research communications
H-xanthene-1,8(2H)-dione
Hirshfeld surface and frontier molecular orbital analysis of 9-(3-bromo-4-hydroxy-5-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1aDepartment of Chemistry, Government College of Engineering-Sengipatti, Thanjavur-613 402, Tamil Nadu, India, bDepartment of Chemistry, Periyar Government Arts College, Cuddalore-607 001, Tamil Nadu, India, cDepartment of Chemistry, Swami Vivekananda Arts and Science College, Orathur-605 601, Tamil Nadu, India, and dDepartment of Chemistry, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
*Correspondence e-mail: babusuresh1982@gmail.com
In the fused ring system of the title compound, C24H27BrO5, the mean plane and maximum deviations of the central pyran ring are 0.0384 (2) and 0.0733 (2) Å, respectively. The cyclohexenone rings both adopt envelope conformations with the tetra-substituted C atoms as flap atoms, whereas the central pyran ring adopts a flattened boat conformation. The central pyran and phenyl substituent rings are almost perpendicular to each other, making a dihedral angle of 89.71 (2)°. In the crystal, pairs of molecules are linked via O—H⋯O hydrogen bonds, forming inversion dimers with an R22(20) ring motif. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (50.6%), O⋯H/H⋯O (22.9%) and C⋯H/H⋯C (11.1%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertaken to determine the chemical reactivity of the title compound.
Keywords: crystal structure; dimedone; xanthene; xanthenedione; pyran ring.
CCDC reference: 2064558
1. Chemical context
Xanthene is known as the parent compound of naturally occurring substances with various biological properties including antibacterial (Dimmock et al., 1988), antiviral (Naidu et al., 2012), antitumor (Al-Omran et al., 2014) and anti-inflammatory activities (Dimmock et al., 1988; Cottam et al., 1996). It is present in organic compounds that are widely used as synthetic dyes (Hilderbrand et al., 2007), in fluorescent materials used for visualization of biomolecules (Knight et al., 1989), and in laser technologies (Pohlers et al., 1997). Ehretianone, a quinonoid xanthene, was reported to possess anti-snake venom activity (Selvanayagam et al., 1996; Poupelin et al., 1978). Xanthenes whose structures resemble those of 1,4-dihydropyridines can function as calcium channel blockers (Reddy et al., 2010; Rathore et al., 2009).
2. Structural commentary
The title compound (I) (Fig. 1) crystallizes in the triclinic P with Z = 2. The central pyran ring B (O1/C1/C8–C10/C17) is almost planar with a mean deviation from the mean plane of 0.0384 (2) Å and a maximum deviation of 0.0733 (3) Å for C9. Atoms C9 and O1 are displaced out of the mean plane in the the same direction so the ring may also be described as having a highly flattened boat conformation. Both cyclohexenone rings, A (C10–C13/C16/C17) and C (C1–C3/C6–C8), adopt envelope conformations with atoms C13 and C3 as the flaps being situated out of the plane of the ring with deviations of 0.3281 (2) and 0.325 (2) Å, respectively. Rings A, B and C show total puckering amplitudes Q(T) of 0.4645 (2), 0.1070 (2) and 0.4607 (16) Å, respectively. The puckering parameters (Cremer & Pople, 1975) are φ = 179.52 (8)° and θ = 57.55 (2)° for A, φ = 178.99 (2)° and θ = 68.92 (2)° for B, φ = 304.73 (12)° and θ = 125.47 (2)° for C. The planar phenyl substituent and the central pyran ring form a dihedral angle of 89.71 (2)°. In the pyran ring, C1—C8 and C10—C17 are double bonds, as indicated by the bond lengths [C1—C8 = 1.344 (3) Å and C10—C17 = 1.336 (3) Å]. The angles and bond lengths (Allen et al., 1987; Li et al., 2019) are within normal ranges. The observed carbonyl bond lengths [C11—O3 = 1.216 (3) and C7—O2 = 1.227 (2) Å] are also normal.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by pairs of O4—H4⋯O2 hydrogen bonds (Table 1), forming inversion dimers with an (20) ring motif, parallel to the (001) plane (Fig. 2). The molecules are further linked by C6—H6B⋯O2, C16—H16A⋯Br1 and O4—H4⋯O5 hydrogen bonds, forming ribbons (Fig. 3). Overall, the O—H⋯O and C—H⋯O interactions yield a three-dimensional supramolecular network.
To quantify the intermolecular contacts in the crystal, Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surfaces mapped over dnorm in the range −0.5451 to 1.6834 a.u. (Fig. 4) show the intermolecular contacts as red-coloured spots, which indicate the closer contacts of C—H⋯O and O—H⋯O hydrogen bonds. The bright-red spots indicate their roles as donors and/or acceptors in hydrogen bonding; they also appear as red and blue regions corresponding to negative and positive potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) shown in Fig. 5. Here the red regions indicate negative electrostatic potential (hydrogen-bond acceptors), while the blue regions indicate positive electrostatic potential (hydrogen-bond donors). The 2D fingerprint plots are illustrated in Fig. 6. The H⋯H contacts comprise 50.6% of the total interactions. Besides these contacts, O⋯H/H⋯O (22.9%), C⋯H/H⋯C (11.1%) and Br⋯H/H⋯Br (11.6%) interactions make a significant contribution to the total Hirshfeld surface. The percentage contributions of the Br⋯O/O⋯Br, O⋯O and C⋯C contacts are 1.8, 0.7 and 0.1%, respectively.
4. Frontier molecular orbital analysis
The chemical reactivity of the title compound was studied by frontier molecular orbital analysis. For the calculation, the starting structural geometry was taken from the refined experimental structure obtained from X-ray diffraction data. The energy levels for the compound were computed using the DFT-B3LYP/6-311G++(d,p) level of theory as implemented in Gaussian09W (Frisch et al., 2013). The calculated frontier molecular orbitals, HOMO, HOMO−1, LUMO and LUMO+1, are shown in Fig. 7. The energies of HOMO, HOMO−1, LUMO and LUMO+1 were calculated to be −5.8915, −6.2499, −1.9353 and −1.0419 eV, respectively, and the energies required to excite one electron from HOMO to LUMO and from HOMO−1 to LUMO+1 are 3.9562 and 5.2080 eV, respectively. The chemical hardness, chemical softness and index of the title molecule are listed in Table 2. Parr et al. (1999) have proposed the index as a quantitative measure of the energy lowering due to the maximal electron flow between donor and acceptor orbitals. The index value of 3.8711 eV shows the global electrophilic nature of the molecule. Based on the wide band gap and its chemical hardness value of 1.9781 eV, the title molecule seems to be hard.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016) for the xanthene-1,8(2H)-dione unit resulted in 30 hits. They include the following analogues: 2,4-dinitrophenyl (LERZEP; Sureshbabu & Sughanya, 2013), 4-hydroxy-3,5-dimethoxyphenyl (YAVTAS; Sughanya & Sureshbabu, 2012a), 2,4-difluorophenyl (VITWEC; Fun et al., 2011), pyridine-2-yl (YIDRIP; Purushothaman & Thiruvenkatam, 2018). In the title compound, the dihedral angle between the phenyl and pyran rings is 89.71 (2)°, similar to the values observed for LERZEP, the 2,4-dinitrophenyl analogue, YAVTAS, the 4-hydroxy-3,5-dimethoxyphenyl analogue, and VITWEC, the 2,4-difluorophenyl analogue, for which the dihedral angles are 85.88 (2), 86.32 (2) and 87.55 (4)°, respectively.
6. Synthesis and crystallization
Compound (I) was prepared in two stages (Vanag & Stankevich, 1960). A mixture of 5,5-dimethyl cyclohexane-1,3-dione (1.12 g, 8 mmol), 3-bromo-4-hydroxy-5-methoxybenzaldehyde (0.92 g, 4 mmol) and 20 ml of ethanol were heated to 343 K for about 10 minutes. The reaction mixture was allowed to cool to 298–301 K and the resulting intermediate compound, 2,2′-[(3-bromo-4-hydroxy-5-methoxyphenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) was filtered and dried (m.p. 491 K, 3.4 mmol, yield: 85%) (Sughanya & Sureshbabu, 2012b). In the second stage, about 0.50 g (1.04 mmol) of this intermediate were dissolved in 20 ml of ethanol. The content was refluxed together with 5 drops of concentrated hydrochloric acid for 20 minutes with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into 100 ml of ice-cold water and stirred well. The solid separated was filtered and dried. Yellow single crystals suitable for X-ray diffraction were obtained from 90% ethanol (m.p. 495 K, 0.455 g, 0.96 mmol, yield 92%). IR (KBr): cm−1 3360, 2953, 2865, 1667, 1622, 1584, 1497, 1278, 1234, 1046, 1003. 1H NMR (500 MHz, CDCl3): 1.04 (s, 6H), 1.12 (s, 6H), 2.24 (dd, J = 6 Hz, 4H), 2.47 (dd, J = 6 Hz, 4H), 3.91 (s, 3H), 4.65 (s, 1H), 5.88 (s, 1H), 6.76 (s, 1H), 7.02 (s,1H). 13C NMR (125 MHz, CDCl3): 27.36, 29.21,31.30, 32.23, 40.84, 50.75, 56.32, 107.63, 111.92, 115.26, 123.25, 137.24, 146.56, 162.40, 196.56. ESI–MS: m/z: 475.06 [M + H].
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2064558
https://doi.org/10.1107/S2056989021010690/zn2010sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010690/zn2010Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010690/zn2010Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
APEX3 and SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015a) and publCIF (Westrip, 2010).C24H27BrO5 | F(000) = 492 |
Mr = 475.36 | Dx = 1.372 Mg m−3 |
Triclinic, P1 | Melting point: 495 K |
a = 9.851 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.763 (3) Å | Cell parameters from 9325 reflections |
c = 12.313 (3) Å | θ = 2.6–30.0° |
α = 82.38 (1)° | µ = 1.82 mm−1 |
β = 66.900 (9)° | T = 296 K |
γ = 73.484 (10)° | BLOCK, yellow |
V = 1150.9 (5) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 2 |
Bruker Kappa APEX3 CMOS diffractometer | 4052 independent reflections |
Radiation source: fine-focus sealed tube | 3694 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω and φ scan | θmax = 25.0°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −11→11 |
Tmin = 0.550, Tmax = 0.746 | k = −12→12 |
47600 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0296P)2 + 0.6561P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
4052 reflections | Δρmax = 0.32 e Å−3 |
276 parameters | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.49132 (3) | 0.69406 (2) | 0.62363 (2) | 0.05292 (10) | |
C1 | 0.5946 (2) | 0.11911 (17) | 0.64639 (15) | 0.0319 (4) | |
C2 | 0.4569 (2) | 0.0735 (2) | 0.66746 (17) | 0.0412 (5) | |
H2A | 0.484623 | −0.020439 | 0.666673 | 0.049* | |
H2B | 0.420396 | 0.105743 | 0.603872 | 0.049* | |
C3 | 0.3280 (2) | 0.1192 (2) | 0.78588 (18) | 0.0423 (5) | |
C4 | 0.2057 (3) | 0.0452 (3) | 0.8150 (2) | 0.0676 (7) | |
H4A | 0.250419 | −0.046032 | 0.819885 | 0.101* | |
H4B | 0.125530 | 0.073181 | 0.889224 | 0.101* | |
H4C | 0.164507 | 0.062167 | 0.754031 | 0.101* | |
C5 | 0.2564 (3) | 0.2644 (2) | 0.7781 (3) | 0.0617 (7) | |
H5A | 0.332860 | 0.310996 | 0.759881 | 0.092* | |
H5B | 0.215134 | 0.281231 | 0.717207 | 0.092* | |
H5C | 0.176157 | 0.292245 | 0.852400 | 0.092* | |
C6 | 0.3982 (3) | 0.0887 (2) | 0.88067 (18) | 0.0516 (6) | |
H6A | 0.320679 | 0.124356 | 0.954643 | 0.062* | |
H6B | 0.427417 | −0.004661 | 0.891856 | 0.062* | |
C7 | 0.5345 (2) | 0.13965 (17) | 0.85383 (16) | 0.0366 (4) | |
C8 | 0.6339 (2) | 0.15206 (16) | 0.72946 (15) | 0.0313 (4) | |
C9 | 0.7704 (2) | 0.20575 (17) | 0.70112 (16) | 0.0322 (4) | |
C10 | 0.8672 (2) | 0.19047 (17) | 0.57072 (16) | 0.0322 (4) | |
C11 | 1.0196 (2) | 0.2146 (2) | 0.52605 (19) | 0.0439 (5) | |
C12 | 1.1113 (2) | 0.2068 (2) | 0.3948 (2) | 0.0495 (5) | |
H12A | 1.180310 | 0.121046 | 0.378089 | 0.059* | |
H12B | 1.172975 | 0.268803 | 0.372815 | 0.059* | |
C13 | 1.0158 (2) | 0.2333 (2) | 0.31752 (18) | 0.0428 (5) | |
C14 | 0.9298 (3) | 0.3771 (2) | 0.3217 (2) | 0.0617 (7) | |
H14A | 1.001793 | 0.429336 | 0.291989 | 0.093* | |
H14B | 0.869236 | 0.392418 | 0.273983 | 0.093* | |
H14C | 0.864478 | 0.399531 | 0.401812 | 0.093* | |
C15 | 1.1185 (3) | 0.1973 (3) | 0.1891 (2) | 0.0627 (7) | |
H15A | 1.189481 | 0.250422 | 0.158058 | 0.094* | |
H15B | 1.173617 | 0.107698 | 0.186491 | 0.094* | |
H15C | 1.056780 | 0.211083 | 0.142489 | 0.094* | |
C16 | 0.9043 (2) | 0.14713 (19) | 0.36435 (16) | 0.0378 (4) | |
H16A | 0.831875 | 0.172240 | 0.325133 | 0.045* | |
H16B | 0.960435 | 0.057845 | 0.345098 | 0.045* | |
C17 | 0.8192 (2) | 0.15590 (17) | 0.49441 (15) | 0.0313 (4) | |
C18 | 0.7174 (2) | 0.34791 (17) | 0.73598 (16) | 0.0318 (4) | |
C19 | 0.7345 (2) | 0.38397 (18) | 0.83369 (16) | 0.0342 (4) | |
H19 | 0.786711 | 0.322584 | 0.873846 | 0.041* | |
C20 | 0.6744 (2) | 0.51052 (18) | 0.87108 (16) | 0.0346 (4) | |
C21 | 0.7625 (3) | 0.4676 (3) | 1.0299 (2) | 0.0604 (7) | |
H21A | 0.759056 | 0.510392 | 1.094887 | 0.091* | |
H21B | 0.716974 | 0.395977 | 1.059224 | 0.091* | |
H21C | 0.866680 | 0.436440 | 0.977932 | 0.091* | |
C22 | 0.5972 (2) | 0.60496 (17) | 0.81104 (16) | 0.0341 (4) | |
C23 | 0.5878 (2) | 0.56797 (18) | 0.71128 (16) | 0.0334 (4) | |
C24 | 0.6451 (2) | 0.44079 (18) | 0.67421 (16) | 0.0345 (4) | |
H24 | 0.634765 | 0.418239 | 0.608017 | 0.041* | |
O1 | 0.68252 (15) | 0.12340 (13) | 0.52771 (10) | 0.0355 (3) | |
O2 | 0.56680 (19) | 0.16747 (15) | 0.93260 (12) | 0.0493 (4) | |
O3 | 1.0717 (2) | 0.2361 (2) | 0.59419 (16) | 0.0743 (6) | |
O4 | 0.53332 (19) | 0.72988 (13) | 0.84657 (13) | 0.0476 (4) | |
H4 | 0.531593 | 0.735147 | 0.912952 | 0.071* | |
O5 | 0.68156 (19) | 0.55546 (14) | 0.96789 (13) | 0.0489 (4) | |
H9 | 0.829 (2) | 0.156 (2) | 0.7488 (18) | 0.035 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.06708 (17) | 0.03847 (13) | 0.05825 (15) | 0.00106 (10) | −0.03853 (12) | −0.00177 (9) |
C1 | 0.0423 (10) | 0.0251 (9) | 0.0255 (9) | −0.0070 (8) | −0.0102 (8) | −0.0021 (7) |
C2 | 0.0519 (12) | 0.0401 (11) | 0.0348 (10) | −0.0190 (9) | −0.0126 (9) | −0.0071 (8) |
C3 | 0.0471 (12) | 0.0427 (11) | 0.0369 (10) | −0.0158 (9) | −0.0104 (9) | −0.0078 (9) |
C4 | 0.0628 (16) | 0.0841 (19) | 0.0579 (15) | −0.0401 (15) | −0.0067 (13) | −0.0113 (14) |
C5 | 0.0558 (14) | 0.0518 (14) | 0.0809 (18) | −0.0008 (11) | −0.0323 (13) | −0.0200 (13) |
C6 | 0.0582 (14) | 0.0608 (14) | 0.0293 (10) | −0.0206 (11) | −0.0070 (10) | 0.0027 (10) |
C7 | 0.0520 (12) | 0.0273 (9) | 0.0273 (9) | −0.0037 (8) | −0.0157 (9) | −0.0007 (7) |
C8 | 0.0428 (10) | 0.0230 (8) | 0.0262 (9) | −0.0039 (7) | −0.0138 (8) | −0.0010 (7) |
C9 | 0.0409 (10) | 0.0287 (9) | 0.0294 (9) | −0.0032 (8) | −0.0191 (8) | −0.0027 (7) |
C10 | 0.0371 (10) | 0.0267 (9) | 0.0319 (9) | −0.0021 (7) | −0.0153 (8) | −0.0036 (7) |
C11 | 0.0407 (11) | 0.0464 (12) | 0.0470 (12) | −0.0073 (9) | −0.0206 (10) | −0.0034 (9) |
C12 | 0.0385 (11) | 0.0577 (14) | 0.0491 (12) | −0.0127 (10) | −0.0115 (10) | −0.0049 (10) |
C13 | 0.0417 (11) | 0.0446 (11) | 0.0349 (10) | −0.0099 (9) | −0.0080 (9) | 0.0006 (9) |
C14 | 0.0723 (17) | 0.0451 (13) | 0.0584 (15) | −0.0140 (12) | −0.0192 (13) | 0.0114 (11) |
C15 | 0.0563 (14) | 0.0825 (18) | 0.0388 (12) | −0.0235 (13) | −0.0026 (11) | −0.0026 (12) |
C16 | 0.0416 (11) | 0.0396 (10) | 0.0286 (9) | −0.0056 (8) | −0.0115 (8) | −0.0050 (8) |
C17 | 0.0345 (10) | 0.0265 (9) | 0.0300 (9) | −0.0038 (7) | −0.0116 (8) | −0.0017 (7) |
C18 | 0.0361 (10) | 0.0308 (9) | 0.0305 (9) | −0.0077 (8) | −0.0138 (8) | −0.0049 (7) |
C19 | 0.0412 (10) | 0.0338 (10) | 0.0328 (9) | −0.0091 (8) | −0.0194 (8) | −0.0009 (8) |
C20 | 0.0432 (11) | 0.0373 (10) | 0.0287 (9) | −0.0155 (8) | −0.0140 (8) | −0.0050 (8) |
C21 | 0.0862 (18) | 0.0673 (16) | 0.0484 (13) | −0.0213 (14) | −0.0426 (13) | −0.0100 (11) |
C22 | 0.0376 (10) | 0.0295 (9) | 0.0347 (10) | −0.0097 (8) | −0.0104 (8) | −0.0060 (8) |
C23 | 0.0361 (10) | 0.0318 (9) | 0.0346 (10) | −0.0061 (8) | −0.0175 (8) | −0.0001 (8) |
C24 | 0.0415 (10) | 0.0345 (10) | 0.0317 (9) | −0.0076 (8) | −0.0178 (8) | −0.0062 (8) |
O1 | 0.0420 (7) | 0.0434 (7) | 0.0240 (6) | −0.0152 (6) | −0.0112 (5) | −0.0044 (5) |
O2 | 0.0715 (10) | 0.0505 (9) | 0.0272 (7) | −0.0142 (8) | −0.0204 (7) | −0.0024 (6) |
O3 | 0.0588 (11) | 0.1243 (17) | 0.0587 (11) | −0.0374 (11) | −0.0297 (9) | −0.0097 (11) |
O4 | 0.0675 (10) | 0.0325 (7) | 0.0435 (8) | −0.0032 (7) | −0.0248 (8) | −0.0116 (6) |
O5 | 0.0739 (10) | 0.0411 (8) | 0.0421 (8) | −0.0138 (7) | −0.0303 (8) | −0.0103 (6) |
Br1—C23 | 1.8954 (19) | C12—H12A | 0.9700 |
C1—C8 | 1.344 (3) | C12—H12B | 0.9700 |
C1—O1 | 1.378 (2) | C13—C16 | 1.530 (3) |
C1—C2 | 1.489 (3) | C13—C14 | 1.535 (3) |
C2—C3 | 1.537 (3) | C13—C15 | 1.536 (3) |
C2—H2A | 0.9700 | C14—H14A | 0.9600 |
C2—H2B | 0.9700 | C14—H14B | 0.9600 |
C3—C5 | 1.529 (3) | C14—H14C | 0.9600 |
C3—C4 | 1.530 (3) | C15—H15A | 0.9600 |
C3—C6 | 1.534 (3) | C15—H15B | 0.9600 |
C4—H4A | 0.9600 | C15—H15C | 0.9600 |
C4—H4B | 0.9600 | C16—C17 | 1.489 (3) |
C4—H4C | 0.9600 | C16—H16A | 0.9700 |
C5—H5A | 0.9600 | C16—H16B | 0.9700 |
C5—H5B | 0.9600 | C17—O1 | 1.378 (2) |
C5—H5C | 0.9600 | C18—C24 | 1.380 (3) |
C6—C7 | 1.494 (3) | C18—C19 | 1.395 (2) |
C6—H6A | 0.9700 | C19—C20 | 1.383 (3) |
C6—H6B | 0.9700 | C19—H19 | 0.9300 |
C7—O2 | 1.227 (2) | C20—O5 | 1.378 (2) |
C7—C8 | 1.471 (3) | C20—C22 | 1.400 (3) |
C8—C9 | 1.511 (3) | C21—O5 | 1.403 (3) |
C9—C10 | 1.515 (3) | C21—H21A | 0.9600 |
C9—C18 | 1.530 (2) | C21—H21B | 0.9600 |
C9—H9 | 0.98 (2) | C21—H21C | 0.9600 |
C10—C17 | 1.336 (3) | C22—O4 | 1.362 (2) |
C10—C11 | 1.470 (3) | C22—C23 | 1.384 (3) |
C11—O3 | 1.216 (3) | C23—C24 | 1.387 (3) |
C11—C12 | 1.510 (3) | C24—H24 | 0.9300 |
C12—C13 | 1.533 (3) | O4—H4 | 0.8200 |
C8—C1—O1 | 122.25 (17) | H12A—C12—H12B | 107.6 |
C8—C1—C2 | 126.24 (17) | C16—C13—C12 | 107.75 (17) |
O1—C1—C2 | 111.51 (15) | C16—C13—C14 | 110.89 (18) |
C1—C2—C3 | 112.21 (16) | C12—C13—C14 | 110.14 (19) |
C1—C2—H2A | 109.2 | C16—C13—C15 | 108.20 (18) |
C3—C2—H2A | 109.2 | C12—C13—C15 | 110.44 (19) |
C1—C2—H2B | 109.2 | C14—C13—C15 | 109.39 (19) |
C3—C2—H2B | 109.2 | C13—C14—H14A | 109.5 |
H2A—C2—H2B | 107.9 | C13—C14—H14B | 109.5 |
C5—C3—C4 | 109.3 (2) | H14A—C14—H14B | 109.5 |
C5—C3—C6 | 111.04 (18) | C13—C14—H14C | 109.5 |
C4—C3—C6 | 109.72 (19) | H14A—C14—H14C | 109.5 |
C5—C3—C2 | 109.94 (19) | H14B—C14—H14C | 109.5 |
C4—C3—C2 | 109.43 (17) | C13—C15—H15A | 109.5 |
C6—C3—C2 | 107.36 (18) | C13—C15—H15B | 109.5 |
C3—C4—H4A | 109.5 | H15A—C15—H15B | 109.5 |
C3—C4—H4B | 109.5 | C13—C15—H15C | 109.5 |
H4A—C4—H4B | 109.5 | H15A—C15—H15C | 109.5 |
C3—C4—H4C | 109.5 | H15B—C15—H15C | 109.5 |
H4A—C4—H4C | 109.5 | C17—C16—C13 | 112.68 (16) |
H4B—C4—H4C | 109.5 | C17—C16—H16A | 109.1 |
C3—C5—H5A | 109.5 | C13—C16—H16A | 109.1 |
C3—C5—H5B | 109.5 | C17—C16—H16B | 109.1 |
H5A—C5—H5B | 109.5 | C13—C16—H16B | 109.1 |
C3—C5—H5C | 109.5 | H16A—C16—H16B | 107.8 |
H5A—C5—H5C | 109.5 | C10—C17—O1 | 123.42 (16) |
H5B—C5—H5C | 109.5 | C10—C17—C16 | 125.17 (18) |
C7—C6—C3 | 115.04 (17) | O1—C17—C16 | 111.41 (15) |
C7—C6—H6A | 108.5 | C24—C18—C19 | 119.37 (17) |
C3—C6—H6A | 108.5 | C24—C18—C9 | 119.97 (16) |
C7—C6—H6B | 108.5 | C19—C18—C9 | 120.58 (16) |
C3—C6—H6B | 108.5 | C20—C19—C18 | 120.33 (17) |
H6A—C6—H6B | 107.5 | C20—C19—H19 | 119.8 |
O2—C7—C8 | 119.91 (19) | C18—C19—H19 | 119.8 |
O2—C7—C6 | 121.64 (18) | O5—C20—C19 | 124.98 (18) |
C8—C7—C6 | 118.42 (17) | O5—C20—C22 | 114.18 (16) |
C1—C8—C7 | 117.75 (18) | C19—C20—C22 | 120.84 (17) |
C1—C8—C9 | 123.31 (16) | O5—C21—H21A | 109.5 |
C7—C8—C9 | 118.90 (16) | O5—C21—H21B | 109.5 |
C8—C9—C10 | 109.09 (15) | H21A—C21—H21B | 109.5 |
C8—C9—C18 | 110.02 (15) | O5—C21—H21C | 109.5 |
C10—C9—C18 | 111.38 (15) | H21A—C21—H21C | 109.5 |
C8—C9—H9 | 107.8 (12) | H21B—C21—H21C | 109.5 |
C10—C9—H9 | 110.4 (11) | O4—C22—C23 | 119.68 (17) |
C18—C9—H9 | 108.0 (12) | O4—C22—C20 | 122.66 (17) |
C17—C10—C11 | 118.59 (17) | C23—C22—C20 | 117.67 (16) |
C17—C10—C9 | 122.45 (17) | C22—C23—C24 | 121.99 (17) |
C11—C10—C9 | 118.96 (16) | C22—C23—Br1 | 119.16 (14) |
O3—C11—C10 | 120.3 (2) | C24—C23—Br1 | 118.84 (14) |
O3—C11—C12 | 121.2 (2) | C18—C24—C23 | 119.71 (16) |
C10—C11—C12 | 118.47 (18) | C18—C24—H24 | 120.1 |
C11—C12—C13 | 114.73 (18) | C23—C24—H24 | 120.1 |
C11—C12—H12A | 108.6 | C1—O1—C17 | 118.39 (14) |
C13—C12—H12A | 108.6 | C22—O4—H4 | 109.5 |
C11—C12—H12B | 108.6 | C20—O5—C21 | 117.51 (16) |
C13—C12—H12B | 108.6 | ||
C8—C1—C2—C3 | 24.0 (3) | C12—C13—C16—C17 | 49.6 (2) |
O1—C1—C2—C3 | −156.46 (16) | C14—C13—C16—C17 | −71.0 (2) |
C1—C2—C3—C5 | 72.5 (2) | C15—C13—C16—C17 | 169.04 (18) |
C1—C2—C3—C4 | −167.4 (2) | C11—C10—C17—O1 | 175.94 (16) |
C1—C2—C3—C6 | −48.4 (2) | C9—C10—C17—O1 | −4.1 (3) |
C5—C3—C6—C7 | −67.4 (2) | C11—C10—C17—C16 | −4.0 (3) |
C4—C3—C6—C7 | 171.63 (19) | C9—C10—C17—C16 | 175.98 (17) |
C2—C3—C6—C7 | 52.8 (2) | C13—C16—C17—C10 | −24.5 (3) |
C3—C6—C7—O2 | 151.79 (19) | C13—C16—C17—O1 | 155.55 (16) |
C3—C6—C7—C8 | −30.3 (3) | C8—C9—C18—C24 | −68.8 (2) |
O1—C1—C8—C7 | −177.95 (16) | C10—C9—C18—C24 | 52.3 (2) |
C2—C1—C8—C7 | 1.5 (3) | C8—C9—C18—C19 | 107.97 (19) |
O1—C1—C8—C9 | 4.6 (3) | C10—C9—C18—C19 | −130.94 (18) |
C2—C1—C8—C9 | −175.96 (17) | C24—C18—C19—C20 | 2.5 (3) |
O2—C7—C8—C1 | 179.28 (17) | C9—C18—C19—C20 | −174.21 (17) |
C6—C7—C8—C1 | 1.3 (3) | C18—C19—C20—O5 | 178.32 (18) |
O2—C7—C8—C9 | −3.1 (3) | C18—C19—C20—C22 | −0.9 (3) |
C6—C7—C8—C9 | 178.92 (17) | O5—C20—C22—O4 | −0.8 (3) |
C1—C8—C9—C10 | −10.9 (2) | C19—C20—C22—O4 | 178.46 (18) |
C7—C8—C9—C10 | 171.59 (15) | O5—C20—C22—C23 | 178.72 (17) |
C1—C8—C9—C18 | 111.52 (19) | C19—C20—C22—C23 | −2.0 (3) |
C7—C8—C9—C18 | −65.9 (2) | O4—C22—C23—C24 | −177.13 (18) |
C8—C9—C10—C17 | 10.7 (2) | C20—C22—C23—C24 | 3.3 (3) |
C18—C9—C10—C17 | −111.0 (2) | O4—C22—C23—Br1 | 2.0 (3) |
C8—C9—C10—C11 | −169.39 (16) | C20—C22—C23—Br1 | −177.59 (14) |
C18—C9—C10—C11 | 69.0 (2) | C19—C18—C24—C23 | −1.3 (3) |
C17—C10—C11—O3 | −174.2 (2) | C9—C18—C24—C23 | 175.50 (17) |
C9—C10—C11—O3 | 5.9 (3) | C22—C23—C24—C18 | −1.7 (3) |
C17—C10—C11—C12 | 3.5 (3) | Br1—C23—C24—C18 | 179.19 (14) |
C9—C10—C11—C12 | −176.41 (18) | C8—C1—O1—C17 | 3.6 (2) |
O3—C11—C12—C13 | −156.7 (2) | C2—C1—O1—C17 | −175.94 (15) |
C10—C11—C12—C13 | 25.6 (3) | C10—C17—O1—C1 | −3.8 (3) |
C11—C12—C13—C16 | −50.9 (2) | C16—C17—O1—C1 | 176.09 (15) |
C11—C12—C13—C14 | 70.2 (2) | C19—C20—O5—C21 | 3.2 (3) |
C11—C12—C13—C15 | −168.9 (2) | C22—C20—O5—C21 | −177.50 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···O2i | 0.97 | 2.60 | 3.377 (3) | 137 |
C16—H16A···Br1ii | 0.97 | 2.94 | 3.736 (2) | 140 |
O4—H4···O2iii | 0.82 | 2.04 | 2.768 (2) | 148 |
O4—H4···O5 | 0.82 | 2.28 | 2.701 (2) | 113 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2. |
Frontier molecular orbitals | Energy |
EHOMO | -5.8915 |
ELUMO | -1.9353 |
EHOMO-1 | -6.2499 |
ELUMO+1 | -1.0419 |
(EHOMO - ELUMO) gap | 3.9562 |
(EHOMO-1 - ELUMO+1) gap | 5.2080 |
Chemical potential (µ) | 3.9134 |
Chemical hardness (η) | 1.9781 |
Chemical softness (S) | 0.5055 |
Electrophilicity index (ω) | 3.8711 |
Orbitals | a.u | eV |
V130 | -0.00040 | -0.01088 |
V129 | -0.00433 | -0.11782 |
V128 | -0.00548 | -0.14911 |
V127 | -0.00823 | -0.22394 |
V126 | -0.01615 | -0.43945 |
V125 | -0.03829 | -1.04190 |
V124 | -0.07112 | 1.93524 |
O123 | -0.21651 | -5.89145 |
O122 | -0.22968 | -6.24982 |
O121 | -0.24696 | -6.72002 |
O120 | -0.25386 | -6.90778 |
O119 | -0.25681 | -6.98805 |
O118 | -0.28020 | -7.62452 |
O117 | -0.28631 | -7.79078 |
O116 | -0.29688 | -8.07840 |
O115 | -0.33387 | -9.08493 |
O114 | -0.33908 | -9.22670 |
* O- Occupied orbital V- Vacant orbital a.u-atomic unit eV-Electron Volt |
Acknowledgements
The authors thank Dr Sudhadevi Antharjanam and the SAIF, IIT Madras, for the data collection.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Al-Omran, F., Mohareb, R. M. & El-Khair, A. A. (2014). Med. Chem. Res. 23, 1623–1633. CAS Google Scholar
Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Cottam, H. B., Shih, H., Tehrani, L. R., Wasson, D. B. & Carson, D. A. (1996). J. Med. Chem. 39, 2–9. CrossRef CAS PubMed Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W, Gaussian Inc., Wallingford CT, USA. Google Scholar
Fun, H.-K., Loh, W.-S., Rajesh, K., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o1876–o1877. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385. Web of Science CrossRef PubMed CAS Google Scholar
Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117. CrossRef CAS Web of Science Google Scholar
Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–687. CrossRef CAS PubMed Web of Science Google Scholar
Li, J., Hu, S., Zhu, H., Zhang, X., Xu, T. & He, J. (2019). Z. Kristallogr. 234, 79–80. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Naidu, K. R. M., Krishna, B. S., Kumar, M. A., Arulselvan, P., Khalivulla, S. I. & Lasekan, O. (2012). Molecules, 17, 7543–7555. PubMed Google Scholar
Parr, R., Szentpály, L. V., v, & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924. Google Scholar
Pohlers, G., Scaiano, J. C. & Sinta, R. (1997). Chem. Mater. 9, 3222–3230. CrossRef CAS Google Scholar
Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71. CAS Google Scholar
Purushothaman, G. & Thiruvenkatam, V. (2018). Acta Cryst. C74, 830–838. CrossRef IUCr Journals Google Scholar
Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishna, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667. CSD CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Sughanya, V. & Sureshbabu, N. (2012a). Acta Cryst. E68, o1060. CrossRef IUCr Journals Google Scholar
Sughanya, V. & Sureshbabu, N. (2012b). Acta Cryst. E68, o2875–o2876. CrossRef IUCr Journals Google Scholar
Sureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Vanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287–3290. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.