research communications
Formation of a macrocycle from dichlorodimethylsilane and a pyridoxalimine Schiff base ligand
aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany, and bInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de
The reaction of dichlorodimethylsilane with a polydentate Schiff base ligand derived from pyridoxal and 2-ethanolamine yielded the macrocyclic silicon compound (8E,22E)-4,4,12,18,18,26-hexamethyl-3,5,17,19-tetraoxa-8,13,22,27-tetraaza-4,18-disilatricyclo[22.4.0.010,15]octacosa-1(24),8,10,12,14,22,25,27-octaene-11,25-diol, C24H36N4O6Si2. The contains the half macrocycle with an intramolecular O—H⋯N hydrogen bond between the imine nitrogen atom and a neighbouring oxygen atom. The is dominated by C—H⋯O and C—H⋯π interactions, which form a high ordered molecular network.
Keywords: crystal structure; organosiloxane; pyridoxal; Schiff base; macrocycle.
CCDC reference: 2113407
1. Chemical context
The heterocyclic aldehyde pyridoxal is one of the active forms of vitamin B6. This vitamin is an essential cofactor to a large number of enzymes that catalyze many reactions of amino acids (Sykes et al., 1991). The coordination chemistry of generated from amino acids and pyridoxal with transition metal ions has been investigated intensive (Christensen, 1957; Long et al., 1980; Dawes et al., 1982; Walz et al., 1983; Rao et al., 1985; Astheimer et al., 1985; Sykes et al., 1991; Costa Pessoa et al., 1999). We are working on silicon complexes with tridentate O,N,O-ligands (Böhme & Günther, 2007a; Böhme et al., 2006; Paul et al., 2014; Warncke et al., 2012; Schwarzer et al., 2018). Therefore, we prepared a Schiff base from pyridoxal and 2-aminoethanol as a potential O,N,O-ligand. The of this molecule, 4-[(2-hydroxyethyl)iminomethyl]-5- hydroxymethyl-2-methylpyridine-3-ol (I), was published earlier (Böhme & Günther, 2007b). Compound (I) was used recently as ligand molecule to coordinate copper and silver ions (Annaraj & Neelakantan, 2014, 2015). Herein we report the results of reaction between (I) and dichlorodimethylsilane.
There are several potential coordination sites at the ligand molecule (I): the pyridine and the imino nitrogen atoms, two aliphatic and one phenolic hydroxyl groups. The presence of these functional groups makes it difficult to predict the structure of the reaction product with dichlorodimethylsilane. It was our initial goal to prepare a pentacoordinate silicon complex like (II). Surprisingly the macrocyclic silicon compound (III) was obtained from the reaction of (I) with Me2SiCl2. The reaction was performed in tetrahydrofuran in presence of triethylamine as supporting base to remove the hydrogen chloride, which is formed during the reaction. Recrystallization of the raw product from 1,2-dimethoxyethane and diethyl ether gave yellow crystals suitable for structure analysis.
2. Structural commentary
Compound (III) crystallizes in the monoclinic I2/c with the half macrocycle in the Fig. 1 shows the and the atomic labelling scheme. The macrocycle is generated by a crystallographic C2 axis through the centre of the macrocycle (Fig. 2). The silicon atom is bound to the two methyl groups and to the aliphatic oxygen atoms O2 and O3, thus forming a macrocycle (Fig. 2). A quite similar macrocycle has been obtained from the reaction of a related pyridoxal-derived Schiff base and dichlorodiphenylsilane (Böhme et al., 2008). The short Si—O bonds (see Table 1) are in the range for comparable Si—O bonds (Wagler et al., 2005; Böhme et al., 2006, 2008; Böhme & Günther, 2007a; Böhme & Foehn, 2007). The silicon atom is distorted tetrahedral with bond angles between 103.40 (5) and 113.16 (7)° (Table 1). The rather large bond angles at the oxygen atoms (see Table 1) have been explained by the ionic character of the Si—O bonds (Gillespie & Johnson, 1997). There is a strong intramolecular O—H⋯N interaction (entry 1, Table 2) between the imine nitrogen atom N2 and the O1—H1 group in the neighbouring position at the pyridoxal ring. The formation of hydrogen bridges between the imine nitrogen atom and an ortho-hydroxyl group is a feature that is often observed in with o-hydroxy groups (Hökelek et al., 2004; Filarowski et al., 1999). This strong intramolecular O—H⋯N interaction leads to a six-membered pseudo ring consisting of H1—O1—C2—C3—C7—N2. This pseudo ring is planar with an r.m.s. deviation of 0.009 Å from the ring plane. According to the graph-set notation proposed by Etter et al. (1990), these hydrogen bonds form motifs with an S11(6) graph-set descriptor. The hydrogen bonds C7—H7⋯O3 link different parts within one macrocycle via intra-annular hydrogen bonds (Fig. 2).
|
3. Supramolecular features
A bifurcated intermolecular C—H⋯O interaction is observed at O2 (Table 2). The interaction of C6—H6A⋯O2 and C5—H5⋯O1 results in a chain along the crystallographic b-axis. The C—H⋯O interaction of C9—H9B with O2 connects adjacent chains (Fig. 3).
Apart from the relevant C—H⋯O interaction, two C—H⋯π contacts with the pyridine moiety (Cg1) are observed. First, a bifurcation at H9B (d = 3.31 Å) shows up within the C—H⋯O chains along the c axis. Furthermore, C11—H11A⋯Cg1 (d = 2.85 Å) supports the C—H⋯O interactions of H5 and H6A.
In summary, the π interactions, forming a highly ordered molecular network.
is dominated by C—H⋯O and C—H⋯The potential bonding sites in combination with the cavity of the macrocycle makes (III) a suitable candidate for supramolecular recognition processes. The available pyridine N, azomethine N, and OH groups could be useful for the generation of nanostructures via complexation with transition metals (Leininger et al., 2000).
4. Database survey
A CSD search with ConQuest (Bruno et al., 2002) for macrocycles containing from pyridoxal and 2-aminoalcohols showed that only one comparable silicon compound exists (Böhme et al., 2008, refcode MOKVEO). The main differences between these two structures of silicon-containing macrocycles are as follows. First, (III) was found to crystallize without solvent while MOKVEO encloses chlorofom molecules. Probably as a result, the symmetry is lower in MOKVEO (triclinic, P) than in (III) showing the monoclinic I2/c symmetry. On the basis of the structure of (III) presented here and the former investigation (Böhme et al., 2008), it can be assumed that pyridoxalimine-derived prefer the formation of macrocycles with diorganosilane units. However, it seems to be possible that compound (I) can also act as a tridentate O,N,O-ligand, as was shown recently with a hexacoordinate titanium complex (Böhme & Günther, 2020).
5. Synthesis and crystallization
The preparation of (III) was performed in Schlenk tubes under argon with dry and air-free solvents.
Compound (III) was prepared by reaction of 4-[(2-hydroxyethyl)iminomethyl]-5-hydroxymethyl-2-methylpyridine-3-ol (I) (1.7 g, 8 mmol) with dichlorodimethylsilane (1.03 g, 8 mmol) in the presence of triethylamine (2.02 g, 20 mmol). The reaction was performed in dry tetrahydrofuran at room temperature. A white precipitate of triethylamine hydrochloride formed upon stirring of the mixture for five days. After this period, the triethylamine hydrochloride was filtered off and washed with tetrahydrofuran. The solvent was removed in vacuo from the resulting clear yellow solution. The remaining solid was extracted with 1,2-dimethoxyethane. Addition of diethyl ether and cooling to 278 K yielded yellow crystals of (III) (1.66 g, 78%, m.p. 390 K).
NMR (CDCl3, 300 K, TMS, in p.p.m.): 29Si: −0.1. 1H: δ = 0.14 (s, Me2Si, 6H), 2.50 (s, CH3 pyridoxal, 3H), 3.71, 3.90 (t, N—CH2—CH2—O, 4H), 4.78 (s, CH2—O pyridoxal, 2H), 7.89 (s, CH pyridoxal, 1H), 8.84 (s, HC=N, 1H), 14.05 (s, OH pyridoxal, 1H). 13C: 3.0 (Me2Si), 22.0 (CH3 pyridoxal), 63.3, 64.6 (N—CH2—CH2—O), 66.4 (CH2—O pyridoxal), 122.6, 133.4, 140.8, 153.8, 157.8 (five C pyridoxal), 167.5 (HC=N).
6. Refinement
Crystal data, data collection and structure . The hydrogen atom at O1 was refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethylene = 0.99 Å). The Uiso(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent Ueq value of the parent carbon atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2113407
https://doi.org/10.1107/S2056989021010185/zq2266sup1.cif
contains datablocks I, I_7. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021010185/zq2266Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021010185/zq2266Isup3.cml
Data collection: X-AREA (Stoe, 2009); cell
X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015).C24H36N4O6Si2 | F(000) = 1136 |
Mr = 532.75 | Dx = 1.256 Mg m−3 |
Monoclinic, I2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.9641 (8) Å | Cell parameters from 19293 reflections |
b = 16.8966 (7) Å | θ = 3.2–28.8° |
c = 13.1085 (8) Å | µ = 0.17 mm−1 |
β = 101.198 (5)° | T = 153 K |
V = 2816.7 (3) Å3 | Prism, yellow |
Z = 4 | 0.40 × 0.33 × 0.15 mm |
Stoe IPDS 2T diffractometer | 3242 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2833 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.039 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.5°, θmin = 2.0° |
rotation method scans | h = −16→16 |
Absorption correction: integration (X-RED; Stoe, 2009) | k = −21→21 |
Tmin = 0.907, Tmax = 0.993 | l = −16→16 |
19293 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0343P)2 + 2.1897P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3242 reflections | Δρmax = 0.32 e Å−3 |
169 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.86455 (3) | 0.32645 (2) | −0.02263 (2) | 0.02075 (10) | |
O1 | 0.71097 (8) | 0.39251 (6) | 0.42399 (7) | 0.0296 (2) | |
H1 | 0.7514 (16) | 0.3499 (12) | 0.4190 (14) | 0.044* | |
O2 | 0.80401 (7) | 0.38781 (5) | 0.04330 (7) | 0.02281 (19) | |
O3 | 1.06149 (7) | 0.27321 (5) | 0.43122 (7) | 0.02520 (19) | |
N1 | 0.67254 (9) | 0.55915 (7) | 0.24920 (9) | 0.0294 (2) | |
N2 | 0.83696 (8) | 0.29351 (6) | 0.35941 (8) | 0.0230 (2) | |
C1 | 0.66458 (10) | 0.51009 (8) | 0.32707 (10) | 0.0259 (3) | |
C2 | 0.72289 (10) | 0.43890 (7) | 0.34287 (9) | 0.0233 (2) | |
C3 | 0.78833 (9) | 0.41735 (7) | 0.27376 (9) | 0.0209 (2) | |
C4 | 0.79399 (10) | 0.46943 (7) | 0.19053 (9) | 0.0229 (2) | |
C5 | 0.73609 (11) | 0.53867 (8) | 0.18313 (10) | 0.0282 (3) | |
H5 | 0.741329 | 0.574080 | 0.128082 | 0.034* | |
C6 | 0.58959 (11) | 0.53139 (9) | 0.39701 (11) | 0.0338 (3) | |
H6A | 0.629045 | 0.540267 | 0.467780 | 0.051* | |
H6B | 0.539444 | 0.488047 | 0.397491 | 0.051* | |
H6C | 0.551402 | 0.579715 | 0.371352 | 0.051* | |
C7 | 0.84345 (9) | 0.34072 (7) | 0.28447 (9) | 0.0206 (2) | |
H7 | 0.884566 | 0.326031 | 0.234897 | 0.025* | |
C8 | 0.85625 (10) | 0.45009 (7) | 0.10775 (10) | 0.0252 (3) | |
H8A | 0.861902 | 0.497621 | 0.065010 | 0.030* | |
H8B | 0.928130 | 0.433117 | 0.140566 | 0.030* | |
C9 | 0.89177 (10) | 0.21754 (7) | 0.36341 (10) | 0.0236 (2) | |
H9A | 0.914711 | 0.208345 | 0.296627 | 0.028* | |
H9B | 0.843029 | 0.174374 | 0.373348 | 0.028* | |
C10 | 0.98674 (10) | 0.21622 (7) | 0.45164 (10) | 0.0248 (3) | |
H10A | 0.964942 | 0.228849 | 0.518104 | 0.030* | |
H10B | 1.018780 | 0.162825 | 0.457622 | 0.030* | |
C11 | 0.94958 (13) | 0.38050 (10) | −0.09824 (13) | 0.0406 (4) | |
H11A | 0.907504 | 0.419996 | −0.142798 | 0.061* | |
H11B | 0.979557 | 0.342955 | −0.141483 | 0.061* | |
H11C | 1.006491 | 0.407029 | −0.050283 | 0.061* | |
C12 | 0.76208 (11) | 0.26635 (8) | −0.10486 (10) | 0.0284 (3) | |
H12A | 0.717809 | 0.241394 | −0.061306 | 0.043* | |
H12B | 0.795342 | 0.225328 | −0.140318 | 0.043* | |
H12C | 0.718640 | 0.300404 | −0.156636 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.02231 (17) | 0.02191 (17) | 0.01900 (16) | 0.00084 (12) | 0.00636 (12) | 0.00114 (12) |
O1 | 0.0360 (5) | 0.0297 (5) | 0.0259 (4) | 0.0028 (4) | 0.0128 (4) | 0.0013 (4) |
O2 | 0.0232 (4) | 0.0221 (4) | 0.0228 (4) | −0.0002 (3) | 0.0034 (3) | −0.0036 (3) |
O3 | 0.0241 (4) | 0.0287 (5) | 0.0230 (4) | −0.0076 (4) | 0.0054 (3) | −0.0008 (3) |
N1 | 0.0338 (6) | 0.0237 (5) | 0.0288 (5) | 0.0025 (4) | 0.0011 (4) | −0.0044 (4) |
N2 | 0.0219 (5) | 0.0229 (5) | 0.0237 (5) | −0.0010 (4) | 0.0029 (4) | 0.0000 (4) |
C1 | 0.0251 (6) | 0.0259 (6) | 0.0254 (6) | −0.0010 (5) | 0.0012 (5) | −0.0074 (5) |
C2 | 0.0240 (6) | 0.0240 (6) | 0.0209 (5) | −0.0033 (5) | 0.0020 (4) | −0.0039 (4) |
C3 | 0.0214 (5) | 0.0206 (5) | 0.0195 (5) | −0.0040 (4) | 0.0011 (4) | −0.0031 (4) |
C4 | 0.0264 (6) | 0.0203 (6) | 0.0211 (5) | −0.0049 (4) | 0.0026 (4) | −0.0033 (4) |
C5 | 0.0374 (7) | 0.0213 (6) | 0.0246 (6) | −0.0017 (5) | 0.0026 (5) | −0.0019 (5) |
C6 | 0.0283 (7) | 0.0370 (7) | 0.0363 (7) | 0.0046 (6) | 0.0072 (5) | −0.0080 (6) |
C7 | 0.0200 (5) | 0.0218 (6) | 0.0196 (5) | −0.0030 (4) | 0.0024 (4) | −0.0033 (4) |
C8 | 0.0306 (6) | 0.0210 (6) | 0.0246 (6) | −0.0058 (5) | 0.0071 (5) | −0.0014 (4) |
C9 | 0.0237 (6) | 0.0203 (6) | 0.0263 (6) | −0.0027 (4) | 0.0034 (5) | −0.0003 (4) |
C10 | 0.0229 (6) | 0.0231 (6) | 0.0280 (6) | −0.0032 (5) | 0.0040 (5) | 0.0049 (5) |
C11 | 0.0394 (8) | 0.0453 (9) | 0.0415 (8) | −0.0018 (7) | 0.0192 (7) | 0.0115 (7) |
C12 | 0.0370 (7) | 0.0264 (6) | 0.0204 (6) | −0.0002 (5) | 0.0024 (5) | −0.0014 (5) |
Si1—O2 | 1.6435 (9) | C5—H5 | 0.9500 |
Si1—O3i | 1.6487 (9) | C6—H6A | 0.9800 |
Si1—C12 | 1.8443 (14) | C6—H6B | 0.9800 |
Si1—C11 | 1.8589 (15) | C6—H6C | 0.9800 |
O1—C2 | 1.3539 (15) | C7—H7 | 0.9500 |
O1—H1 | 0.90 (2) | C8—H8A | 0.9900 |
O2—C8 | 1.4345 (14) | C8—H8B | 0.9900 |
O3—C10 | 1.4278 (14) | C9—C10 | 1.5168 (17) |
N1—C1 | 1.3343 (18) | C9—H9A | 0.9900 |
N1—C5 | 1.3512 (18) | C9—H9B | 0.9900 |
N2—C7 | 1.2808 (16) | C10—H10A | 0.9900 |
N2—C9 | 1.4631 (16) | C10—H10B | 0.9900 |
C1—C2 | 1.4143 (18) | C11—H11A | 0.9800 |
C1—C6 | 1.5039 (18) | C11—H11B | 0.9800 |
C2—C3 | 1.4041 (17) | C11—H11C | 0.9800 |
C3—C4 | 1.4147 (17) | C12—H12A | 0.9800 |
C3—C7 | 1.4723 (17) | C12—H12B | 0.9800 |
C4—C5 | 1.3832 (18) | C12—H12C | 0.9800 |
C4—C8 | 1.5085 (17) | ||
O2—Si1—O3i | 103.40 (5) | N2—C7—H7 | 119.4 |
O2—Si1—C12 | 106.94 (6) | C3—C7—H7 | 119.4 |
O3i—Si1—C12 | 112.06 (6) | O2—C8—C4 | 108.98 (10) |
O2—Si1—C11 | 111.33 (7) | O2—C8—H8A | 109.9 |
O3i—Si1—C11 | 109.52 (6) | C4—C8—H8A | 109.9 |
C12—Si1—C11 | 113.16 (7) | O2—C8—H8B | 109.9 |
C2—O1—H1 | 104.4 (12) | C4—C8—H8B | 109.9 |
C8—O2—Si1 | 123.61 (8) | H8A—C8—H8B | 108.3 |
C10—O3—Si1i | 123.50 (8) | N2—C9—C10 | 110.90 (10) |
C1—N1—C5 | 118.59 (11) | N2—C9—H9A | 109.5 |
C7—N2—C9 | 118.05 (11) | C10—C9—H9A | 109.5 |
N1—C1—C2 | 121.46 (12) | N2—C9—H9B | 109.5 |
N1—C1—C6 | 118.23 (12) | C10—C9—H9B | 109.5 |
C2—C1—C6 | 120.30 (12) | H9A—C9—H9B | 108.0 |
O1—C2—C3 | 122.14 (11) | O3—C10—C9 | 109.10 (10) |
O1—C2—C1 | 117.91 (11) | O3—C10—H10A | 109.9 |
C3—C2—C1 | 119.92 (11) | C9—C10—H10A | 109.9 |
C2—C3—C4 | 117.69 (11) | O3—C10—H10B | 109.9 |
C2—C3—C7 | 120.63 (11) | C9—C10—H10B | 109.9 |
C4—C3—C7 | 121.57 (11) | H10A—C10—H10B | 108.3 |
C5—C4—C3 | 118.12 (12) | Si1—C11—H11A | 109.5 |
C5—C4—C8 | 119.45 (11) | Si1—C11—H11B | 109.5 |
C3—C4—C8 | 122.36 (11) | H11A—C11—H11B | 109.5 |
N1—C5—C4 | 124.19 (12) | Si1—C11—H11C | 109.5 |
N1—C5—H5 | 117.9 | H11A—C11—H11C | 109.5 |
C4—C5—H5 | 117.9 | H11B—C11—H11C | 109.5 |
C1—C6—H6A | 109.5 | Si1—C12—H12A | 109.5 |
C1—C6—H6B | 109.5 | Si1—C12—H12B | 109.5 |
H6A—C6—H6B | 109.5 | H12A—C12—H12B | 109.5 |
C1—C6—H6C | 109.5 | Si1—C12—H12C | 109.5 |
H6A—C6—H6C | 109.5 | H12A—C12—H12C | 109.5 |
H6B—C6—H6C | 109.5 | H12B—C12—H12C | 109.5 |
N2—C7—C3 | 121.19 (11) | ||
O3i—Si1—O2—C8 | 68.47 (10) | C2—C3—C4—C8 | −176.10 (11) |
C12—Si1—O2—C8 | −173.10 (9) | C7—C3—C4—C8 | 0.08 (17) |
C11—Si1—O2—C8 | −49.03 (11) | C1—N1—C5—C4 | 0.17 (19) |
C5—N1—C1—C2 | 1.61 (18) | C3—C4—C5—N1 | −1.42 (19) |
C5—N1—C1—C6 | −176.99 (12) | C8—C4—C5—N1 | 175.64 (12) |
N1—C1—C2—O1 | 179.60 (11) | C9—N2—C7—C3 | 178.48 (10) |
C6—C1—C2—O1 | −1.83 (17) | C2—C3—C7—N2 | −3.14 (17) |
N1—C1—C2—C3 | −2.09 (18) | C4—C3—C7—N2 | −179.21 (11) |
C6—C1—C2—C3 | 176.48 (11) | Si1—O2—C8—C4 | −154.64 (8) |
O1—C2—C3—C4 | 179.01 (11) | C5—C4—C8—O2 | −106.34 (13) |
C1—C2—C3—C4 | 0.78 (17) | C3—C4—C8—O2 | 70.59 (14) |
O1—C2—C3—C7 | 2.80 (17) | C7—N2—C9—C10 | 108.51 (12) |
C1—C2—C3—C7 | −175.43 (10) | Si1i—O3—C10—C9 | 143.92 (9) |
C2—C3—C4—C5 | 0.87 (16) | N2—C9—C10—O3 | −65.04 (13) |
C7—C3—C4—C5 | 177.05 (11) |
Symmetry code: (i) −x+2, y, −z+1/2. |
Cg1 is the centroid of the N1/C1–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2 | 0.90 (2) | 1.76 (2) | 2.5923 (15) | 153.2 (18) |
C5—H5···O1ii | 0.95 | 2.69 | 3.5451 (16) | 151 |
C6—H6A···O2iii | 0.98 | 2.59 | 3.3464 (17) | 134 |
C7—H7···O3i | 0.95 | 2.57 | 3.4882 (15) | 162 |
C9—H9B···O2iv | 0.99 | 2.60 | 3.5087 (16) | 153 |
C9—H9B···Cg1iv | 0.99 | 3.31 | 4.039 (2) | 131 |
C11—H11A···Cg1ii | 0.98 | 2.85 | 3.7880 (2) | 160 |
Symmetry codes: (i) −x+2, y, −z+1/2; (ii) x, −y+1, z−1/2; (iii) x, −y+1, z+1/2; (iv) −x+3/2, −y+1/2, −z+1/2. |
Funding information
Funding for this research was provided by: Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg .
References
Annaraj, B. & Neelakantan, M. A. (2014). Anal. Methods 6, 9610–9615. Web of Science CSD CrossRef CAS Google Scholar
Annaraj, B. & Neelakantan, M. A. (2015). Eur. J. Med. Chem. 102, 1–8. Web of Science CSD CrossRef CAS PubMed Google Scholar
Astheimer, H., Nepveu, F., Walz, L. & Haase, W. (1985). J. Chem. Soc. Dalton Trans. pp. 315–320. CSD CrossRef Web of Science Google Scholar
Böhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613–o616. Web of Science CSD CrossRef IUCr Journals Google Scholar
Böhme, U. & Günther, B. (2007a). Inorg. Chem. Commun. 10, 482–484. Google Scholar
Böhme, U. & Günther, B. (2007b). Acta Cryst. C63, o641–o642. Web of Science CSD CrossRef IUCr Journals Google Scholar
Böhme, U. & Günther, B. (2020). CSD Communication (CCDC No. 2048270). CCDC, Cambridge, England. https://dx.doi.org/10.5517/ccdc.csd.cc26rd7m Google Scholar
Böhme, U., Günther, B. & Schwarzer, A. (2008). Acta Cryst. C64, o630–o632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Christensen, H. N. (1957). J. Am. Chem. Soc. 79, 4073–4078. CrossRef CAS Web of Science Google Scholar
Costa Pessoa, J., Cavaco, I., Correia, I., Duarte, M. T., Gillard, R. D., Henriques, R. T., Higes, F. J., Madeira, C. & Tomaz, I. (1999). Inorg. Chim. Acta, 293, 1–11. Web of Science CSD CrossRef CAS Google Scholar
Dawes, H. M., Waters, J. M. & Waters, T. N. (1982). Inorg. Chim. Acta, 66, 29–36. CSD CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filarowski, A., Głowiaka, T. & Koll, A. (1999). J. Mol. Struct. 484, 75–89. Web of Science CSD CrossRef CAS Google Scholar
Gillespie, R. J. & Johnson, S. A. (1997). Inorg. Chem. 36, 3031–3039. CrossRef PubMed CAS Web of Science Google Scholar
Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908. Web of Science CrossRef PubMed CAS Google Scholar
Long, G. J., Wrobleski, J. T., Thundathil, R. V., Sparlin, D. M. & Schlemper, E. O. (1980). J. Am. Chem. Soc. 102, 6040–6046. CSD CrossRef CAS Web of Science Google Scholar
Paul, L. E. H., Foehn, I. C., Schwarzer, A., Brendler, E. & Böhme, U. (2014). Inorg. Chim. Acta, 423, 268–280. Web of Science CSD CrossRef CAS Google Scholar
Rao, S. P. S., Manohar, H. & Bau, R. (1985). J. Chem. Soc. Dalton Trans. pp. 2051–2057. CSD CrossRef Web of Science Google Scholar
Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136–147. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Sykes, A. G., Larsen, R. D., Fischer, J. R. & Abbott, E. H. (1991). Inorg. Chem. 30, 2911–2916. CSD CrossRef CAS Web of Science Google Scholar
Wagler, J., Böhme, U., Brendler, E., Thomas, B., Goutal, S., Mayr, H., Kempf, B., Remennikov, G. Y. & Roewer, G. (2005). Inorg. Chim. Acta, 358, 4270–4286. Web of Science CSD CrossRef CAS Google Scholar
Walz, L., Paulus, H., Haase, W., Langhof, H. & Nepveu, F. (1983). J. Chem. Soc. Dalton Trans. pp. 657–664. CSD CrossRef Web of Science Google Scholar
Warncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46–52. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.