research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-oxo-1,2-di­phenyl­ethyl diiso­propyl­carbamate

crossmark logo

aInstitute of Integrated Natural Sciences, University Koblenz - Landau, Universitätsstr. 1, 56070 Koblenz, Germany, and bInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 8, 07743 Jena, Germany
*Correspondence e-mail: Imhof@uni-koblenz.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 September 2021; accepted 6 October 2021; online 13 October 2021)

The title compound, C21H25NO3, crystallized as a racemic twin in the Sohnke space group P21. In the mol­ecular structure of the title compound, both enanti­omers show a highly similar conformation with the urethane function and the benzoyl group showing an almost perpendicular arrangement [the dihedral angle is 72.46 (8)° in the S-enanti­omer and 76.21 (8)° in the R-enanti­omer]. In the crystal structure, mol­ecules of both enanti­omers show infinite helical arrangements parallel to the b axis formed by weak C—H⋯O hydrogen bonds between the phenyl ring of the benzoyl group and the carbamate carbonyl group. In case of the R-enanti­omer, this helix is additionally stabilized by a bifurcated hydrogen bond between the carbonyl function of the benzoyl group towards both phenyl groups of the mol­ecule.

1. Chemical context

Phenacyl and desyl compounds may act as photoremovable protecting groups (PPGs) and have been a subject of inter­est for many years (Givens et al., 2012[Givens, R. S., Rubina, M. & Wirz, J. (2012). Photochem. Photobiol. Sci. 11, 472-488.]; Kammari et al., 2007[Kammari, L., Plíštil, L., Wirz, J. & Klán, P. (2007). Photochem. Photobiol. Sci. 6, 50-56.]; Klán et al., 2013[Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). Chem. Rev. 113, 119-191.]; Sheehan & Umezawa, 1973[Sheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771-3774.]). In addition to the protection of carb­oxy­lic acids, they have also been shown to act as suitable groups for the protection and deprotection of amines (Speckmeier et al., 2018[Speckmeier, E., Klimkait, M. & Zeitler, K. (2018). J. Org. Chem. 83, 3738-3745.]). Besides several carbamate compounds, Lange and co-workers also synthesized the title compound via a CuI-catalysed stereospecific coupling reaction using α-stannylated benzyl carbamates (Lange et al., 2008[Lange, H., Fröhlich, R. & Hoppe, D. (2008). Tetrahedron, 64, 9123-9135.]). We chose a different procedure to synthesize the title compound, according to a synthetic route that has already been reported by Speckmeier et al. (2018[Speckmeier, E., Klimkait, M. & Zeitler, K. (2018). J. Org. Chem. 83, 3738-3745.]). Recently, we reported on the crystal structure of the highly related achiral derivative 2-oxo-2-phenyl­ethyl diiso­propyl­carbamate (Martens et al., 2021[Martens, V., Görls, H. & Imhof, W. (2021). Acta Cryst. E77, 785-787.]).

[Scheme 1]

2. Structural commentary

The carbamate functional moieties (S-enanti­omer: N1A/C3A/O3A/O2A; R-enanti­omer: N1B/C3B/O3B/O2B) are essentially planar with the largest deviation for the respective planes being observed for C3A and C3B (in both cases 0.01 Å). The same is true for the benzoyl groups (S-enanti­omer: C1A/O1A/C10A–C15A; R-enanti­omer: C1B/O1B/C10B–C15B). In case of the S-enanti­omer, the carbamate and the benzoyl planes subtend a dihedral angle of 77.46 (8)° whereas for the R-enanti­omer an angle of 76.21 (8)° is observed (Fig. 1[link]). These angles show a higher deviation from a perpendicular arrangement than was observed for 2-oxo-2-phenyl­ethyl diiso­propyl­carbamate (Martens et al., 2021[Martens, V., Görls, H. & Imhof, W. (2021). Acta Cryst. E77, 785-787.]), most probably caused by the enhanced steric requirements of the phenyl substituent at C2A or C2B, respectively. All other bond lengths and angles are of expected values with C3A—N1A [1.354 (7) Å], C3A—O2A [1.360 (7) Å], C3B—N1B [1.350 (7) Å] and C3B—O2B [1.363 (6) Å] being slightly shorter than a typical C—O or C—N single bond due to the partial double-bond character of the respective bonds in a carbamate.

[Figure 1]
Figure 1
Mol­ecular structures of both enanti­omers of the title compound with displacement ellipsoids drawn at the 50% probability level (R left; S right).

3. Supra­molecular features

In the crystal structure, mol­ecules of both enanti­omers show infinite helical arrangements parallel to the b axis formed by weak C—H⋯O hydrogen bonds (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond. Oxford Science Publications.]; Figs. 2[link] and 3[link]) between the phenyl ring of the benzoyl group and the carbamate carbonyl group (S-enanti­omer: C12A—H12A⋯O3A, R-enanti­omer: C14B—H14B⋯O3B; Table 1[link]). In each of the helices, only one enanti­omer is present. Nevertheless, the helices do not act as mirror images because the arrangement of the mol­ecules relative to each other is different. In the case of the R-enanti­omer (Fig. 3[link]), the supra­molecular helix is additionally stabilized by a bifurcated hydrogen bond between the carbonyl function of the benzoyl group towards both phenyl groups of the mol­ecule (C11B—H12B⋯O1B and C12B—H12B⋯O1B; Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12A⋯O3Ai 0.95 2.36 3.309 (2) 174
C14B—H14B⋯O3Bii 0.95 2.58 3.288 (2) 132
C11B—H11B⋯O1Biii 0.95 2.69 3.553 (2) 152
C21B—H21B⋯O1Biii 0.95 2.62 3.522 (2) 158
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [x, y-1, z].
[Figure 2]
Figure 2
Crystal structure of the S-enanti­omer of the title compound showing the helical arrangement of mol­ecules parallel to the b axis built up by C—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Crystal structure of the R-enanti­omer of the title compound showing the helical arrangement of mol­ecules parallel to the b axis built up by C—H⋯O hydrogen bonds.

4. Database survey

In the Cambridge Structural Database (CSD; ConQuest Version 2020.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) there is only one carbamate reported with a CH2—C(O)—Ph group attached to the carbamate oxygen atom (NIWQUI; Jiang et al., 2019[Jiang, H., Zhang, H., Xiong, W., Qi, C., Wu, W., Wang, L. & Cheng, R. (2019). Org. Lett. 21, 1125-1129.]). This compound shows a di­ethyl­amino group and a p-chloro­phenyl substituent instead of the diiso­propyl­amino group and the non-substituted phenyl group as in the title compound. Contrary to the title compound, the carbamate plane and the benzoyl plane are almost coplanar. The carbonyl oxygen atoms show numerous short contacts towards different C—H groups of neighbouring mol­ecules, leading to a dense three-dimensional network. In addition, we recently reported a structure, in which there also is a CH2—C(O)—Ph group instead of the CH(Ph)—C(O)—Ph unit in the title compound (Martens et al., 2021[Martens, V., Görls, H. & Imhof, W. (2021). Acta Cryst. E77, 785-787.]). In this structure, a layered arrangement is realized by all three oxygen atoms acting as hydrogen-bond acceptor sites. Moreover, there is one structure reported in the literature that is identical to the title compound with the exception of one bromine substituent at the 4-position of the phenyl ring attached to the C1=O1 carbonyl group (DOKMAS; Lange et al., 2008[Lange, H., Fröhlich, R. & Hoppe, D. (2008). Tetrahedron, 64, 9123-9135.]). In the latter case, the enanti­opure S-enanti­omer was crystallized. The supra­molecular structure of this compound shows the same bifurcated hydrogen bond as is observed for the R-enanti­omer of the title compound. On the other hand, the analogue of O3 is not engaged in a C—H⋯O inter­action but shows a short oxygen–bromine contact (3.139 Å). These two inter­actions lead to a double-strand arrangement of mol­ecules parallel to the a axis.

5. Synthesis and crystallization

Diiso­propyl­amine (0.05 mol, 5.05 g) and one equivalent of caesium carbonate (0.05 mol, 16.55 g) were placed in a Schlenk tube and dissolved in anhydrous DMSO (150 ml). The tube was sealed with a septum, and two balloons filled with CO2 were bubbled through the reaction mixture within one h while stirring. After the addition of CO2, 1.1 equivalents of 2-bromo-1,2-di­phenyl­ethan-1-one (0.055 mol, 15.13 g) dissolved in a small amount of DMSO were added in one portion. The consumption of the 2-bromo-1,2-di­phenyl­ethan-1-one was monitored by TLC, and after 30 min the reaction mixture was poured onto ice to quench the reaction. After extraction with di­chloro­methane (3 × 40 ml), the combined organic phases were washed with brine, separated and dried over Na2SO4. The solvent was removed in vacuo and the crude product was recrystallized from n-hexa­ne/ethyl­acetate (4:1, v/v) to afford the title compound (16.12 g; 95%) as a colourless crystalline solid. M.p. 485 K; 1H NMR (500 MHz, CDCl3) [ppm]: δ = 7.96 (dd, 2H), 7.50–7.47 (m, 3H), 7.39–7.32 (m, 5H), 6.88 (s, 1H), 4.05 (s, 1H), 3.86 (s, 1H), 1.28 (d, 12H); 13C NMR (126 MHz, CDCl3) [ppm]: δ = 195.4 (C=O), 154.8 (NC=O), 135.2, 134.5, 133.3, 129.0, 129.0, 128.9, 128.7, 128.7 (CPh), 77.7 (C benzylic), 46.8, 45.9 [(H3C)2CH–], 21.6, 21.4 [(H3C)2CH–].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed in idealized positions (C—H = 0.95–0.98 Å) and refined using a riding model with isotropic displacement parameters calculated as Uiso(H) = 1.2(C) for methine and hydrogen atoms of the phenyl group or 1.5×Ueq(C) for methyl groups. The crystal studied was refined as a two-component twin with fractions of 29% vs 71%.

Table 2
Experimental details

Crystal data
Chemical formula C21H25NO3
Mr 339.42
Crystal system, space group Monoclinic, P21
Temperature (K) 133
a, b, c (Å) 15.7976 (5), 5.9184 (3), 19.5340 (8)
β (°) 90.310 (2)
V3) 1826.33 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.11 × 0.10 × 0.09
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.659, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18477, 8221, 7092
Rint 0.051
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.140, 1.09
No. of reflections 8221
No. of parameters 460
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.25
Absolute structure Twinning involves inversion, so Flack parameter cannot be determined
Computer programs: COLLECT (Nonius 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020).

2-Oxo-1,2-diphenylethyl diisopropylcarbamate top
Crystal data top
C21H25NO3F(000) = 728
Mr = 339.42Dx = 1.234 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 15.7976 (5) ÅCell parameters from 18477 reflections
b = 5.9184 (3) Åθ = 1.7–27.5°
c = 19.5340 (8) ŵ = 0.08 mm1
β = 90.310 (2)°T = 133 K
V = 1826.33 (13) Å3Prism, colourless
Z = 40.11 × 0.10 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
7092 reflections with I > 2σ(I)
phi + ω – scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 1.7°
Tmin = 0.659, Tmax = 0.746h = 2020
18477 measured reflectionsk = 77
8221 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + 2.2197P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
8221 reflectionsΔρmax = 0.27 e Å3
460 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.8121 (3)0.6853 (7)0.0240 (2)0.0288 (10)
O2A0.6870 (3)0.4176 (7)0.01863 (19)0.0190 (9)
O3A0.7822 (3)0.2958 (8)0.0975 (2)0.0261 (10)
N1A0.6619 (3)0.4852 (9)0.1293 (2)0.0199 (11)
C1A0.8205 (4)0.4889 (10)0.0388 (3)0.0194 (12)
C2A0.7421 (3)0.3312 (10)0.0333 (3)0.0170 (11)
H2A0.7597030.1725490.0227920.020*
C3A0.7164 (4)0.3938 (10)0.0838 (3)0.0201 (12)
C4A0.6799 (4)0.4475 (11)0.2031 (3)0.0224 (13)
H4A0.7318160.3513590.2060960.027*
C5A0.6988 (4)0.6660 (12)0.2408 (3)0.0337 (16)
H5AA0.7170400.6316440.2876990.051*
H5AB0.6476810.7596970.2420050.051*
H5AC0.7439220.7478290.2171060.051*
C6A0.6084 (4)0.3161 (12)0.2359 (3)0.0286 (14)
H6AA0.6254440.2685980.2819760.043*
H6AB0.5954000.1824910.2080830.043*
H6AC0.5579990.4122510.2387580.043*
C7A0.5909 (3)0.6403 (10)0.1106 (3)0.0186 (12)
H7A0.5637190.6856150.1546300.022*
C8A0.6230 (4)0.8573 (11)0.0779 (3)0.0267 (13)
H8AA0.6664440.9252110.1073490.040*
H8AB0.5758090.9633870.0722330.040*
H8AC0.6472700.8229680.0330240.040*
C9A0.5215 (4)0.5267 (11)0.0676 (3)0.0218 (12)
H9AA0.4711180.6232360.0666600.033*
H9AB0.5071550.3802500.0878550.033*
H9AC0.5419180.5040670.0208200.033*
C10A0.9019 (4)0.3949 (9)0.0646 (3)0.0172 (11)
C11A0.9726 (4)0.5377 (11)0.0640 (3)0.0238 (13)
H11A0.9677780.6858070.0457480.029*
C12A1.0490 (4)0.4657 (12)0.0897 (3)0.0303 (15)
H12A1.0966410.5637040.0887570.036*
C13A1.0564 (4)0.2506 (13)0.1167 (3)0.0327 (16)
H13A1.1087980.2027730.1354110.039*
C14A0.9876 (4)0.1038 (11)0.1168 (3)0.0297 (15)
H14A0.9930420.0441720.1351730.036*
C15A0.9104 (3)0.1759 (10)0.0897 (3)0.0213 (12)
H15A0.8636400.0751400.0883420.026*
C16A0.6918 (3)0.3416 (10)0.0996 (3)0.0184 (12)
C17A0.6459 (4)0.5366 (11)0.1152 (3)0.0253 (13)
H17A0.6476480.6619210.0847790.030*
C18A0.5975 (4)0.5490 (12)0.1749 (3)0.0276 (14)
H18A0.5657080.6815330.1846130.033*
C19A0.5955 (4)0.3686 (12)0.2201 (3)0.0294 (15)
H19A0.5629040.3771760.2610090.035*
C20A0.6413 (4)0.1766 (12)0.2050 (3)0.0302 (15)
H20A0.6398710.0523660.2357930.036*
C21A0.6895 (4)0.1619 (11)0.1456 (3)0.0230 (13)
H21A0.7210400.0287150.1362290.028*
O1B0.6967 (3)0.7307 (7)0.4533 (2)0.0271 (10)
O2B0.8103 (3)0.4526 (7)0.51374 (18)0.0194 (9)
O3B0.7098 (3)0.3500 (8)0.5898 (2)0.0264 (10)
N1B0.8295 (3)0.5399 (9)0.6247 (2)0.0196 (10)
C1B0.6829 (4)0.5301 (10)0.4479 (3)0.0200 (12)
C2B0.7551 (3)0.3627 (10)0.4613 (3)0.0183 (12)
H2B0.7323040.2120460.4752420.022*
C3B0.7777 (4)0.4423 (10)0.5781 (3)0.0189 (12)
C4B0.8101 (4)0.5094 (11)0.6976 (3)0.0258 (14)
H4B0.7569390.4180410.7002360.031*
C5B0.7933 (5)0.7329 (14)0.7337 (3)0.0413 (19)
H5BA0.8464120.8173670.7381910.062*
H5BB0.7701220.7035040.7792730.062*
H5BC0.7525970.8217470.7068960.062*
C6B0.8799 (5)0.3745 (13)0.7337 (3)0.0386 (18)
H6BA0.8635780.3461880.7812680.058*
H6BB0.9328370.4608940.7329220.058*
H6BC0.8880720.2301290.7100810.058*
C7B0.9040 (4)0.6810 (10)0.6067 (3)0.0216 (12)
H7B0.9281590.7340450.6512700.026*
C8B0.8777 (4)0.8945 (11)0.5683 (3)0.0278 (14)
H8BA0.8331980.9725020.5938950.042*
H8BB0.8562160.8537030.5227930.042*
H8BC0.9267430.9945310.5635760.042*
C9B0.9745 (4)0.5502 (11)0.5720 (3)0.0272 (14)
H9BA0.9869650.4131250.5984010.041*
H9BB1.0254040.6445710.5697920.041*
H9BC0.9567460.5084040.5255970.041*
C10B0.5976 (3)0.4428 (10)0.4260 (3)0.0165 (11)
C11B0.5695 (4)0.2237 (10)0.4395 (3)0.0206 (12)
H11B0.6068050.1155340.4592050.025*
C12B0.4860 (3)0.1654 (11)0.4238 (3)0.0223 (12)
H12B0.4665380.0166600.4330740.027*
C13B0.4313 (4)0.3211 (12)0.3951 (3)0.0260 (14)
H13B0.3746110.2789110.3848940.031*
C14B0.4588 (4)0.5393 (11)0.3809 (3)0.0232 (13)
H14B0.4210220.6463330.3611920.028*
C15B0.5419 (4)0.5997 (10)0.3959 (3)0.0221 (13)
H15B0.5612420.7478930.3857320.027*
C16B0.8076 (3)0.3419 (10)0.3967 (3)0.0185 (11)
C17B0.8615 (4)0.5147 (11)0.3770 (3)0.0220 (12)
H17B0.8664760.6465800.4043920.026*
C18B0.9080 (4)0.4954 (11)0.3172 (3)0.0235 (13)
H18B0.9445890.6147490.3038100.028*
C19B0.9015 (4)0.3042 (12)0.2771 (3)0.0286 (15)
H19B0.9335100.2921620.2361730.034*
C20B0.8484 (4)0.1302 (11)0.2965 (3)0.0259 (14)
H20B0.8436570.0012000.2688590.031*
C21B0.8016 (4)0.1475 (10)0.3570 (3)0.0217 (12)
H21B0.7659110.0269040.3707830.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.026 (2)0.018 (2)0.042 (3)0.0023 (19)0.005 (2)0.007 (2)
O2A0.019 (2)0.022 (2)0.0166 (18)0.0056 (17)0.0047 (16)0.0037 (16)
O3A0.023 (2)0.029 (3)0.027 (2)0.0088 (19)0.0014 (18)0.0011 (18)
N1A0.017 (2)0.026 (3)0.017 (2)0.004 (2)0.0009 (18)0.001 (2)
C1A0.023 (3)0.015 (3)0.020 (3)0.001 (2)0.002 (2)0.002 (2)
C2A0.020 (3)0.015 (3)0.016 (2)0.005 (2)0.002 (2)0.000 (2)
C3A0.022 (3)0.015 (3)0.023 (3)0.003 (2)0.002 (2)0.001 (2)
C4A0.024 (3)0.024 (3)0.019 (3)0.006 (3)0.003 (2)0.003 (2)
C5A0.037 (4)0.040 (4)0.025 (3)0.008 (3)0.009 (3)0.007 (3)
C6A0.039 (4)0.026 (3)0.021 (3)0.005 (3)0.003 (3)0.000 (3)
C7A0.017 (3)0.023 (3)0.015 (3)0.006 (2)0.000 (2)0.001 (2)
C8A0.032 (3)0.018 (3)0.029 (3)0.002 (3)0.003 (3)0.002 (3)
C9A0.018 (3)0.025 (3)0.022 (3)0.003 (3)0.002 (2)0.001 (3)
C10A0.023 (3)0.013 (3)0.015 (3)0.001 (2)0.000 (2)0.003 (2)
C11A0.026 (3)0.021 (3)0.024 (3)0.004 (3)0.000 (2)0.001 (3)
C12A0.024 (3)0.037 (4)0.030 (3)0.009 (3)0.000 (3)0.002 (3)
C13A0.019 (3)0.045 (4)0.034 (4)0.008 (3)0.008 (3)0.010 (3)
C14A0.035 (3)0.026 (4)0.029 (3)0.010 (3)0.006 (3)0.008 (3)
C15A0.017 (3)0.024 (3)0.023 (3)0.002 (2)0.005 (2)0.006 (2)
C16A0.016 (3)0.020 (3)0.019 (3)0.007 (2)0.008 (2)0.001 (2)
C17A0.029 (3)0.021 (3)0.026 (3)0.001 (3)0.003 (3)0.002 (3)
C18A0.026 (3)0.030 (4)0.026 (3)0.005 (3)0.000 (3)0.003 (3)
C19A0.023 (3)0.044 (4)0.020 (3)0.000 (3)0.000 (2)0.004 (3)
C20A0.029 (3)0.032 (4)0.030 (3)0.006 (3)0.004 (3)0.012 (3)
C21A0.022 (3)0.023 (3)0.024 (3)0.004 (3)0.003 (2)0.002 (2)
O1B0.026 (2)0.016 (2)0.039 (3)0.0019 (18)0.003 (2)0.0013 (18)
O2B0.019 (2)0.022 (2)0.0173 (18)0.0015 (17)0.0029 (16)0.0019 (16)
O3B0.023 (2)0.029 (2)0.027 (2)0.0082 (19)0.0045 (17)0.0007 (19)
N1B0.020 (2)0.022 (3)0.017 (2)0.002 (2)0.0021 (19)0.000 (2)
C1B0.024 (3)0.018 (3)0.018 (3)0.003 (3)0.003 (2)0.002 (2)
C2B0.019 (3)0.014 (3)0.022 (3)0.002 (2)0.007 (2)0.001 (2)
C3B0.018 (3)0.015 (3)0.024 (3)0.004 (2)0.000 (2)0.006 (2)
C4B0.025 (3)0.035 (4)0.017 (3)0.009 (3)0.004 (2)0.001 (3)
C5B0.047 (4)0.047 (5)0.030 (4)0.004 (4)0.015 (3)0.007 (3)
C6B0.054 (5)0.039 (5)0.023 (3)0.004 (4)0.000 (3)0.011 (3)
C7B0.025 (3)0.021 (3)0.020 (3)0.005 (2)0.001 (2)0.003 (2)
C8B0.034 (3)0.021 (3)0.028 (3)0.004 (3)0.000 (3)0.004 (3)
C9B0.024 (3)0.028 (4)0.030 (3)0.002 (3)0.003 (3)0.002 (3)
C10B0.017 (3)0.019 (3)0.013 (2)0.001 (2)0.002 (2)0.003 (2)
C11B0.019 (3)0.021 (3)0.022 (3)0.001 (2)0.001 (2)0.004 (2)
C12B0.020 (3)0.021 (3)0.026 (3)0.006 (2)0.002 (2)0.003 (3)
C13B0.019 (3)0.038 (4)0.021 (3)0.004 (3)0.002 (2)0.006 (3)
C14B0.023 (3)0.027 (3)0.020 (3)0.006 (3)0.006 (2)0.000 (3)
C15B0.024 (3)0.020 (3)0.022 (3)0.004 (2)0.003 (2)0.003 (2)
C16B0.018 (3)0.018 (3)0.019 (3)0.000 (2)0.004 (2)0.003 (2)
C17B0.023 (3)0.021 (3)0.022 (3)0.003 (3)0.001 (2)0.000 (2)
C18B0.022 (3)0.024 (3)0.024 (3)0.001 (3)0.001 (2)0.007 (3)
C19B0.025 (3)0.037 (4)0.024 (3)0.004 (3)0.005 (3)0.003 (3)
C20B0.029 (3)0.025 (3)0.024 (3)0.007 (3)0.001 (3)0.004 (3)
C21B0.020 (3)0.019 (3)0.026 (3)0.000 (2)0.007 (2)0.002 (2)
Geometric parameters (Å, º) top
O1A—C1A1.205 (7)O1B—C1B1.212 (7)
O2A—C3A1.360 (7)O2B—C3B1.363 (6)
O2A—C2A1.435 (6)O2B—C2B1.443 (6)
O3A—C3A1.219 (7)O3B—C3B1.227 (7)
N1A—C3A1.354 (7)N1B—C3B1.350 (7)
N1A—C4A1.484 (7)N1B—C4B1.469 (7)
N1A—C7A1.493 (7)N1B—C7B1.486 (7)
C1A—C10A1.491 (8)C1B—C10B1.503 (8)
C1A—C2A1.555 (8)C1B—C2B1.533 (8)
C2A—C16A1.516 (8)C2B—C16B1.519 (8)
C2A—H2A1.0000C2B—H2B1.0000
C4A—C6A1.516 (8)C4B—C5B1.524 (10)
C4A—C5A1.518 (9)C4B—C6B1.531 (9)
C4A—H4A1.0000C4B—H4B1.0000
C5A—H5AA0.9800C5B—H5BA0.9800
C5A—H5AB0.9800C5B—H5BB0.9800
C5A—H5AC0.9800C5B—H5BC0.9800
C6A—H6AA0.9800C6B—H6BA0.9800
C6A—H6AB0.9800C6B—H6BB0.9800
C6A—H6AC0.9800C6B—H6BC0.9800
C7A—C8A1.523 (8)C7B—C9B1.519 (8)
C7A—C9A1.532 (8)C7B—C8B1.526 (8)
C7A—H7A1.0000C7B—H7B1.0000
C8A—H8AA0.9800C8B—H8BA0.9800
C8A—H8AB0.9800C8B—H8BB0.9800
C8A—H8AC0.9800C8B—H8BC0.9800
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C10A—C15A1.392 (8)C10B—C11B1.396 (8)
C10A—C11A1.400 (8)C10B—C15B1.405 (8)
C11A—C12A1.377 (8)C11B—C12B1.396 (8)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.384 (10)C12B—C13B1.380 (9)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.391 (9)C13B—C14B1.391 (9)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.400 (8)C14B—C15B1.391 (8)
C14A—H14A0.9500C14B—H14B0.9500
C15A—H15A0.9500C15B—H15B0.9500
C16A—C21A1.392 (8)C16B—C17B1.386 (8)
C16A—C17A1.396 (9)C16B—C21B1.391 (8)
C17A—C18A1.393 (8)C17B—C18B1.388 (8)
C17A—H17A0.9500C17B—H17B0.9500
C18A—C19A1.386 (9)C18B—C19B1.380 (9)
C18A—H18A0.9500C18B—H18B0.9500
C19A—C20A1.378 (10)C19B—C20B1.383 (9)
C19A—H19A0.9500C19B—H19B0.9500
C20A—C21A1.388 (9)C20B—C21B1.400 (8)
C20A—H20A0.9500C20B—H20B0.9500
C21A—H21A0.9500C21B—H21B0.9500
C3A—O2A—C2A114.8 (4)C3B—O2B—C2B114.1 (4)
C3A—N1A—C4A117.2 (5)C3B—N1B—C4B118.1 (5)
C3A—N1A—C7A124.4 (5)C3B—N1B—C7B124.0 (4)
C4A—N1A—C7A118.0 (4)C4B—N1B—C7B117.9 (5)
O1A—C1A—C10A122.5 (5)O1B—C1B—C10B121.5 (6)
O1A—C1A—C2A118.3 (5)O1B—C1B—C2B118.9 (5)
C10A—C1A—C2A119.2 (5)C10B—C1B—C2B119.5 (5)
O2A—C2A—C16A105.8 (4)O2B—C2B—C16B106.8 (4)
O2A—C2A—C1A108.7 (5)O2B—C2B—C1B109.2 (5)
C16A—C2A—C1A109.4 (4)C16B—C2B—C1B108.6 (4)
O2A—C2A—H2A110.9O2B—C2B—H2B110.7
C16A—C2A—H2A110.9C16B—C2B—H2B110.7
C1A—C2A—H2A110.9C1B—C2B—H2B110.7
O3A—C3A—N1A126.2 (5)O3B—C3B—N1B126.4 (5)
O3A—C3A—O2A122.8 (5)O3B—C3B—O2B121.8 (5)
N1A—C3A—O2A110.9 (5)N1B—C3B—O2B111.8 (5)
N1A—C4A—C6A110.4 (5)N1B—C4B—C5B112.3 (5)
N1A—C4A—C5A112.3 (5)N1B—C4B—C6B110.9 (5)
C6A—C4A—C5A112.1 (5)C5B—C4B—C6B111.4 (6)
N1A—C4A—H4A107.2N1B—C4B—H4B107.3
C6A—C4A—H4A107.2C5B—C4B—H4B107.3
C5A—C4A—H4A107.2C6B—C4B—H4B107.3
C4A—C5A—H5AA109.5C4B—C5B—H5BA109.5
C4A—C5A—H5AB109.5C4B—C5B—H5BB109.5
H5AA—C5A—H5AB109.5H5BA—C5B—H5BB109.5
C4A—C5A—H5AC109.5C4B—C5B—H5BC109.5
H5AA—C5A—H5AC109.5H5BA—C5B—H5BC109.5
H5AB—C5A—H5AC109.5H5BB—C5B—H5BC109.5
C4A—C6A—H6AA109.5C4B—C6B—H6BA109.5
C4A—C6A—H6AB109.5C4B—C6B—H6BB109.5
H6AA—C6A—H6AB109.5H6BA—C6B—H6BB109.5
C4A—C6A—H6AC109.5C4B—C6B—H6BC109.5
H6AA—C6A—H6AC109.5H6BA—C6B—H6BC109.5
H6AB—C6A—H6AC109.5H6BB—C6B—H6BC109.5
N1A—C7A—C8A111.7 (5)N1B—C7B—C9B113.7 (5)
N1A—C7A—C9A113.5 (5)N1B—C7B—C8B111.6 (5)
C8A—C7A—C9A112.2 (5)C9B—C7B—C8B113.7 (5)
N1A—C7A—H7A106.3N1B—C7B—H7B105.6
C8A—C7A—H7A106.3C9B—C7B—H7B105.6
C9A—C7A—H7A106.3C8B—C7B—H7B105.6
C7A—C8A—H8AA109.5C7B—C8B—H8BA109.5
C7A—C8A—H8AB109.5C7B—C8B—H8BB109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BB109.5
C7A—C8A—H8AC109.5C7B—C8B—H8BC109.5
H8AA—C8A—H8AC109.5H8BA—C8B—H8BC109.5
H8AB—C8A—H8AC109.5H8BB—C8B—H8BC109.5
C7A—C9A—H9AA109.5C7B—C9B—H9BA109.5
C7A—C9A—H9AB109.5C7B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C7A—C9A—H9AC109.5C7B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C15A—C10A—C11A119.1 (5)C11B—C10B—C15B119.6 (5)
C15A—C10A—C1A123.5 (5)C11B—C10B—C1B123.4 (5)
C11A—C10A—C1A117.5 (5)C15B—C10B—C1B116.7 (5)
C12A—C11A—C10A120.8 (6)C10B—C11B—C12B119.3 (6)
C12A—C11A—H11A119.6C10B—C11B—H11B120.4
C10A—C11A—H11A119.6C12B—C11B—H11B120.4
C11A—C12A—C13A119.9 (6)C13B—C12B—C11B120.8 (6)
C11A—C12A—H12A120.0C13B—C12B—H12B119.6
C13A—C12A—H12A120.0C11B—C12B—H12B119.6
C12A—C13A—C14A120.5 (6)C12B—C13B—C14B120.4 (6)
C12A—C13A—H13A119.7C12B—C13B—H13B119.8
C14A—C13A—H13A119.7C14B—C13B—H13B119.8
C13A—C14A—C15A119.4 (6)C13B—C14B—C15B119.5 (6)
C13A—C14A—H14A120.3C13B—C14B—H14B120.3
C15A—C14A—H14A120.3C15B—C14B—H14B120.3
C10A—C15A—C14A120.2 (6)C14B—C15B—C10B120.4 (6)
C10A—C15A—H15A119.9C14B—C15B—H15B119.8
C14A—C15A—H15A119.9C10B—C15B—H15B119.8
C21A—C16A—C17A118.6 (5)C17B—C16B—C21B119.7 (5)
C21A—C16A—C2A122.1 (5)C17B—C16B—C2B120.7 (5)
C17A—C16A—C2A119.3 (5)C21B—C16B—C2B119.7 (5)
C18A—C17A—C16A120.5 (6)C16B—C17B—C18B120.1 (6)
C18A—C17A—H17A119.7C16B—C17B—H17B119.9
C16A—C17A—H17A119.7C18B—C17B—H17B119.9
C19A—C18A—C17A120.2 (6)C19B—C18B—C17B120.5 (6)
C19A—C18A—H18A119.9C19B—C18B—H18B119.8
C17A—C18A—H18A119.9C17B—C18B—H18B119.8
C20A—C19A—C18A119.3 (6)C18B—C19B—C20B119.8 (6)
C20A—C19A—H19A120.4C18B—C19B—H19B120.1
C18A—C19A—H19A120.4C20B—C19B—H19B120.1
C19A—C20A—C21A121.0 (6)C19B—C20B—C21B120.1 (6)
C19A—C20A—H20A119.5C19B—C20B—H20B120.0
C21A—C20A—H20A119.5C21B—C20B—H20B120.0
C20A—C21A—C16A120.3 (6)C16B—C21B—C20B119.8 (6)
C20A—C21A—H21A119.8C16B—C21B—H21B120.1
C16A—C21A—H21A119.8C20B—C21B—H21B120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12A···O3Ai0.952.363.309 (2)174
C14B—H14B···O3Bii0.952.583.288 (2)132
C11B—H11B···O1Biii0.952.693.553 (2)152
C21B—H21B···O1Biii0.952.623.522 (2)158
Symmetry codes: (i) x+2, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x, y1, z.
 

Funding information

Funding for this research was provided by: the Open Access Fund of the University of Koblenz-Landau. Financial support of the PhD project of VM by Lohmann GmbH & Co. KG, Neuwied, Germany, is gratefully acknowledged.

References

First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond. Oxford Science Publications.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGivens, R. S., Rubina, M. & Wirz, J. (2012). Photochem. Photobiol. Sci. 11, 472–488.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, H., Zhang, H., Xiong, W., Qi, C., Wu, W., Wang, L. & Cheng, R. (2019). Org. Lett. 21, 1125–1129.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKammari, L., Plíštil, L., Wirz, J. & Klán, P. (2007). Photochem. Photobiol. Sci. 6, 50–56.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). Chem. Rev. 113, 119–191.  Web of Science PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLange, H., Fröhlich, R. & Hoppe, D. (2008). Tetrahedron, 64, 9123–9135.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartens, V., Görls, H. & Imhof, W. (2021). Acta Cryst. E77, 785–787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771–3774.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpeckmeier, E., Klimkait, M. & Zeitler, K. (2018). J. Org. Chem. 83, 3738–3745.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds