research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Formation of a macrocycle from di­chloro­di­methyl­silane and a pyridoxalimine Schiff base ligand

crossmark logo

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany, and bInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 24 September 2021; accepted 1 October 2021; online 13 October 2021)

The reaction of di­chloro­dimethyl­silane with a polydentate Schiff base ligand derived from pyridoxal and 2-ethano­lamine yielded the macrocyclic silicon compound (8E,22E)-4,4,12,18,18,26-hexa­methyl-3,5,17,19-tetra­oxa-8,13,22,27-tetra­aza-4,18-disilatri­cyclo­[22.4.0.010,15]octa­cosa-1(24),8,10,12,14,22,25,27-octa­ene-11,25-diol, C24H36N4O6Si2. The asymmetric unit contains the half macrocycle with an intra­molecular O—H⋯N hydrogen bond between the imine nitro­gen atom and a neighbouring oxygen atom. The crystal structure is dominated by C—H⋯O and C—H⋯π inter­actions, which form a high ordered mol­ecular network.

1. Chemical context

The heterocyclic aldehyde pyridoxal is one of the active forms of vitamin B6. This vitamin is an essential cofactor to a large number of enzymes that catalyze many reactions of amino acids (Sykes et al., 1991[Sykes, A. G., Larsen, R. D., Fischer, J. R. & Abbott, E. H. (1991). Inorg. Chem. 30, 2911-2916.]). The coordination chemistry of Schiff bases generated from amino acids and pyridoxal with trans­ition metal ions has been investigated intensive (Christensen, 1957[Christensen, H. N. (1957). J. Am. Chem. Soc. 79, 4073-4078.]; Long et al., 1980[Long, G. J., Wrobleski, J. T., Thundathil, R. V., Sparlin, D. M. & Schlemper, E. O. (1980). J. Am. Chem. Soc. 102, 6040-6046.]; Dawes et al., 1982[Dawes, H. M., Waters, J. M. & Waters, T. N. (1982). Inorg. Chim. Acta, 66, 29-36.]; Walz et al., 1983[Walz, L., Paulus, H., Haase, W., Langhof, H. & Nepveu, F. (1983). J. Chem. Soc. Dalton Trans. pp. 657-664.]; Rao et al., 1985[Rao, S. P. S., Manohar, H. & Bau, R. (1985). J. Chem. Soc. Dalton Trans. pp. 2051-2057.]; Astheimer et al., 1985[Astheimer, H., Nepveu, F., Walz, L. & Haase, W. (1985). J. Chem. Soc. Dalton Trans. pp. 315-320.]; Sykes et al., 1991[Sykes, A. G., Larsen, R. D., Fischer, J. R. & Abbott, E. H. (1991). Inorg. Chem. 30, 2911-2916.]; Costa Pessoa et al., 1999[Costa Pessoa, J., Cavaco, I., Correia, I., Duarte, M. T., Gillard, R. D., Henriques, R. T., Higes, F. J., Madeira, C. & Tomaz, I. (1999). Inorg. Chim. Acta, 293, 1-11.]). We are working on silicon complexes with tridentate O,N,O-ligands (Böhme & Günther, 2007a[Böhme, U. & Günther, B. (2007a). Inorg. Chem. Commun. 10, 482-484.]; Böhme et al., 2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]; Paul et al., 2014[Paul, L. E. H., Foehn, I. C., Schwarzer, A., Brendler, E. & Böhme, U. (2014). Inorg. Chim. Acta, 423, 268-280.]; Warncke et al., 2012[Warncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46-52.]; Schwarzer et al., 2018[Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136-147.]). Therefore, we prepared a Schiff base from pyridoxal and 2-amino­ethanol as a potential O,N,O-ligand. The crystal structure of this mol­ecule, 4-[(2-hy­droxy­eth­yl)imino­meth­yl]-5- hy­droxy­methyl-2-methyl­pyridine-3-ol (I)[link], was published earlier (Böhme & Günther, 2007b[Böhme, U. & Günther, B. (2007b). Acta Cryst. C63, o641-o642.]). Compound (I)[link] was used recently as ligand mol­ecule to coordinate copper and silver ions (Annaraj & Neelakantan, 2014[Annaraj, B. & Neelakantan, M. A. (2014). Anal. Methods 6, 9610-9615.], 2015[Annaraj, B. & Neelakantan, M. A. (2015). Eur. J. Med. Chem. 102, 1-8.]). Herein we report the results of reaction between (I)[link] and di­chloro­dimethyl­silane.

There are several potential coordination sites at the ligand mol­ecule (I)[link]: the pyridine and the imino nitro­gen atoms, two aliphatic and one phenolic hydroxyl groups. The presence of these functional groups makes it difficult to predict the structure of the reaction product with di­chloro­dimethyl­silane. It was our initial goal to prepare a penta­coordinate silicon complex like (II). Surprisingly the macrocyclic silicon compound (III) was obtained from the reaction of (I)[link] with Me2SiCl2. The reaction was performed in tetra­hydro­furan in presence of triethylamine as supporting base to remove the hydrogen chloride, which is formed during the reaction. Recrystallization of the raw product from 1,2-di­meth­oxy­ethane and diethyl ether gave yellow crystals suitable for structure analysis.

[Scheme 1]

2. Structural commentary

Compound (III) crystallizes in the monoclinic space group I2/c with the half macrocycle in the asymmetric unit. Fig. 1[link] shows the asymmetric unit and the atomic labelling scheme. The macrocycle is generated by a crystallographic C2 axis through the centre of the macrocycle (Fig. 2[link]). The silicon atom is bound to the two methyl groups and to the aliphatic oxygen atoms O2 and O3, thus forming a macrocycle (Fig. 2[link]). A quite similar macrocycle has been obtained from the reaction of a related pyridoxal-derived Schiff base and di­chloro­diphenyl­silane (Böhme et al., 2008[Böhme, U., Günther, B. & Schwarzer, A. (2008). Acta Cryst. C64, o630-o632.]). The short Si—O bonds (see Table 1[link]) are in the range for comparable Si—O bonds (Wagler et al., 2005[Wagler, J., Böhme, U., Brendler, E., Thomas, B., Goutal, S., Mayr, H., Kempf, B., Remennikov, G. Y. & Roewer, G. (2005). Inorg. Chim. Acta, 358, 4270-4286.]; Böhme et al., 2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.], 2008[Böhme, U., Günther, B. & Schwarzer, A. (2008). Acta Cryst. C64, o630-o632.]; Böhme & Günther, 2007a[Böhme, U. & Günther, B. (2007a). Inorg. Chem. Commun. 10, 482-484.]; Böhme & Foehn, 2007[Böhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613-o616.]). The silicon atom is distorted tetra­hedral with bond angles between 103.40 (5) and 113.16 (7)° (Table 1[link]). The rather large bond angles at the oxygen atoms (see Table 1[link]) have been explained by the ionic character of the Si—O bonds (Gillespie & Johnson, 1997[Gillespie, R. J. & Johnson, S. A. (1997). Inorg. Chem. 36, 3031-3039.]). There is a strong intra­molecular O—H⋯N inter­action (entry 1, Table 2[link]) between the imine nitro­gen atom N2 and the O1—H1 group in the neighbouring position at the pyridoxal ring. The formation of hydrogen bridges between the imine nitro­gen atom and an ortho-hydroxyl group is a feature that is often observed in Schiff bases with o-hy­droxy groups (Hökelek et al., 2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]; Filarowski et al., 1999[Filarowski, A., Głowiaka, T. & Koll, A. (1999). J. Mol. Struct. 484, 75-89.]). This strong intra­molecular O—H⋯N inter­action leads to a six-membered pseudo ring consisting of H1—O1—C2—C3—C7—N2. This pseudo ring is planar with an r.m.s. deviation of 0.009 Å from the ring plane. According to the graph-set notation proposed by Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), these hydrogen bonds form motifs with an S11(6) graph-set descriptor. The hydrogen bonds C7—H7⋯O3 link different parts within one macrocycle via intra-annular hydrogen bonds (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Si1—O2 1.6435 (9) Si1—C12 1.8443 (14)
Si1—O3i 1.6487 (9) Si1—C11 1.8589 (15)
       
O2—Si1—O3i 103.40 (5) O3i—Si1—C11 109.52 (6)
O2—Si1—C12 106.94 (6) C12—Si1—C11 113.16 (7)
O3i—Si1—C12 112.06 (6) C8—O2—Si1 123.61 (8)
O2—Si1—C11 111.33 (7) C10—O3—Si1i 123.50 (8)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.90 (2) 1.76 (2) 2.5923 (15) 153.2 (18)
C5—H5⋯O1ii 0.95 2.69 3.5451 (16) 151
C6—H6A⋯O2iii 0.98 2.59 3.3464 (17) 134
C7—H7⋯O3i 0.95 2.57 3.4882 (15) 162
C9—H9B⋯O2iv 0.99 2.60 3.5087 (16) 153
C9—H9BCg1iv 0.99 3.31 4.039 (2) 131
C11—H11ACg1ii 0.98 2.85 3.7880 (2) 160
Symmetry codes: (i) [-x+2, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of (III), drawn with 50% probability displacement ellipsoids. The dashed line shows the intra­molecular O1—H1⋯N2 hydrogen bond.
[Figure 2]
Figure 2
The mol­ecular structure of (III), drawn with 50% probability displacement ellipsoids.

3. Supra­molecular features

A bifurcated inter­molecular C—H⋯O inter­action is observed at O2 (Table 2[link]). The inter­action of C6—H6A⋯O2 and C5—H5⋯O1 results in a chain along the crystallographic b-axis. The C—H⋯O inter­action of C9—H9B with O2 connects adjacent chains (Fig. 3[link]).

[Figure 3]
Figure 3
Packing excerpt of (III) showing C—H⋯O hydrogen bonds (dashed lines).

Apart from the relevant C—H⋯O inter­action, two C—H⋯π contacts with the pyridine moiety (Cg1) are observed. First, a bifurcation at H9B (d = 3.31 Å) shows up within the C—H⋯O chains along the c axis. Furthermore, C11—H11ACg1 (d = 2.85 Å) supports the C—H⋯O inter­actions of H5 and H6A.

In summary, the crystal structure is dominated by C—H⋯O and C—H⋯π inter­actions, forming a highly ordered mol­ecular network.

The potential bonding sites in combination with the cavity of the macrocycle makes (III) a suitable candidate for supra­molecular recognition processes. The available pyridine N, azomethine N, and OH groups could be useful for the generation of nanostructures via complexation with transition metals (Leininger et al., 2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.]).

4. Database survey

A CSD search with ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for macrocycles containing Schiff bases from pyridoxal and 2-amino­alcohols showed that only one comparable silicon compound exists (Böhme et al., 2008[Böhme, U., Günther, B. & Schwarzer, A. (2008). Acta Cryst. C64, o630-o632.], refcode MOKVEO). The main differences between these two structures of silicon-containing macrocycles are as follows. First, (III) was found to crystallize without solvent while MOKVEO encloses chloro­fom mol­ecules. Probably as a result, the symmetry is lower in MOKVEO (triclinic, P[\overline{1}]) than in (III) showing the monoclinic I2/c symmetry. On the basis of the structure of (III) presented here and the former investigation (Böhme et al., 2008[Böhme, U., Günther, B. & Schwarzer, A. (2008). Acta Cryst. C64, o630-o632.]), it can be assumed that pyridoxalimine-derived Schiff bases prefer the formation of macrocycles with diorganosilane units. However, it seems to be possible that compound (I)[link] can also act as a tridentate O,N,O-ligand, as was shown recently with a hexa­coordinate titanium complex (Böhme & Günther, 2020[Böhme, U. & Günther, B. (2020). CSD Communication (CCDC No. 2048270). CCDC, Cambridge, England. https://dx.doi.org/10.5517/ccdc.csd.cc26rd7m]).

5. Synthesis and crystallization

The preparation of (III) was performed in Schlenk tubes under argon with dry and air-free solvents.

Compound (III) was prepared by reaction of 4-[(2-hy­droxy­eth­yl)imino­meth­yl]-5-hy­droxy­methyl-2-methyl­pyridine-3-ol (I)[link] (1.7 g, 8 mmol) with di­chloro­dimethyl­silane (1.03 g, 8 mmol) in the presence of tri­ethyl­amine (2.02 g, 20 mmol). The reaction was performed in dry tetra­hydro­furan at room temperature. A white precipitate of tri­ethyl­amine hydro­chloride formed upon stirring of the mixture for five days. After this period, the tri­ethyl­amine hydro­chloride was filtered off and washed with tetra­hydro­furan. The solvent was removed in vacuo from the resulting clear yellow solution. The remaining solid was extracted with 1,2-di­meth­oxy­ethane. Addition of diethyl ether and cooling to 278 K yielded yellow crystals of (III) (1.66 g, 78%, m.p. 390 K).

NMR (CDCl3, 300 K, TMS, in p.p.m.): 29Si: −0.1. 1H: δ = 0.14 (s, Me2Si, 6H), 2.50 (s, CH3 pyridoxal, 3H), 3.71, 3.90 (t, N—CH2—CH2—O, 4H), 4.78 (s, CH2—O pyridoxal, 2H), 7.89 (s, CH pyridoxal, 1H), 8.84 (s, HC=N, 1H), 14.05 (s, OH pyridoxal, 1H). 13C: 3.0 (Me2Si), 22.0 (CH3 pyridoxal), 63.3, 64.6 (N—CH2—CH2—O), 66.4 (CH2—O pyridoxal), 122.6, 133.4, 140.8, 153.8, 157.8 (five C pyridoxal), 167.5 (HC=N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atom at O1 was refined freely. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C—H = 0.98 Å, H—C—H = 109.5°). Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The Uiso(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent Ueq value of the parent carbon atoms.

Table 3
Experimental details

Crystal data
Chemical formula C24H36N4O6Si2
Mr 532.75
Crystal system, space group Monoclinic, I2/c
Temperature (K) 153
a, b, c (Å) 12.9641 (8), 16.8966 (7), 13.1085 (8)
β (°) 101.198 (5)
V3) 2816.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.40 × 0.33 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED; Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.907, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 19293, 3242, 2833
Rint 0.039
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.08
No. of reflections 3242
No. of parameters 169
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.23
Computer programs: X-AREA and X-RED (Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2009); cell refinement: X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015).

(8E,22E)-4,4,12,18,18,26-Hexamethyl-3,5,17,19-tetraoxa-8,13,22,27-tetraaza-4,18-disilatricyclo[22.4.0.010,15]octacosa-1(24),8,10,12,14,22,25,27-octaene-11,25-diol top
Crystal data top
C24H36N4O6Si2F(000) = 1136
Mr = 532.75Dx = 1.256 Mg m3
Monoclinic, I2/cMo Kα radiation, λ = 0.71073 Å
a = 12.9641 (8) ÅCell parameters from 19293 reflections
b = 16.8966 (7) Åθ = 3.2–28.8°
c = 13.1085 (8) ŵ = 0.17 mm1
β = 101.198 (5)°T = 153 K
V = 2816.7 (3) Å3Prism, yellow
Z = 40.40 × 0.33 × 0.15 mm
Data collection top
Stoe IPDS 2T
diffractometer
3242 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2833 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.039
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.0°
rotation method scansh = 1616
Absorption correction: integration
(X-RED; Stoe, 2009)
k = 2121
Tmin = 0.907, Tmax = 0.993l = 1616
19293 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0343P)2 + 2.1897P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3242 reflectionsΔρmax = 0.32 e Å3
169 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.86455 (3)0.32645 (2)0.02263 (2)0.02075 (10)
O10.71097 (8)0.39251 (6)0.42399 (7)0.0296 (2)
H10.7514 (16)0.3499 (12)0.4190 (14)0.044*
O20.80401 (7)0.38781 (5)0.04330 (7)0.02281 (19)
O31.06149 (7)0.27321 (5)0.43122 (7)0.02520 (19)
N10.67254 (9)0.55915 (7)0.24920 (9)0.0294 (2)
N20.83696 (8)0.29351 (6)0.35941 (8)0.0230 (2)
C10.66458 (10)0.51009 (8)0.32707 (10)0.0259 (3)
C20.72289 (10)0.43890 (7)0.34287 (9)0.0233 (2)
C30.78833 (9)0.41735 (7)0.27376 (9)0.0209 (2)
C40.79399 (10)0.46943 (7)0.19053 (9)0.0229 (2)
C50.73609 (11)0.53867 (8)0.18313 (10)0.0282 (3)
H50.7413290.5740800.1280820.034*
C60.58959 (11)0.53139 (9)0.39701 (11)0.0338 (3)
H6A0.6290450.5402670.4677800.051*
H6B0.5394440.4880470.3974910.051*
H6C0.5514020.5797150.3713520.051*
C70.84345 (9)0.34072 (7)0.28447 (9)0.0206 (2)
H70.8845660.3260310.2348970.025*
C80.85625 (10)0.45009 (7)0.10775 (10)0.0252 (3)
H8A0.8619020.4976210.0650100.030*
H8B0.9281300.4331170.1405660.030*
C90.89177 (10)0.21754 (7)0.36341 (10)0.0236 (2)
H9A0.9147110.2083450.2966270.028*
H9B0.8430290.1743740.3733480.028*
C100.98674 (10)0.21622 (7)0.45164 (10)0.0248 (3)
H10A0.9649420.2288490.5181040.030*
H10B1.0187800.1628250.4576220.030*
C110.94958 (13)0.38050 (10)0.09824 (13)0.0406 (4)
H11A0.9075040.4199960.1427980.061*
H11B0.9795570.3429550.1414830.061*
H11C1.0064910.4070290.0502830.061*
C120.76208 (11)0.26635 (8)0.10486 (10)0.0284 (3)
H12A0.7178090.2413940.0613060.043*
H12B0.7953420.2253280.1403180.043*
H12C0.7186400.3004040.1566360.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.02231 (17)0.02191 (17)0.01900 (16)0.00084 (12)0.00636 (12)0.00114 (12)
O10.0360 (5)0.0297 (5)0.0259 (4)0.0028 (4)0.0128 (4)0.0013 (4)
O20.0232 (4)0.0221 (4)0.0228 (4)0.0002 (3)0.0034 (3)0.0036 (3)
O30.0241 (4)0.0287 (5)0.0230 (4)0.0076 (4)0.0054 (3)0.0008 (3)
N10.0338 (6)0.0237 (5)0.0288 (5)0.0025 (4)0.0011 (4)0.0044 (4)
N20.0219 (5)0.0229 (5)0.0237 (5)0.0010 (4)0.0029 (4)0.0000 (4)
C10.0251 (6)0.0259 (6)0.0254 (6)0.0010 (5)0.0012 (5)0.0074 (5)
C20.0240 (6)0.0240 (6)0.0209 (5)0.0033 (5)0.0020 (4)0.0039 (4)
C30.0214 (5)0.0206 (5)0.0195 (5)0.0040 (4)0.0011 (4)0.0031 (4)
C40.0264 (6)0.0203 (6)0.0211 (5)0.0049 (4)0.0026 (4)0.0033 (4)
C50.0374 (7)0.0213 (6)0.0246 (6)0.0017 (5)0.0026 (5)0.0019 (5)
C60.0283 (7)0.0370 (7)0.0363 (7)0.0046 (6)0.0072 (5)0.0080 (6)
C70.0200 (5)0.0218 (6)0.0196 (5)0.0030 (4)0.0024 (4)0.0033 (4)
C80.0306 (6)0.0210 (6)0.0246 (6)0.0058 (5)0.0071 (5)0.0014 (4)
C90.0237 (6)0.0203 (6)0.0263 (6)0.0027 (4)0.0034 (5)0.0003 (4)
C100.0229 (6)0.0231 (6)0.0280 (6)0.0032 (5)0.0040 (5)0.0049 (5)
C110.0394 (8)0.0453 (9)0.0415 (8)0.0018 (7)0.0192 (7)0.0115 (7)
C120.0370 (7)0.0264 (6)0.0204 (6)0.0002 (5)0.0024 (5)0.0014 (5)
Geometric parameters (Å, º) top
Si1—O21.6435 (9)C5—H50.9500
Si1—O3i1.6487 (9)C6—H6A0.9800
Si1—C121.8443 (14)C6—H6B0.9800
Si1—C111.8589 (15)C6—H6C0.9800
O1—C21.3539 (15)C7—H70.9500
O1—H10.90 (2)C8—H8A0.9900
O2—C81.4345 (14)C8—H8B0.9900
O3—C101.4278 (14)C9—C101.5168 (17)
N1—C11.3343 (18)C9—H9A0.9900
N1—C51.3512 (18)C9—H9B0.9900
N2—C71.2808 (16)C10—H10A0.9900
N2—C91.4631 (16)C10—H10B0.9900
C1—C21.4143 (18)C11—H11A0.9800
C1—C61.5039 (18)C11—H11B0.9800
C2—C31.4041 (17)C11—H11C0.9800
C3—C41.4147 (17)C12—H12A0.9800
C3—C71.4723 (17)C12—H12B0.9800
C4—C51.3832 (18)C12—H12C0.9800
C4—C81.5085 (17)
O2—Si1—O3i103.40 (5)N2—C7—H7119.4
O2—Si1—C12106.94 (6)C3—C7—H7119.4
O3i—Si1—C12112.06 (6)O2—C8—C4108.98 (10)
O2—Si1—C11111.33 (7)O2—C8—H8A109.9
O3i—Si1—C11109.52 (6)C4—C8—H8A109.9
C12—Si1—C11113.16 (7)O2—C8—H8B109.9
C2—O1—H1104.4 (12)C4—C8—H8B109.9
C8—O2—Si1123.61 (8)H8A—C8—H8B108.3
C10—O3—Si1i123.50 (8)N2—C9—C10110.90 (10)
C1—N1—C5118.59 (11)N2—C9—H9A109.5
C7—N2—C9118.05 (11)C10—C9—H9A109.5
N1—C1—C2121.46 (12)N2—C9—H9B109.5
N1—C1—C6118.23 (12)C10—C9—H9B109.5
C2—C1—C6120.30 (12)H9A—C9—H9B108.0
O1—C2—C3122.14 (11)O3—C10—C9109.10 (10)
O1—C2—C1117.91 (11)O3—C10—H10A109.9
C3—C2—C1119.92 (11)C9—C10—H10A109.9
C2—C3—C4117.69 (11)O3—C10—H10B109.9
C2—C3—C7120.63 (11)C9—C10—H10B109.9
C4—C3—C7121.57 (11)H10A—C10—H10B108.3
C5—C4—C3118.12 (12)Si1—C11—H11A109.5
C5—C4—C8119.45 (11)Si1—C11—H11B109.5
C3—C4—C8122.36 (11)H11A—C11—H11B109.5
N1—C5—C4124.19 (12)Si1—C11—H11C109.5
N1—C5—H5117.9H11A—C11—H11C109.5
C4—C5—H5117.9H11B—C11—H11C109.5
C1—C6—H6A109.5Si1—C12—H12A109.5
C1—C6—H6B109.5Si1—C12—H12B109.5
H6A—C6—H6B109.5H12A—C12—H12B109.5
C1—C6—H6C109.5Si1—C12—H12C109.5
H6A—C6—H6C109.5H12A—C12—H12C109.5
H6B—C6—H6C109.5H12B—C12—H12C109.5
N2—C7—C3121.19 (11)
O3i—Si1—O2—C868.47 (10)C2—C3—C4—C8176.10 (11)
C12—Si1—O2—C8173.10 (9)C7—C3—C4—C80.08 (17)
C11—Si1—O2—C849.03 (11)C1—N1—C5—C40.17 (19)
C5—N1—C1—C21.61 (18)C3—C4—C5—N11.42 (19)
C5—N1—C1—C6176.99 (12)C8—C4—C5—N1175.64 (12)
N1—C1—C2—O1179.60 (11)C9—N2—C7—C3178.48 (10)
C6—C1—C2—O11.83 (17)C2—C3—C7—N23.14 (17)
N1—C1—C2—C32.09 (18)C4—C3—C7—N2179.21 (11)
C6—C1—C2—C3176.48 (11)Si1—O2—C8—C4154.64 (8)
O1—C2—C3—C4179.01 (11)C5—C4—C8—O2106.34 (13)
C1—C2—C3—C40.78 (17)C3—C4—C8—O270.59 (14)
O1—C2—C3—C72.80 (17)C7—N2—C9—C10108.51 (12)
C1—C2—C3—C7175.43 (10)Si1i—O3—C10—C9143.92 (9)
C2—C3—C4—C50.87 (16)N2—C9—C10—O365.04 (13)
C7—C3—C4—C5177.05 (11)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.90 (2)1.76 (2)2.5923 (15)153.2 (18)
C5—H5···O1ii0.952.693.5451 (16)151
C6—H6A···O2iii0.982.593.3464 (17)134
C7—H7···O3i0.952.573.4882 (15)162
C9—H9B···O2iv0.992.603.5087 (16)153
C9—H9B···Cg1iv0.993.314.039 (2)131
C11—H11A···Cg1ii0.982.853.7880 (2)160
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg .

References

First citationAnnaraj, B. & Neelakantan, M. A. (2014). Anal. Methods 6, 9610–9615.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnnaraj, B. & Neelakantan, M. A. (2015). Eur. J. Med. Chem. 102, 1–8.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAstheimer, H., Nepveu, F., Walz, L. & Haase, W. (1985). J. Chem. Soc. Dalton Trans. pp. 315–320.  CSD CrossRef Web of Science Google Scholar
First citationBöhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613–o616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, U. & Günther, B. (2007a). Inorg. Chem. Commun. 10, 482–484.  Google Scholar
First citationBöhme, U. & Günther, B. (2007b). Acta Cryst. C63, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, U. & Günther, B. (2020). CSD Communication (CCDC No. 2048270). CCDC, Cambridge, England. https://dx.doi.org/10.5517/ccdc.csd.cc26rd7m  Google Scholar
First citationBöhme, U., Günther, B. & Schwarzer, A. (2008). Acta Cryst. C64, o630–o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChristensen, H. N. (1957). J. Am. Chem. Soc. 79, 4073–4078.  CrossRef CAS Web of Science Google Scholar
First citationCosta Pessoa, J., Cavaco, I., Correia, I., Duarte, M. T., Gillard, R. D., Henriques, R. T., Higes, F. J., Madeira, C. & Tomaz, I. (1999). Inorg. Chim. Acta, 293, 1–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationDawes, H. M., Waters, J. M. & Waters, T. N. (1982). Inorg. Chim. Acta, 66, 29–36.  CSD CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilarowski, A., Głowiaka, T. & Koll, A. (1999). J. Mol. Struct. 484, 75–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationGillespie, R. J. & Johnson, S. A. (1997). Inorg. Chem. 36, 3031–3039.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLong, G. J., Wrobleski, J. T., Thundathil, R. V., Sparlin, D. M. & Schlemper, E. O. (1980). J. Am. Chem. Soc. 102, 6040–6046.  CSD CrossRef CAS Web of Science Google Scholar
First citationPaul, L. E. H., Foehn, I. C., Schwarzer, A., Brendler, E. & Böhme, U. (2014). Inorg. Chim. Acta, 423, 268–280.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, S. P. S., Manohar, H. & Bau, R. (1985). J. Chem. Soc. Dalton Trans. pp. 2051–2057.  CSD CrossRef Web of Science Google Scholar
First citationSchwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSykes, A. G., Larsen, R. D., Fischer, J. R. & Abbott, E. H. (1991). Inorg. Chem. 30, 2911–2916.  CSD CrossRef CAS Web of Science Google Scholar
First citationWagler, J., Böhme, U., Brendler, E., Thomas, B., Goutal, S., Mayr, H., Kempf, B., Remennikov, G. Y. & Roewer, G. (2005). Inorg. Chim. Acta, 358, 4270–4286.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalz, L., Paulus, H., Haase, W., Langhof, H. & Nepveu, F. (1983). J. Chem. Soc. Dalton Trans. pp. 657–664.  CSD CrossRef Web of Science Google Scholar
First citationWarncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46–52.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds