research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]-2-(2,4-di­chloro­phen­yl)diazene

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bInstitute of Natural and Applied Science, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 October 2021; accepted 18 October 2021; online 26 October 2021)

In the title compound, C14H7Cl4FN2, the dihedral angle between the 4-fluoro­phenyl ring and the 2,4-di­chloro­phenyl ring is 46.03 (19)°. In the crystal, the mol­ecules are linked by C—H⋯N inter­actions along the a-axis direction, forming a C(6) chain. The mol­ecules are further connected by C—Cl⋯π inter­actions and face-to-face ππ stacking inter­actions, forming ribbons along the a-axis direction. Hirshfeld surface analysis indicates that the greatest contributions to the crystal packing are from Cl⋯H/H⋯Cl (35.1%), H⋯H (10.6%), C⋯C (9.7%), Cl⋯Cl (9.4%) and C⋯H/H⋯C (9.2%) inter­actions.

1. Chemical context

Azo dyes find numerous applications in a diversity of areas, including as anti­microbial agents, in mol­ecular recognition, optical data storage, mol­ecular switches, non-linear optics, liquid crystals, dye-sensitized solar cells, color-changing materials, etc., mainly due to the possibility of the cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). Not only azo-hydrazone tautomerisim, but also E/Z isomerization are important phenomena in the synthetic chemistry of azo dyes (Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; Mahmoudi et al., 2018a[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395-4408.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.]). The design of azo dyes with functional groups led to multifunctional ligands, the corresponding transition-metal complexes of which have been used effectively as catalysts in C—C coupling and oxidation reactions (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]). Moreover, the functional properties of azo dyes can be improved by attaching substituents with non-covalent bond donor or acceptor site(s) to the –N=N– synthon (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Thus, we have attached halogen-bond donor centres to the –N=N– moiety, leading to a new azo dye, (E)-1-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]-2-(2,4-di­chloro­phen­yl)diazene, which provides multiple inter­molecular non-covalent inter­actions.

2. Structural commentary

In the title compound, (Fig. 1[link]), the dihedral angle between the 4-fluoro­phenyl ring C3–C8 and the 2,4-di­chloro­phenyl ring C9–C14 is 46.0 (2)°. The N2/N1/C1/C2/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.029 (1) Å for Cl1, and makes dihedral angles of 50.53 (18) and 11.75 (18)° with the C3–C8 and C9–C14 rings, respectively. In the mol­ecule, the aromatic ring and olefin synthon adopt a trans-configuration with respect to the N=N double bond and are almost coplanar with a C1—N1=N2—C9 torsion angle of 179.1 (4)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by C—H⋯N inter­actions along the a-axis direction, forming a C(6) chain (Table 1[link]; Fig. 2[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Furthermore, mol­ecules are connected by C—Cl⋯Cg2 inter­actions (Table 1[link]) and face-to-face π-π stacking inter­actions [Cg1⋯Cg1i = 3.873 (3) Å, slippage = 1.831 Å; Cg2⋯Cg2i = 3.872 (3) Å, slippage = 1.554 Å; symmetry codes: (i) x − 1, y, z;; (ii) x + 1, y, z; where Cg1 and Cg2 are the centroids of the 4-fluoro­phenyl (C3–C8) and 2,4-di­chloro­phenyl ring (C9–C14) rings, respectively], forming ribbons along the a-axis direction (Figs. 2[link], 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the 2,4-di­chloro­phenyl ring (C9–C14).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.95 2.53 3.265 (5) 134
C12—Cl4⋯Cg2ii 1.735 (5) 3.920 (3) 3.569 (6) 66.51 (18)
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z.
[Figure 2]
Figure 2
A general view of the inter­molecular C—H⋯N and C—Cl⋯π inter­actions and ππ stacking inter­actions, shown as dashed lines. Symmetry codes: (a) − 1 + x, y, z; (b) 1 + x, y, z.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis with inter­molecular C—H⋯N and C—Cl⋯π inter­actions and ππ stacking inter­actions shown as dashed lines.
[Figure 4]
Figure 4
The crystal packing of the title compound viewed along the c axis with inter­molecular C—H⋯N and C—Cl⋯π inter­actions and π-π stacking inter­actions shown as dashed lines.

4. Hirshfeld surface analysis

Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1450 (red) to 1.1580 (blue) a.u (Fig. 5[link]). In the Hirshfeld surface mapped over dnorm (Fig. 5[link]), the bright-red spots near atoms Cl1, Cl3, H4, N2 and F1 indicate the short C—H⋯N, C—H⋯Cl and Cl⋯F contacts (Table 2[link]). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surface of the title compound mapped over the electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) is shown in Fig. 6[link]. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H11 3.06 −1 + x, 1 + y, z
H4⋯N2 2.53 −1 + x, y, z
Cl1⋯F1 3.016 (3) −1 − x, [{1\over 2}] + y, 1 − z
H5⋯H7 2.55 x, −[{1\over 2}] + y, 1 − z
Cl4⋯H13 2.95 2 − x, −[{1\over 2}] + y, 2 − z
Cl4⋯H14 2.93 1 − x, −[{1\over 2}] + y, 2 − z
Cl3⋯F1 3.116 (3) x, −[{1\over 2}] + y, 1 − z
[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1450 to 1.1580 a.u.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

The overall two-dimensional fingerprint plot and those delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯C, Cl⋯Cl and C⋯H/H⋯C contacts in the title mol­ecule are illustrated in Fig. 7[link]. The most important inter­action is Cl⋯H/H⋯Cl, contributing 35.1% to the overall crystal packing (Fig. 7[link]b). The secondary important H⋯H and C⋯C inter­actions contribute 10.6% (Fig. 7[link]c) and 9.7% (Fig. 7[link]d), respectively, to the Hirshfeld surface. The remaining contributions for the title compound are from Cl⋯Cl, C⋯H/H⋯C, Cl⋯F/F⋯Cl, Cl⋯C/C⋯Cl, F⋯H/H⋯F, N⋯H/H⋯N, N⋯N and F⋯C/ C⋯F contacts, which are less than 9.7% and have a negligible effect on the packing. The percentage contributions of all inter­actions are listed in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
Cl⋯H/H⋯Cl 35.1
H⋯H 10.6
C⋯C 9.7
Cl⋯Cl 9.4
C⋯H/H⋯C 9.2
Cl⋯F/F⋯Cl 6.7
Cl⋯C/C⋯Cl 5.0
F⋯H/H⋯F 5.0
N⋯H/H⋯N 4.4
N⋯C/C⋯N 3.5
F⋯F 0.9
N⋯N 0.3
F⋯C/C⋯F 0.1
[Figure 7]
Figure 7
The full two-dimensional fingerprint plot for the title compound and those delineated into (b) Cl⋯H/H⋯Cl (35.1%), (c) H⋯H (10.6%), (d) C⋯C (9.7%), (e) Cl⋯Cl (9.4%) and (f) C⋯H/H⋯C (9.2%) inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene unit resulted in 28 hits. Nine compounds are closely related to the title compound, viz. LEQXOX (I; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]), LEQXIR (II; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]), XIZREG (III; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), HODQAV (IV; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]), HONBUK (V; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HONBOE (VI; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), DULTAI (VII; Özkaraca et al., 2020b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]), GUPHIL (VIII; Özkaraca et al., 2020a[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251-1254.]) and EBUCUD (IX; Shikhaliyev et al., 2021[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 965-970.]).

In the crystals of I and II, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In I, C—H⋯N and short Cl⋯Cl contacts are observed and in II, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur. In III, the benzene rings form a dihedral angle of 63.29 (8)° and the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In IV, the benzene rings make a dihedral angle of 56.13 (13)°. Mol­ecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In V and VI, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, mol­ecules are linked through weak X⋯Cl contacts (X = Cl for V and Br for VI), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. In VII, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals inter­actions. In VIII, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In IX, the asymmetric unit comprises two similar mol­ecules, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions.

6. Synthesis and crystallization

The title dye was synthesized according to the reported method (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(2,4-di­chloro­phen­yl)-2-(4-fluoro­benzyl­idene)hydrazine (283 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (44%); m.p. 345 K. Analysis calculated for C14H7Cl4FN2 (M = 364.02): C 46.19, H 1.94, N 7.70; found: C 46.11, H 1.98, N 7.67%. 1H NMR (300 MHz, CDCl3) δ 7.31–7.83 (7H, Ar). 13C NMR (75 MHz, CDCl3) δ 114.89, 115.12, 115.41, 115.74, 115.97, 118.33, 127.73, 128.08, 128.67, 129.17, 130.48, 132.04, 132.15 and 136.83. ESI–MS: m/z: 365.11 [M + H]+.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The Moscow synchrotron radiation source was used for the data collection. H atoms were positioned geometrically and treated as riding atoms where C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). Five outliers [\overline{3}] 2 2, [\overline{3}] [\overline{2}] 2, [\overline{2}] 11 3, [\overline{2}] 2 1 and [\overline{2}] [\overline{2}] 1 were omitted during the final refinement cycle because of large differences between observed and calculated intensities.

Table 4
Experimental details

Crystal data
Chemical formula C14H7Cl4FN2
Mr 364.02
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 3.8720 (8), 10.434 (2), 18.138 (4)
β (°) 95.03 (3)
V3) 730.0 (3)
Z 2
Radiation type Synchrotron, λ = 0.79475 Å
μ (mm−1) 1.10
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.800, 0.880
No. of measured, independent and observed [I > 2σ(I)] reflections 8595, 3120, 2972
Rint 0.027
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.09
No. of reflections 3120
No. of parameters 191
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.30
Absolute structure Flack x determined using 1318 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (2)
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-[2,2-Dichloro-1-(4-fluorophenyl)ethenyl]-2-(2,4-dichlorophenyl)diazene top
Crystal data top
C14H7Cl4FN2F(000) = 364
Mr = 364.02Dx = 1.656 Mg m3
Monoclinic, P21Synchrotron radiation, λ = 0.79475 Å
a = 3.8720 (8) ÅCell parameters from 600 reflections
b = 10.434 (2) Åθ = 2.8–28.0°
c = 18.138 (4) ŵ = 1.12 mm1
β = 95.03 (3)°T = 100 K
V = 730.0 (3) Å3Prism, colourless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2972 reflections with I > 2σ(I)
/f scanRint = 0.027
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 31.0°, θmin = 2.5°
Tmin = 0.800, Tmax = 0.880h = 55
8595 measured reflectionsk = 1213
3120 independent reflectionsl = 2323
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7552P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.106Δρmax = 0.61 e Å3
S = 1.09Δρmin = 0.30 e Å3
3120 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
191 parametersExtinction coefficient: 0.044 (8)
1 restraintAbsolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.04 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3214 (3)0.89506 (12)0.70389 (6)0.0309 (3)
Cl20.0221 (4)0.81658 (13)0.84672 (7)0.0392 (3)
Cl30.2392 (3)0.19949 (12)0.70702 (6)0.0334 (3)
Cl40.8795 (3)0.10530 (13)0.97679 (6)0.0340 (3)
F10.2885 (9)0.5192 (3)0.42861 (16)0.0383 (7)
N10.1181 (11)0.5745 (4)0.7820 (2)0.0281 (9)
N20.1962 (11)0.4658 (4)0.7569 (2)0.0273 (8)
C10.0396 (12)0.6583 (5)0.7275 (3)0.0274 (9)
C20.1180 (12)0.7756 (5)0.7555 (3)0.0293 (10)
C30.1089 (12)0.6232 (5)0.6480 (2)0.0255 (9)
C40.2763 (12)0.5073 (5)0.6280 (3)0.0267 (9)
H40.3475290.4520350.6654300.032*
C50.3391 (13)0.4726 (5)0.5540 (3)0.0288 (10)
H50.4556060.3947870.5405300.035*
C60.2292 (13)0.5531 (5)0.5008 (3)0.0295 (10)
C70.0634 (12)0.6678 (5)0.5181 (3)0.0289 (10)
H70.0069340.7220930.4801140.035*
C80.0016 (12)0.7022 (5)0.5920 (3)0.0281 (9)
H80.1148180.7802870.6047270.034*
C90.3594 (11)0.3839 (5)0.8125 (2)0.0261 (9)
C100.3960 (12)0.2556 (5)0.7935 (3)0.0265 (9)
C110.5577 (13)0.1679 (5)0.8440 (3)0.0275 (9)
H110.5815660.0803650.8309760.033*
C120.6813 (13)0.2120 (5)0.9131 (3)0.0291 (10)
C130.6495 (12)0.3405 (5)0.9334 (3)0.0289 (10)
H130.7364800.3689720.9811950.035*
C140.4893 (13)0.4255 (5)0.8827 (3)0.0300 (10)
H140.4674010.5130390.8958880.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0349 (6)0.0218 (6)0.0353 (6)0.0044 (5)0.0005 (4)0.0001 (4)
Cl20.0528 (8)0.0325 (7)0.0312 (6)0.0116 (6)0.0029 (5)0.0065 (5)
Cl30.0426 (6)0.0263 (6)0.0301 (6)0.0037 (5)0.0030 (4)0.0036 (4)
Cl40.0385 (6)0.0315 (7)0.0318 (5)0.0058 (5)0.0018 (4)0.0071 (5)
F10.0507 (18)0.0339 (18)0.0296 (15)0.0000 (14)0.0002 (12)0.0029 (12)
N10.031 (2)0.022 (2)0.032 (2)0.0034 (16)0.0042 (15)0.0011 (15)
N20.028 (2)0.025 (2)0.0291 (19)0.0041 (15)0.0052 (15)0.0005 (15)
C10.027 (2)0.023 (2)0.033 (2)0.0038 (17)0.0032 (17)0.0004 (18)
C20.027 (2)0.027 (3)0.034 (2)0.0060 (18)0.0015 (18)0.0031 (19)
C30.027 (2)0.020 (2)0.029 (2)0.0037 (17)0.0026 (16)0.0005 (17)
C40.028 (2)0.019 (2)0.034 (2)0.0029 (17)0.0062 (17)0.0004 (17)
C50.029 (2)0.022 (2)0.036 (2)0.0031 (17)0.0024 (18)0.0000 (18)
C60.030 (2)0.030 (3)0.028 (2)0.0053 (18)0.0009 (17)0.0018 (17)
C70.028 (2)0.025 (3)0.033 (2)0.0024 (17)0.0034 (17)0.0035 (18)
C80.028 (2)0.023 (2)0.033 (2)0.0029 (19)0.0019 (16)0.0018 (19)
C90.024 (2)0.026 (2)0.029 (2)0.0012 (18)0.0052 (15)0.0031 (18)
C100.029 (2)0.024 (2)0.027 (2)0.0040 (18)0.0044 (17)0.0001 (17)
C110.029 (2)0.024 (3)0.030 (2)0.0045 (17)0.0046 (16)0.0013 (17)
C120.029 (2)0.027 (3)0.032 (2)0.0030 (19)0.0055 (17)0.0057 (19)
C130.031 (2)0.029 (3)0.026 (2)0.0010 (19)0.0017 (17)0.0041 (18)
C140.035 (2)0.024 (3)0.031 (2)0.0021 (18)0.0043 (18)0.0002 (18)
Geometric parameters (Å, º) top
Cl1—C21.709 (5)C5—H50.9500
Cl2—C21.718 (5)C6—C71.381 (7)
Cl3—C101.733 (5)C7—C81.388 (7)
Cl4—C121.735 (5)C7—H70.9500
F1—C61.357 (6)C8—H80.9500
N1—N21.269 (6)C9—C101.393 (7)
N1—C11.416 (6)C9—C141.398 (7)
N2—C91.426 (6)C10—C111.403 (7)
C1—C21.369 (7)C11—C121.380 (7)
C1—C31.490 (6)C11—H110.9500
C3—C81.399 (7)C12—C131.399 (7)
C3—C41.404 (7)C13—C141.384 (7)
C4—C51.390 (7)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.375 (7)
N2—N1—C1113.8 (4)C8—C7—H7120.7
N1—N2—C9112.8 (4)C7—C8—C3120.8 (5)
C2—C1—N1112.9 (4)C7—C8—H8119.6
C2—C1—C3123.4 (4)C3—C8—H8119.6
N1—C1—C3123.6 (4)C10—C9—C14119.2 (4)
C1—C2—Cl1123.8 (4)C10—C9—N2116.7 (4)
C1—C2—Cl2122.9 (4)C14—C9—N2124.1 (5)
Cl1—C2—Cl2113.3 (3)C9—C10—C11121.0 (4)
C8—C3—C4118.7 (4)C9—C10—Cl3120.9 (4)
C8—C3—C1121.2 (4)C11—C10—Cl3118.1 (4)
C4—C3—C1120.1 (4)C12—C11—C10118.4 (5)
C5—C4—C3120.8 (4)C12—C11—H11120.8
C5—C4—H4119.6C10—C11—H11120.8
C3—C4—H4119.6C11—C12—C13121.8 (5)
C6—C5—C4118.6 (5)C11—C12—Cl4119.3 (4)
C6—C5—H5120.7C13—C12—Cl4118.9 (4)
C4—C5—H5120.7C14—C13—C12118.9 (4)
F1—C6—C5118.8 (5)C14—C13—H13120.5
F1—C6—C7118.7 (5)C12—C13—H13120.5
C5—C6—C7122.5 (5)C13—C14—C9120.7 (5)
C6—C7—C8118.7 (5)C13—C14—H14119.6
C6—C7—H7120.7C9—C14—H14119.6
C1—N1—N2—C9179.1 (4)C6—C7—C8—C30.8 (7)
N2—N1—C1—C2179.2 (4)C4—C3—C8—C70.9 (7)
N2—N1—C1—C30.0 (7)C1—C3—C8—C7179.1 (4)
N1—C1—C2—Cl1178.0 (4)N1—N2—C9—C10168.4 (4)
C3—C1—C2—Cl12.8 (7)N1—N2—C9—C1413.2 (7)
N1—C1—C2—Cl21.7 (6)C14—C9—C10—C110.6 (7)
C3—C1—C2—Cl2177.6 (4)N2—C9—C10—C11179.1 (4)
C2—C1—C3—C850.4 (7)C14—C9—C10—Cl3180.0 (4)
N1—C1—C3—C8128.7 (5)N2—C9—C10—Cl31.6 (6)
C2—C1—C3—C4131.3 (5)C9—C10—C11—C120.2 (7)
N1—C1—C3—C449.5 (6)Cl3—C10—C11—C12179.6 (4)
C8—C3—C4—C50.9 (7)C10—C11—C12—C130.1 (7)
C1—C3—C4—C5179.2 (4)C10—C11—C12—Cl4179.5 (4)
C3—C4—C5—C61.0 (7)C11—C12—C13—C140.1 (7)
C4—C5—C6—F1179.7 (4)Cl4—C12—C13—C14179.6 (4)
C4—C5—C6—C70.9 (7)C12—C13—C14—C90.3 (7)
F1—C6—C7—C8179.8 (4)C10—C9—C14—C130.7 (7)
C5—C6—C7—C80.9 (7)N2—C9—C14—C13179.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 2,4-dichlorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.533.265 (6)134
C12—Cl4···Cg2ii1.74 (1)3.92 (1)3.569 (6)66 (1)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H113.06- 1 + x, 1 + y, z
H4···N22.53- 1 + x, y, z
Cl1···F13.016 (3)- 1 - x, 1/2 + y, 1 - z
H5···H72.55- x, - 1/2 + y, 1 - z
Cl4···H132.952 - x, - 1/2 + y, 2 - z
Cl4···H142.931 - x, - 1/2 + y, 2 - z
Cl3···.F13.116 (3)- x, - 1/2 + y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound. top
ContactPercentage contribution
Cl···H/H···Cl35.1
H···H10.6
C···C9.7
Cl···Cl9.4
C···H/H···C9.2
Cl···F/F···Cl6.7
Cl···C/C···Cl5.0
F···H/H···F5.0
N···H/H···N4.4
N···C/C···N3.5
F···F0.9
N···N0.3
F···C/C···F0.1
 

Acknowledgements

The author's contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, XNB, GTS and MSA; X-ray analysis, KÖ and MA; writing (review and editing of the manuscript), funding acquisition, NQS, XNB, GTS and MSA; supervision, NQS, MA and SM.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 965–970.  CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds