research communications
SR,6RS,6aSR,7RS,11bSR,11cRS)-2,2-dibenzyl-2,3,6a,11c-tetrahydro-1H,6H,7H-3a,6:7,11b-diepoxydibenzo[de,h]isoquinolin-2-ium trifluoromethanesulfonate
and Hirshfeld surface analysis of (3aaDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the cation of the title salt, C30H28NO2+·CF3O3S−, the four tetrahydrofuran rings adopt envelope conformations. In the crystal, pairs of cations are linked by dimeric C—H⋯O hydrogen bonds, forming two R22(6) ring motifs parallel to the (001) plane. The cations and anions are connected by further C—H⋯O hydrogen bonds, forming a three-dimensional network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (47.6%), C⋯H/H⋯C (20.6%), O⋯H/H⋯O (18.0%) and F⋯H/H⋯F (9.9%) interactions.
Keywords: crystal structure; tetrahydrofuran ring; piperidine ring; C—H⋯O hydrogen bonds; Hirshfeld surface analysis; IMDAF reaction; Diels–Alder reaction.
1. Chemical context
Intramolecular Diels–Alder reactions (Krishna et al., 2021) are powerful tools in the arsenal of modern organic chemistry. In particular, the IMDAF cycloaddition (the intramolecular furan Diels–Alder reaction) based on renewable starting materials (e.g. furfural, furfuryl alcohol, etc.), is frequently used in natural product synthesis and in many other practically useful applications (for reviews on the topic, see: Zubkov et al., 2005; Takao et al., 2005; Juhl et al., 2009; Padwa et al., 2013; Parvatkar et al., 2014). Cascade sequences including two or more successive [4 + 2] cycloaddition steps to furan moieties are less known because of difficulties in accessing the starting materials. However, these tandem strategies open up an easy way for the construction of polyfunctional naphthalene derivatives, which can be obtained in one synthetic step. At the same time, it becomes possible to create four or more chiral centres in one synthetic stage with exceptional chemo-, regio- and (Criado et al., 2010, 2013; Zubkov et al., 2012, 2014). Previously, it was shown that the [4 + 2] cycloaddition of bis-furyldienes with derivatives of maleic acid, of acetylene dicarboxylic acid or hexafluoro-2-butyne proceeds in all cases with excellent diastereo- and and leads, depending on the temperature, to annelated diepoxynaphthalenes of the `domino' or `pincer' type (Borisova et al., 2018a,b).
In order to expand the limits of the applicability of the IMDAF strategy, during the current study we tested dehydrobenzene generated in situ in the role of a It was found that N-benzyldifurfurylamine under the action of dehydrobenzene forms a multicomponent mixture, from which three major components (1–3) were isolated using (Fig. 1). Compound 1, the most interesting from a chemical point of view, was chosen for structural analysis using diffraction data.
In general, non-covalent interactions such as hydrogen bonding, ionic and π-interactions play critical roles in synthesis and catalysis, as well as in the organization of the supramolecular structures as a result of their significant contribution to the self-assembly process (Gurbanov et al., 2020a,b; Khalilov et al., 2018a,b; Ma et al., 2017a,b, 2020, 2021; Mahmudov et al., 2012, 2020; Mizar et al., 2012). Thus, the interplay of non-covalent interactions has an impact on solubility (Shixaliyev et al., 2019) and other functional properties of 1.
2. Structural commentary
In the cation (C30H28NO2+) of the title salt 1 (Fig. 2), the tetrahydrofuran rings (O12/C7/C6A/C11C/C11B, O12/C7/C7A/C11A/C11B, O13/C3A/C4/C5/C6 and O13/C3A/C11C/C6A/C6) adopt envelope conformations with the following puckering parameters (Cremer & Pople, 1975): Q(2) = 0.5504 (8) Å, φ(2) = 181.08 (9)°, Q(2) = 0.5474 (9) Å, φ(2) = 0.24 (10)°, Q(2) = 0.5260 (9) Å, φ(2) = 1.91 (11)° and Q(2) = 0.5610 (9) Å, φ(2) = 175.78 (9)°, respectively. The molecular conformation of the cation is stabilized by weak intramolecular C21—H21B⋯O12 and C21—H21B⋯O13 contacts (Table 1). The piperidine ring (N2/C1/C11B/C11C/C3A/C3) in the cation exhibits a chair conformation [puckering parameters are QT = 0.4871 (9) Å, θ = 175.22 (11)° and φ = 281.2 (12)°]. The benzene ring (C7A/C8–C11/C11A) fused with the central tetrahydrofuran ring makes dihedral angles of 53.43 (5) and 58.64 (5)°, respectively, with the C22–C27 and C32–C37 phenyl rings of the benzyl groups attached to the N atom. These phenyl rings make a dihedral angle of 73.81 (5)° with each other.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, pairs of cations are linked by dimeric C6—H6A⋯O12ii and C7—H7A⋯O13ii hydrogen bonds [symmetry code: (ii) −x + 1, −y + 1, −z + 1], forming two (6) ring motifs (Bernstein et al., 1995) parallel to the (001) plane (Table 1; Fig. 3). Furthermore, the cations and anions are connected by intermolecular C1—H1A⋯O1i, C6—H6A⋯O12ii, C6A—H6AA⋯O3ii, C7—H7A⋯O13ii, C31—H31A⋯O2i and C9—H9A⋯Cg10iii hydrogen bonds, forming a three-dimensional network (Table 1; Figs. 4, 5 and 6).
The intermolecular interactions (Table 2) were quantified and displayed using CrystalExplorer17.5 (Turner et al., 2017). Fig. 7 shows the Hirshfeld surface plotted over dnorm in the range −0.2715 to 1.3713 a.u. where C—H⋯O interactions are shown as red dots. The overall two-dimensional fingerprint plot, as well as those delineated into the main contacts, are shown in Fig. 8. The H⋯H (Fig. 8b) interactions constitute the primary factor in the crystal packing, with C⋯H/H⋯C (Fig. 8c), O⋯H/H⋯O (Fig. 8d) and F⋯H/H⋯F (Fig. 8e) interactions constituting the next stronger contributions. Numerical values of these interactions together with other percentage contributions of weaker interactions are compiled in Table 3.
|
|
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016) for structures having an epoxyisoindole moiety gave ten hits that closely resemble the title salt, viz. IQOTOA (Mertsalov et al., 2021a), OMUTAU (Mertsalov et al., 2021b), OMEMAX (Mertsalov et al., 2021c), IMUBIE (Mertsalov et al., 2021a), AGONUH (Temel et al., 2013), TIJMIK (Demircan et al., 2013), YAXCIL (Temel et al., 2012), UPAQEI (Koşar et al., 2011), ERIVIL (Temel et al., 2011) and MIGTIG (Koşar et al., 2007).
IQOTOA, OMUTAU and OMEMAX each crystallize with two molecules in the π and C—Br⋯π interactions. Interlayer van der Waals and interhalogen interactions stabilize the molecular packing. In the crystal of OMUTAU, strong intermolecular O—H⋯O hydrogen bonds and weak intermolecular C—H⋯O contacts link the molecules, forming a three-dimensional network. In addition, weak π–π stacking interactions between the pyrrolidine rings of the nine-membered groups of molecules are observed. In the crystal of OMEMAX, molecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals interactions. In the crystal of IMUBIE, the molecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating (18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π interactions. In the crystal structures of IQOTOA, OMUTAU, OMEMAX, AGONUH, TIJMIK, YAXCIL, UPAQEI and ERIVIL, the molecules are predominantly linked by C—H⋯O hydrogen bonds describing different hydrogen-bonding pattern connectivities. In the crystal of AGONUH, the molecules are connected into zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bond motifs are found, viz. R22(20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Additionally, C—H⋯O hydrogen bonds form a C(6) chain, linking the molecules along the b-axis direction. In the crystal of ERIVIL, molecules are connected into (8) and (14) rings along the b axis. In MIGTIG, the molecules are linked only by weak van der Waals interactions.
In the crystal, molecule pairs generate centrosymmetric rings with (8) motifs linked by C—H⋯O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H⋯5. Synthesis and crystallization
(3aSR,6RS,6aSR,7RS,11bSR,11cRS)-2,2-Dibenzyl-2,3,6a,11c-tetrahydro-1H,6H,7H-3a,6:7,11b-diepoxydibenzo[de,h]isoquinolin-2-ium trifluoromethanesulfonate (1)
Cesium fluoride (CsF) (1.7 g, 0.011 mol) was added to benzylbis(furan-2-ylmethyl)amine (0.0022 mol) dissolved in dry CH3CN (20 ml). Then an equivalent of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.54 ml, 0.022 mol) was added to the solution under an argon atmosphere. The mixture was refluxed for 4 h (TLC control, Sorbfil plates for EtOAc:hexane, 1:3). After one more portion of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.27 mL, 0.011 mol) and CsF (1.7 g, 0.011 mol) had been added to the mixture, all procedures were repeated. After the mixture was cooled to room temperature, the CsF was filtered off through a thin layer of SiO2, and the resulting solution was concentrated under reduced pressure. The residue (yellow oil) turned out to be a multicomponent mixture. It was separated using on silica gel. The least mobile fraction represented the target product, 1. In addition, two by-products 2 (12%) and 3 (17%) were isolated. Single crystals of 1 were obtained by slow crystallization from ethyl acetate.
6. details
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions using a riding model, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C). Five reflections (011, 101, 020, 01 and 110), which were obscured by the beam stop as well as eight outliers (021, 111, 1 12, 218, 610, 143, 72 and 581) were omitted during the final cycle of refinement.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989021010173/wm5617sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010173/wm5617Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C30H28NO2+·CF3O3S− | F(000) = 1216 |
Mr = 583.60 | Dx = 1.466 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1507 (9) Å | Cell parameters from 9807 reflections |
b = 18.4653 (15) Å | θ = 2.7–34.6° |
c = 12.8519 (10) Å | µ = 0.19 mm−1 |
β = 91.786 (4)° | T = 100 K |
V = 2644.9 (4) Å3 | Fragment, colourless |
Z = 4 | 0.40 × 0.32 × 0.16 mm |
Bruker KAPPA APEXII area-detector diffractometer | 9164 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; (Bruker, 2013) | θmax = 35.1°, θmin = 3.3° |
Tmin = 0.924, Tmax = 0.971 | h = −18→18 |
101039 measured reflections | k = −29→29 |
11684 independent reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0527P)2 + 0.8665P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
11684 reflections | Δρmax = 0.56 e Å−3 |
370 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.67175 (8) | 0.69811 (5) | 0.60647 (6) | 0.01270 (14) | |
H1A | 0.747874 | 0.677220 | 0.634517 | 0.015* | |
H1B | 0.660815 | 0.745773 | 0.640139 | 0.015* | |
C3 | 0.56390 (8) | 0.73115 (5) | 0.43738 (7) | 0.01317 (14) | |
H3A | 0.547400 | 0.782451 | 0.454167 | 0.016* | |
H3B | 0.572480 | 0.727711 | 0.361102 | 0.016* | |
C3A | 0.45754 (7) | 0.68617 (5) | 0.46733 (7) | 0.01244 (13) | |
C4 | 0.33252 (8) | 0.71172 (5) | 0.43326 (7) | 0.01597 (15) | |
H4A | 0.308749 | 0.759245 | 0.413203 | 0.019* | |
C5 | 0.26370 (8) | 0.65278 (5) | 0.43772 (8) | 0.01802 (16) | |
H5A | 0.179772 | 0.649930 | 0.423199 | 0.022* | |
C6 | 0.34705 (8) | 0.59090 (5) | 0.47087 (7) | 0.01522 (15) | |
H6A | 0.318689 | 0.541383 | 0.450425 | 0.018* | |
C6A | 0.37463 (8) | 0.60180 (5) | 0.58913 (7) | 0.01364 (14) | |
H6AA | 0.300307 | 0.606996 | 0.630059 | 0.016* | |
C7 | 0.46800 (8) | 0.54992 (5) | 0.64181 (7) | 0.01394 (14) | |
H7A | 0.451157 | 0.497142 | 0.631813 | 0.017* | |
C7A | 0.48436 (8) | 0.57402 (5) | 0.75456 (7) | 0.01427 (14) | |
C8 | 0.44763 (9) | 0.54734 (5) | 0.84856 (7) | 0.01733 (16) | |
H8A | 0.402374 | 0.503863 | 0.852077 | 0.021* | |
C9 | 0.47929 (9) | 0.58649 (5) | 0.93883 (7) | 0.01878 (17) | |
H9A | 0.457904 | 0.568103 | 1.004751 | 0.023* | |
C10 | 0.54120 (9) | 0.65153 (5) | 0.93385 (7) | 0.01802 (16) | |
H10A | 0.559234 | 0.677754 | 0.995979 | 0.022* | |
C11 | 0.57744 (8) | 0.67895 (5) | 0.83794 (7) | 0.01554 (15) | |
H11A | 0.619080 | 0.723684 | 0.833689 | 0.019* | |
C11A | 0.55031 (8) | 0.63849 (5) | 0.75004 (7) | 0.01308 (14) | |
C11B | 0.57023 (7) | 0.64936 (4) | 0.63521 (6) | 0.01173 (13) | |
C11C | 0.44891 (7) | 0.67267 (4) | 0.58601 (6) | 0.01203 (13) | |
H11B | 0.410997 | 0.713740 | 0.623614 | 0.014* | |
C21 | 0.73244 (8) | 0.63896 (5) | 0.44464 (7) | 0.01377 (14) | |
H21A | 0.796779 | 0.620964 | 0.492774 | 0.017* | |
H21B | 0.667561 | 0.602337 | 0.443280 | 0.017* | |
C22 | 0.78218 (8) | 0.64321 (5) | 0.33735 (7) | 0.01362 (14) | |
C23 | 0.90600 (8) | 0.64983 (5) | 0.32688 (7) | 0.01655 (15) | |
H23A | 0.956202 | 0.657652 | 0.386914 | 0.020* | |
C24 | 0.95663 (10) | 0.64511 (5) | 0.22957 (8) | 0.02055 (18) | |
H24A | 1.040992 | 0.649480 | 0.223331 | 0.025* | |
C25 | 0.88364 (11) | 0.63400 (5) | 0.14165 (8) | 0.02207 (19) | |
H25A | 0.917969 | 0.630847 | 0.075074 | 0.026* | |
C26 | 0.76053 (11) | 0.62749 (6) | 0.15095 (8) | 0.02329 (19) | |
H26A | 0.710660 | 0.620084 | 0.090611 | 0.028* | |
C27 | 0.70971 (9) | 0.63177 (6) | 0.24837 (8) | 0.01922 (17) | |
H27A | 0.625384 | 0.626885 | 0.254281 | 0.023* | |
C31 | 0.77333 (8) | 0.77043 (5) | 0.47355 (7) | 0.01412 (14) | |
H31A | 0.854007 | 0.752709 | 0.495500 | 0.017* | |
H31B | 0.774954 | 0.781084 | 0.398112 | 0.017* | |
C32 | 0.74928 (8) | 0.83997 (5) | 0.53068 (7) | 0.01367 (14) | |
C33 | 0.80181 (9) | 0.85231 (5) | 0.62951 (7) | 0.01728 (16) | |
H33A | 0.845512 | 0.814676 | 0.663914 | 0.021* | |
C34 | 0.79037 (10) | 0.91940 (6) | 0.67762 (8) | 0.02248 (19) | |
H34A | 0.826658 | 0.927443 | 0.744486 | 0.027* | |
C35 | 0.72616 (11) | 0.97452 (6) | 0.62822 (9) | 0.0249 (2) | |
H35A | 0.718829 | 1.020368 | 0.660952 | 0.030* | |
C36 | 0.67257 (10) | 0.96247 (5) | 0.53069 (9) | 0.02229 (19) | |
H36A | 0.627312 | 0.999915 | 0.497391 | 0.027* | |
C37 | 0.68486 (9) | 0.89567 (5) | 0.48138 (7) | 0.01687 (16) | |
H37A | 0.649310 | 0.888096 | 0.414119 | 0.020* | |
N2 | 0.68218 (6) | 0.70948 (4) | 0.49050 (6) | 0.01197 (12) | |
O12 | 0.58114 (6) | 0.57491 (3) | 0.60106 (5) | 0.01313 (11) | |
O13 | 0.45803 (6) | 0.61386 (3) | 0.42482 (5) | 0.01393 (11) | |
C12 | 0.98295 (10) | 0.44106 (6) | 0.32533 (9) | 0.0245 (2) | |
O1 | 1.07300 (8) | 0.32602 (6) | 0.24533 (7) | 0.0354 (2) | |
O2 | 1.00070 (9) | 0.31955 (5) | 0.42121 (6) | 0.03010 (18) | |
O3 | 0.85862 (7) | 0.32820 (4) | 0.27351 (6) | 0.02074 (14) | |
F1 | 0.96005 (9) | 0.47174 (5) | 0.23305 (7) | 0.0473 (2) | |
F2 | 0.90315 (7) | 0.46548 (4) | 0.39205 (8) | 0.0396 (2) | |
F3 | 1.09111 (7) | 0.46368 (5) | 0.35900 (7) | 0.03702 (18) | |
S1 | 0.97774 (2) | 0.34243 (2) | 0.31472 (2) | 0.01773 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0115 (3) | 0.0134 (3) | 0.0132 (3) | −0.0015 (3) | −0.0003 (3) | 0.0007 (3) |
C3 | 0.0111 (3) | 0.0128 (3) | 0.0155 (3) | 0.0004 (3) | −0.0014 (3) | 0.0016 (3) |
C3A | 0.0103 (3) | 0.0116 (3) | 0.0153 (3) | 0.0002 (3) | −0.0011 (3) | −0.0009 (3) |
C4 | 0.0117 (3) | 0.0177 (4) | 0.0183 (4) | 0.0022 (3) | −0.0029 (3) | −0.0004 (3) |
C5 | 0.0113 (3) | 0.0219 (4) | 0.0207 (4) | −0.0005 (3) | −0.0027 (3) | −0.0017 (3) |
C6 | 0.0113 (3) | 0.0155 (4) | 0.0188 (4) | −0.0029 (3) | 0.0003 (3) | −0.0024 (3) |
C6A | 0.0110 (3) | 0.0125 (3) | 0.0175 (3) | −0.0014 (3) | 0.0014 (3) | −0.0012 (3) |
C7 | 0.0128 (3) | 0.0113 (3) | 0.0179 (4) | −0.0013 (3) | 0.0031 (3) | −0.0003 (3) |
C7A | 0.0130 (3) | 0.0129 (3) | 0.0170 (3) | 0.0009 (3) | 0.0019 (3) | 0.0011 (3) |
C8 | 0.0176 (4) | 0.0152 (4) | 0.0194 (4) | 0.0019 (3) | 0.0045 (3) | 0.0039 (3) |
C9 | 0.0194 (4) | 0.0204 (4) | 0.0168 (4) | 0.0063 (3) | 0.0041 (3) | 0.0038 (3) |
C10 | 0.0183 (4) | 0.0201 (4) | 0.0156 (4) | 0.0057 (3) | −0.0005 (3) | 0.0002 (3) |
C11 | 0.0143 (4) | 0.0157 (4) | 0.0164 (3) | 0.0014 (3) | −0.0020 (3) | 0.0000 (3) |
C11A | 0.0119 (3) | 0.0128 (3) | 0.0145 (3) | 0.0009 (3) | 0.0004 (3) | 0.0010 (3) |
C11B | 0.0106 (3) | 0.0100 (3) | 0.0146 (3) | 0.0001 (2) | 0.0004 (3) | −0.0001 (2) |
C11C | 0.0101 (3) | 0.0115 (3) | 0.0145 (3) | 0.0005 (2) | 0.0001 (3) | −0.0010 (2) |
C21 | 0.0133 (3) | 0.0116 (3) | 0.0164 (3) | 0.0013 (3) | 0.0016 (3) | −0.0003 (3) |
C22 | 0.0131 (3) | 0.0122 (3) | 0.0156 (3) | 0.0001 (3) | 0.0006 (3) | −0.0008 (3) |
C23 | 0.0140 (4) | 0.0171 (4) | 0.0187 (4) | −0.0012 (3) | 0.0024 (3) | −0.0025 (3) |
C24 | 0.0208 (4) | 0.0178 (4) | 0.0236 (4) | −0.0025 (3) | 0.0082 (3) | −0.0025 (3) |
C25 | 0.0333 (5) | 0.0157 (4) | 0.0177 (4) | −0.0007 (4) | 0.0074 (4) | −0.0001 (3) |
C26 | 0.0309 (5) | 0.0227 (4) | 0.0160 (4) | 0.0038 (4) | −0.0032 (4) | −0.0018 (3) |
C27 | 0.0177 (4) | 0.0209 (4) | 0.0188 (4) | 0.0013 (3) | −0.0029 (3) | −0.0030 (3) |
C31 | 0.0127 (3) | 0.0125 (3) | 0.0172 (3) | −0.0023 (3) | 0.0015 (3) | 0.0003 (3) |
C32 | 0.0138 (3) | 0.0122 (3) | 0.0151 (3) | −0.0025 (3) | 0.0012 (3) | 0.0001 (3) |
C33 | 0.0188 (4) | 0.0173 (4) | 0.0157 (3) | −0.0055 (3) | −0.0004 (3) | 0.0015 (3) |
C34 | 0.0297 (5) | 0.0222 (4) | 0.0158 (4) | −0.0099 (4) | 0.0042 (3) | −0.0037 (3) |
C35 | 0.0310 (5) | 0.0168 (4) | 0.0273 (5) | −0.0052 (4) | 0.0096 (4) | −0.0062 (3) |
C36 | 0.0229 (5) | 0.0139 (4) | 0.0303 (5) | 0.0011 (3) | 0.0043 (4) | 0.0003 (3) |
C37 | 0.0173 (4) | 0.0136 (4) | 0.0196 (4) | −0.0010 (3) | −0.0005 (3) | 0.0015 (3) |
N2 | 0.0105 (3) | 0.0110 (3) | 0.0144 (3) | −0.0006 (2) | −0.0001 (2) | 0.0003 (2) |
O12 | 0.0115 (3) | 0.0100 (2) | 0.0181 (3) | 0.0002 (2) | 0.0031 (2) | −0.0004 (2) |
O13 | 0.0125 (3) | 0.0128 (3) | 0.0165 (3) | −0.0017 (2) | 0.0011 (2) | −0.0028 (2) |
C12 | 0.0229 (5) | 0.0225 (5) | 0.0279 (5) | −0.0046 (4) | −0.0027 (4) | 0.0011 (4) |
O1 | 0.0193 (4) | 0.0552 (6) | 0.0318 (4) | 0.0077 (4) | 0.0022 (3) | −0.0185 (4) |
O2 | 0.0398 (5) | 0.0281 (4) | 0.0217 (3) | 0.0043 (3) | −0.0110 (3) | 0.0035 (3) |
O3 | 0.0173 (3) | 0.0217 (3) | 0.0230 (3) | 0.0002 (3) | −0.0032 (3) | −0.0028 (3) |
F1 | 0.0658 (6) | 0.0315 (4) | 0.0432 (5) | −0.0135 (4) | −0.0198 (4) | 0.0176 (3) |
F2 | 0.0332 (4) | 0.0242 (4) | 0.0618 (5) | 0.0008 (3) | 0.0086 (4) | −0.0171 (3) |
F3 | 0.0293 (4) | 0.0414 (4) | 0.0401 (4) | −0.0172 (3) | −0.0037 (3) | −0.0041 (3) |
S1 | 0.01597 (10) | 0.02037 (11) | 0.01662 (10) | 0.00469 (8) | −0.00298 (7) | −0.00322 (7) |
C1—C11B | 1.5014 (12) | C21—C22 | 1.5043 (12) |
C1—N2 | 1.5132 (11) | C21—N2 | 1.5421 (11) |
C1—H1A | 0.9900 | C21—H21A | 0.9900 |
C1—H1B | 0.9900 | C21—H21B | 0.9900 |
C3—C3A | 1.5077 (12) | C22—C27 | 1.3956 (13) |
C3—N2 | 1.5198 (11) | C22—C23 | 1.3967 (13) |
C3—H3A | 0.9900 | C23—C24 | 1.3909 (13) |
C3—H3B | 0.9900 | C23—H23A | 0.9500 |
C3A—O13 | 1.4427 (10) | C24—C25 | 1.3870 (15) |
C3A—C4 | 1.5231 (12) | C24—H24A | 0.9500 |
C3A—C11C | 1.5514 (12) | C25—C26 | 1.3869 (17) |
C4—C5 | 1.3339 (13) | C25—H25A | 0.9500 |
C4—H4A | 0.9500 | C26—C27 | 1.3925 (15) |
C5—C6 | 1.5253 (14) | C26—H26A | 0.9500 |
C5—H5A | 0.9500 | C27—H27A | 0.9500 |
C6—O13 | 1.4515 (11) | C31—C32 | 1.5074 (12) |
C6—C6A | 1.5543 (13) | C31—N2 | 1.5365 (11) |
C6—H6A | 1.0000 | C31—H31A | 0.9900 |
C6A—C11C | 1.5500 (12) | C31—H31B | 0.9900 |
C6A—C7 | 1.5544 (13) | C32—C37 | 1.3952 (13) |
C6A—H6AA | 1.0000 | C32—C33 | 1.4007 (13) |
C7—O12 | 1.4560 (11) | C33—C34 | 1.3921 (14) |
C7—C7A | 1.5214 (13) | C33—H33A | 0.9500 |
C7—H7A | 1.0000 | C34—C35 | 1.3869 (17) |
C7A—C8 | 1.3787 (13) | C34—H34A | 0.9500 |
C7A—C11A | 1.4014 (12) | C35—C36 | 1.3897 (16) |
C8—C9 | 1.4029 (14) | C35—H35A | 0.9500 |
C8—H8A | 0.9500 | C36—C37 | 1.3955 (14) |
C9—C10 | 1.3876 (15) | C36—H36A | 0.9500 |
C9—H9A | 0.9500 | C37—H37A | 0.9500 |
C10—C11 | 1.4037 (13) | C12—F1 | 1.3318 (14) |
C10—H10A | 0.9500 | C12—F2 | 1.3333 (14) |
C11—C11A | 1.3800 (12) | C12—F3 | 1.3357 (13) |
C11—H11A | 0.9500 | C12—S1 | 1.8271 (12) |
C11A—C11B | 1.5125 (12) | O1—S1 | 1.4404 (9) |
C11B—O12 | 1.4494 (10) | O2—S1 | 1.4476 (8) |
C11B—C11C | 1.5369 (12) | O3—S1 | 1.4387 (8) |
C11C—H11B | 1.0000 | ||
C11B—C1—N2 | 114.03 (7) | C6A—C11C—H11B | 113.2 |
C11B—C1—H1A | 108.7 | C3A—C11C—H11B | 113.2 |
N2—C1—H1A | 108.7 | C22—C21—N2 | 117.07 (7) |
C11B—C1—H1B | 108.7 | C22—C21—H21A | 108.0 |
N2—C1—H1B | 108.7 | N2—C21—H21A | 108.0 |
H1A—C1—H1B | 107.6 | C22—C21—H21B | 108.0 |
C3A—C3—N2 | 114.76 (7) | N2—C21—H21B | 108.0 |
C3A—C3—H3A | 108.6 | H21A—C21—H21B | 107.3 |
N2—C3—H3A | 108.6 | C27—C22—C23 | 118.90 (9) |
C3A—C3—H3B | 108.6 | C27—C22—C21 | 121.51 (8) |
N2—C3—H3B | 108.6 | C23—C22—C21 | 119.12 (8) |
H3A—C3—H3B | 107.6 | C24—C23—C22 | 120.75 (9) |
O13—C3A—C3 | 113.64 (7) | C24—C23—H23A | 119.6 |
O13—C3A—C4 | 101.07 (7) | C22—C23—H23A | 119.6 |
C3—C3A—C4 | 118.43 (7) | C25—C24—C23 | 119.83 (10) |
O13—C3A—C11C | 102.99 (6) | C25—C24—H24A | 120.1 |
C3—C3A—C11C | 114.39 (7) | C23—C24—H24A | 120.1 |
C4—C3A—C11C | 104.37 (7) | C26—C25—C24 | 119.99 (9) |
C5—C4—C3A | 104.92 (8) | C26—C25—H25A | 120.0 |
C5—C4—H4A | 127.5 | C24—C25—H25A | 120.0 |
C3A—C4—H4A | 127.5 | C25—C26—C27 | 120.28 (9) |
C4—C5—C6 | 106.07 (8) | C25—C26—H26A | 119.9 |
C4—C5—H5A | 127.0 | C27—C26—H26A | 119.9 |
C6—C5—H5A | 127.0 | C26—C27—C22 | 120.25 (9) |
O13—C6—C5 | 100.79 (7) | C26—C27—H27A | 119.9 |
O13—C6—C6A | 102.46 (7) | C22—C27—H27A | 119.9 |
C5—C6—C6A | 106.05 (7) | C32—C31—N2 | 115.24 (7) |
O13—C6—H6A | 115.3 | C32—C31—H31A | 108.5 |
C5—C6—H6A | 115.3 | N2—C31—H31A | 108.5 |
C6A—C6—H6A | 115.3 | C32—C31—H31B | 108.5 |
C11C—C6A—C6 | 100.00 (7) | N2—C31—H31B | 108.5 |
C11C—C6A—C7 | 100.40 (7) | H31A—C31—H31B | 107.5 |
C6—C6A—C7 | 117.10 (7) | C37—C32—C33 | 119.13 (8) |
C11C—C6A—H6AA | 112.6 | C37—C32—C31 | 120.24 (8) |
C6—C6A—H6AA | 112.6 | C33—C32—C31 | 120.30 (8) |
C7—C6A—H6AA | 112.6 | C34—C33—C32 | 120.40 (9) |
O12—C7—C7A | 99.81 (7) | C34—C33—H33A | 119.8 |
O12—C7—C6A | 102.95 (7) | C32—C33—H33A | 119.8 |
C7A—C7—C6A | 107.06 (7) | C35—C34—C33 | 120.19 (9) |
O12—C7—H7A | 115.1 | C35—C34—H34A | 119.9 |
C7A—C7—H7A | 115.1 | C33—C34—H34A | 119.9 |
C6A—C7—H7A | 115.1 | C34—C35—C36 | 119.79 (9) |
C8—C7A—C11A | 120.71 (8) | C34—C35—H35A | 120.1 |
C8—C7A—C7 | 134.42 (8) | C36—C35—H35A | 120.1 |
C11A—C7A—C7 | 104.86 (7) | C35—C36—C37 | 120.37 (10) |
C7A—C8—C9 | 117.80 (9) | C35—C36—H36A | 119.8 |
C7A—C8—H8A | 121.1 | C37—C36—H36A | 119.8 |
C9—C8—H8A | 121.1 | C32—C37—C36 | 120.11 (9) |
C10—C9—C8 | 121.38 (9) | C32—C37—H37A | 119.9 |
C10—C9—H9A | 119.3 | C36—C37—H37A | 119.9 |
C8—C9—H9A | 119.3 | C1—N2—C3 | 112.75 (7) |
C9—C10—C11 | 120.66 (9) | C1—N2—C31 | 108.23 (6) |
C9—C10—H10A | 119.7 | C3—N2—C31 | 108.19 (6) |
C11—C10—H10A | 119.7 | C1—N2—C21 | 107.41 (6) |
C11A—C11—C10 | 117.51 (9) | C3—N2—C21 | 111.80 (6) |
C11A—C11—H11A | 121.2 | C31—N2—C21 | 108.33 (7) |
C10—C11—H11A | 121.2 | C11B—O12—C7 | 96.31 (6) |
C11—C11A—C7A | 121.86 (8) | C3A—O13—C6 | 95.89 (6) |
C11—C11A—C11B | 133.76 (8) | F1—C12—F2 | 108.40 (11) |
C7A—C11A—C11B | 104.27 (7) | F1—C12—F3 | 107.55 (10) |
O12—C11B—C1 | 115.03 (7) | F2—C12—F3 | 107.45 (9) |
O12—C11B—C11A | 100.71 (6) | F1—C12—S1 | 110.65 (8) |
C1—C11B—C11A | 117.03 (7) | F2—C12—S1 | 111.39 (8) |
O12—C11B—C11C | 102.84 (6) | F3—C12—S1 | 111.23 (8) |
C1—C11B—C11C | 113.06 (7) | O3—S1—O1 | 115.08 (5) |
C11A—C11B—C11C | 106.53 (7) | O3—S1—O2 | 115.39 (5) |
C11B—C11C—C6A | 102.54 (7) | O1—S1—O2 | 114.31 (6) |
C11B—C11C—C3A | 111.64 (7) | O3—S1—C12 | 103.67 (5) |
C6A—C11C—C3A | 102.16 (6) | O1—S1—C12 | 103.51 (6) |
C11B—C11C—H11B | 113.2 | O2—S1—C12 | 102.48 (5) |
N2—C3—C3A—O13 | −72.16 (9) | O13—C3A—C11C—C6A | −31.68 (8) |
N2—C3—C3A—C4 | 169.47 (7) | C3—C3A—C11C—C6A | −155.48 (7) |
N2—C3—C3A—C11C | 45.73 (10) | C4—C3A—C11C—C6A | 73.54 (8) |
O13—C3A—C4—C5 | 34.74 (9) | N2—C21—C22—C27 | −89.63 (10) |
C3—C3A—C4—C5 | 159.53 (8) | N2—C21—C22—C23 | 98.39 (10) |
C11C—C3A—C4—C5 | −71.91 (9) | C27—C22—C23—C24 | −0.03 (14) |
C3A—C4—C5—C6 | −1.85 (10) | C21—C22—C23—C24 | 172.16 (9) |
C4—C5—C6—O13 | −31.30 (9) | C22—C23—C24—C25 | 0.27 (15) |
C4—C5—C6—C6A | 75.15 (9) | C23—C24—C25—C26 | −0.12 (15) |
O13—C6—C6A—C11C | 38.02 (8) | C24—C25—C26—C27 | −0.26 (16) |
C5—C6—C6A—C11C | −67.23 (8) | C25—C26—C27—C22 | 0.50 (16) |
O13—C6—C6A—C7 | −69.21 (9) | C23—C22—C27—C26 | −0.35 (14) |
C5—C6—C6A—C7 | −174.45 (7) | C21—C22—C27—C26 | −172.35 (9) |
C11C—C6A—C7—O12 | −34.81 (8) | N2—C31—C32—C37 | −94.11 (10) |
C6—C6A—C7—O12 | 72.18 (9) | N2—C31—C32—C33 | 92.59 (10) |
C11C—C6A—C7—C7A | 69.87 (8) | C37—C32—C33—C34 | −0.33 (14) |
C6—C6A—C7—C7A | 176.86 (7) | C31—C32—C33—C34 | 173.05 (9) |
O12—C7—C7A—C8 | −147.50 (10) | C32—C33—C34—C35 | 0.37 (15) |
C6A—C7—C7A—C8 | 105.58 (11) | C33—C34—C35—C36 | 0.38 (16) |
O12—C7—C7A—C11A | 34.01 (8) | C34—C35—C36—C37 | −1.18 (16) |
C6A—C7—C7A—C11A | −72.91 (8) | C33—C32—C37—C36 | −0.47 (14) |
C11A—C7A—C8—C9 | −0.49 (13) | C31—C32—C37—C36 | −173.84 (9) |
C7—C7A—C8—C9 | −178.79 (9) | C35—C36—C37—C32 | 1.22 (15) |
C7A—C8—C9—C10 | 2.63 (14) | C11B—C1—N2—C3 | 50.16 (9) |
C8—C9—C10—C11 | −2.06 (14) | C11B—C1—N2—C31 | 169.79 (7) |
C9—C10—C11—C11A | −0.70 (13) | C11B—C1—N2—C21 | −73.44 (8) |
C10—C11—C11A—C7A | 2.86 (13) | C3A—C3—N2—C1 | −46.62 (9) |
C10—C11—C11A—C11B | 178.34 (9) | C3A—C3—N2—C31 | −166.28 (7) |
C8—C7A—C11A—C11 | −2.30 (14) | C3A—C3—N2—C21 | 74.51 (9) |
C7—C7A—C11A—C11 | 176.44 (8) | C32—C31—N2—C1 | −53.16 (9) |
C8—C7A—C11A—C11B | −178.94 (8) | C32—C31—N2—C3 | 69.30 (9) |
C7—C7A—C11A—C11B | −0.19 (9) | C32—C31—N2—C21 | −169.32 (7) |
N2—C1—C11B—O12 | 65.09 (9) | C22—C21—N2—C1 | −163.77 (7) |
N2—C1—C11B—C11A | −176.98 (7) | C22—C21—N2—C3 | 72.05 (9) |
N2—C1—C11B—C11C | −52.64 (9) | C22—C21—N2—C31 | −47.07 (9) |
C11—C11A—C11B—O12 | 149.99 (10) | C1—C11B—O12—C7 | −178.83 (7) |
C7A—C11A—C11B—O12 | −33.96 (8) | C11A—C11B—O12—C7 | 54.39 (7) |
C11—C11A—C11B—C1 | 24.55 (14) | C11C—C11B—O12—C7 | −55.49 (7) |
C7A—C11A—C11B—C1 | −159.40 (7) | C7A—C7—O12—C11B | −53.98 (7) |
C11—C11A—C11B—C11C | −103.03 (11) | C6A—C7—O12—C11B | 56.21 (7) |
C7A—C11A—C11B—C11C | 73.01 (8) | C3—C3A—O13—C6 | 179.68 (7) |
O12—C11B—C11C—C6A | 33.75 (8) | C4—C3A—O13—C6 | −52.35 (7) |
C1—C11B—C11C—C6A | 158.40 (7) | C11C—C3A—O13—C6 | 55.39 (7) |
C11A—C11B—C11C—C6A | −71.70 (8) | C5—C6—O13—C3A | 50.91 (7) |
O12—C11B—C11C—C3A | −74.93 (8) | C6A—C6—O13—C3A | −58.38 (7) |
C1—C11B—C11C—C3A | 49.72 (9) | F1—C12—S1—O3 | −57.94 (9) |
C11A—C11B—C11C—C3A | 179.62 (7) | F2—C12—S1—O3 | 62.72 (9) |
C6—C6A—C11C—C11B | −119.49 (7) | F3—C12—S1—O3 | −177.43 (8) |
C7—C6A—C11C—C11B | 0.69 (8) | F1—C12—S1—O1 | 62.53 (10) |
C6—C6A—C11C—C3A | −3.75 (8) | F2—C12—S1—O1 | −176.81 (8) |
C7—C6A—C11C—C3A | 116.43 (7) | F3—C12—S1—O1 | −56.96 (9) |
O13—C3A—C11C—C11B | 77.25 (8) | F1—C12—S1—O2 | −178.33 (9) |
C3—C3A—C11C—C11B | −46.55 (9) | F2—C12—S1—O2 | −57.67 (9) |
C4—C3A—C11C—C11B | −177.53 (7) | F3—C12—S1—O2 | 62.18 (9) |
Cg10 is the centroid of the C32–C37 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1i | 0.99 | 2.49 | 3.4043 (13) | 154 |
C6—H6A···O12ii | 1.00 | 2.52 | 3.3040 (11) | 135 |
C6A—H6AA···O3ii | 1.00 | 2.50 | 3.4407 (12) | 157 |
C7—H7A···O13ii | 1.00 | 2.41 | 3.2563 (11) | 142 |
C21—H21B···O12 | 0.99 | 2.33 | 2.9151 (11) | 117 |
C21—H21B···O13 | 0.99 | 2.35 | 3.0974 (11) | 132 |
C31—H31A···O2i | 0.99 | 2.33 | 3.2751 (13) | 159 |
C9—H9A···Cg10iii | 0.95 | 2.71 | 3.2958 (11) | 121 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+3/2, z+1/2. |
Contact | Distance | Symmetry operation |
H7A···O13 | 2.41 | 1 - x, 1 - y, 1 - z |
H4A···H11A | 2.34 | -1/2 + x, 3/2 - y, -1/2 + z |
H31A···O2 | 2.33 | 2 - x, 1 - y, 1 - z |
H37A···O3 | 2.65 | 3/2 - x, 1/2 + y, 1/2 - z |
H6AA···O3 | 2.50 | 1 - x, 1 - y, 1 - z |
H9A···C8 | 3.01 | 1 - x, 1 - y, 2 - z |
H1B···H24A | 2.60 | -1/2 + x, 3/2 - y, 1/2 + z |
H10A···H26A | 2.31 | x, y, 1 + z |
C24···F1 | 3.202 | x, y, z |
C25···H36A | 3.50 | 3/2 - x, -1/2 + y, 1/2 - z |
H5A···H23A | 2.53 | -1 + x, y, z |
H10A···O2 | 2.91 | 3/2 - x, 1/2 + y, 1/2 - z |
Contact | Percentage contribution |
H···H | 47.6 |
C···H/H···C | 20.6 |
O···H/H···O | 18.0 |
F···H/H···F | 9.9 |
F···C/C···F | 2.2 |
C···C | 1.0 |
O···C/C···O | 0.4 |
F···O/O···F | 0.1 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA and SM; synthesis, ZA and GZM; X-ray analysis, GZM; writing (review and editing of the manuscript), ZA and MA; supervision, MA and SM.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. Web of Science CSD CrossRef CAS PubMed Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Criado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736–9740. Web of Science CSD CrossRef CAS PubMed Google Scholar
Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649. Web of Science CSD CrossRef CAS PubMed Google Scholar
Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Juhl, M. & Tanner, D. (2009). Chem. Soc. Rev. 38, 2983–2992. Web of Science CrossRef PubMed CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53. https://doi.org/10.1055/s-0040-1705983 Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466–472. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mertsalov, D. F., Nadirova, M. A., Sorokina, E. A., Vinokurova, M. A., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A. & Bhattarai, A. (2021b). Acta Cryst. E77, 260–265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021c). Acta Cryst. E77, 255–259. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305–2313. Web of Science CSD CrossRef CAS Google Scholar
Padwa, A. & Flick, A. C. (2013). Adv. Heterocycl. Chem. 110, 1–41. Web of Science CrossRef CAS Google Scholar
Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Takao, K., Munakata, R. & Tadano, K. (2005). Chem. Rev. 105, 4779–4807. Web of Science CrossRef PubMed CAS Google Scholar
Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103. CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012). RSC Adv. 2, 4103–4109. Web of Science CrossRef CAS Google Scholar
Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.