research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-2-{[(2,4-di­methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol

crossmark logo

aSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, bAkay Pharma Medicine and Health Products Industries & Trade, 34000, Istanbul, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, eDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, and fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 20 September 2021; accepted 3 October 2021; online 13 October 2021)

The title compound, C16H17NO, is a Schiff base that exists in the enol–imine tautomeric form and adopts a Z configuration. The mol­ecule is non-planar, with the twisted rings making a dihedral angle of 39.92 (4)°. The intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯π inter­actions and very weak π-π stacking inter­actions also help to consolidate the crystal packing. A Hirshfeld surface analysis was performed to investigate the contributions of different inter­molecular contacts within the supra­molecular structure. The major contributions are from H⋯H (65%), C⋯H (19.2%) and O⋯H (6.6%) inter­actions.

1. Chemical context

Schiff bases are well-known organic compounds widely used in many areas. These compounds can be easily synthesized by condensation of a primary aliphatic or aromatic amine with an aldehyde or ketone in different solvent media and they can easily be purified, since the amount of by-products is negligible (Tanak et al., 2020[Tanak, H., Karataş, Ş., Meral, S. & Ağar, E. (2020). Crystallogr. Rep. 65, 1221-1225.]). Schiff bases are in general more stable than the compounds from which they are synthesized (Wadher et al., 2009[Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharmtech Res. 1, 22-33.]). Nowadays, the possibility of mol­ecular design is an important key for many research areas such as medicine or agriculture. In this respect, Schiff base formation provides an easy way to design new compounds, and biolog­ically or chemically active compounds can be obtained using this method. As the structures of Schiff bases are generally similar to those of biological mol­ecules, Schiff bases are valuable for understanding biological phenomena. As a result, Schiff bases are used in many studies. Various types of aldehydes or ketones have been used for their synthesis, but 2-hy­droxy­benzaldehyde and its derivatives are used especially often (Jeewoth et al., 2000[Jeewoth, T., Li Kam Wah, H., Bhowon, M. G., Ghoorohoo, D. & Babooram, K. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1023-1038.]; Mazhar et al., 2020[Mazhar, N., Aftab, M., Mahmud, T., Basra, M. R., Akhtar, M. & Mitu, L. (2020). Rev. Chim. 71, 47-58.]). The basis of such preference is the tautomerism and stability provided by the hydroxyl group in conjunction with the imine group. Schiff bases with intra­molecular hydrogen bonds can exhibit photochromic and thermochromic properties (Elerman et al., 2002[Elerman, Y., Kabak, M., Elmali, A. & Naturforsch, Z. B. (2002). Chem. Sci. 57, 651-656.]). Schiff bases obtained from 2-hy­droxy­benzaldehyde and its derivatives can also form complexes with various metal ions. The title compound is a Schiff base prepared from 2-hy­droxy-5-methyl­benzaldehyde.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the phenol–imine tautomeric form with an Z configuration with respect to the imine bond. The asymmetric unit contains one mol­ecule (Fig. 1[link]), which is non-planar, two aromatic rings being twisted with respect to each other, subtending a dihedral angle of 39.92 (4)°. The hy­droxy and imine groups are involved in a strong intra­molecular O1—H1⋯N1 hydrogen bond forming an S(6) ring motif. The C1—O1 [1.353 (2) Å] and C7—N1 [1.282 (2) Å] bond distances indicate their single- and double-bond characters, respectively, being consistent with the phenol–imine tautomeric form.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines denote the intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C16—H16Aπ (C9–C14) inter­actions (Table 1[link], Fig. 2[link]), and very weak ππ stacking inter­actions between the OH-substituted rings (C1–C6) related by the a glide plane [CgCg (−[{1\over 2}] + x, y, [{1\over 2}] − z) = 4.0220 (9) Å] lead to additional stabilization of the crystal packing. A view of the crystal packing parallel to the bc plane is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.618 (2) 147
C16—H16ACg2i 0.96 2.93 (3) 3.73 143
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. The C16—H16ACg2 inter­actions are denoted as dashed lines and as a red spot on the de surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (Z)-2-{[(2,4-di­methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol unit, revealed ten hits where this fragment adopts the enol–imine tautomeric form. The imine bond length (N1—C7) in the title compound is the same within standard uncertainties as the corresponding bond lengths in the structures of 2-(di­phenyl­meth­yl)-6-[(mesityl­imino)­meth­yl]-4-methyl­phenol (DEHQIS; Zhou et al., 2012[Zhou, Z., Li, W., Hou, X., Chen, L., Hao, X., Redshaw, C. & Sun, W.-H. (2012). Inorg. Chim. Acta, 392, 292-299.]), (R)-N,N′-bis­(3,5-di-t-butyl­salicyl­idene)-5,5′,6,6′,7,7′,8,8′-octa­hydro-1,1′-binaphthyl-2,2′-di­amine (MIFXAA; Jia et al., 2002[Jia, X., Li, X. & Zhou, Z. (2002). Acta Cryst. E58, o183-o184.]), aceto­nitrile-bis­{2-(mesitylcarbonoimido­yl)-6-[(mesityl­imino)­meth­yl]-4-methyl­phenolato}magnesium aceto­nitrile solvate (QUDZAS; Ghosh et al., 2015[Ghosh, S., Chakraborty, D. & Ramkumar, V. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 1474-1491.]), bis­{2,4-di-t-butyl-6-[(mesityl­imino)­meth­yl]phen­o­lato}tetra­hydro­furan­magnesium (QUDZIA; Ghosh et al., 2015[Ghosh, S., Chakraborty, D. & Ramkumar, V. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 1474-1491.]) and 2,4-di-t-butyl-6-{[(2,4,6-tri-t-butyl­phen­yl)imino]­meth­yl}phenol (YADZOV; Ma et al., 2016[Ma, M., Shen, X., Wang, W., Li, J., Yao, W. & Zhu, L. (2016). Eur. J. Inorg. Chem. 2016, 5057-5062.]). As for the C1—O1 bond [1.353 (2) Å], its length compares well with 1.352 (2) Å for YADZOV and 1.359 (5) Å for DEHQIS. All other bond dimensions in the title structure agree well with those in previous literature reports. In NUGWES, NUGWIW and NUGWOC (Xu et al., 2009[Xu, Z.-X., Huang, Z.-T. & Chen, C.-F. (2009). Tetrahedron Lett. 50, 5430-5433.]) and in YADZOV (Ma et al., 2016[Ma, M., Shen, X., Wang, W., Li, J., Yao, W. & Zhu, L. (2016). Eur. J. Inorg. Chem. 2016, 5057-5062.]), the lengths of intra­molecular O—H⋯N hydrogen bonds are especially short, being within the range 1.81–1.88 Å.

5. Hirshfeld surface analysis

We have performed a Hirshfeld surface analysis and generated the associated two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surface analysis is an important way of determining the location of atoms with potential to form hydrogen bonds and other inter­molecular contacts, and the qu­anti­tative ratio of these inter­actions (Demircioğlu et al., 2019[Demircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129-137.]). The Hirshfeld surface was generated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over a fixed colour scale of −0.1168 (red) to 1.1632 Å (blue) (the fixed colour scale is 1.0201 to 2.4894 Å for the de surface). In Figs. 2[link] and 3[link], the red spots on the dnorm and de surfaces represent the C—H⋯Cg inter­actions. The most important inter­action is H⋯H, contributing 65% to the overall crystal packing, which is illustrated in the 2D fingerprint (Fig. 4[link]). Two symmetrical wings on the left and right sides are seen in the fingerprint plot for C⋯H/H⋯C inter­actions, the second most important contributor to the total Hirshfeld surface (19%). The O⋯H/H⋯O inter­actions provide a 6.6% contribution to the total Hirshfeld surface. Much weaker C⋯C (5.3%), N⋯H/H⋯N (2.3%) and C⋯O/O⋯C (1.3%) contacts are also present.

[Figure 3]
Figure 3
The red spots on the dnorm and de surfaces of the title mol­ecule represent the C—H⋯π inter­actions.
[Figure 4]
Figure 4
Fingerprint plots showing all inter­molecular inter­actions and resolved into H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts.

6. Synthesis and crystallization

(Z)-2-{[(2,4-di­methyl­phen­yl)imino]­meth­yl}-4-methyl­phenol was synthesized by condensation of 2-hy­droxy-5-methyl­benzaldehyde and 2,4-di­methyl­aniline (Fig. 5[link]). For this purpose, a mixture of a solution containing 2-hy­droxy-5-methyl­benzaldehyde (0.04 mmol) in ethanol (20 mL) and a solution containing 2,4-di­methyl­aniline (0.04 mmol) in ethanol (20 mL) was refluxed for 6 h under stirring. The obtained crystalline product was washed with ethanol and dried at room temperature. Single crystals were obtained by slow evaporation of ethanol solution at room temperature.

[Figure 5]
Figure 5
The scheme of synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atom was located in a difference-Fourier map and refined with O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and Uiso(H) = 1.2Ueq(C) for sp2-hybridized C atoms and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C16H17NO
Mr 239.30
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 7.6699 (4), 11.6080 (6), 30.1431 (17)
V3) 2683.7 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.68 × 0.48 × 0.18
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.953, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 14869, 2213, 1451
Rint 0.081
(sin θ/λ)max−1) 0.583
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.00
No. of reflections 2213
No. of parameters 168
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.11
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

(Z)-2-{[(2,4-Dimethylphenyl)imino]methyl}-4-methylphenol top
Crystal data top
C16H17NODx = 1.185 Mg m3
Mr = 239.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 13620 reflections
a = 7.6699 (4) Åθ = 1.4–24.9°
b = 11.6080 (6) ŵ = 0.07 mm1
c = 30.1431 (17) ÅT = 296 K
V = 2683.7 (2) Å3Plate, orange
Z = 80.68 × 0.48 × 0.18 mm
F(000) = 1024
Data collection top
Stoe IPDS 2
diffractometer
2213 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1451 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.081
rotation method scansθmax = 24.5°, θmin = 1.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.953, Tmax = 0.990k = 1313
14869 measured reflectionsl = 3434
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0725P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.11 e Å3
2213 reflectionsΔρmin = 0.11 e Å3
168 parametersExtinction correction: file:///iucrfs/e/yk2157/yk2157.cif, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0094 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3099 (2)0.58146 (10)0.30727 (4)0.0844 (4)
H10.3307510.5404270.3287690.127*
N10.42492 (18)0.40012 (12)0.34984 (5)0.0663 (4)
C60.4130 (2)0.40987 (13)0.27056 (6)0.0569 (4)
C50.4477 (2)0.35487 (14)0.23014 (5)0.0595 (4)
H50.4956490.2812880.2306840.071*
C70.4516 (2)0.35261 (15)0.31204 (6)0.0611 (5)
H70.4974150.2784730.3112670.073*
C10.3426 (2)0.52223 (13)0.26953 (6)0.0630 (5)
C90.4629 (2)0.33967 (15)0.38970 (6)0.0633 (5)
C40.4139 (2)0.40502 (16)0.18961 (6)0.0648 (5)
C140.5297 (2)0.40228 (16)0.42555 (6)0.0692 (5)
C100.4302 (2)0.22231 (16)0.39438 (6)0.0724 (5)
H100.3837520.1809140.3707600.087*
C20.3077 (2)0.57301 (15)0.22917 (7)0.0739 (5)
H20.2598570.6465960.2282690.089*
C30.3428 (2)0.51607 (16)0.19032 (7)0.0736 (5)
H30.3184750.5524600.1635390.088*
C120.5363 (2)0.22599 (19)0.46974 (6)0.0759 (6)
C130.5668 (2)0.34303 (19)0.46426 (6)0.0771 (6)
H130.6147310.3837870.4878630.093*
C110.4663 (3)0.16695 (17)0.43391 (6)0.0774 (5)
H110.4432320.0885940.4365440.093*
C80.4528 (3)0.34410 (19)0.14659 (6)0.0893 (6)
H8A0.5244230.3924880.1282850.134*
H8B0.3456000.3276000.1314470.134*
H8C0.5132500.2733970.1526450.134*
C150.5618 (3)0.53050 (18)0.42172 (7)0.0970 (7)
H15A0.6387450.5451860.3972530.145*
H15B0.6139450.5582420.4486310.145*
H15C0.4530200.5694320.4168570.145*
C160.5729 (3)0.1666 (2)0.51352 (7)0.1014 (7)
H16A0.6503630.2133080.5309100.152*
H16B0.6259320.0930750.5080550.152*
H16C0.4654870.1558570.5293520.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0935 (10)0.0608 (7)0.0990 (10)0.0078 (7)0.0082 (9)0.0177 (7)
N10.0658 (9)0.0681 (9)0.0649 (10)0.0063 (7)0.0056 (8)0.0106 (8)
C60.0514 (9)0.0516 (9)0.0676 (10)0.0051 (7)0.0008 (8)0.0042 (8)
C50.0546 (9)0.0567 (9)0.0673 (11)0.0019 (7)0.0042 (9)0.0018 (9)
C70.0588 (10)0.0572 (10)0.0672 (11)0.0014 (8)0.0001 (9)0.0053 (9)
C10.0544 (9)0.0532 (9)0.0813 (12)0.0049 (7)0.0020 (10)0.0063 (10)
C90.0585 (10)0.0731 (12)0.0582 (10)0.0035 (8)0.0057 (9)0.0098 (9)
C40.0552 (10)0.0704 (12)0.0686 (12)0.0072 (8)0.0058 (9)0.0003 (9)
C140.0639 (11)0.0820 (12)0.0618 (11)0.0096 (9)0.0138 (9)0.0186 (10)
C100.0748 (12)0.0757 (12)0.0667 (12)0.0056 (9)0.0078 (10)0.0093 (9)
C20.0638 (11)0.0548 (10)0.1032 (15)0.0006 (8)0.0073 (11)0.0066 (11)
C30.0672 (12)0.0713 (12)0.0822 (14)0.0090 (10)0.0129 (10)0.0163 (10)
C120.0647 (11)0.0989 (15)0.0642 (12)0.0014 (10)0.0002 (9)0.0072 (10)
C130.0672 (12)0.1049 (16)0.0593 (11)0.0127 (11)0.0051 (9)0.0186 (10)
C110.0842 (13)0.0762 (12)0.0716 (12)0.0001 (10)0.0075 (11)0.0006 (10)
C80.0923 (15)0.1077 (16)0.0680 (13)0.0019 (12)0.0081 (11)0.0041 (11)
C150.1220 (19)0.0904 (15)0.0785 (13)0.0314 (13)0.0196 (13)0.0273 (11)
C160.1019 (17)0.130 (2)0.0727 (14)0.0012 (14)0.0154 (12)0.0056 (13)
Geometric parameters (Å, º) top
O1—C11.353 (2)C10—H100.9300
O1—H10.8200C2—C31.371 (3)
N1—C71.2823 (19)C2—H20.9300
N1—C91.421 (2)C3—H30.9300
C6—C51.401 (2)C12—C111.387 (3)
C6—C11.412 (2)C12—C131.388 (3)
C6—C71.447 (2)C12—C161.515 (3)
C5—C41.378 (2)C13—H130.9300
C5—H50.9300C11—H110.9300
C7—H70.9300C8—H8A0.9600
C1—C21.378 (2)C8—H8B0.9600
C9—C101.392 (2)C8—H8C0.9600
C9—C141.400 (2)C15—H15A0.9600
C4—C31.400 (3)C15—H15B0.9600
C4—C81.507 (3)C15—H15C0.9600
C14—C131.384 (3)C16—H16A0.9600
C14—C151.513 (3)C16—H16B0.9600
C10—C111.382 (2)C16—H16C0.9600
C1—O1—H1109.5C2—C3—H3118.9
C7—N1—C9120.40 (15)C4—C3—H3118.9
C5—C6—C1118.32 (16)C11—C12—C13117.14 (18)
C5—C6—C7120.23 (15)C11—C12—C16121.7 (2)
C1—C6—C7121.44 (16)C13—C12—C16121.16 (18)
C4—C5—C6122.88 (16)C14—C13—C12123.48 (17)
C4—C5—H5118.6C14—C13—H13118.3
C6—C5—H5118.6C12—C13—H13118.3
N1—C7—C6122.54 (16)C10—C11—C12121.27 (19)
N1—C7—H7118.7C10—C11—H11119.4
C6—C7—H7118.7C12—C11—H11119.4
O1—C1—C2119.28 (16)C4—C8—H8A109.5
O1—C1—C6121.45 (17)C4—C8—H8B109.5
C2—C1—C6119.26 (17)H8A—C8—H8B109.5
C10—C9—C14119.71 (17)C4—C8—H8C109.5
C10—C9—N1122.14 (15)H8A—C8—H8C109.5
C14—C9—N1118.12 (16)H8B—C8—H8C109.5
C5—C4—C3116.66 (17)C14—C15—H15A109.5
C5—C4—C8121.83 (17)C14—C15—H15B109.5
C3—C4—C8121.50 (17)H15A—C15—H15B109.5
C13—C14—C9117.93 (17)C14—C15—H15C109.5
C13—C14—C15121.31 (17)H15A—C15—H15C109.5
C9—C14—C15120.76 (18)H15B—C15—H15C109.5
C11—C10—C9120.43 (17)C12—C16—H16A109.5
C11—C10—H10119.8C12—C16—H16B109.5
C9—C10—H10119.8H16A—C16—H16B109.5
C3—C2—C1120.63 (17)C12—C16—H16C109.5
C3—C2—H2119.7H16A—C16—H16C109.5
C1—C2—H2119.7H16B—C16—H16C109.5
C2—C3—C4122.24 (17)
C1—C6—C5—C40.9 (2)N1—C9—C14—C150.5 (3)
C7—C6—C5—C4179.97 (15)C14—C9—C10—C111.2 (3)
C9—N1—C7—C6179.20 (14)N1—C9—C10—C11178.95 (16)
C5—C6—C7—N1178.78 (14)O1—C1—C2—C3178.64 (16)
C1—C6—C7—N10.3 (2)C6—C1—C2—C30.8 (3)
C5—C6—C1—O1178.36 (15)C1—C2—C3—C40.3 (3)
C7—C6—C1—O10.7 (2)C5—C4—C3—C20.1 (3)
C5—C6—C1—C21.1 (2)C8—C4—C3—C2179.56 (17)
C7—C6—C1—C2179.83 (15)C9—C14—C13—C122.0 (3)
C7—N1—C9—C1038.6 (2)C15—C14—C13—C12178.60 (18)
C7—N1—C9—C14143.67 (16)C11—C12—C13—C140.6 (3)
C6—C5—C4—C30.4 (2)C16—C12—C13—C14177.52 (18)
C6—C5—C4—C8179.87 (15)C9—C10—C11—C120.3 (3)
C10—C9—C14—C132.3 (3)C13—C12—C11—C100.6 (3)
N1—C9—C14—C13179.87 (15)C16—C12—C11—C10178.71 (19)
C10—C9—C14—C15178.33 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.618 (2)147
C16—H16A···Cg2i0.962.93 (3)3.73143
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

Author contributions are as follows. Conceptualization, SK, ND and ES; synthesis, AG and EA; writing (review and editing of the manuscript) SK, EA and AG; formal analysis, SK and ND; crystal-structure determination, ND; validation, SK, ND and EA; project administration, SK, ND and ES.

Funding information

This study was supported by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.

References

First citationDemircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129–137.  Google Scholar
First citationElerman, Y., Kabak, M., Elmali, A. & Naturforsch, Z. B. (2002). Chem. Sci. 57, 651–656.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, S., Chakraborty, D. & Ramkumar, V. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 1474–1491.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeewoth, T., Li Kam Wah, H., Bhowon, M. G., Ghoorohoo, D. & Babooram, K. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1023–1038.  CrossRef CAS Google Scholar
First citationJia, X., Li, X. & Zhou, Z. (2002). Acta Cryst. E58, o183–o184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, M., Shen, X., Wang, W., Li, J., Yao, W. & Zhu, L. (2016). Eur. J. Inorg. Chem. 2016, 5057–5062.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazhar, N., Aftab, M., Mahmud, T., Basra, M. R., Akhtar, M. & Mitu, L. (2020). Rev. Chim. 71, 47–58.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Karataş, Ş., Meral, S. & Ağar, E. (2020). Crystallogr. Rep. 65, 1221–1225.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharmtech Res. 1, 22–33.  CAS Google Scholar
First citationXu, Z.-X., Huang, Z.-T. & Chen, C.-F. (2009). Tetrahedron Lett. 50, 5430–5433.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, Z., Li, W., Hou, X., Chen, L., Hao, X., Redshaw, C. & Sun, W.-H. (2012). Inorg. Chim. Acta, 392, 292–299.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds