −0.0065 (5) |
Cl3 | 0.0426 (6) | 0.0263 (6) | 0.0301 (6) | 0.0037 (5) | −0.0030 (4) | −0.0036 (4) |
Cl4 | 0.0385 (6) | 0.0315 (7) | 0.0318 (5) | 0.0058 (5) | 0.0018 (4) | 0.0071 (5) |
F1 | 0.0507 (18) | 0.0339 (18) | 0.0296 (15) | 0.0000 (14) | 0.0002 (12) | −0.0029 (12) |
N1 | 0.031 (2) | 0.022 (2) | 0.032 (2) | 0.0034 (16) | 0.0042 (15) | −0.0011 (15) |
N2 | 0.028 (2) | 0.025 (2) | 0.0291 (19) | 0.0041 (15) | 0.0052 (15) | 0.0005 (15) |
C1 | 0.027 (2) | 0.023 (2) | 0.033 (2) | 0.0038 (17) | 0.0032 (17) | 0.0004 (18) |
C2 | 0.027 (2) | 0.027 (3) | 0.034 (2) | 0.0060 (18) | 0.0015 (18) | −0.0031 (19) |
C3 | 0.027 (2) | 0.020 (2) | 0.029 (2) | 0.0037 (17) | 0.0026 (16) | 0.0005 (17) |
C4 | 0.028 (2) | 0.019 (2) | 0.034 (2) | 0.0029 (17) | 0.0062 (17) | 0.0004 (17) |
C5 | 0.029 (2) | 0.022 (2) | 0.036 (2) | 0.0031 (17) | 0.0024 (18) | 0.0000 (18) |
C6 | 0.030 (2) | 0.030 (3) | 0.028 (2) | 0.0053 (18) | 0.0009 (17) | −0.0018 (17) |
C7 | 0.028 (2) | 0.025 (3) | 0.033 (2) | 0.0024 (17) | 0.0034 (17) | 0.0035 (18) |
C8 | 0.028 (2) | 0.023 (2) | 0.033 (2) | 0.0029 (19) | 0.0019 (16) | 0.0018 (19) |
C9 | 0.024 (2) | 0.026 (2) | 0.029 (2) | 0.0012 (18) | 0.0052 (15) | 0.0031 (18) |
C10 | 0.029 (2) | 0.024 (2) | 0.027 (2) | 0.0040 (18) | 0.0044 (17) | −0.0001 (17) |
C11 | 0.029 (2) | 0.024 (3) | 0.030 (2) | 0.0045 (17) | 0.0046 (16) | 0.0013 (17) |
C12 | 0.029 (2) | 0.027 (3) | 0.032 (2) | 0.0030 (19) | 0.0055 (17) | 0.0057 (19) |
C13 | 0.031 (2) | 0.029 (3) | 0.026 (2) | −0.0010 (19) | 0.0017 (17) | −0.0041 (18) |
C14 | 0.035 (2) | 0.024 (3) | 0.031 (2) | 0.0021 (18) | 0.0043 (18) | 0.0002 (18) |
Cl1—C2 | 1.709 (5) | C5—H5 | 0.9500 |
Cl2—C2 | 1.718 (5) | C6—C7 | 1.381 (7) |
Cl3—C10 | 1.733 (5) | C7—C8 | 1.388 (7) |
Cl4—C12 | 1.735 (5) | C7—H7 | 0.9500 |
F1—C6 | 1.357 (6) | C8—H8 | 0.9500 |
N1—N2 | 1.269 (6) | C9—C10 | 1.393 (7) |
N1—C1 | 1.416 (6) | C9—C14 | 1.398 (7) |
N2—C9 | 1.426 (6) | C10—C11 | 1.403 (7) |
C1—C2 | 1.369 (7) | C11—C12 | 1.380 (7) |
C1—C3 | 1.490 (6) | C11—H11 | 0.9500 |
C3—C8 | 1.399 (7) | C12—C13 | 1.399 (7) |
C3—C4 | 1.404 (7) | C13—C14 | 1.384 (7) |
C4—C5 | 1.390 (7) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C5—C6 | 1.375 (7) | ||
N2—N1—C1 | 113.8 (4) | C8—C7—H7 | 120.7 |
N1—N2—C9 | 112.8 (4) | C7—C8—C3 | 120.8 (5) |
C2—C1—N1 | 112.9 (4) | C7—C8—H8 | 119.6 |
C2—C1—C3 | 123.4 (4) | C3—C8—H8 | 119.6 |
N1—C1—C3 | 123.6 (4) | C10—C9—C14 | 119.2 (4) |
C1—C2—Cl1 | 123.8 (4) | C10—C9—N2 | 116.7 (4) |
C1—C2—Cl2 | 122.9 (4) | C14—C9—N2 | 124.1 (5) |
Cl1—C2—Cl2 | 113.3 (3) | C9—C10—C11 | 121.0 (4) |
C8—C3—C4 | 118.7 (4) | C9—C10—Cl3 | 120.9 (4) |
C8—C3—C1 | 121.2 (4) | C11—C10—Cl3 | 118.1 (4) |
C4—C3—C1 | 120.1 (4) | C12—C11—C10 | 118.4 (5) |
C5—C4—C3 | 120.8 (4) | C12—C11—H11 | 120.8 |
C5—C4—H4 | 119.6 | C10—C11—H11 | 120.8 |
C3—C4—H4 | 119.6 | C11—C12—C13 | 121.8 (5) |
C6—C5—C4 | 118.6 (5) | C11—C12—Cl4 | 119.3 (4) |
C6—C5—H5 | 120.7 | C13—C12—Cl4 | 118.9 (4) |
C4—C5—H5 | 120.7 | C14—C13—C12 | 118.9 (4) |
F1—C6—C5 | 118.8 (5) | C14—C13—H13 | 120.5 |
F1—C6—C7 | 118.7 (5) | C12—C13—H13 | 120.5 |
C5—C6—C7 | 122.5 (5) | C13—C14—C9 | 120.7 (5) |
C6—C7—C8 | 118.7 (5) | C13—C14—H14 | 119.6 |
C6—C7—H7 | 120.7 | C9—C14—H14 | 119.6 |
C1—N1—N2—C9 | 179.1 (4) | C6—C7—C8—C3 | −0.8 (7) |
N2—N1—C1—C2 | −179.2 (4) | C4—C3—C8—C7 | 0.9 (7) |
N2—N1—C1—C3 | 0.0 (7) | C1—C3—C8—C7 | 179.1 (4) |
N1—C1—C2—Cl1 | −178.0 (4) | N1—N2—C9—C10 | 168.4 (4) |
C3—C1—C2—Cl1 | 2.8 (7) | N1—N2—C9—C14 | −13.2 (7) |
N1—C1—C2—Cl2 | 1.7 (6) | C14—C9—C10—C11 | 0.6 (7) |
C3—C1—C2—Cl2 | −177.6 (4) | N2—C9—C10—C11 | 179.1 (4) |
C2—C1—C3—C8 | 50.4 (7) | C14—C9—C10—Cl3 | 180.0 (4) |
N1—C1—C3—C8 | −128.7 (5) | N2—C9—C10—Cl3 | −1.6 (6) |
C2—C1—C3—C4 | −131.3 (5) | C9—C10—C11—C12 | −0.2 (7) |
N1—C1—C3—C4 | 49.5 (6) | Cl3—C10—C11—C12 | −179.6 (4) |
C8—C3—C4—C5 | −0.9 (7) | C10—C11—C12—C13 | −0.1 (7) |
C1—C3—C4—C5 | −179.2 (4) | C10—C11—C12—Cl4 | 179.5 (4) |
C3—C4—C5—C6 | 1.0 (7) | C11—C12—C13—C14 | 0.1 (7) |
C4—C5—C6—F1 | 179.7 (4) | Cl4—C12—C13—C14 | −179.6 (4) |
C4—C5—C6—C7 | −0.9 (7) | C12—C13—C14—C9 | 0.3 (7) |
F1—C6—C7—C8 | −179.8 (4) | C10—C9—C14—C13 | −0.7 (7) |
C5—C6—C7—C8 | 0.9 (7) | N2—C9—C14—C13 | −179.0 (4) |
Cg2 is the centroid of the C9–C14 2,4-dichlorophenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N2i | 0.95 | 2.53 | 3.265 (6) | 134 |
C12—Cl4···Cg2ii | 1.74 (1) | 3.92 (1) | 3.569 (6) | 66 (1) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Contact | Distance | Symmetry operation |
Cl1···H11 | 3.06 | - 1 + x, 1 + y, z |
H4···N2 | 2.53 | - 1 + x, y, z |
Cl1···F1 | 3.016 (3) | - 1 - x, 1/2 + y, 1 - z |
H5···H7 | 2.55 | - x, - 1/2 + y, 1 - z |
Cl4···H13 | 2.95 | 2 - x, - 1/2 + y, 2 - z |
Cl4···H14 | 2.93 | 1 - x, - 1/2 + y, 2 - z |
Cl3···.F1 | 3.116 (3) | - x, - 1/2 + y, 1 - z |
Contact | Percentage contribution |
Cl···H/H···Cl | 35.1 |
H···H | 10.6 |
C···C | 9.7 |
Cl···Cl | 9.4 |
C···H/H···C | 9.2 |
Cl···F/F···Cl | 6.7 |
Cl···C/C···Cl | 5.0 |
F···H/H···F | 5.0 |
N···H/H···N | 4.4 |
N···C/C···N | 3.5 |
F···F | 0.9 |
N···N | 0.3 |
F···C/C···F | 0.1 |
Acknowledgements
The author's contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, XNB, GTS and MSA; X-ray analysis, KÖ and MA; writing (review and editing of the manuscript), funding acquisition, NQS, XNB, GTS and MSA; supervision, NQS, MA and SM.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).
References
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 965–970. CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.