research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (3aSR,6RS,6aSR,7RS,11bSR,11cRS)-2,2-di­benzyl-2,3,6a,11c-tetra­hydro-1H,6H,7H-3a,6:7,11b-di­ep­oxy­dibenzo[de,h]isoquinolin-2-ium tri­fluoro­methane­sulfonate

crossmark logo

aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 August 2021; accepted 1 October 2021; online 8 October 2021)

In the cation of the title salt, C30H28NO2+·CF3O3S, the four tetra­hydro­furan rings adopt envelope conformations. In the crystal, pairs of cations are linked by dimeric C—H⋯O hydrogen bonds, forming two R22(6) ring motifs parallel to the (001) plane. The cations and anions are connected by further C—H⋯O hydrogen bonds, forming a three-dimensional network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (47.6%), C⋯H/H⋯C (20.6%), O⋯H/H⋯O (18.0%) and F⋯H/H⋯F (9.9%) inter­actions.

1. Chemical context

Intra­molecular Diels–Alder reactions (Krishna et al., 2021[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53. https://doi.org/10.1055/s-0040-1705983]) are powerful tools in the arsenal of modern organic chemistry. In particular, the IMDAF cyclo­addition (the intra­molecular furan Diels–Alder reaction) based on renewable starting materials (e.g. furfural, furfuryl alcohol, etc.), is frequently used in natural product synthesis and in many other practically useful applications (for reviews on the topic, see: Zubkov et al., 2005[Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.]; Takao et al., 2005[Takao, K., Munakata, R. & Tadano, K. (2005). Chem. Rev. 105, 4779-4807.]; Juhl et al., 2009[Juhl, M. & Tanner, D. (2009). Chem. Soc. Rev. 38, 2983-2992.]; Padwa et al., 2013[Padwa, A. & Flick, A. C. (2013). Adv. Heterocycl. Chem. 110, 1-41.]; Parvatkar et al., 2014[Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857-2888.]). Cascade sequences including two or more successive [4 + 2] cyclo­addition steps to furan moieties are less known because of difficulties in accessing the starting materials. However, these tandem strategies open up an easy way for the construction of polyfunctional naphthalene derivatives, which can be obtained in one synthetic step. At the same time, it becomes possible to create four or more chiral centres in one synthetic stage with exceptional chemo-, regio- and diastereoselectivity (Criado et al., 2010[Criado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736-9740.], 2013[Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637-12649.]; Zubkov et al., 2012[Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012). RSC Adv. 2, 4103-4109.], 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.]). Previously, it was shown that the [4 + 2] cyclo­addition of bis-furyldienes with derivatives of maleic acid, esters of acetyl­ene di­carb­oxy­lic acid or hexa­fluoro-2-butyne proceeds in all cases with excellent diastereo- and chemoselectivity, and leads, depending on the temperature, to annelated di­epoxy­naphthalenes of the `domino' or `pincer' type (Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.],b[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850-2853.]).

In order to expand the limits of the applicability of the IMDAF strategy, during the current study we tested de­hydro­benzene generated in situ in the role of a dienophile. It was found that N-benzyl­difurfuryl­amine under the action of de­hydro­benzene forms a multicomponent mixture, from which three major components (13) were isolated using column chromatography (Fig. 1[link]). Compound 1, the most inter­esting from a chemical point of view, was chosen for structural analysis using diffraction data.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis scheme of the title compound 1 and its by-products.

In general, non-covalent inter­actions such as hydrogen bonding, ionic and π-inter­actions play critical roles in synthesis and catalysis, as well as in the organization of the supra­molecular structures as a result of their significant contribution to the self-assembly process (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.], 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305-2313.]). Thus, the inter­play of non-covalent inter­actions has an impact on solubility (Shixaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]) and other functional properties of 1.

2. Structural commentary

In the cation (C30H28NO2+) of the title salt 1 (Fig. 2[link]), the tetra­hydro­furan rings (O12/C7/C6A/C11C/C11B, O12/C7/C7A/C11A/C11B, O13/C3A/C4/C5/C6 and O13/C3A/C11C/C6A/C6) adopt envelope conformations with the following puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]): Q(2) = 0.5504 (8) Å, φ(2) = 181.08 (9)°, Q(2) = 0.5474 (9) Å, φ(2) = 0.24 (10)°, Q(2) = 0.5260 (9) Å, φ(2) = 1.91 (11)° and Q(2) = 0.5610 (9) Å, φ(2) = 175.78 (9)°, respectively. The mol­ecular conformation of the cation is stabilized by weak intra­molecular C21—H21B⋯O12 and C21—H21B⋯O13 contacts (Table 1[link]). The piperidine ring (N2/C1/C11B/C11C/C3A/C3) in the cation exhibits a chair conformation [puckering parameters are QT = 0.4871 (9) Å, θ = 175.22 (11)° and φ = 281.2 (12)°]. The benzene ring (C7A/C8–C11/C11A) fused with the central tetra­hydro­furan ring makes dihedral angles of 53.43 (5) and 58.64 (5)°, respectively, with the C22–C27 and C32–C37 phenyl rings of the benzyl groups attached to the N atom. These phenyl rings make a dihedral angle of 73.81 (5)° with each other.

Table 1
Hydrogen-bond geometry (Å, °)

Cg10 is the centroid of the C32–C37 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.99 2.49 3.4043 (13) 154
C6—H6A⋯O12ii 1.00 2.52 3.3040 (11) 135
C6A—H6AA⋯O3ii 1.00 2.50 3.4407 (12) 157
C7—H7A⋯O13ii 1.00 2.41 3.2563 (11) 142
C21—H21B⋯O12 0.99 2.33 2.9151 (11) 117
C21—H21B⋯O13 0.99 2.35 3.0974 (11) 132
C31—H31A⋯O2i 0.99 2.33 3.2751 (13) 159
C9—H9ACg10iii 0.95 2.71 3.2958 (11) 121
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The asymmetric unit of the title salt 1 with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of cations are linked by dimeric C6—H6A⋯O12ii and C7—H7A⋯O13ii hydrogen bonds [symmetry code: (ii) −x + 1, −y + 1, −z + 1], forming two [R_{2}^{2}](6) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) parallel to the (001) plane (Table 1[link]; Fig. 3[link]). Furthermore, the cations and anions are connected by inter­molecular C1—H1A⋯O1i, C6—H6A⋯O12ii, C6A—H6AA⋯O3ii, C7—H7A⋯O13ii, C31—H31A⋯O2i and C9—H9ACg10iii hydrogen bonds, forming a three-dimensional network (Table 1[link]; Figs. 4[link], 5[link] and 6[link]).

[Figure 3]
Figure 3
A general view of the inter­molecular C—H⋯O hydrogen bonds (depicted by dashed lines) in the unit cell of the title salt 1. [Symmetry codes: (a) 1 − x, 1 − y, 1 − z; (b) 2 − x, 1 − y, 1 − z].
[Figure 4]
Figure 4
Packing of the title salt 1 viewed along the a axis direction with C—H⋯O hydrogen bonds shown as dashed lines.
[Figure 5]
Figure 5
Packing of the title salt 1 viewed along the b-axis direction with C—H⋯O hydrogen bonds shown as dashed lines.
[Figure 6]
Figure 6
Packing of the title salt 1 viewed along the c-axis direction with C—H⋯O hydrogen bonds shown as dashed lines.

The inter­molecular inter­actions (Table 2[link]) were qu­anti­fied and displayed using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Fig. 7[link] shows the Hirshfeld surface plotted over dnorm in the range −0.2715 to 1.3713 a.u. where C—H⋯O inter­actions are shown as red dots. The overall two-dimensional fingerprint plot, as well as those delineated into the main contacts, are shown in Fig. 8[link]. The H⋯H (Fig. 8[link]b) inter­actions constitute the primary factor in the crystal packing, with C⋯H/H⋯C (Fig. 8[link]c), O⋯H/H⋯O (Fig. 8[link]d) and F⋯H/H⋯F (Fig. 8[link]e) inter­actions constituting the next stronger contributions. Numerical values of these inter­actions together with other percentage contributions of weaker inter­actions are compiled in Table 3[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title salt 1

Contact Distance Symmetry operation
H7A⋯O13 2.41 1 − x, 1 − y, 1 − z
H4A⋯H11A 2.34 [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z
H31A⋯O2 2.33 2 − x, 1 − y, 1 − z
H37A⋯O3 2.65 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
H6AA⋯O3 2.50 1 − x, 1 − y, 1 − z
H9A⋯C8 3.01 1 − x, 1 − y, 2 − z
H1B⋯H24A 2.60 [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z
H10A⋯H26A 2.31 x, y, 1 + z
C24⋯F1 3.202 x, y, z
C25⋯H36A 3.50 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
H5A⋯H23A 2.53 −1 + x, y, z
H10A⋯O2 2.91 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title salt 1

Contact Percentage contribution
H⋯H 47.6
C⋯H/H⋯C 20.6
O⋯H/H⋯O 18.0
F⋯H/H⋯F 9.9
F⋯C/C⋯F 2.2
C⋯C 1.0
O⋯C/C⋯O 0.4
F⋯O/O⋯F 0.1
[Figure 7]
Figure 7
Hirshfeld surface of the title mol­ecule 1 mapped over dnorm.
[Figure 8]
Figure 8
Fingerprint plots showing (a) all inter­molecular inter­actions and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) F⋯H/H⋯F contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having an ep­oxy­iso­indole moiety gave ten hits that closely resemble the title salt, viz. IQOTOA (Mertsalov et al., 2021a[Mertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466-472.]), OMUTAU (Mertsalov et al., 2021b[Mertsalov, D. F., Nadirova, M. A., Sorokina, E. A., Vinokurova, M. A., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A. & Bhattarai, A. (2021b). Acta Cryst. E77, 260-265.]), OMEMAX (Mertsalov et al., 2021c[Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021c). Acta Cryst. E77, 255-259.]), IMUBIE (Mertsalov et al., 2021a[Mertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466-472.]), AGONUH (Temel et al., 2013[Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551-o1552.]), TIJMIK (Demircan et al., 2013[Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628-o1629.]), YAXCIL (Temel et al., 2012[Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102-o1103.]), UPAQEI (Koşar et al., 2011[Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994-o995.]), ERIVIL (Temel et al., 2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.]) and MIGTIG (Koşar et al., 2007[Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.]).

IQOTOA, OMUTAU and OMEMAX each crystallize with two mol­ecules in the asymmetric unit. In the crystal, mol­ecule pairs generate centrosymmetric rings with [R_{2}^{2}](8) motifs linked by C—H⋯O hydrogen bonds. These pairs of mol­ecules form a tetra­meric supra­molecular motif, leading to mol­ecular layers parallel to the (100) plane by C—H⋯π and C—Br⋯π inter­actions. Inter­layer van der Waals and inter­halogen inter­actions stabilize the mol­ecular packing. In the crystal of OMUTAU, strong inter­molecular O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O contacts link the mol­ecules, forming a three-dimensional network. In addition, weak ππ stacking inter­actions between the pyrrolidine rings of the nine-membered groups of mol­ecules are observed. In the crystal of OMEMAX, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals inter­actions. In the crystal of IMUBIE, the mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating [R_{2}^{2}](18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π inter­actions. In the crystal structures of IQOTOA, OMUTAU, OMEMAX, AGONUH, TIJMIK, YAXCIL, UPAQEI and ERIVIL, the mol­ecules are predominantly linked by C—H⋯O hydrogen bonds describing different hydrogen-bonding pattern connectivities. In the crystal of AGONUH, the mol­ecules are connected into zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bond motifs are found, viz. R22(20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Additionally, C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules along the b-axis direction. In the crystal of ERIVIL, mol­ecules are connected into [R_{2}^{2}](8) and [R_{2}^{2}](14) rings along the b axis. In MIGTIG, the mol­ecules are linked only by weak van der Waals inter­actions.

5. Synthesis and crystallization

(3aSR,6RS,6aSR,7RS,11bSR,11cRS)-2,2-Dibenzyl-2,3,6a,11c-tetra­hydro-1H,6H,7H-3a,6:7,11b-di­epoxy­dibenzo[de,h]isoquinolin-2-ium tri­fluoro­methane­sulfonate (1)

Cesium fluoride (CsF) (1.7 g, 0.011 mol) was added to benzyl­bis­(furan-2-ylmeth­yl)amine (0.0022 mol) dissolved in dry CH3CN (20 ml). Then an equivalent of 2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate (0.54 ml, 0.022 mol) was added to the solution under an argon atmosphere. The mixture was refluxed for 4 h (TLC control, Sorbfil plates for thin-layer chromatography, EtOAc:hexane, 1:3). After one more portion of 2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate (0.27 mL, 0.011 mol) and CsF (1.7 g, 0.011 mol) had been added to the mixture, all procedures were repeated. After the mixture was cooled to room temperature, the CsF was filtered off through a thin layer of SiO2, and the resulting solution was concentrated under reduced pressure. The residue (yellow oil) turned out to be a multicomponent mixture. It was separated using column chromatography on silica gel. The least mobile fraction represented the target product, 1. In addition, two by-products 2 (12%) and 3 (17%) were isolated. Single crystals of 1 were obtained by slow crystallization from ethyl acetate.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were placed at calculated positions using a riding model, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C). Five reflections (011, 101, 020, [\overline{1}]01 and 110), which were obscured by the beam stop as well as eight outliers (021, 111, [\overline{1}] 1 12, 218, 610, 143, [\overline{5}]72 and 581) were omitted during the final cycle of refinement.

Table 4
Experimental details

Crystal data
Chemical formula C30H28NO2+·CF3O3S
Mr 583.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.1507 (9), 18.4653 (15), 12.8519 (10)
β (°) 91.786 (4)
V3) 2644.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.40 × 0.32 × 0.16
 
Data collection
Diffractometer Bruker KAPPA APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.924, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 101039, 11684, 9164
Rint 0.038
(sin θ/λ)max−1) 0.809
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.04
No. of reflections 11684
No. of parameters 370
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(3aSR,6RS,6aSR,7RS,11bSR,11cRS)-2,2-Dibenzyl-2,3,6a,11c-tetrahydro-1H,6H,7H-3a,6:7,11b-diepoxydibenzo[de,h]isoquinolin-2-ium trifluoromethanesulfonate top
Crystal data top
C30H28NO2+·CF3O3SF(000) = 1216
Mr = 583.60Dx = 1.466 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1507 (9) ÅCell parameters from 9807 reflections
b = 18.4653 (15) Åθ = 2.7–34.6°
c = 12.8519 (10) ŵ = 0.19 mm1
β = 91.786 (4)°T = 100 K
V = 2644.9 (4) Å3Fragment, colourless
Z = 40.40 × 0.32 × 0.16 mm
Data collection top
Bruker KAPPA APEXII area-detector
diffractometer
9164 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; (Bruker, 2013)
θmax = 35.1°, θmin = 3.3°
Tmin = 0.924, Tmax = 0.971h = 1818
101039 measured reflectionsk = 2929
11684 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.8665P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
11684 reflectionsΔρmax = 0.56 e Å3
370 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67175 (8)0.69811 (5)0.60647 (6)0.01270 (14)
H1A0.7478740.6772200.6345170.015*
H1B0.6608150.7457730.6401390.015*
C30.56390 (8)0.73115 (5)0.43738 (7)0.01317 (14)
H3A0.5474000.7824510.4541670.016*
H3B0.5724800.7277110.3611020.016*
C3A0.45754 (7)0.68617 (5)0.46733 (7)0.01244 (13)
C40.33252 (8)0.71172 (5)0.43326 (7)0.01597 (15)
H4A0.3087490.7592450.4132030.019*
C50.26370 (8)0.65278 (5)0.43772 (8)0.01802 (16)
H5A0.1797720.6499300.4231990.022*
C60.34705 (8)0.59090 (5)0.47087 (7)0.01522 (15)
H6A0.3186890.5413830.4504250.018*
C6A0.37463 (8)0.60180 (5)0.58913 (7)0.01364 (14)
H6AA0.3003070.6069960.6300590.016*
C70.46800 (8)0.54992 (5)0.64181 (7)0.01394 (14)
H7A0.4511570.4971420.6318130.017*
C7A0.48436 (8)0.57402 (5)0.75456 (7)0.01427 (14)
C80.44763 (9)0.54734 (5)0.84856 (7)0.01733 (16)
H8A0.4023740.5038630.8520770.021*
C90.47929 (9)0.58649 (5)0.93883 (7)0.01878 (17)
H9A0.4579040.5681031.0047510.023*
C100.54120 (9)0.65153 (5)0.93385 (7)0.01802 (16)
H10A0.5592340.6777540.9959790.022*
C110.57744 (8)0.67895 (5)0.83794 (7)0.01554 (15)
H11A0.6190800.7236840.8336890.019*
C11A0.55031 (8)0.63849 (5)0.75004 (7)0.01308 (14)
C11B0.57023 (7)0.64936 (4)0.63521 (6)0.01173 (13)
C11C0.44891 (7)0.67267 (4)0.58601 (6)0.01203 (13)
H11B0.4109970.7137400.6236140.014*
C210.73244 (8)0.63896 (5)0.44464 (7)0.01377 (14)
H21A0.7967790.6209640.4927740.017*
H21B0.6675610.6023370.4432800.017*
C220.78218 (8)0.64321 (5)0.33735 (7)0.01362 (14)
C230.90600 (8)0.64983 (5)0.32688 (7)0.01655 (15)
H23A0.9562020.6576520.3869140.020*
C240.95663 (10)0.64511 (5)0.22957 (8)0.02055 (18)
H24A1.0409920.6494800.2233310.025*
C250.88364 (11)0.63400 (5)0.14165 (8)0.02207 (19)
H25A0.9179690.6308470.0750740.026*
C260.76053 (11)0.62749 (6)0.15095 (8)0.02329 (19)
H26A0.7106600.6200840.0906110.028*
C270.70971 (9)0.63177 (6)0.24837 (8)0.01922 (17)
H27A0.6253840.6268850.2542810.023*
C310.77333 (8)0.77043 (5)0.47355 (7)0.01412 (14)
H31A0.8540070.7527090.4955000.017*
H31B0.7749540.7810840.3981120.017*
C320.74928 (8)0.83997 (5)0.53068 (7)0.01367 (14)
C330.80181 (9)0.85231 (5)0.62951 (7)0.01728 (16)
H33A0.8455120.8146760.6639140.021*
C340.79037 (10)0.91940 (6)0.67762 (8)0.02248 (19)
H34A0.8266580.9274430.7444860.027*
C350.72616 (11)0.97452 (6)0.62822 (9)0.0249 (2)
H35A0.7188291.0203680.6609520.030*
C360.67257 (10)0.96247 (5)0.53069 (9)0.02229 (19)
H36A0.6273120.9999150.4973910.027*
C370.68486 (9)0.89567 (5)0.48138 (7)0.01687 (16)
H37A0.6493100.8880960.4141190.020*
N20.68218 (6)0.70948 (4)0.49050 (6)0.01197 (12)
O120.58114 (6)0.57491 (3)0.60106 (5)0.01313 (11)
O130.45803 (6)0.61386 (3)0.42482 (5)0.01393 (11)
C120.98295 (10)0.44106 (6)0.32533 (9)0.0245 (2)
O11.07300 (8)0.32602 (6)0.24533 (7)0.0354 (2)
O21.00070 (9)0.31955 (5)0.42121 (6)0.03010 (18)
O30.85862 (7)0.32820 (4)0.27351 (6)0.02074 (14)
F10.96005 (9)0.47174 (5)0.23305 (7)0.0473 (2)
F20.90315 (7)0.46548 (4)0.39205 (8)0.0396 (2)
F31.09111 (7)0.46368 (5)0.35900 (7)0.03702 (18)
S10.97774 (2)0.34243 (2)0.31472 (2)0.01773 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0115 (3)0.0134 (3)0.0132 (3)0.0015 (3)0.0003 (3)0.0007 (3)
C30.0111 (3)0.0128 (3)0.0155 (3)0.0004 (3)0.0014 (3)0.0016 (3)
C3A0.0103 (3)0.0116 (3)0.0153 (3)0.0002 (3)0.0011 (3)0.0009 (3)
C40.0117 (3)0.0177 (4)0.0183 (4)0.0022 (3)0.0029 (3)0.0004 (3)
C50.0113 (3)0.0219 (4)0.0207 (4)0.0005 (3)0.0027 (3)0.0017 (3)
C60.0113 (3)0.0155 (4)0.0188 (4)0.0029 (3)0.0003 (3)0.0024 (3)
C6A0.0110 (3)0.0125 (3)0.0175 (3)0.0014 (3)0.0014 (3)0.0012 (3)
C70.0128 (3)0.0113 (3)0.0179 (4)0.0013 (3)0.0031 (3)0.0003 (3)
C7A0.0130 (3)0.0129 (3)0.0170 (3)0.0009 (3)0.0019 (3)0.0011 (3)
C80.0176 (4)0.0152 (4)0.0194 (4)0.0019 (3)0.0045 (3)0.0039 (3)
C90.0194 (4)0.0204 (4)0.0168 (4)0.0063 (3)0.0041 (3)0.0038 (3)
C100.0183 (4)0.0201 (4)0.0156 (4)0.0057 (3)0.0005 (3)0.0002 (3)
C110.0143 (4)0.0157 (4)0.0164 (3)0.0014 (3)0.0020 (3)0.0000 (3)
C11A0.0119 (3)0.0128 (3)0.0145 (3)0.0009 (3)0.0004 (3)0.0010 (3)
C11B0.0106 (3)0.0100 (3)0.0146 (3)0.0001 (2)0.0004 (3)0.0001 (2)
C11C0.0101 (3)0.0115 (3)0.0145 (3)0.0005 (2)0.0001 (3)0.0010 (2)
C210.0133 (3)0.0116 (3)0.0164 (3)0.0013 (3)0.0016 (3)0.0003 (3)
C220.0131 (3)0.0122 (3)0.0156 (3)0.0001 (3)0.0006 (3)0.0008 (3)
C230.0140 (4)0.0171 (4)0.0187 (4)0.0012 (3)0.0024 (3)0.0025 (3)
C240.0208 (4)0.0178 (4)0.0236 (4)0.0025 (3)0.0082 (3)0.0025 (3)
C250.0333 (5)0.0157 (4)0.0177 (4)0.0007 (4)0.0074 (4)0.0001 (3)
C260.0309 (5)0.0227 (4)0.0160 (4)0.0038 (4)0.0032 (4)0.0018 (3)
C270.0177 (4)0.0209 (4)0.0188 (4)0.0013 (3)0.0029 (3)0.0030 (3)
C310.0127 (3)0.0125 (3)0.0172 (3)0.0023 (3)0.0015 (3)0.0003 (3)
C320.0138 (3)0.0122 (3)0.0151 (3)0.0025 (3)0.0012 (3)0.0001 (3)
C330.0188 (4)0.0173 (4)0.0157 (3)0.0055 (3)0.0004 (3)0.0015 (3)
C340.0297 (5)0.0222 (4)0.0158 (4)0.0099 (4)0.0042 (3)0.0037 (3)
C350.0310 (5)0.0168 (4)0.0273 (5)0.0052 (4)0.0096 (4)0.0062 (3)
C360.0229 (5)0.0139 (4)0.0303 (5)0.0011 (3)0.0043 (4)0.0003 (3)
C370.0173 (4)0.0136 (4)0.0196 (4)0.0010 (3)0.0005 (3)0.0015 (3)
N20.0105 (3)0.0110 (3)0.0144 (3)0.0006 (2)0.0001 (2)0.0003 (2)
O120.0115 (3)0.0100 (2)0.0181 (3)0.0002 (2)0.0031 (2)0.0004 (2)
O130.0125 (3)0.0128 (3)0.0165 (3)0.0017 (2)0.0011 (2)0.0028 (2)
C120.0229 (5)0.0225 (5)0.0279 (5)0.0046 (4)0.0027 (4)0.0011 (4)
O10.0193 (4)0.0552 (6)0.0318 (4)0.0077 (4)0.0022 (3)0.0185 (4)
O20.0398 (5)0.0281 (4)0.0217 (3)0.0043 (3)0.0110 (3)0.0035 (3)
O30.0173 (3)0.0217 (3)0.0230 (3)0.0002 (3)0.0032 (3)0.0028 (3)
F10.0658 (6)0.0315 (4)0.0432 (5)0.0135 (4)0.0198 (4)0.0176 (3)
F20.0332 (4)0.0242 (4)0.0618 (5)0.0008 (3)0.0086 (4)0.0171 (3)
F30.0293 (4)0.0414 (4)0.0401 (4)0.0172 (3)0.0037 (3)0.0041 (3)
S10.01597 (10)0.02037 (11)0.01662 (10)0.00469 (8)0.00298 (7)0.00322 (7)
Geometric parameters (Å, º) top
C1—C11B1.5014 (12)C21—C221.5043 (12)
C1—N21.5132 (11)C21—N21.5421 (11)
C1—H1A0.9900C21—H21A0.9900
C1—H1B0.9900C21—H21B0.9900
C3—C3A1.5077 (12)C22—C271.3956 (13)
C3—N21.5198 (11)C22—C231.3967 (13)
C3—H3A0.9900C23—C241.3909 (13)
C3—H3B0.9900C23—H23A0.9500
C3A—O131.4427 (10)C24—C251.3870 (15)
C3A—C41.5231 (12)C24—H24A0.9500
C3A—C11C1.5514 (12)C25—C261.3869 (17)
C4—C51.3339 (13)C25—H25A0.9500
C4—H4A0.9500C26—C271.3925 (15)
C5—C61.5253 (14)C26—H26A0.9500
C5—H5A0.9500C27—H27A0.9500
C6—O131.4515 (11)C31—C321.5074 (12)
C6—C6A1.5543 (13)C31—N21.5365 (11)
C6—H6A1.0000C31—H31A0.9900
C6A—C11C1.5500 (12)C31—H31B0.9900
C6A—C71.5544 (13)C32—C371.3952 (13)
C6A—H6AA1.0000C32—C331.4007 (13)
C7—O121.4560 (11)C33—C341.3921 (14)
C7—C7A1.5214 (13)C33—H33A0.9500
C7—H7A1.0000C34—C351.3869 (17)
C7A—C81.3787 (13)C34—H34A0.9500
C7A—C11A1.4014 (12)C35—C361.3897 (16)
C8—C91.4029 (14)C35—H35A0.9500
C8—H8A0.9500C36—C371.3955 (14)
C9—C101.3876 (15)C36—H36A0.9500
C9—H9A0.9500C37—H37A0.9500
C10—C111.4037 (13)C12—F11.3318 (14)
C10—H10A0.9500C12—F21.3333 (14)
C11—C11A1.3800 (12)C12—F31.3357 (13)
C11—H11A0.9500C12—S11.8271 (12)
C11A—C11B1.5125 (12)O1—S11.4404 (9)
C11B—O121.4494 (10)O2—S11.4476 (8)
C11B—C11C1.5369 (12)O3—S11.4387 (8)
C11C—H11B1.0000
C11B—C1—N2114.03 (7)C6A—C11C—H11B113.2
C11B—C1—H1A108.7C3A—C11C—H11B113.2
N2—C1—H1A108.7C22—C21—N2117.07 (7)
C11B—C1—H1B108.7C22—C21—H21A108.0
N2—C1—H1B108.7N2—C21—H21A108.0
H1A—C1—H1B107.6C22—C21—H21B108.0
C3A—C3—N2114.76 (7)N2—C21—H21B108.0
C3A—C3—H3A108.6H21A—C21—H21B107.3
N2—C3—H3A108.6C27—C22—C23118.90 (9)
C3A—C3—H3B108.6C27—C22—C21121.51 (8)
N2—C3—H3B108.6C23—C22—C21119.12 (8)
H3A—C3—H3B107.6C24—C23—C22120.75 (9)
O13—C3A—C3113.64 (7)C24—C23—H23A119.6
O13—C3A—C4101.07 (7)C22—C23—H23A119.6
C3—C3A—C4118.43 (7)C25—C24—C23119.83 (10)
O13—C3A—C11C102.99 (6)C25—C24—H24A120.1
C3—C3A—C11C114.39 (7)C23—C24—H24A120.1
C4—C3A—C11C104.37 (7)C26—C25—C24119.99 (9)
C5—C4—C3A104.92 (8)C26—C25—H25A120.0
C5—C4—H4A127.5C24—C25—H25A120.0
C3A—C4—H4A127.5C25—C26—C27120.28 (9)
C4—C5—C6106.07 (8)C25—C26—H26A119.9
C4—C5—H5A127.0C27—C26—H26A119.9
C6—C5—H5A127.0C26—C27—C22120.25 (9)
O13—C6—C5100.79 (7)C26—C27—H27A119.9
O13—C6—C6A102.46 (7)C22—C27—H27A119.9
C5—C6—C6A106.05 (7)C32—C31—N2115.24 (7)
O13—C6—H6A115.3C32—C31—H31A108.5
C5—C6—H6A115.3N2—C31—H31A108.5
C6A—C6—H6A115.3C32—C31—H31B108.5
C11C—C6A—C6100.00 (7)N2—C31—H31B108.5
C11C—C6A—C7100.40 (7)H31A—C31—H31B107.5
C6—C6A—C7117.10 (7)C37—C32—C33119.13 (8)
C11C—C6A—H6AA112.6C37—C32—C31120.24 (8)
C6—C6A—H6AA112.6C33—C32—C31120.30 (8)
C7—C6A—H6AA112.6C34—C33—C32120.40 (9)
O12—C7—C7A99.81 (7)C34—C33—H33A119.8
O12—C7—C6A102.95 (7)C32—C33—H33A119.8
C7A—C7—C6A107.06 (7)C35—C34—C33120.19 (9)
O12—C7—H7A115.1C35—C34—H34A119.9
C7A—C7—H7A115.1C33—C34—H34A119.9
C6A—C7—H7A115.1C34—C35—C36119.79 (9)
C8—C7A—C11A120.71 (8)C34—C35—H35A120.1
C8—C7A—C7134.42 (8)C36—C35—H35A120.1
C11A—C7A—C7104.86 (7)C35—C36—C37120.37 (10)
C7A—C8—C9117.80 (9)C35—C36—H36A119.8
C7A—C8—H8A121.1C37—C36—H36A119.8
C9—C8—H8A121.1C32—C37—C36120.11 (9)
C10—C9—C8121.38 (9)C32—C37—H37A119.9
C10—C9—H9A119.3C36—C37—H37A119.9
C8—C9—H9A119.3C1—N2—C3112.75 (7)
C9—C10—C11120.66 (9)C1—N2—C31108.23 (6)
C9—C10—H10A119.7C3—N2—C31108.19 (6)
C11—C10—H10A119.7C1—N2—C21107.41 (6)
C11A—C11—C10117.51 (9)C3—N2—C21111.80 (6)
C11A—C11—H11A121.2C31—N2—C21108.33 (7)
C10—C11—H11A121.2C11B—O12—C796.31 (6)
C11—C11A—C7A121.86 (8)C3A—O13—C695.89 (6)
C11—C11A—C11B133.76 (8)F1—C12—F2108.40 (11)
C7A—C11A—C11B104.27 (7)F1—C12—F3107.55 (10)
O12—C11B—C1115.03 (7)F2—C12—F3107.45 (9)
O12—C11B—C11A100.71 (6)F1—C12—S1110.65 (8)
C1—C11B—C11A117.03 (7)F2—C12—S1111.39 (8)
O12—C11B—C11C102.84 (6)F3—C12—S1111.23 (8)
C1—C11B—C11C113.06 (7)O3—S1—O1115.08 (5)
C11A—C11B—C11C106.53 (7)O3—S1—O2115.39 (5)
C11B—C11C—C6A102.54 (7)O1—S1—O2114.31 (6)
C11B—C11C—C3A111.64 (7)O3—S1—C12103.67 (5)
C6A—C11C—C3A102.16 (6)O1—S1—C12103.51 (6)
C11B—C11C—H11B113.2O2—S1—C12102.48 (5)
N2—C3—C3A—O1372.16 (9)O13—C3A—C11C—C6A31.68 (8)
N2—C3—C3A—C4169.47 (7)C3—C3A—C11C—C6A155.48 (7)
N2—C3—C3A—C11C45.73 (10)C4—C3A—C11C—C6A73.54 (8)
O13—C3A—C4—C534.74 (9)N2—C21—C22—C2789.63 (10)
C3—C3A—C4—C5159.53 (8)N2—C21—C22—C2398.39 (10)
C11C—C3A—C4—C571.91 (9)C27—C22—C23—C240.03 (14)
C3A—C4—C5—C61.85 (10)C21—C22—C23—C24172.16 (9)
C4—C5—C6—O1331.30 (9)C22—C23—C24—C250.27 (15)
C4—C5—C6—C6A75.15 (9)C23—C24—C25—C260.12 (15)
O13—C6—C6A—C11C38.02 (8)C24—C25—C26—C270.26 (16)
C5—C6—C6A—C11C67.23 (8)C25—C26—C27—C220.50 (16)
O13—C6—C6A—C769.21 (9)C23—C22—C27—C260.35 (14)
C5—C6—C6A—C7174.45 (7)C21—C22—C27—C26172.35 (9)
C11C—C6A—C7—O1234.81 (8)N2—C31—C32—C3794.11 (10)
C6—C6A—C7—O1272.18 (9)N2—C31—C32—C3392.59 (10)
C11C—C6A—C7—C7A69.87 (8)C37—C32—C33—C340.33 (14)
C6—C6A—C7—C7A176.86 (7)C31—C32—C33—C34173.05 (9)
O12—C7—C7A—C8147.50 (10)C32—C33—C34—C350.37 (15)
C6A—C7—C7A—C8105.58 (11)C33—C34—C35—C360.38 (16)
O12—C7—C7A—C11A34.01 (8)C34—C35—C36—C371.18 (16)
C6A—C7—C7A—C11A72.91 (8)C33—C32—C37—C360.47 (14)
C11A—C7A—C8—C90.49 (13)C31—C32—C37—C36173.84 (9)
C7—C7A—C8—C9178.79 (9)C35—C36—C37—C321.22 (15)
C7A—C8—C9—C102.63 (14)C11B—C1—N2—C350.16 (9)
C8—C9—C10—C112.06 (14)C11B—C1—N2—C31169.79 (7)
C9—C10—C11—C11A0.70 (13)C11B—C1—N2—C2173.44 (8)
C10—C11—C11A—C7A2.86 (13)C3A—C3—N2—C146.62 (9)
C10—C11—C11A—C11B178.34 (9)C3A—C3—N2—C31166.28 (7)
C8—C7A—C11A—C112.30 (14)C3A—C3—N2—C2174.51 (9)
C7—C7A—C11A—C11176.44 (8)C32—C31—N2—C153.16 (9)
C8—C7A—C11A—C11B178.94 (8)C32—C31—N2—C369.30 (9)
C7—C7A—C11A—C11B0.19 (9)C32—C31—N2—C21169.32 (7)
N2—C1—C11B—O1265.09 (9)C22—C21—N2—C1163.77 (7)
N2—C1—C11B—C11A176.98 (7)C22—C21—N2—C372.05 (9)
N2—C1—C11B—C11C52.64 (9)C22—C21—N2—C3147.07 (9)
C11—C11A—C11B—O12149.99 (10)C1—C11B—O12—C7178.83 (7)
C7A—C11A—C11B—O1233.96 (8)C11A—C11B—O12—C754.39 (7)
C11—C11A—C11B—C124.55 (14)C11C—C11B—O12—C755.49 (7)
C7A—C11A—C11B—C1159.40 (7)C7A—C7—O12—C11B53.98 (7)
C11—C11A—C11B—C11C103.03 (11)C6A—C7—O12—C11B56.21 (7)
C7A—C11A—C11B—C11C73.01 (8)C3—C3A—O13—C6179.68 (7)
O12—C11B—C11C—C6A33.75 (8)C4—C3A—O13—C652.35 (7)
C1—C11B—C11C—C6A158.40 (7)C11C—C3A—O13—C655.39 (7)
C11A—C11B—C11C—C6A71.70 (8)C5—C6—O13—C3A50.91 (7)
O12—C11B—C11C—C3A74.93 (8)C6A—C6—O13—C3A58.38 (7)
C1—C11B—C11C—C3A49.72 (9)F1—C12—S1—O357.94 (9)
C11A—C11B—C11C—C3A179.62 (7)F2—C12—S1—O362.72 (9)
C6—C6A—C11C—C11B119.49 (7)F3—C12—S1—O3177.43 (8)
C7—C6A—C11C—C11B0.69 (8)F1—C12—S1—O162.53 (10)
C6—C6A—C11C—C3A3.75 (8)F2—C12—S1—O1176.81 (8)
C7—C6A—C11C—C3A116.43 (7)F3—C12—S1—O156.96 (9)
O13—C3A—C11C—C11B77.25 (8)F1—C12—S1—O2178.33 (9)
C3—C3A—C11C—C11B46.55 (9)F2—C12—S1—O257.67 (9)
C4—C3A—C11C—C11B177.53 (7)F3—C12—S1—O262.18 (9)
Hydrogen-bond geometry (Å, º) top
Cg10 is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.992.493.4043 (13)154
C6—H6A···O12ii1.002.523.3040 (11)135
C6A—H6AA···O3ii1.002.503.4407 (12)157
C7—H7A···O13ii1.002.413.2563 (11)142
C21—H21B···O120.992.332.9151 (11)117
C21—H21B···O130.992.353.0974 (11)132
C31—H31A···O2i0.992.333.2751 (13)159
C9—H9A···Cg10iii0.952.713.2958 (11)121
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z+1/2.
Summary of short interatomic contacts (Å) in the title salt 1 top
ContactDistanceSymmetry operation
H7A···O132.411 - x, 1 - y, 1 - z
H4A···H11A2.34-1/2 + x, 3/2 - y, -1/2 + z
H31A···O22.332 - x, 1 - y, 1 - z
H37A···O32.653/2 - x, 1/2 + y, 1/2 - z
H6AA···O32.501 - x, 1 - y, 1 - z
H9A···C83.011 - x, 1 - y, 2 - z
H1B···H24A2.60-1/2 + x, 3/2 - y, 1/2 + z
H10A···H26A2.31x, y, 1 + z
C24···F13.202x, y, z
C25···H36A3.503/2 - x, -1/2 + y, 1/2 - z
H5A···H23A2.53-1 + x, y, z
H10A···O22.913/2 - x, 1/2 + y, 1/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface of the title salt 1 top
ContactPercentage contribution
H···H47.6
C···H/H···C20.6
O···H/H···O18.0
F···H/H···F9.9
F···C/C···F2.2
C···C1.0
O···C/C···O0.4
F···O/O···F0.1
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and SM; synthesis, ZA and GZM; X-ray analysis, GZM; writing (review and editing of the manuscript), ZA and MA; supervision, MA and SM.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCriado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736–9740.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCriado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDemircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJuhl, M. & Tanner, D. (2009). Chem. Soc. Rev. 38, 2983–2992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53. https://doi.org/10.1055/s-0040-1705983  Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466–472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMertsalov, D. F., Nadirova, M. A., Sorokina, E. A., Vinokurova, M. A., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A. & Bhattarai, A. (2021b). Acta Cryst. E77, 260–265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021c). Acta Cryst. E77, 255–259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305–2313.  Web of Science CSD CrossRef CAS Google Scholar
First citationPadwa, A. & Flick, A. C. (2013). Adv. Heterocycl. Chem. 110, 1–41.  Web of Science CrossRef CAS Google Scholar
First citationParvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakao, K., Munakata, R. & Tadano, K. (2005). Chem. Rev. 105, 4779–4807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012). RSC Adv. 2, 4103–4109.  Web of Science CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds