research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface and frontier mol­ecular orbital analysis of 9-(3-bromo-4-hy­dr­oxy-5-meth­­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6,7,9-hexa­hydro-1H-xanthene-1,8(2H)-dione

crossmark logo

aDepartment of Chemistry, Government College of Engineering-Sengipatti, Thanjavur-613 402, Tamil Nadu, India, bDepartment of Chemistry, Periyar Government Arts College, Cuddalore-607 001, Tamil Nadu, India, cDepartment of Chemistry, Swami Vivekananda Arts and Science College, Orathur-605 601, Tamil Nadu, India, and dDepartment of Chemistry, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
*Correspondence e-mail: babusuresh1982@gmail.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 24 September 2021; accepted 15 October 2021; online 29 October 2021)

In the fused ring system of the title compound, C24H27BrO5, the mean plane and maximum deviations of the central pyran ring are 0.0384 (2) and 0.0733 (2) Å, respectively. The cyclo­hexenone rings both adopt envelope conformations with the tetra-substituted C atoms as flap atoms, whereas the central pyran ring adopts a flattened boat conformation. The central pyran and phenyl substituent rings are almost perpendicular to each other, making a dihedral angle of 89.71 (2)°. In the crystal, pairs of mol­ecules are linked via O—H⋯O hydrogen bonds, forming inversion dimers with an R22(20) ring motif. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (50.6%), O⋯H/H⋯O (22.9%) and C⋯H/H⋯C (11.1%) contacts. Quantum chemical calculations for the frontier mol­ecular orbitals were undertaken to determine the chemical reactivity of the title compound.

1. Chemical context

Xanthene is known as the parent compound of naturally occurring substances with various biological properties including anti­bacterial (Dimmock et al., 1988[Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111-117.]), anti­viral (Naidu et al., 2012[Naidu, K. R. M., Krishna, B. S., Kumar, M. A., Arulselvan, P., Khalivulla, S. I. & Lasekan, O. (2012). Molecules, 17, 7543-7555.]), anti­tumor (Al-Omran et al., 2014[Al-Omran, F., Mohareb, R. M. & El-Khair, A. A. (2014). Med. Chem. Res. 23, 1623-1633.]) and anti-inflammatory activities (Dimmock et al., 1988[Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111-117.]; Cottam et al., 1996[Cottam, H. B., Shih, H., Tehrani, L. R., Wasson, D. B. & Carson, D. A. (1996). J. Med. Chem. 39, 2-9.]). It is present in organic compounds that are widely used as synthetic dyes (Hilderbrand et al., 2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]), in fluorescent materials used for visualization of biomolecules (Knight et al., 1989[Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-687.]), and in laser technologies (Pohlers et al., 1997[Pohlers, G., Scaiano, J. C. & Sinta, R. (1997). Chem. Mater. 9, 3222-3230.]). Ehretianone, a quinonoid xanthene, was reported to possess anti-snake venom activity (Selvanayagam et al., 1996[Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishna, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664-667.]; Poupelin et al., 1978[Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]). Xanthenes whose structures resemble those of 1,4-di­hydro­pyridines can function as calcium channel blockers (Reddy et al., 2010[Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658-o659.]; Rathore et al., 2009[Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375-381.]).

[Scheme 1]

2. Structural commentary

The title compound (I)[link] (Fig. 1[link]) crystallizes in the triclinic space group P[\overline{1}] with Z = 2. The central pyran ring B (O1/C1/C8–C10/C17) is almost planar with a mean deviation from the mean plane of 0.0384 (2) Å and a maximum deviation of 0.0733 (3) Å for C9. Atoms C9 and O1 are displaced out of the mean plane in the the same direction so the ring may also be described as having a highly flattened boat conformation. Both cyclo­hexenone rings, A (C10–C13/C16/C17) and C (C1–C3/C6–C8), adopt envelope conformations with atoms C13 and C3 as the flaps being situated out of the plane of the ring with deviations of 0.3281 (2) and 0.325 (2) Å, respectively. Rings A, B and C show total puckering amplitudes Q(T) of 0.4645 (2), 0.1070 (2) and 0.4607 (16) Å, respectively. The puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are φ = 179.52 (8)° and θ = 57.55 (2)° for A, φ = 178.99 (2)° and θ = 68.92 (2)° for B, φ = 304.73 (12)° and θ = 125.47 (2)° for C. The planar phenyl substituent and the central pyran ring form a dihedral angle of 89.71 (2)°. In the pyran ring, C1—C8 and C10—C17 are double bonds, as indicated by the bond lengths [C1—C8 = 1.344 (3) Å and C10—C17 = 1.336 (3) Å]. The angles and bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]; Li et al., 2019[Li, J., Hu, S., Zhu, H., Zhang, X., Xu, T. & He, J. (2019). Z. Kristallogr. 234, 79-80.]) are within normal ranges. The observed carbonyl bond lengths [C11—O3 = 1.216 (3) and C7—O2 = 1.227 (2) Å] are also normal.

[Figure 1]
Figure 1
A view of the structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by pairs of O4—H4⋯O2 hydrogen bonds (Table 1[link]), forming inversion dimers with an [R_{2}^{2}](20) ring motif, parallel to the (001) plane (Fig. 2[link]). The mol­ecules are further linked by C6—H6B⋯O2, C16—H16A⋯Br1 and O4—H4⋯O5 hydrogen bonds, forming ribbons (Fig. 3[link]). Overall, the O—H⋯O and C—H⋯O inter­actions yield a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2i 0.97 2.60 3.377 (3) 137
C16—H16A⋯Br1ii 0.97 2.94 3.736 (2) 140
O4—H4⋯O2iii 0.82 2.04 2.768 (2) 148
O4—H4⋯O5 0.82 2.28 2.701 (2) 113
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+2].
[Figure 2]
Figure 2
A view of the structure of (I)[link] showing the O—H⋯O hydrogen bonds, forming a centrosymmetric dimer with an [R_{2}^{2}](20) ring motif.
[Figure 3]
Figure 3
Packing view for (I)[link], showing the formation of O—H⋯O hydrogen bonds between mol­ecules in the unit cell.

To qu­antify the inter­molecular contacts in the crystal, Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm in the range −0.5451 to 1.6834 a.u. (Fig. 4[link]) show the inter­molecular contacts as red-coloured spots, which indicate the closer contacts of C—H⋯O and O—H⋯O hydrogen bonds. The bright-red spots indicate their roles as donors and/or acceptors in hydrogen bonding; they also appear as red and blue regions corresponding to negative and positive potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) shown in Fig. 5[link]. Here the red regions indicate negative electrostatic potential (hydrogen-bond acceptors), while the blue regions indicate positive electrostatic potential (hydrogen-bond donors). The 2D fingerprint plots are illustrated in Fig. 6[link]. The H⋯H contacts comprise 50.6% of the total inter­actions. Besides these contacts, O⋯H/H⋯O (22.9%), C⋯H/H⋯C (11.1%) and Br⋯H/H⋯Br (11.6%) inter­actions make a significant contribution to the total Hirshfeld surface. The percentage contributions of the Br⋯O/O⋯Br, O⋯O and C⋯C contacts are 1.8, 0.7 and 0.1%, respectively.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of (I)[link] plotted over dnorm in the range −0.5451 to 1.6834 a.u. The two O—H⋯O hydrogen bonds forming the dimer are depicted as dashed lines.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of (I)[link] plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are viewed as blue and red regions, respectively, around atoms, corresponding to positive and negative potentials.
[Figure 6]
Figure 6
The percentage contributions of close contacts of (I)[link]. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Frontier mol­ecular orbital analysis

The chemical reactivity of the title compound was studied by frontier mol­ecular orbital analysis. For the calculation, the starting structural geometry was taken from the refined experimental structure obtained from X-ray diffraction data. The energy levels for the compound were computed using the DFT-B3LYP/6-311G++(d,p) level of theory as implemented in Gaussian09W (Frisch et al., 2013[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W, Gaussian Inc., Wallingford CT, USA.]). The calculated frontier mol­ecular orbitals, HOMO, HOMO−1, LUMO and LUMO+1, are shown in Fig. 7[link]. The energies of HOMO, HOMO−1, LUMO and LUMO+1 were calculated to be −5.8915, −6.2499, −1.9353 and −1.0419 eV, respectively, and the energies required to excite one electron from HOMO to LUMO and from HOMO−1 to LUMO+1 are 3.9562 and 5.2080 eV, respectively. The chemical potential, chemical hardness, chemical softness and electrophilicity index of the title mol­ecule are listed in Table 2[link]. Parr et al. (1999[Parr, R., Szentpály, L. V., v, & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922-1924.]) have proposed the electrophilicity index as a qu­anti­tative measure of the energy lowering due to the maximal electron flow between donor and acceptor orbitals. The electrophilicity index value of 3.8711 eV shows the global electrophilic nature of the mol­ecule. Based on the wide band gap and its chemical hardness value of 1.9781 eV, the title mol­ecule seems to be hard.

Table 2
The global reactivity descriptors (eV) of the title compound

Frontier mol­ecular orbitals Energy
EHOMO −5.8915
ELUMO −1.9353
EHOMO−1 −6.2499
ELUMO+1 −1.0419
(EHOMOELUMO) gap 3.9562
(EHOMO−1ELUMO+1) gap 5.2080
Chemical potential (μ) 3.9134
Chemical hardness (η) 1.9781
Chemical softness (S) 0.5055
Electrophilicity index (ω) 3.8711
[Figure 7]
Figure 7
The frontier mol­ecular orbitals of (I)[link].

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the xanthene-1,8(2H)-dione unit resulted in 30 hits. They include the following analogues: 2,4-di­nitro­phenyl (LERZEP; Sureshbabu & Sughanya, 2013[Sureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281.]), 4-hy­droxy-3,5-di­meth­oxy­phenyl (YAVTAS; Sughanya & Sureshbabu, 2012a[Sughanya, V. & Sureshbabu, N. (2012a). Acta Cryst. E68, o1060.]), 2,4-di­fluoro­phenyl (VITWEC; Fun et al., 2011[Fun, H.-K., Loh, W.-S., Rajesh, K., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o1876-o1877.]), pyridine-2-yl (YIDRIP; Purushothaman & Thiruvenkatam, 2018[Purushothaman, G. & Thiruvenkatam, V. (2018). Acta Cryst. C74, 830-838.]). In the title compound, the dihedral angle between the phenyl and pyran rings is 89.71 (2)°, similar to the values observed for LERZEP, the 2,4-di­nitro­phenyl analogue, YAVTAS, the 4-hy­droxy-3,5-di­meth­oxy­phenyl analogue, and VITWEC, the 2,4-di­fluoro­phenyl analogue, for which the dihedral angles are 85.88 (2), 86.32 (2) and 87.55 (4)°, respectively.

6. Synthesis and crystallization

Compound (I)[link] was prepared in two stages (Vanag & Stankevich, 1960[Vanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287-3290.]). A mixture of 5,5-dimethyl cyclo­hexane-1,3-dione (1.12 g, 8 mmol), 3-bromo-4-hy­droxy-5-meth­oxy­benzaldehyde (0.92 g, 4 mmol) and 20 ml of ethanol were heated to 343 K for about 10 minutes. The reaction mixture was allowed to cool to 298–301 K and the resulting inter­mediate compound, 2,2′-[(3-bromo-4-hy­droxy-5-meth­oxy­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) was filtered and dried (m.p. 491 K, 3.4 mmol, yield: 85%) (Sughanya & Sureshbabu, 2012b[Sughanya, V. & Sureshbabu, N. (2012b). Acta Cryst. E68, o2875-o2876.]). In the second stage, about 0.50 g (1.04 mmol) of this inter­mediate were dissolved in 20 ml of ethanol. The content was refluxed together with 5 drops of concentrated hydro­chloric acid for 20 minutes with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into 100 ml of ice-cold water and stirred well. The solid separated was filtered and dried. Yellow single crystals suitable for X-ray diffraction were obtained from 90% ethanol (m.p. 495 K, 0.455 g, 0.96 mmol, yield 92%). IR (KBr): cm−1 3360, 2953, 2865, 1667, 1622, 1584, 1497, 1278, 1234, 1046, 1003. 1H NMR (500 MHz, CDCl3): 1.04 (s, 6H), 1.12 (s, 6H), 2.24 (dd, J = 6 Hz, 4H), 2.47 (dd, J = 6 Hz, 4H), 3.91 (s, 3H), 4.65 (s, 1H), 5.88 (s, 1H), 6.76 (s, 1H), 7.02 (s,1H). 13C NMR (125 MHz, CDCl3): 27.36, 29.21,31.30, 32.23, 40.84, 50.75, 56.32, 107.63, 111.92, 115.26, 123.25, 137.24, 146.56, 162.40, 196.56. ESI–MS: m/z: 475.06 [M + H].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula C24H27BrO5
Mr 475.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.851 (3), 10.763 (3), 12.313 (3)
α, β, γ (°) 82.38 (1), 66.900 (9), 73.484 (10)
V3) 1150.9 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.82
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.550, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 47600, 4052, 3694
Rint 0.029
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.08
No. of reflections 4052
No. of parameters 276
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.50
Computer programs: APEX3, SAINT-Plus and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015a) and publCIF (Westrip, 2010).

9-(3-Bromo-4-hydroxy-5-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione top
Crystal data top
C24H27BrO5F(000) = 492
Mr = 475.36Dx = 1.372 Mg m3
Triclinic, P1Melting point: 495 K
a = 9.851 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.763 (3) ÅCell parameters from 9325 reflections
c = 12.313 (3) Åθ = 2.6–30.0°
α = 82.38 (1)°µ = 1.82 mm1
β = 66.900 (9)°T = 296 K
γ = 73.484 (10)°BLOCK, yellow
V = 1150.9 (5) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
4052 independent reflections
Radiation source: fine-focus sealed tube3694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.550, Tmax = 0.746k = 1212
47600 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.6561P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4052 reflectionsΔρmax = 0.32 e Å3
276 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49132 (3)0.69406 (2)0.62363 (2)0.05292 (10)
C10.5946 (2)0.11911 (17)0.64639 (15)0.0319 (4)
C20.4569 (2)0.0735 (2)0.66746 (17)0.0412 (5)
H2A0.4846230.0204390.6666730.049*
H2B0.4203960.1057430.6038720.049*
C30.3280 (2)0.1192 (2)0.78588 (18)0.0423 (5)
C40.2057 (3)0.0452 (3)0.8150 (2)0.0676 (7)
H4A0.2504190.0460320.8198850.101*
H4B0.1255300.0731810.8892240.101*
H4C0.1645070.0621670.7540310.101*
C50.2564 (3)0.2644 (2)0.7781 (3)0.0617 (7)
H5A0.3328600.3109960.7598810.092*
H5B0.2151340.2812310.7172070.092*
H5C0.1761570.2922450.8524000.092*
C60.3982 (3)0.0887 (2)0.88067 (18)0.0516 (6)
H6A0.3206790.1243560.9546430.062*
H6B0.4274170.0046610.8918560.062*
C70.5345 (2)0.13965 (17)0.85383 (16)0.0366 (4)
C80.6339 (2)0.15206 (16)0.72946 (15)0.0313 (4)
C90.7704 (2)0.20575 (17)0.70112 (16)0.0322 (4)
C100.8672 (2)0.19047 (17)0.57072 (16)0.0322 (4)
C111.0196 (2)0.2146 (2)0.52605 (19)0.0439 (5)
C121.1113 (2)0.2068 (2)0.3948 (2)0.0495 (5)
H12A1.1803100.1210460.3780890.059*
H12B1.1729750.2688030.3728150.059*
C131.0158 (2)0.2333 (2)0.31752 (18)0.0428 (5)
C140.9298 (3)0.3771 (2)0.3217 (2)0.0617 (7)
H14A1.0017930.4293360.2919890.093*
H14B0.8692360.3924180.2739830.093*
H14C0.8644780.3995310.4018120.093*
C151.1185 (3)0.1973 (3)0.1891 (2)0.0627 (7)
H15A1.1894810.2504220.1580580.094*
H15B1.1736170.1076980.1864910.094*
H15C1.0567800.2110830.1424890.094*
C160.9043 (2)0.14713 (19)0.36435 (16)0.0378 (4)
H16A0.8318750.1722400.3251330.045*
H16B0.9604350.0578450.3450980.045*
C170.8192 (2)0.15590 (17)0.49441 (15)0.0313 (4)
C180.7174 (2)0.34791 (17)0.73598 (16)0.0318 (4)
C190.7345 (2)0.38397 (18)0.83369 (16)0.0342 (4)
H190.7867110.3225840.8738460.041*
C200.6744 (2)0.51052 (18)0.87108 (16)0.0346 (4)
C210.7625 (3)0.4676 (3)1.0299 (2)0.0604 (7)
H21A0.7590560.5103921.0948870.091*
H21B0.7169740.3959771.0592240.091*
H21C0.8666800.4364400.9779320.091*
C220.5972 (2)0.60496 (17)0.81104 (16)0.0341 (4)
C230.5878 (2)0.56797 (18)0.71128 (16)0.0334 (4)
C240.6451 (2)0.44079 (18)0.67421 (16)0.0345 (4)
H240.6347650.4182390.6080170.041*
O10.68252 (15)0.12340 (13)0.52771 (10)0.0355 (3)
O20.56680 (19)0.16747 (15)0.93260 (12)0.0493 (4)
O31.0717 (2)0.2361 (2)0.59419 (16)0.0743 (6)
O40.53332 (19)0.72988 (13)0.84657 (13)0.0476 (4)
H40.5315930.7351470.9129520.071*
O50.68156 (19)0.55546 (14)0.96789 (13)0.0489 (4)
H90.829 (2)0.156 (2)0.7488 (18)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06708 (17)0.03847 (13)0.05825 (15)0.00106 (10)0.03853 (12)0.00177 (9)
C10.0423 (10)0.0251 (9)0.0255 (9)0.0070 (8)0.0102 (8)0.0021 (7)
C20.0519 (12)0.0401 (11)0.0348 (10)0.0190 (9)0.0126 (9)0.0071 (8)
C30.0471 (12)0.0427 (11)0.0369 (10)0.0158 (9)0.0104 (9)0.0078 (9)
C40.0628 (16)0.0841 (19)0.0579 (15)0.0401 (15)0.0067 (13)0.0113 (14)
C50.0558 (14)0.0518 (14)0.0809 (18)0.0008 (11)0.0323 (13)0.0200 (13)
C60.0582 (14)0.0608 (14)0.0293 (10)0.0206 (11)0.0070 (10)0.0027 (10)
C70.0520 (12)0.0273 (9)0.0273 (9)0.0037 (8)0.0157 (9)0.0007 (7)
C80.0428 (10)0.0230 (8)0.0262 (9)0.0039 (7)0.0138 (8)0.0010 (7)
C90.0409 (10)0.0287 (9)0.0294 (9)0.0032 (8)0.0191 (8)0.0027 (7)
C100.0371 (10)0.0267 (9)0.0319 (9)0.0021 (7)0.0153 (8)0.0036 (7)
C110.0407 (11)0.0464 (12)0.0470 (12)0.0073 (9)0.0206 (10)0.0034 (9)
C120.0385 (11)0.0577 (14)0.0491 (12)0.0127 (10)0.0115 (10)0.0049 (10)
C130.0417 (11)0.0446 (11)0.0349 (10)0.0099 (9)0.0080 (9)0.0006 (9)
C140.0723 (17)0.0451 (13)0.0584 (15)0.0140 (12)0.0192 (13)0.0114 (11)
C150.0563 (14)0.0825 (18)0.0388 (12)0.0235 (13)0.0026 (11)0.0026 (12)
C160.0416 (11)0.0396 (10)0.0286 (9)0.0056 (8)0.0115 (8)0.0050 (8)
C170.0345 (10)0.0265 (9)0.0300 (9)0.0038 (7)0.0116 (8)0.0017 (7)
C180.0361 (10)0.0308 (9)0.0305 (9)0.0077 (8)0.0138 (8)0.0049 (7)
C190.0412 (10)0.0338 (10)0.0328 (9)0.0091 (8)0.0194 (8)0.0009 (8)
C200.0432 (11)0.0373 (10)0.0287 (9)0.0155 (8)0.0140 (8)0.0050 (8)
C210.0862 (18)0.0673 (16)0.0484 (13)0.0213 (14)0.0426 (13)0.0100 (11)
C220.0376 (10)0.0295 (9)0.0347 (10)0.0097 (8)0.0104 (8)0.0060 (8)
C230.0361 (10)0.0318 (9)0.0346 (10)0.0061 (8)0.0175 (8)0.0001 (8)
C240.0415 (10)0.0345 (10)0.0317 (9)0.0076 (8)0.0178 (8)0.0062 (8)
O10.0420 (7)0.0434 (7)0.0240 (6)0.0152 (6)0.0112 (5)0.0044 (5)
O20.0715 (10)0.0505 (9)0.0272 (7)0.0142 (8)0.0204 (7)0.0024 (6)
O30.0588 (11)0.1243 (17)0.0587 (11)0.0374 (11)0.0297 (9)0.0097 (11)
O40.0675 (10)0.0325 (7)0.0435 (8)0.0032 (7)0.0248 (8)0.0116 (6)
O50.0739 (10)0.0411 (8)0.0421 (8)0.0138 (7)0.0303 (8)0.0103 (6)
Geometric parameters (Å, º) top
Br1—C231.8954 (19)C12—H12A0.9700
C1—C81.344 (3)C12—H12B0.9700
C1—O11.378 (2)C13—C161.530 (3)
C1—C21.489 (3)C13—C141.535 (3)
C2—C31.537 (3)C13—C151.536 (3)
C2—H2A0.9700C14—H14A0.9600
C2—H2B0.9700C14—H14B0.9600
C3—C51.529 (3)C14—H14C0.9600
C3—C41.530 (3)C15—H15A0.9600
C3—C61.534 (3)C15—H15B0.9600
C4—H4A0.9600C15—H15C0.9600
C4—H4B0.9600C16—C171.489 (3)
C4—H4C0.9600C16—H16A0.9700
C5—H5A0.9600C16—H16B0.9700
C5—H5B0.9600C17—O11.378 (2)
C5—H5C0.9600C18—C241.380 (3)
C6—C71.494 (3)C18—C191.395 (2)
C6—H6A0.9700C19—C201.383 (3)
C6—H6B0.9700C19—H190.9300
C7—O21.227 (2)C20—O51.378 (2)
C7—C81.471 (3)C20—C221.400 (3)
C8—C91.511 (3)C21—O51.403 (3)
C9—C101.515 (3)C21—H21A0.9600
C9—C181.530 (2)C21—H21B0.9600
C9—H90.98 (2)C21—H21C0.9600
C10—C171.336 (3)C22—O41.362 (2)
C10—C111.470 (3)C22—C231.384 (3)
C11—O31.216 (3)C23—C241.387 (3)
C11—C121.510 (3)C24—H240.9300
C12—C131.533 (3)O4—H40.8200
C8—C1—O1122.25 (17)H12A—C12—H12B107.6
C8—C1—C2126.24 (17)C16—C13—C12107.75 (17)
O1—C1—C2111.51 (15)C16—C13—C14110.89 (18)
C1—C2—C3112.21 (16)C12—C13—C14110.14 (19)
C1—C2—H2A109.2C16—C13—C15108.20 (18)
C3—C2—H2A109.2C12—C13—C15110.44 (19)
C1—C2—H2B109.2C14—C13—C15109.39 (19)
C3—C2—H2B109.2C13—C14—H14A109.5
H2A—C2—H2B107.9C13—C14—H14B109.5
C5—C3—C4109.3 (2)H14A—C14—H14B109.5
C5—C3—C6111.04 (18)C13—C14—H14C109.5
C4—C3—C6109.72 (19)H14A—C14—H14C109.5
C5—C3—C2109.94 (19)H14B—C14—H14C109.5
C4—C3—C2109.43 (17)C13—C15—H15A109.5
C6—C3—C2107.36 (18)C13—C15—H15B109.5
C3—C4—H4A109.5H15A—C15—H15B109.5
C3—C4—H4B109.5C13—C15—H15C109.5
H4A—C4—H4B109.5H15A—C15—H15C109.5
C3—C4—H4C109.5H15B—C15—H15C109.5
H4A—C4—H4C109.5C17—C16—C13112.68 (16)
H4B—C4—H4C109.5C17—C16—H16A109.1
C3—C5—H5A109.5C13—C16—H16A109.1
C3—C5—H5B109.5C17—C16—H16B109.1
H5A—C5—H5B109.5C13—C16—H16B109.1
C3—C5—H5C109.5H16A—C16—H16B107.8
H5A—C5—H5C109.5C10—C17—O1123.42 (16)
H5B—C5—H5C109.5C10—C17—C16125.17 (18)
C7—C6—C3115.04 (17)O1—C17—C16111.41 (15)
C7—C6—H6A108.5C24—C18—C19119.37 (17)
C3—C6—H6A108.5C24—C18—C9119.97 (16)
C7—C6—H6B108.5C19—C18—C9120.58 (16)
C3—C6—H6B108.5C20—C19—C18120.33 (17)
H6A—C6—H6B107.5C20—C19—H19119.8
O2—C7—C8119.91 (19)C18—C19—H19119.8
O2—C7—C6121.64 (18)O5—C20—C19124.98 (18)
C8—C7—C6118.42 (17)O5—C20—C22114.18 (16)
C1—C8—C7117.75 (18)C19—C20—C22120.84 (17)
C1—C8—C9123.31 (16)O5—C21—H21A109.5
C7—C8—C9118.90 (16)O5—C21—H21B109.5
C8—C9—C10109.09 (15)H21A—C21—H21B109.5
C8—C9—C18110.02 (15)O5—C21—H21C109.5
C10—C9—C18111.38 (15)H21A—C21—H21C109.5
C8—C9—H9107.8 (12)H21B—C21—H21C109.5
C10—C9—H9110.4 (11)O4—C22—C23119.68 (17)
C18—C9—H9108.0 (12)O4—C22—C20122.66 (17)
C17—C10—C11118.59 (17)C23—C22—C20117.67 (16)
C17—C10—C9122.45 (17)C22—C23—C24121.99 (17)
C11—C10—C9118.96 (16)C22—C23—Br1119.16 (14)
O3—C11—C10120.3 (2)C24—C23—Br1118.84 (14)
O3—C11—C12121.2 (2)C18—C24—C23119.71 (16)
C10—C11—C12118.47 (18)C18—C24—H24120.1
C11—C12—C13114.73 (18)C23—C24—H24120.1
C11—C12—H12A108.6C1—O1—C17118.39 (14)
C13—C12—H12A108.6C22—O4—H4109.5
C11—C12—H12B108.6C20—O5—C21117.51 (16)
C13—C12—H12B108.6
C8—C1—C2—C324.0 (3)C12—C13—C16—C1749.6 (2)
O1—C1—C2—C3156.46 (16)C14—C13—C16—C1771.0 (2)
C1—C2—C3—C572.5 (2)C15—C13—C16—C17169.04 (18)
C1—C2—C3—C4167.4 (2)C11—C10—C17—O1175.94 (16)
C1—C2—C3—C648.4 (2)C9—C10—C17—O14.1 (3)
C5—C3—C6—C767.4 (2)C11—C10—C17—C164.0 (3)
C4—C3—C6—C7171.63 (19)C9—C10—C17—C16175.98 (17)
C2—C3—C6—C752.8 (2)C13—C16—C17—C1024.5 (3)
C3—C6—C7—O2151.79 (19)C13—C16—C17—O1155.55 (16)
C3—C6—C7—C830.3 (3)C8—C9—C18—C2468.8 (2)
O1—C1—C8—C7177.95 (16)C10—C9—C18—C2452.3 (2)
C2—C1—C8—C71.5 (3)C8—C9—C18—C19107.97 (19)
O1—C1—C8—C94.6 (3)C10—C9—C18—C19130.94 (18)
C2—C1—C8—C9175.96 (17)C24—C18—C19—C202.5 (3)
O2—C7—C8—C1179.28 (17)C9—C18—C19—C20174.21 (17)
C6—C7—C8—C11.3 (3)C18—C19—C20—O5178.32 (18)
O2—C7—C8—C93.1 (3)C18—C19—C20—C220.9 (3)
C6—C7—C8—C9178.92 (17)O5—C20—C22—O40.8 (3)
C1—C8—C9—C1010.9 (2)C19—C20—C22—O4178.46 (18)
C7—C8—C9—C10171.59 (15)O5—C20—C22—C23178.72 (17)
C1—C8—C9—C18111.52 (19)C19—C20—C22—C232.0 (3)
C7—C8—C9—C1865.9 (2)O4—C22—C23—C24177.13 (18)
C8—C9—C10—C1710.7 (2)C20—C22—C23—C243.3 (3)
C18—C9—C10—C17111.0 (2)O4—C22—C23—Br12.0 (3)
C8—C9—C10—C11169.39 (16)C20—C22—C23—Br1177.59 (14)
C18—C9—C10—C1169.0 (2)C19—C18—C24—C231.3 (3)
C17—C10—C11—O3174.2 (2)C9—C18—C24—C23175.50 (17)
C9—C10—C11—O35.9 (3)C22—C23—C24—C181.7 (3)
C17—C10—C11—C123.5 (3)Br1—C23—C24—C18179.19 (14)
C9—C10—C11—C12176.41 (18)C8—C1—O1—C173.6 (2)
O3—C11—C12—C13156.7 (2)C2—C1—O1—C17175.94 (15)
C10—C11—C12—C1325.6 (3)C10—C17—O1—C13.8 (3)
C11—C12—C13—C1650.9 (2)C16—C17—O1—C1176.09 (15)
C11—C12—C13—C1470.2 (2)C19—C20—O5—C213.2 (3)
C11—C12—C13—C15168.9 (2)C22—C20—O5—C21177.50 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2i0.972.603.377 (3)137
C16—H16A···Br1ii0.972.943.736 (2)140
O4—H4···O2iii0.822.042.768 (2)148
O4—H4···O50.822.282.701 (2)113
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
The global reactivity descriptors (eV) of the title compound top
Frontier molecular orbitalsEnergy
EHOMO-5.8915
ELUMO-1.9353
EHOMO-1-6.2499
ELUMO+1-1.0419
(EHOMO - ELUMO) gap3.9562
(EHOMO-1 - ELUMO+1) gap5.2080
Chemical potential (µ)3.9134
Chemical hardness (η)1.9781
Chemical softness (S)0.5055
Electrophilicity index (ω)3.8711
The frontier molecular orbital energies of the title compound top
Orbitalsa.ueV
V130-0.00040-0.01088
V129-0.00433-0.11782
V128-0.00548-0.14911
V127-0.00823-0.22394
V126-0.01615-0.43945
V125-0.03829-1.04190
V124-0.071121.93524
O123-0.21651-5.89145
O122-0.22968-6.24982
O121-0.24696-6.72002
O120-0.25386-6.90778
O119-0.25681-6.98805
O118-0.28020-7.62452
O117-0.28631-7.79078
O116-0.29688-8.07840
O115-0.33387-9.08493
O114-0.33908-9.22670
* O- Occupied orbital V- Vacant orbital a.u-atomic unit eV-Electron Volt

Acknowledgements

The authors thank Dr Sudhadevi Antharjanam and the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAl-Omran, F., Mohareb, R. M. & El-Khair, A. A. (2014). Med. Chem. Res. 23, 1623–1633.  CAS Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCottam, H. B., Shih, H., Tehrani, L. R., Wasson, D. B. & Carson, D. A. (1996). J. Med. Chem. 39, 2–9.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W, Gaussian Inc., Wallingford CT, USA.  Google Scholar
First citationFun, H.-K., Loh, W.-S., Rajesh, K., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o1876–o1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.  CrossRef CAS Web of Science Google Scholar
First citationKnight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–687.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, J., Hu, S., Zhu, H., Zhang, X., Xu, T. & He, J. (2019). Z. Kristallogr. 234, 79–80.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaidu, K. R. M., Krishna, B. S., Kumar, M. A., Arulselvan, P., Khalivulla, S. I. & Lasekan, O. (2012). Molecules, 17, 7543–7555.  PubMed Google Scholar
First citationParr, R., Szentpály, L. V., v, & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924.  Google Scholar
First citationPohlers, G., Scaiano, J. C. & Sinta, R. (1997). Chem. Mater. 9, 3222–3230.  CrossRef CAS Google Scholar
First citationPoupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationPurushothaman, G. & Thiruvenkatam, V. (2018). Acta Cryst. C74, 830–838.  CrossRef IUCr Journals Google Scholar
First citationRathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, Z. E., Gnanavendhan, S. G., Balakrishna, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012a). Acta Cryst. E68, o1060.  CrossRef IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012b). Acta Cryst. E68, o2875–o2876.  CrossRef IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287–3290.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds