research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tautomerism troubles: proton transfer modifies the stereochemical assignments in diastereoisomeric structures of spiro­cyclic 5-methyl-2H-imidazol-4-amine dimers

crossmark logo

aAstraZeneca, Oral Product Development, Pharmaceutical Technology & Development, Operations, Macclesfield, United Kingdom, bSchool of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom, and cAstraZeneca, Chemical Development, Pharmaceutical Technology & Development, Operations, Macclesfield, United Kingdom
*Correspondence e-mail: s.j.coles@soton.ac.uk

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 14 May 2021; accepted 26 June 2021; online 18 November 2021)

During the racemization of a novel pharmaceutical spiro­cyclic imidazole–amine compound, namely, 6′-bromo-N-(6′-bromo-4-meth­oxy-4′′-methyl-3′H-di­spiro[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-yl)-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-imine, C36H41Br2N5O2, two impurities were isolated. These impurities were clearly dimers from mass spectroscopic analysis, however single-crystal diffraction characterization was required for the assignment of stereochemistry. The single-crystal diffraction results revealed subtly different structures to those proposed, due to an unexpected proton transfer. The dimers contain four stereocentres, but two of primary inter­est, and are centrosymmetric, so after careful structure refinement and close inspection it was possible to unambiguously assign the stereochemistry of both the homochiral [(S),(S)- and (R),(R)-] and the heterochiral [(S),(R)- and (R),(S)-] compounds.

1. Chemical context

During the racemization of an enanti­opure spiro­cyclic 5-methyl-2H-imidazol-4-amine, two impurities were observed by reverse phase-HPLC, which were subsequently rationalized as a combination of the homochiral compounds (S),(S)-(R),(R)-, and heterochiral compounds (S),(R)- and (R),(S)- (see Fig. 1[link] for the proposed 2D structures). Solution-state NMR and mass spectrometry analysis revealed that these impurities were dimers of the 5-methyl-2H-imidazol-4-amine compound e (see Fig. 2[link]); no diagnostic signals were observed in the solution-state NMR and therefore single-crystal structure determination was required to allow assignment of the absolute configuration of the impurities observed.

[Figure 1]
Figure 1
Proposed structures of the dimeric impurities, comprising the (R),(R)-, (S),(S)-, (R),(S)- and (S),(R)- compounds, respectively.
[Figure 2]
Figure 2
5-methyl-2H-imidazol-4-amine, compound e.

The chemical shifts from the solution-state NMR are given in Section 6 below. As related enanti­omers are indistinguishable by solution-state NMR, single crystal X-ray diffraction analysis was sought to enable an unambiguous assignment, revealing structures 1 and 2. This analysis not only enabled the identification of the correct absolute structure, but also revealed that there was, in fact, a subtle variation to the proposed structures. Crystal structures were obtained for both the impurities observed, which revealed that the homochiral and heterochiral structures differed from those proposed (a, b, c and d) due to hydrogen migration from the bridging nitro­gen centre to the closest imidazole group.

[Scheme 1]

2. Structural commentary

Both structures solved and refined satisfactorily in the centrosymmetric space group P21/n. Therefore, both possible diastereoisomers, RR/SS (in structure 1) and RS/SR (in structure 2), are present in equal amounts in their respective crystal. The structures along with their atomic numbering schemes are illustrated in Fig. 3[link].

[Figure 3]
Figure 3
The mol­ecular structures with atomic numbering schemes (non-carbon and hydrogen atoms only for clarity) for 1 and 2 respectively. The chiral centres are marked with an asterisk and for clarity only the enanti­omer solved in the asymmetric unit of each structure is shown.

Fig. 3[link] shows that in both cases an unexpected proton transfer from the bridging amine centre (N1 in both structures) to the spiro-imidazole nitro­gen (N2 in both structures) had occurred. Examination of residual electron density maps (see Refinement section and Fig. 6[link]) of both structures, supported by inter­preting the bond lengths around these nitro­gen centres, confirmed the location of the hydrogen atom and therefore the fact that this migration has occurred. It was, however, necessary to restrain the N2—H2 bond in structure 1, otherwise it refined to a value slightly shorter than expected. This transfer results in a perturbation of the bonding pattern within the imidazole rings for both structures. The bond conjugation between these rings is extended via the bridging nitro­gen (N1), which makes the formal nature of the double and single bonds in these ring systems less clear, as depicted in Fig. 4[link] and Table 1[link].

Table 1
Bond lengths (Å) in the N-bridged bis-imidazole core for structures 1 and 2, with bonds denoted as in Fig. 4[link]

Bond Structure 1 Bond order Structure 2 Bond order
1 (N1⋯C1) 1.3327 (19) delocalized 1.3081 (18) delocalized
2 (N1⋯C19) 1.3616 (18) delocalized 1.3853 (18) delocalized
3 (C1⋯N2) 1.3250 (19) delocalized 1.3374 (18) delocalized
4 (C19⋯N4) 1.3115 (18) delocalized 1.2983 (18) delocalized
5 (C1—C2) 1.4940 (19) single 1.4959 (19) single
6 (C19—C20) 1.4925 (19) single 1.4940 (18) single
7 (N2—C4) 1.4471 (18) single 1.4509 (17) single
8 (N4—C22) 1.4513 (17) single 1.4791 (17) single
9 (C2—N3) 1.2818 (19) double 1.2800 (19) double
10 (N5—C20) 1.2809 (19) double 1.2837 (18) double
11 (N3—C4) 1.4770 (17) single 1.4759 (18) single
12 (N5—C22) 1.4816 (17) single 1.4635 (17) single
[Figure 6]
Figure 6
The 3D residual electron difference maps from the refinements of 1 and 2. The green wireframe is drawn at a threshold of >0.4 electrons /Å−3.
[Figure 4]
Figure 4
Labelled bonds in the N-bridged bis-imidazole core, with associated bond lengths for 1 and 2 denoted in Table 1[link].

This perturbation of bonding means particularly close attention must be paid to the formal chirality assignment of the stereocentres C4 and C22 in both structures 1 and 2, as it is dependent on analysis of the surrounding imidazole bond lengths. The definitive Cahn–Ingold–Prelog assignment (Cahn et al., 1966[Cahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. Engl. 5, 385-415.]) of these stereocentres required a manual approach as the algorithms in both PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) software gave inaccurate results, due to the ambiguity of bond order altering the priority of the bonds connected to the stereocentres. In both structures, the distances between atoms C1 and N2 (1) and C19 and N4 (2) have more double-bond character than single. This results in a formal designation of RR (and SS) and RS (and SR) in the refined structures of 1 and 2, respectively.

The hydrogen-atom location also results in the formation of a strong intra­molecular hydrogen bond between both imidazole rings, mediated by a N2—H2⋯N4 inter­action in each structure (Tables 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4 0.826 (19) 2.064 (18) 2.6456 (16) 127.2 (15)

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4 0.82 (1) 1.95 (2) 2.5549 (16) 129 (2)

3. Supra­molecular features

The packing arrangement for both structures 1 and 2 are shown in Fig. 5[link]. In both compounds there are no hydrogen-bonding inter­actions present within the structure, other than that of the N2—H2⋯N4 intra­molecular hydrogen bond. This intra­molecular inter­action is an additional factor influencing the delocalization of bonding in these ring systems.

[Figure 5]
Figure 5
The predominant packing motifs in the structures of 1 and 2.

The packing is likely to be dominated by dispersive inter­actions and the differences between the two motifs will be small. These mol­ecules have a ridge-tile shape and the structure of 1 involves insertion of a sidewall of one mol­ecule into the cleft of another; this motif contains some small voids with a volume of approximately 30 Å2 calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). However, mol­ecules in the structure of 2 assemble in a side-by-side manner into a strand, which allows complementary head-to-tail stacking of strands and is more packing efficient (using the same settings in Mercury no voids are calculated).

4. Database survey

These mol­ecular structures are relatively unique in solid-state chemistry. A search of the CSD (CSD version 5.42, updates of Feb 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded no results for structures with a similarity to the overall mol­ecule or to the motif of the methyl-imidazole-amine bridged dimer. There were also no structures found for a spiro group with similar substituents.

2H-Imidazoles are well known in organic chemistry and a name search for these in the CSD revealed 677 structures. A combination of this search with that of the substructure of the imidazole core of this system, where the bonds are considered to be `double' produces 50 hits, while there are no results if these bonds are defined as `delocalized'. Analysis of the hit lists does not reveal any structures similar to those reported herein and therefore does not provide any insight as to how the bonding should be assigned.

5. Synthesis and crystallization

Solid samples of 1 and 2 were isolated from a reaction to form a spiro­cyclic 5-methyl-2H-imidazol-4-amine, during which they were formed as an impurity product and were subsequently isolated. Single crystals of compounds 1 and 2 were grown by slow evaporation at room temperature from individual solutions of ethyl acetate (200 mL g−1). Each mixture was allowed to evaporate to dryness over the period of a week. Both compounds formed colourless block-shaped crystals.

6. Characterization by spectroscopic techniques

The following NMR and mass spectrometry data were collected.

Compound a, (R,R)/(S,S)-(1r,1′S,4S,E)-6′-bromo-N-[(1r,1′S,4S)-6′-bromo-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol-5′′-yl]-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-imine (and enanti­omer):

1H NMR (500 MHz, CDCl3) 1.06 (td, J = 13.7, 3.8 Hz, 1H), 1.22–1.47 (m, 3H), 1.65 (dd, J = 12.8, 2.9 Hz, 1H), 1.68–1.77 (m, 1H), 1.85–1.94 (m, 1H), 1.94–2.03 (m, 1H), 2.41 (s, 3H), 2.91–3.01 (m, 1H), 3.06–3.17 (m, 2H), 3.31 (s, 3H), 6.90 (d, J = 1.7 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.38 (dd, J = 8.0, 1.9 Hz, 1H). 13C NMR (126 MHz, CDCl3) 14.11, 28.26, 28.39, 28.98, 30.46, 39.23, 53.08, 53.14, 55.43, 79.02, 104.96, 120.06, 125.61, 127.16, 131.63, 141.17, 142.20, 165.37, 165.82. LC–MS (ESI, M + H+) 734.2, 736.1, 738.1

Compound c, (R,S)/(S,R)-(1r,1′S,4S,E)-6′-bromo-N-[(1r,1′S,4S)-6′-bromo-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol-5′′-yl]-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-imine (and enanti­omer):

1H NMR (500 MHz, CDCl3) 1.06 (td, J = 13.6, 3.7 Hz, 1H), 1.20 (td, J = 13.3, 3.5 Hz, 1H), 1.31 (dqt, J = 21.3, 8.2, 4.1 Hz, 2H), 1.5–1.6 (m, 1H), 1.65–1.78 (m, 1H), 1.85–2.01 (m, 2H), 2.41 (s, 3H), 3.03 (td, J = 10.7, 5.3 Hz, 1H), 3.13 (s, 2H), 3.32 (s, 3H), 6.86 (d, J = 1.8 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.38 (dd, J = 8.0, 1.9 Hz, 1H). 13C NMR (126 MHz, CDCl3) 14.11, 28.05, 28.32, 28.88, 29.94, 39.28, 53.05, 55.47, 78.49, 104.94, 119.80, 125.04, 127.27, 131.49, 141.48, 142.80, 165.56, 165.73. LC–MS (ESI, M + H+) 734.2, 736.1, 738.1

7. Refinement

The crystal data, data collection and refinement details for structures 1 and 2 are summarized in Table 4[link] and were obtained by following a previously published approach (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]). Further details of these experiments are given at the end of this section. The structure refinements of both 1 and 2 demonstrated that the hydrogen atom anti­cipated to be bound to the bridging nitro­gen (labelled N1 in both structures) was in fact bound to one of the adjacent imidazole nitro­gen atoms (labelled N2 in both structures). This was confirmed by inspection of residual electron difference maps. Fig. 6[link] depicts 3D representations of the residual electron difference map around the bis-imidazole cores of 1 and 2, the green wireframes are drawn at a threshold of >0.4 electrons/Å−3 and highlight the location of the hydrogen atoms.

Table 4
Experimental details

  1 2
Crystal data
Chemical formula C36H41Br2N5O2 C36H41Br2N5O2
Mr 735.56 735.56
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 10.18956 (5), 13.92084 (5), 25.48643 (14) 13.19297 (6), 17.60010 (8), 15.25349 (8)
β (°) 113.5742 (7) 104.4018 (5)
V3) 3313.47 (3) 3430.52 (3)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.42 3.30
Crystal size (mm) 0.18 × 0.05 × 0.03 0.31 × 0.07 × 0.05
 
Data collection
Diffractometer Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Neu-Isenburg, Germany.]) Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Neu-Isenburg, Germany.])
Tmin, Tmax 0.621, 1.000 0.654, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 118177, 6068, 5967 97773, 6285, 6257
Rint 0.031 0.023
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.06 0.024, 0.057, 1.06
No. of reflections 6068 6285
No. of parameters 454 413
No. of restraints 15 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.39 0.33, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Neu-Isenburg, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The structures of 1 and 2 solved in the space group P21/n (# 14) using dual methods in the SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) structure-solution program and refined by full-matrix least-squares minimization on F2 using SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). All non-hydrogen atoms were refined anisotropically. The position of the N—H atom H2 was located from the difference map and refined with its thermal parameter linked to that of its parent atom, N2. The positions of the remaining C—H atoms were calculated geometrically and refined using a riding model.

The disordered atoms of 2 (Br1A/Br1B, O1A/O1B and C5A/C5B > C18A/C18B), have been modelled over two positions using geometric parameter restraints. In addition, the geometry of the minor benzene ring (C5B > C10B) was constrained to be a regular hexa­gon with bond lengths of 1.39 Å. All minor atomic positions were modelled isotropically with the thermal parameters of atoms Br1A and Br1B restrained and those of atoms O1B and C5B > C18B, constrained to be the same. Applying the above to the refinement conserved realistic chemical geometries and lowered the R1 value from 2.74% to 2.20%. Fig. 7[link] depicts the disorder modelling in structure 2, with displacement ellipsoids drawn at the 50% probability level and the minor component highlighted in orange (10.8%).

[Figure 7]
Figure 7
The disorder modelling in structure 2, with displacement ellipsoids drawn at the 50% probability level and the minor component highlighted in orange (10.8%).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) top
Crystal data top
C36H41Br2N5O2F(000) = 1512
Mr = 735.56Dx = 1.474 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 10.18956 (5) ÅCell parameters from 82488 reflections
b = 13.92084 (5) Åθ = 3.2–70.3°
c = 25.48643 (14) ŵ = 3.42 mm1
β = 113.5742 (7)°T = 100 K
V = 3313.47 (3) Å3Block, colourless
Z = 40.18 × 0.05 × 0.03 mm
Data collection top
Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
diffractometer
6068 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF5967 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10 pixels mm-1θmax = 68.2°, θmin = 3.7°
profile data from ω–scansh = 1212
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 1616
Tmin = 0.621, Tmax = 1.000l = 3030
118177 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0259P)2 + 2.2368P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.33 e Å3
6068 reflectionsΔρmin = 0.39 e Å3
454 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 restraintsExtinction coefficient: 0.00013 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. This diastereoisomer has crystallised in the centrosymmetric space group P21/n; meaning that both RS and SR forms of the API must be present in equal amounts within the crystal. The atoms of both methoxy groups (O1, C18 and O2, C36), have been modelled as single sites with large thermal ellipsoids. This was found to be the most appropriate model; however, these large ellipsoids result in two checkCIF C-alerts. The N2-H2 bond length has been restrained, otherwise it refined to an unrealistic value.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.94977 (8)0.13936 (5)0.43736 (3)0.0374 (2)0.892 (3)
Br1B0.9408 (7)0.1378 (3)0.4382 (2)0.0172 (9)*0.108 (3)
Br21.07263 (2)0.11819 (2)0.78926 (2)0.02647 (6)
C10.53448 (14)0.13684 (9)0.50383 (6)0.0145 (3)
C20.43133 (15)0.12704 (10)0.44275 (6)0.0165 (3)
C30.27976 (15)0.09625 (11)0.42505 (6)0.0202 (3)
H3A0.2296860.1017660.3833840.030*
H3B0.2327800.1373620.4435730.030*
H3C0.2770070.0293460.4365290.030*
C40.63956 (15)0.17633 (11)0.44190 (6)0.0193 (3)
C5A0.7365 (5)0.1160 (3)0.4219 (2)0.0222 (4)0.892 (3)
C5B0.726 (5)0.1225 (19)0.4235 (19)0.0203 (18)*0.108 (3)
C6B0.779 (5)0.0303 (19)0.4395 (18)0.0203 (18)*0.108 (3)
H6B0.7585450.0034960.4676900.024*0.108 (3)
C7B0.862 (4)0.0124 (15)0.4141 (16)0.0203 (18)*0.108 (3)
C8B0.892 (3)0.0371 (14)0.3728 (13)0.0203 (18)*0.108 (3)
H8B0.9490750.0078350.3554090.024*0.108 (3)
C9B0.839 (4)0.1293 (14)0.3568 (14)0.0203 (18)*0.108 (3)
H9B0.8592240.1630890.3286150.024*0.108 (3)
C10B0.756 (5)0.1720 (15)0.3822 (17)0.0203 (18)*0.108 (3)
C6A0.7881 (6)0.0251 (3)0.4394 (2)0.0232 (4)0.892 (3)
H6A0.7647770.0093650.4666830.028*0.892 (3)
C7A0.8764 (5)0.0138 (2)0.41507 (19)0.0295 (6)0.892 (3)
C8A0.9095 (4)0.0346 (3)0.37454 (17)0.0378 (7)0.892 (3)
H8A0.9693560.0054670.3585180.045*0.892 (3)
C9A0.8551 (5)0.1254 (3)0.35756 (19)0.0400 (8)0.892 (3)
H9A0.8771760.1590690.3296660.048*0.892 (3)
C10A0.7676 (6)0.1679 (2)0.3814 (2)0.0308 (6)0.892 (3)
C11A0.6999 (8)0.2652 (3)0.3726 (2)0.0333 (7)0.892 (3)
H11A0.6088180.2663820.3381530.040*0.892 (3)
H11B0.7649440.3148510.3685990.040*0.892 (3)
C11B0.697 (6)0.273 (2)0.3769 (19)0.0203 (18)*0.108 (3)
H11C0.6130840.2812780.3400100.024*0.108 (3)
H11D0.7706940.3207340.3787860.024*0.108 (3)
C12A0.6733 (3)0.28113 (17)0.42800 (14)0.0223 (6)0.892 (3)
C12B0.651 (3)0.2870 (12)0.4280 (12)0.0203 (18)*0.108 (3)
C13A0.5515 (2)0.3498 (3)0.42170 (15)0.0284 (6)0.892 (3)
H13A0.5288880.3444730.4559090.034*0.892 (3)
H13B0.4651520.3307640.3879140.034*0.892 (3)
C13B0.518 (3)0.349 (2)0.4150 (15)0.0203 (18)*0.108 (3)
H13C0.4835090.3383980.4456550.024*0.108 (3)
H13D0.4427760.3260300.3787840.024*0.108 (3)
C14A0.5885 (2)0.45441 (16)0.41473 (9)0.0307 (5)0.892 (3)
H14A0.6031630.4612690.3787960.037*0.892 (3)
H14B0.5077260.4964560.4121310.037*0.892 (3)
C14B0.535 (2)0.4608 (14)0.4093 (8)0.0203 (18)*0.108 (3)
H14C0.5483160.4741670.3736350.024*0.108 (3)
H14D0.4459520.4933680.4065380.024*0.108 (3)
C15A0.7235 (3)0.48558 (15)0.46518 (8)0.0267 (4)0.892 (3)
H15A0.7064060.4807770.5011040.032*0.892 (3)
C15B0.654 (2)0.4996 (12)0.4572 (7)0.0203 (18)*0.108 (3)
H15B0.6352740.4920840.4925780.024*0.108 (3)
C16A0.8469 (2)0.42084 (16)0.47028 (8)0.0261 (4)0.892 (3)
H16A0.9331410.4403720.5039690.031*0.892 (3)
H16B0.8679710.4282060.4358050.031*0.892 (3)
C16B0.791 (3)0.4494 (14)0.4659 (7)0.0203 (18)*0.108 (3)
H16C0.8689150.4762390.5001630.024*0.108 (3)
H16D0.8145730.4614340.4324690.024*0.108 (3)
C17A0.8131 (2)0.31553 (15)0.47662 (9)0.0215 (5)0.892 (3)
H17A0.8049270.3068780.5137490.026*0.892 (3)
H17B0.8934910.2751150.4770540.026*0.892 (3)
C17B0.781 (2)0.3407 (15)0.4737 (10)0.0203 (18)*0.108 (3)
H17C0.7793650.3293610.5117300.024*0.108 (3)
H17D0.8703630.3110120.4743030.024*0.108 (3)
C18A0.6803 (3)0.65329 (16)0.46879 (12)0.0413 (6)0.892 (3)
H18A0.5839140.6505270.4382310.062*0.892 (3)
H18B0.7224620.7164830.4685970.062*0.892 (3)
H18C0.6745850.6428200.5058430.062*0.892 (3)
C18B0.7490 (18)0.6576 (11)0.4964 (7)0.0203 (18)*0.108 (3)
H18D0.7547130.7243100.4852200.030*0.108 (3)
H18E0.8457190.6306690.5144220.030*0.108 (3)
H18F0.7029360.6555350.5235420.030*0.108 (3)
C190.60745 (14)0.15389 (9)0.60063 (6)0.0138 (3)
C200.57460 (14)0.16738 (9)0.65227 (6)0.0144 (3)
C210.43197 (15)0.15223 (11)0.65370 (6)0.0188 (3)
H21A0.3984410.0870930.6404700.028*
H21B0.3639690.1991000.6286080.028*
H21C0.4392730.1604770.6929590.028*
C220.80075 (14)0.20290 (10)0.67386 (6)0.0144 (3)
C230.93006 (14)0.14103 (10)0.70748 (6)0.0152 (3)
C240.93173 (15)0.05021 (10)0.72998 (6)0.0170 (3)
H240.8457870.0186430.7262560.020*
C251.06528 (16)0.00721 (11)0.75835 (6)0.0195 (3)
C261.19161 (16)0.05226 (11)0.76421 (6)0.0218 (3)
H261.2809460.0212630.7840600.026*
C271.18686 (15)0.14333 (11)0.74081 (6)0.0201 (3)
H271.2727630.1746550.7442570.024*
C281.05525 (15)0.18787 (10)0.71239 (6)0.0173 (3)
C291.02117 (15)0.28508 (10)0.68463 (6)0.0189 (3)
H29A1.0226390.2837120.6460330.023*
H29B1.0903660.3338690.7081760.023*
C300.86808 (14)0.30664 (10)0.68100 (6)0.0158 (3)
C310.78163 (17)0.37358 (10)0.63154 (6)0.0215 (3)
H31A0.6827770.3792230.6294140.026*
H31B0.7764060.3456040.5950420.026*
C320.84940 (17)0.47367 (11)0.63930 (6)0.0237 (3)
H32A0.9453560.4685050.6383760.028*
H32B0.7897230.5152700.6070760.028*
C330.86370 (16)0.51995 (10)0.69566 (6)0.0199 (3)
H330.7660530.5349570.6939020.024*
C340.94019 (15)0.45383 (10)0.74631 (6)0.0184 (3)
H34A0.9353150.4820690.7811370.022*
H34B1.0423790.4490100.7526650.022*
C350.87464 (15)0.35300 (10)0.73697 (6)0.0166 (3)
H35A0.7765870.3568450.7359090.020*
H35B0.9322510.3116340.7696910.020*
C360.86287 (19)0.68719 (11)0.67521 (7)0.0294 (4)
H36A0.7851070.6990870.6877640.044*
H36B0.8224390.6736930.6340400.044*
H36C0.9245250.7440300.6830350.044*
N10.50182 (12)0.12806 (8)0.54828 (5)0.0145 (2)
N20.65823 (13)0.16116 (9)0.50079 (5)0.0158 (2)
H20.730 (2)0.1702 (12)0.5305 (8)0.019*
N30.48867 (13)0.15027 (9)0.40810 (5)0.0197 (3)
N40.74130 (12)0.17302 (8)0.61310 (5)0.0144 (2)
N50.68690 (12)0.19542 (8)0.69490 (5)0.0147 (2)
O1A0.76650 (15)0.58132 (9)0.45969 (6)0.0329 (4)0.892 (3)
O1B0.6675 (12)0.6029 (8)0.4471 (4)0.0203 (18)*0.108 (3)
O20.94500 (11)0.60694 (7)0.70543 (5)0.0233 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.01661 (19)0.0563 (3)0.0367 (2)0.00006 (10)0.00794 (11)0.02513 (17)
Br20.03585 (10)0.02105 (9)0.02360 (9)0.00887 (6)0.01305 (7)0.00352 (6)
C10.0141 (6)0.0122 (6)0.0154 (7)0.0012 (5)0.0039 (5)0.0001 (5)
C20.0167 (7)0.0152 (7)0.0149 (7)0.0023 (5)0.0034 (6)0.0001 (5)
C30.0160 (7)0.0228 (7)0.0185 (7)0.0044 (6)0.0035 (6)0.0001 (6)
C40.0179 (7)0.0278 (8)0.0105 (6)0.0081 (6)0.0039 (5)0.0001 (6)
C5A0.0174 (13)0.0380 (12)0.0125 (8)0.0138 (8)0.0075 (8)0.0092 (9)
C6A0.0165 (12)0.0382 (11)0.0161 (8)0.0104 (8)0.0078 (8)0.0112 (8)
C7A0.0149 (13)0.0498 (12)0.0238 (10)0.0120 (8)0.0078 (9)0.0208 (8)
C8A0.0242 (15)0.0683 (16)0.0288 (11)0.0214 (11)0.0189 (11)0.0257 (10)
C9A0.038 (2)0.0692 (16)0.0227 (10)0.0302 (12)0.0220 (12)0.0168 (10)
C10A0.0292 (16)0.0499 (13)0.0153 (8)0.0223 (9)0.0109 (9)0.0089 (9)
C11A0.0400 (13)0.0461 (15)0.0131 (13)0.0225 (12)0.0099 (9)0.0006 (11)
C12A0.0217 (13)0.0293 (10)0.0141 (8)0.0120 (8)0.0051 (9)0.0022 (7)
C13A0.0226 (14)0.0294 (10)0.0242 (13)0.0090 (12)0.0001 (13)0.0075 (9)
C14A0.0251 (10)0.0287 (10)0.0314 (11)0.0038 (10)0.0040 (10)0.0105 (8)
C15A0.0267 (11)0.0229 (10)0.0268 (10)0.0069 (9)0.0068 (9)0.0058 (7)
C16A0.0220 (9)0.0262 (10)0.0255 (10)0.0090 (8)0.0046 (8)0.0025 (7)
C17A0.0193 (11)0.0241 (12)0.0177 (8)0.0075 (7)0.0040 (8)0.0014 (8)
C18A0.0414 (13)0.0270 (11)0.0520 (15)0.0018 (9)0.0149 (12)0.0051 (11)
C190.0157 (6)0.0112 (6)0.0143 (6)0.0003 (5)0.0059 (5)0.0009 (5)
C200.0154 (6)0.0130 (6)0.0150 (6)0.0011 (5)0.0061 (5)0.0003 (5)
C210.0150 (7)0.0248 (7)0.0173 (7)0.0013 (6)0.0071 (6)0.0019 (6)
C220.0142 (6)0.0172 (7)0.0126 (6)0.0025 (5)0.0060 (5)0.0018 (5)
C230.0144 (7)0.0199 (7)0.0113 (6)0.0001 (5)0.0051 (5)0.0035 (5)
C240.0173 (7)0.0203 (7)0.0149 (7)0.0005 (5)0.0081 (6)0.0023 (5)
C250.0240 (7)0.0213 (7)0.0137 (6)0.0044 (6)0.0080 (6)0.0023 (5)
C260.0175 (7)0.0289 (8)0.0171 (7)0.0063 (6)0.0048 (6)0.0061 (6)
C270.0143 (7)0.0272 (8)0.0198 (7)0.0022 (6)0.0078 (6)0.0086 (6)
C280.0171 (7)0.0214 (7)0.0155 (7)0.0033 (6)0.0087 (6)0.0062 (5)
C290.0179 (7)0.0208 (7)0.0213 (7)0.0046 (6)0.0115 (6)0.0046 (6)
C300.0162 (7)0.0162 (7)0.0147 (7)0.0026 (5)0.0059 (5)0.0018 (5)
C310.0262 (8)0.0189 (7)0.0152 (7)0.0035 (6)0.0039 (6)0.0006 (6)
C320.0318 (8)0.0190 (7)0.0169 (7)0.0045 (6)0.0062 (6)0.0005 (6)
C330.0198 (7)0.0166 (7)0.0207 (7)0.0043 (5)0.0055 (6)0.0021 (6)
C340.0188 (7)0.0191 (7)0.0155 (7)0.0016 (6)0.0051 (6)0.0026 (5)
C350.0171 (7)0.0177 (7)0.0145 (7)0.0002 (5)0.0058 (6)0.0014 (5)
C360.0350 (9)0.0188 (8)0.0263 (8)0.0046 (7)0.0038 (7)0.0016 (6)
N10.0144 (6)0.0151 (6)0.0135 (6)0.0013 (4)0.0050 (5)0.0004 (4)
N20.0139 (6)0.0221 (6)0.0101 (5)0.0041 (5)0.0033 (5)0.0004 (5)
N30.0185 (6)0.0228 (6)0.0149 (6)0.0070 (5)0.0034 (5)0.0003 (5)
N40.0145 (5)0.0151 (5)0.0132 (6)0.0011 (4)0.0052 (5)0.0010 (4)
N50.0142 (5)0.0152 (6)0.0157 (6)0.0003 (4)0.0071 (5)0.0002 (4)
O1A0.0323 (9)0.0226 (7)0.0399 (8)0.0063 (6)0.0105 (6)0.0047 (6)
O20.0238 (5)0.0174 (5)0.0239 (5)0.0050 (4)0.0045 (4)0.0010 (4)
Geometric parameters (Å, º) top
Br1A—C7A1.897 (2)C16A—H16A0.9900
Br1B—C7B1.916 (9)C16A—H16B0.9900
Br2—C251.9043 (15)C16A—C17A1.529 (3)
C1—C21.4959 (19)C16B—H16C0.9900
C1—N11.3081 (18)C16B—H16D0.9900
C1—N21.3374 (18)C16B—C17B1.53 (3)
C2—C31.4884 (19)C17A—H17A0.9900
C2—N31.2800 (19)C17A—H17B0.9900
C3—H3A0.9800C17B—H17C0.9900
C3—H3B0.9800C17B—H17D0.9900
C3—H3C0.9800C18A—H18A0.9800
C4—C5A1.530 (3)C18A—H18B0.9800
C4—C5B1.370 (18)C18A—H18C0.9800
C4—C12A1.572 (3)C18A—O1A1.411 (3)
C4—C12B1.597 (18)C18B—H18D0.9800
C4—N21.4509 (17)C18B—H18E0.9800
C4—N31.4759 (18)C18B—H18F0.9800
C5A—C6A1.375 (3)C18B—O1B1.418 (19)
C5A—C10A1.395 (2)C19—C201.4940 (18)
C5B—C6B1.3900C19—N11.3853 (18)
C5B—C10B1.3900C19—N41.2983 (18)
C6B—H6B0.9500C20—C211.4833 (19)
C6B—C7B1.3900C20—N51.2837 (18)
C7B—C8B1.3900C21—H21A0.9800
C8B—H8B0.9500C21—H21B0.9800
C8B—C9B1.3900C21—H21C0.9800
C9B—H9B0.9500C22—C231.5196 (19)
C9B—C10B1.3900C22—C301.5778 (18)
C10B—C11B1.516 (17)C22—N41.4791 (17)
C6A—H6A0.9500C22—N51.4635 (17)
C6A—C7A1.390 (2)C23—C241.386 (2)
C7A—C8A1.384 (3)C23—C281.3930 (19)
C8A—H8A0.9500C24—H240.9500
C8A—C9A1.379 (3)C24—C251.395 (2)
C9A—H9A0.9500C25—C261.385 (2)
C9A—C10A1.397 (3)C26—H260.9500
C10A—C11A1.496 (4)C26—C271.394 (2)
C11A—H11A0.9900C27—H270.9500
C11A—H11B0.9900C27—C281.389 (2)
C11A—C12A1.557 (3)C28—C291.502 (2)
C11B—H11C0.9900C29—H29A0.9900
C11B—H11D0.9900C29—H29B0.9900
C11B—C12B1.558 (18)C29—C301.5544 (19)
C12A—C13A1.523 (3)C30—C311.531 (2)
C12A—C17A1.543 (3)C30—C351.5427 (18)
C12B—C13B1.531 (18)C31—H31A0.9900
C12B—C17B1.560 (18)C31—H31B0.9900
C13A—H13A0.9900C31—C321.532 (2)
C13A—H13B0.9900C32—H32A0.9900
C13A—C14A1.532 (4)C32—H32B0.9900
C13B—H13C0.9900C32—C331.527 (2)
C13B—H13D0.9900C33—H331.0000
C13B—C14B1.58 (4)C33—C341.522 (2)
C14A—H14A0.9900C33—O21.4318 (17)
C14A—H14B0.9900C34—H34A0.9900
C14A—C15A1.523 (3)C34—H34B0.9900
C14B—H14C0.9900C34—C351.5316 (19)
C14B—H14D0.9900C35—H35A0.9900
C14B—C15B1.44 (2)C35—H35B0.9900
C15A—H15A1.0000C36—H36A0.9800
C15A—C16A1.510 (3)C36—H36B0.9800
C15A—O1A1.427 (2)C36—H36C0.9800
C15B—H15B1.0000C36—O21.4232 (19)
C15B—C16B1.49 (3)N2—H20.826 (19)
C15B—O1B1.477 (19)
N1—C1—C2125.21 (12)C15B—C16B—H16C109.1
N1—C1—N2130.25 (13)C15B—C16B—H16D109.1
N2—C1—C2104.43 (12)C15B—C16B—C17B112.3 (16)
C3—C2—C1123.63 (12)H16C—C16B—H16D107.9
N3—C2—C1111.73 (12)C17B—C16B—H16C109.1
N3—C2—C3124.63 (13)C17B—C16B—H16D109.1
C2—C3—H3A109.5C12A—C17A—H17A109.0
C2—C3—H3B109.5C12A—C17A—H17B109.0
C2—C3—H3C109.5C16A—C17A—C12A112.77 (17)
H3A—C3—H3B109.5C16A—C17A—H17A109.0
H3A—C3—H3C109.5C16A—C17A—H17B109.0
H3B—C3—H3C109.5H17A—C17A—H17B107.8
C5A—C4—C12A101.9 (2)C12B—C17B—H17C108.1
C5B—C4—C12B109.6 (18)C12B—C17B—H17D108.1
C5B—C4—N2115.9 (15)C16B—C17B—C12B116.9 (16)
C5B—C4—N3109 (2)C16B—C17B—H17C108.1
N2—C4—C5A115.42 (19)C16B—C17B—H17D108.1
N2—C4—C12A114.73 (16)H17C—C17B—H17D107.3
N2—C4—C12B112.3 (10)H18A—C18A—H18B109.5
N2—C4—N3104.06 (11)H18A—C18A—H18C109.5
N3—C4—C5A109.3 (2)H18B—C18A—H18C109.5
N3—C4—C12A111.57 (14)O1A—C18A—H18A109.5
N3—C4—C12B105.2 (9)O1A—C18A—H18B109.5
C6A—C5A—C4127.7 (2)O1A—C18A—H18C109.5
C6A—C5A—C10A123.04 (17)H18D—C18B—H18E109.5
C10A—C5A—C4109.2 (2)H18D—C18B—H18F109.5
C4—C5B—C6B129.4 (15)H18E—C18B—H18F109.5
C4—C5B—C10B110.6 (15)O1B—C18B—H18D109.5
C6B—C5B—C10B120.0O1B—C18B—H18E109.5
C5B—C6B—H6B120.0O1B—C18B—H18F109.5
C5B—C6B—C7B120.0N1—C19—C20121.30 (12)
C7B—C6B—H6B120.0N4—C19—C20110.01 (12)
C6B—C7B—Br1B119.7 (7)N4—C19—N1128.65 (12)
C6B—C7B—C8B120.0C21—C20—C19124.80 (12)
C8B—C7B—Br1B120.3 (7)N5—C20—C19110.24 (12)
C7B—C8B—H8B120.0N5—C20—C21124.96 (12)
C9B—C8B—C7B120.0C20—C21—H21A109.5
C9B—C8B—H8B120.0C20—C21—H21B109.5
C8B—C9B—H9B120.0C20—C21—H21C109.5
C8B—C9B—C10B120.0H21A—C21—H21B109.5
C10B—C9B—H9B120.0H21A—C21—H21C109.5
C5B—C10B—C11B109.3 (18)H21B—C21—H21C109.5
C9B—C10B—C5B120.0C23—C22—C30102.40 (11)
C9B—C10B—C11B130.5 (19)N4—C22—C23109.30 (11)
C5A—C6A—H6A121.8N4—C22—C30110.81 (10)
C5A—C6A—C7A116.49 (17)N5—C22—C23112.87 (11)
C7A—C6A—H6A121.8N5—C22—C30113.26 (11)
C6A—C7A—Br1A118.23 (17)N5—C22—N4108.11 (10)
C8A—C7A—Br1A119.18 (18)C24—C23—C22127.95 (12)
C8A—C7A—C6A122.6 (2)C24—C23—C28122.05 (13)
C7A—C8A—H8A120.2C28—C23—C22109.99 (12)
C9A—C8A—C7A119.57 (18)C23—C24—H24121.5
C9A—C8A—H8A120.2C23—C24—C25117.00 (13)
C8A—C9A—H9A120.1C25—C24—H24121.5
C8A—C9A—C10A119.84 (19)C24—C25—Br2118.46 (11)
C10A—C9A—H9A120.1C26—C25—Br2119.30 (11)
C5A—C10A—C9A118.5 (2)C26—C25—C24122.24 (14)
C5A—C10A—C11A110.7 (3)C25—C26—H26120.2
C9A—C10A—C11A130.8 (3)C25—C26—C27119.60 (13)
C10A—C11A—H11A111.1C27—C26—H26120.2
C10A—C11A—H11B111.1C26—C27—H27120.3
C10A—C11A—C12A103.2 (3)C28—C27—C26119.34 (13)
H11A—C11A—H11B109.1C28—C27—H27120.3
C12A—C11A—H11A111.1C23—C28—C29110.39 (12)
C12A—C11A—H11B111.1C27—C28—C23119.76 (14)
C10B—C11B—H11C110.5C27—C28—C29129.84 (13)
C10B—C11B—H11D110.5C28—C29—H29A111.0
C10B—C11B—C12B106.1 (18)C28—C29—H29B111.0
H11C—C11B—H11D108.7C28—C29—C30103.86 (11)
C12B—C11B—H11C110.5H29A—C29—H29B109.0
C12B—C11B—H11D110.5C30—C29—H29A111.0
C11A—C12A—C4101.9 (2)C30—C29—H29B111.0
C13A—C12A—C4111.3 (2)C29—C30—C22102.12 (11)
C13A—C12A—C11A115.1 (3)C31—C30—C22112.43 (11)
C13A—C12A—C17A110.0 (2)C31—C30—C29113.56 (12)
C17A—C12A—C4108.8 (2)C31—C30—C35107.73 (11)
C17A—C12A—C11A109.5 (3)C35—C30—C22110.21 (11)
C11B—C12B—C498.0 (15)C35—C30—C29110.76 (11)
C11B—C12B—C17B104 (3)C30—C31—H31A109.3
C13B—C12B—C4117 (2)C30—C31—H31B109.3
C13B—C12B—C11B115 (2)C30—C31—C32111.46 (12)
C13B—C12B—C17B107.8 (18)H31A—C31—H31B108.0
C17B—C12B—C4114.4 (18)C32—C31—H31A109.3
C12A—C13A—H13A109.1C32—C31—H31B109.3
C12A—C13A—H13B109.1C31—C32—H32A109.2
C12A—C13A—C14A112.4 (2)C31—C32—H32B109.2
H13A—C13A—H13B107.9H32A—C32—H32B107.9
C14A—C13A—H13A109.1C33—C32—C31111.93 (12)
C14A—C13A—H13B109.1C33—C32—H32A109.2
C12B—C13B—H13C108.0C33—C32—H32B109.2
C12B—C13B—H13D108.0C32—C33—H33109.1
C12B—C13B—C14B117 (2)C34—C33—C32111.51 (12)
H13C—C13B—H13D107.2C34—C33—H33109.1
C14B—C13B—H13C108.0O2—C33—C32110.57 (12)
C14B—C13B—H13D108.0O2—C33—H33109.1
C13A—C14A—H14A109.5O2—C33—C34107.43 (11)
C13A—C14A—H14B109.5C33—C34—H34A109.2
H14A—C14A—H14B108.1C33—C34—H34B109.2
C15A—C14A—C13A110.71 (17)C33—C34—C35112.26 (11)
C15A—C14A—H14A109.5H34A—C34—H34B107.9
C15A—C14A—H14B109.5C35—C34—H34A109.2
C13B—C14B—H14C109.2C35—C34—H34B109.2
C13B—C14B—H14D109.2C30—C35—H35A109.1
H14C—C14B—H14D107.9C30—C35—H35B109.1
C15B—C14B—C13B112.1 (18)C34—C35—C30112.46 (11)
C15B—C14B—H14C109.2C34—C35—H35A109.1
C15B—C14B—H14D109.2C34—C35—H35B109.1
C14A—C15A—H15A109.0H35A—C35—H35B107.8
C16A—C15A—C14A110.03 (18)H36A—C36—H36B109.5
C16A—C15A—H15A109.0H36A—C36—H36C109.5
O1A—C15A—C14A113.11 (17)H36B—C36—H36C109.5
O1A—C15A—H15A109.0O2—C36—H36A109.5
O1A—C15A—C16A106.73 (18)O2—C36—H36B109.5
C14B—C15B—H15B108.8O2—C36—H36C109.5
C14B—C15B—C16B111.8 (14)C1—N1—C19116.17 (12)
C14B—C15B—O1B108.8 (14)C1—N2—C4111.11 (12)
C16B—C15B—H15B108.8C1—N2—H2119.9 (12)
O1B—C15B—H15B108.8C4—N2—H2128.8 (12)
O1B—C15B—C16B109.8 (13)C2—N3—C4108.41 (12)
C15A—C16A—H16A109.3C19—N4—C22105.32 (11)
C15A—C16A—H16B109.3C20—N5—C22106.28 (11)
C15A—C16A—C17A111.51 (16)C18A—O1A—C15A114.26 (18)
H16A—C16A—H16B108.0C18B—O1B—C15B115.5 (11)
C17A—C16A—H16A109.3C36—O2—C33113.31 (11)
C17A—C16A—H16B109.3
Br1A—C7A—C8A—C9A179.2 (4)C22—C23—C24—C25178.69 (13)
Br1B—C7B—C8B—C9B178 (3)C22—C23—C28—C27178.89 (12)
Br2—C25—C26—C27178.87 (10)C22—C23—C28—C291.91 (15)
C1—C2—N3—C41.44 (16)C22—C30—C31—C32179.77 (12)
C2—C1—N1—C19170.60 (12)C22—C30—C35—C34179.62 (11)
C2—C1—N2—C45.17 (15)C23—C22—C30—C2931.83 (12)
C3—C2—N3—C4179.96 (13)C23—C22—C30—C31153.90 (11)
C4—C5A—C6A—C7A179.2 (5)C23—C22—C30—C3585.90 (12)
C4—C5A—C10A—C9A180.0 (4)C23—C22—N4—C19125.11 (12)
C4—C5A—C10A—C11A1.7 (5)C23—C22—N5—C20122.43 (12)
C4—C5B—C6B—C7B178 (5)C23—C24—C25—Br2179.34 (10)
C4—C5B—C10B—C9B179 (4)C23—C24—C25—C260.1 (2)
C4—C5B—C10B—C11B7 (4)C23—C28—C29—C3019.18 (14)
C4—C12A—C13A—C14A173.7 (2)C24—C23—C28—C270.3 (2)
C4—C12A—C17A—C16A173.89 (18)C24—C23—C28—C29179.47 (12)
C4—C12B—C13B—C14B172 (2)C24—C25—C26—C270.5 (2)
C4—C12B—C17B—C16B174.2 (17)C25—C26—C27—C280.6 (2)
C5A—C4—C12A—C11A34.2 (4)C26—C27—C28—C230.2 (2)
C5A—C4—C12A—C13A157.4 (3)C26—C27—C28—C29178.82 (13)
C5A—C4—C12A—C17A81.3 (3)C27—C28—C29—C30159.92 (14)
C5A—C4—N2—C1124.3 (3)C28—C23—C24—C250.3 (2)
C5A—C4—N3—C2125.48 (18)C28—C29—C30—C2231.12 (13)
C5A—C6A—C7A—Br1A179.6 (4)C28—C29—C30—C31152.41 (11)
C5A—C6A—C7A—C8A1.2 (2)C28—C29—C30—C3586.22 (13)
C5A—C10A—C11A—C12A20.8 (5)C29—C30—C31—C3264.44 (16)
C5B—C4—C12B—C11B25 (3)C29—C30—C35—C3467.36 (15)
C5B—C4—C12B—C13B149 (3)C30—C22—C23—C24159.75 (13)
C5B—C4—C12B—C17B84 (3)C30—C22—C23—C2821.74 (14)
C5B—C4—N2—C1124 (2)C30—C22—N4—C19122.77 (12)
C5B—C4—N3—C2125.9 (11)C30—C22—N5—C20121.78 (12)
C5B—C6B—C7B—Br1B178 (3)C30—C31—C32—C3357.70 (17)
C5B—C6B—C7B—C8B0.0C31—C30—C35—C3457.38 (15)
C5B—C10B—C11B—C12B10 (4)C31—C32—C33—C3452.46 (17)
C6B—C5B—C10B—C9B0.0C31—C32—C33—O2171.92 (12)
C6B—C5B—C10B—C11B175 (4)C32—C33—C34—C3550.88 (16)
C6B—C7B—C8B—C9B0.0C32—C33—O2—C3681.23 (16)
C7B—C8B—C9B—C10B0.0C33—C34—C35—C3054.70 (16)
C8B—C9B—C10B—C5B0.0C34—C33—O2—C36156.88 (12)
C8B—C9B—C10B—C11B174 (5)C35—C30—C31—C3258.61 (16)
C9B—C10B—C11B—C12B164 (3)N1—C1—C2—C36.3 (2)
C10B—C5B—C6B—C7B0.0N1—C1—C2—N3172.30 (13)
C10B—C11B—C12B—C420 (4)N1—C1—N2—C4171.09 (14)
C10B—C11B—C12B—C13B145 (3)N1—C19—C20—C212.0 (2)
C10B—C11B—C12B—C17B98 (4)N1—C19—C20—N5176.99 (12)
C6A—C5A—C10A—C9A0.1 (3)N1—C19—N4—C22175.98 (13)
C6A—C5A—C10A—C11A178.3 (5)N2—C1—C2—C3177.18 (13)
C6A—C7A—C8A—C9A0.7 (3)N2—C1—C2—N34.21 (16)
C7A—C8A—C9A—C10A0.2 (3)N2—C1—N1—C195.0 (2)
C8A—C9A—C10A—C5A0.6 (3)N2—C4—C5A—C6A31.9 (4)
C8A—C9A—C10A—C11A177.4 (6)N2—C4—C5A—C10A148.1 (2)
C9A—C10A—C11A—C12A157.3 (4)N2—C4—C5B—C6B32 (4)
C10A—C5A—C6A—C7A0.8 (2)N2—C4—C5B—C10B149.3 (17)
C10A—C11A—C12A—C433.7 (5)N2—C4—C12A—C11A159.7 (3)
C10A—C11A—C12A—C13A154.2 (4)N2—C4—C12A—C13A77.2 (3)
C10A—C11A—C12A—C17A81.4 (4)N2—C4—C12A—C17A44.1 (2)
C11A—C12A—C13A—C14A71.1 (4)N2—C4—C12B—C11B156 (2)
C11A—C12A—C17A—C16A75.6 (2)N2—C4—C12B—C13B81 (2)
C11B—C12B—C13B—C14B74 (3)N2—C4—C12B—C17B46 (2)
C11B—C12B—C17B—C16B80 (2)N2—C4—N3—C21.64 (16)
C12A—C4—C5A—C6A156.9 (3)N3—C4—C5A—C6A85.0 (4)
C12A—C4—C5A—C10A23.1 (3)N3—C4—C5A—C10A95.0 (3)
C12A—C4—N2—C1117.70 (15)N3—C4—C5B—C6B85 (3)
C12A—C4—N3—C2122.61 (16)N3—C4—C5B—C10B94 (2)
C12A—C13A—C14A—C15A57.2 (3)N3—C4—C12A—C11A82.3 (3)
C12B—C4—C5B—C6B161 (3)N3—C4—C12A—C13A40.8 (3)
C12B—C4—C5B—C10B21 (3)N3—C4—C12A—C17A162.13 (15)
C12B—C4—N2—C1108.8 (10)N3—C4—C12B—C11B92 (2)
C12B—C4—N3—C2116.6 (11)N3—C4—C12B—C13B31 (2)
C12B—C13B—C14B—C15B51 (3)N3—C4—C12B—C17B159.0 (16)
C13A—C12A—C17A—C16A51.7 (3)N3—C4—N2—C14.47 (16)
C13A—C14A—C15A—C16A58.1 (3)N4—C19—C20—C21179.78 (13)
C13A—C14A—C15A—O1A177.4 (2)N4—C19—C20—N50.82 (16)
C13B—C12B—C17B—C16B42 (3)N4—C19—N1—C110.6 (2)
C13B—C14B—C15B—C16B55 (2)N4—C22—C23—C2482.71 (16)
C13B—C14B—C15B—O1B176.8 (17)N4—C22—C23—C2895.80 (13)
C14A—C15A—C16A—C17A57.1 (2)N4—C22—C30—C2984.63 (12)
C14A—C15A—O1A—C18A74.0 (3)N4—C22—C30—C3137.44 (15)
C14B—C15B—C16B—C17B56 (2)N4—C22—C30—C35157.64 (11)
C14B—C15B—O1B—C18B161.4 (13)N4—C22—N5—C201.40 (14)
C15A—C16A—C17A—C12A54.7 (2)N5—C22—C23—C2437.64 (19)
C15B—C16B—C17B—C12B51 (2)N5—C22—C23—C28143.85 (12)
C16A—C15A—O1A—C18A164.90 (18)N5—C22—C30—C29153.68 (11)
C16B—C15B—O1B—C18B75.9 (16)N5—C22—C30—C3184.25 (14)
C17A—C12A—C13A—C14A53.0 (3)N5—C22—C30—C3535.95 (15)
C17B—C12B—C13B—C14B41 (3)N5—C22—N4—C191.89 (14)
C19—C20—N5—C220.43 (14)O1A—C15A—C16A—C17A179.84 (15)
C20—C19—N1—C1166.76 (12)O1B—C15B—C16B—C17B177.2 (14)
C20—C19—N4—C221.62 (14)O2—C33—C34—C35172.18 (11)
C21—C20—N5—C22178.53 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N40.826 (19)2.064 (18)2.6456 (16)127.2 (15)
(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) top
Crystal data top
C36H41Br2N5O2F(000) = 1512
Mr = 735.56Dx = 1.424 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 13.19297 (6) ÅCell parameters from 74158 reflections
b = 17.60010 (8) Åθ = 2.5–70.4°
c = 15.25349 (8) ŵ = 3.30 mm1
β = 104.4018 (5)°T = 100 K
V = 3430.52 (3) Å3Block, colourless
Z = 40.31 × 0.07 × 0.05 mm
Data collection top
Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
diffractometer
6285 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF6257 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10 pixels mm-1θmax = 68.3°, θmin = 3.9°
profile data from ω–scansh = 1515
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 2121
Tmin = 0.654, Tmax = 1.000l = 1818
97773 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0248P)2 + 2.9185P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6285 reflectionsΔρmax = 0.33 e Å3
413 parametersΔρmin = 0.44 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. This diastereoisomer has crystallised in the centrosymmetric space group P21/n; meaning that both SS and RR forms of the API must be present in equal amounts within the crystal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57538 (2)0.34738 (2)0.89948 (2)0.02177 (5)
Br20.14814 (2)0.66375 (2)0.24065 (2)0.02990 (6)
C10.15668 (11)0.50387 (8)0.69473 (9)0.0129 (3)
C20.13914 (11)0.52942 (8)0.78320 (10)0.0144 (3)
C30.04172 (12)0.51294 (10)0.81180 (11)0.0214 (3)
H3A0.0484660.5323340.8732130.032*
H3B0.0300820.4579230.8109620.032*
H3C0.0176760.5376930.7701090.032*
C40.29513 (11)0.57251 (8)0.77417 (9)0.0133 (3)
C50.39917 (11)0.54110 (8)0.82716 (9)0.0140 (3)
C60.43135 (12)0.46632 (9)0.83361 (10)0.0162 (3)
H60.3883860.4272790.8008150.019*
C70.52897 (12)0.45036 (9)0.88989 (10)0.0173 (3)
C80.59218 (12)0.50677 (9)0.93894 (10)0.0185 (3)
H80.6577740.4941040.9784540.022*
C90.55861 (12)0.58207 (9)0.92970 (10)0.0176 (3)
H90.6016200.6212050.9622290.021*
C100.46163 (12)0.59959 (9)0.87251 (10)0.0157 (3)
C110.40713 (12)0.67508 (9)0.84824 (10)0.0175 (3)
H11A0.4566750.7142950.8378490.021*
H11B0.3747670.6926670.8966460.021*
C120.32230 (11)0.65767 (8)0.75962 (10)0.0136 (3)
C130.22456 (11)0.70763 (8)0.74388 (11)0.0174 (3)
H13A0.1681990.6840040.6965410.021*
H13B0.2005170.7096350.8003600.021*
C140.24256 (13)0.78862 (9)0.71501 (13)0.0251 (4)
H14A0.1753300.8165700.7011480.030*
H14B0.2913770.8149930.7656770.030*
C150.28730 (12)0.78963 (9)0.63259 (12)0.0217 (3)
H150.2360810.7652570.5807500.026*
C160.38937 (12)0.74506 (8)0.65217 (11)0.0177 (3)
H16A0.4411140.7691430.7028120.021*
H16B0.4182550.7455450.5981640.021*
C170.36986 (11)0.66312 (8)0.67692 (10)0.0145 (3)
H17A0.4368980.6349510.6901580.017*
H17B0.3217970.6385050.6243370.017*
C180.33503 (15)0.87778 (11)0.53124 (14)0.0355 (4)
H18A0.2948900.8446710.4833970.053*
H18B0.4094550.8647370.5435390.053*
H18C0.3250970.9308780.5116420.053*
C190.12763 (11)0.43884 (8)0.56219 (9)0.0124 (3)
C200.07361 (11)0.38220 (8)0.49353 (9)0.0123 (3)
C210.02914 (11)0.34673 (8)0.49334 (10)0.0159 (3)
H21A0.0853430.3836540.4714670.024*
H21B0.0291550.3309870.5549600.024*
H21C0.0404290.3022360.4534500.024*
C220.22276 (11)0.41636 (8)0.46271 (9)0.0117 (3)
C230.23216 (11)0.46484 (8)0.38289 (9)0.0123 (3)
C240.18603 (11)0.53442 (8)0.35623 (10)0.0158 (3)
H240.1413280.5582500.3880960.019*
C250.20823 (11)0.56779 (9)0.28060 (11)0.0189 (3)
C260.27239 (12)0.53353 (10)0.23273 (11)0.0212 (3)
H260.2852230.5577220.1808690.025*
C270.31778 (12)0.46373 (9)0.26092 (10)0.0196 (3)
H270.3620470.4397910.2287160.023*
C280.29774 (11)0.42925 (8)0.33682 (9)0.0138 (3)
C290.33843 (11)0.35584 (8)0.38287 (10)0.0144 (3)
H29A0.4127750.3479340.3830410.017*
H29B0.2968240.3120470.3528460.017*
C300.32551 (11)0.36684 (8)0.48025 (9)0.0118 (3)
C310.31641 (12)0.29247 (8)0.52930 (10)0.0166 (3)
H31A0.2601150.2610620.4912140.020*
H31B0.2969450.3037250.5865730.020*
C320.41931 (12)0.24756 (9)0.55019 (11)0.0196 (3)
H32A0.4113320.2010960.5844350.023*
H32B0.4350410.2317420.4927000.023*
C330.51027 (12)0.29466 (9)0.60523 (11)0.0219 (3)
H330.4976430.3057150.6659430.026*
C340.52114 (12)0.36922 (9)0.55827 (11)0.0189 (3)
H34A0.5418340.3588600.5013310.023*
H34B0.5767780.4002990.5976970.023*
C350.41793 (11)0.41339 (8)0.53713 (10)0.0152 (3)
H35A0.4261590.4603350.5038130.018*
H35B0.4017380.4285230.5946680.018*
C360.62272 (17)0.19682 (12)0.68103 (15)0.0448 (5)
H36A0.5737300.1555730.6571570.067*
H36B0.6097190.2155700.7377410.067*
H36C0.6946550.1778430.6923760.067*
N10.09138 (9)0.46044 (7)0.63455 (8)0.0131 (2)
N20.24915 (9)0.53150 (7)0.69163 (8)0.0122 (2)
H20.2733 (13)0.5217 (10)0.6481 (11)0.015*
N30.21762 (9)0.56719 (7)0.82906 (8)0.0151 (3)
N40.21425 (9)0.45973 (7)0.54149 (8)0.0124 (2)
N50.12793 (9)0.36819 (7)0.43652 (8)0.0130 (2)
O10.29971 (10)0.86771 (7)0.61123 (9)0.0308 (3)
O20.60841 (9)0.25660 (7)0.61737 (8)0.0303 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02290 (9)0.01996 (9)0.02374 (9)0.00478 (6)0.00824 (7)0.00669 (6)
Br20.02056 (9)0.02260 (10)0.04550 (12)0.00515 (7)0.00627 (8)0.01708 (8)
C10.0132 (7)0.0124 (7)0.0139 (7)0.0012 (5)0.0048 (5)0.0003 (5)
C20.0155 (7)0.0142 (7)0.0147 (7)0.0000 (5)0.0063 (6)0.0019 (5)
C30.0190 (8)0.0274 (8)0.0211 (8)0.0053 (6)0.0113 (6)0.0069 (7)
C40.0136 (7)0.0146 (7)0.0124 (7)0.0023 (5)0.0047 (5)0.0039 (5)
C50.0144 (7)0.0169 (7)0.0117 (6)0.0030 (6)0.0051 (5)0.0012 (5)
C60.0175 (7)0.0166 (7)0.0154 (7)0.0039 (6)0.0056 (6)0.0005 (6)
C70.0187 (7)0.0196 (8)0.0159 (7)0.0004 (6)0.0086 (6)0.0035 (6)
C80.0137 (7)0.0288 (8)0.0136 (7)0.0005 (6)0.0046 (6)0.0023 (6)
C90.0163 (7)0.0232 (8)0.0137 (7)0.0057 (6)0.0045 (6)0.0030 (6)
C100.0167 (7)0.0184 (7)0.0130 (7)0.0037 (6)0.0056 (6)0.0025 (6)
C110.0183 (7)0.0163 (7)0.0168 (7)0.0038 (6)0.0026 (6)0.0059 (6)
C120.0139 (7)0.0121 (7)0.0153 (7)0.0013 (5)0.0044 (6)0.0039 (5)
C130.0152 (7)0.0157 (7)0.0229 (7)0.0009 (6)0.0078 (6)0.0045 (6)
C140.0223 (8)0.0148 (8)0.0410 (10)0.0037 (6)0.0129 (7)0.0023 (7)
C150.0190 (8)0.0123 (7)0.0334 (9)0.0004 (6)0.0057 (7)0.0040 (6)
C160.0165 (7)0.0137 (7)0.0237 (8)0.0008 (6)0.0068 (6)0.0007 (6)
C170.0144 (7)0.0132 (7)0.0171 (7)0.0007 (5)0.0062 (6)0.0012 (5)
C180.0284 (9)0.0273 (10)0.0515 (12)0.0043 (8)0.0111 (8)0.0194 (9)
C190.0114 (7)0.0118 (7)0.0135 (7)0.0003 (5)0.0020 (5)0.0002 (5)
C200.0121 (7)0.0122 (7)0.0122 (6)0.0002 (5)0.0021 (5)0.0004 (5)
C210.0124 (7)0.0169 (7)0.0183 (7)0.0033 (6)0.0040 (6)0.0031 (6)
C220.0119 (7)0.0129 (7)0.0106 (6)0.0026 (5)0.0032 (5)0.0029 (5)
C230.0100 (6)0.0149 (7)0.0114 (6)0.0030 (5)0.0014 (5)0.0005 (5)
C240.0109 (7)0.0174 (7)0.0190 (7)0.0005 (6)0.0033 (6)0.0003 (6)
C250.0113 (7)0.0187 (8)0.0245 (8)0.0005 (6)0.0005 (6)0.0061 (6)
C260.0171 (7)0.0278 (9)0.0193 (7)0.0013 (6)0.0055 (6)0.0090 (6)
C270.0177 (7)0.0271 (8)0.0155 (7)0.0024 (6)0.0072 (6)0.0024 (6)
C280.0128 (7)0.0165 (7)0.0117 (6)0.0011 (5)0.0025 (5)0.0006 (5)
C290.0158 (7)0.0157 (7)0.0127 (7)0.0015 (6)0.0050 (5)0.0011 (5)
C300.0120 (7)0.0122 (7)0.0114 (6)0.0005 (5)0.0033 (5)0.0004 (5)
C310.0183 (7)0.0153 (7)0.0171 (7)0.0015 (6)0.0059 (6)0.0021 (6)
C320.0223 (8)0.0158 (7)0.0204 (7)0.0020 (6)0.0050 (6)0.0051 (6)
C330.0211 (8)0.0235 (8)0.0184 (7)0.0055 (6)0.0002 (6)0.0026 (6)
C340.0137 (7)0.0205 (8)0.0202 (7)0.0003 (6)0.0001 (6)0.0012 (6)
C350.0138 (7)0.0153 (7)0.0154 (7)0.0013 (6)0.0017 (5)0.0018 (6)
C360.0391 (11)0.0338 (11)0.0487 (12)0.0068 (9)0.0132 (9)0.0160 (9)
N10.0121 (6)0.0147 (6)0.0133 (6)0.0017 (5)0.0047 (5)0.0032 (5)
N20.0123 (6)0.0135 (6)0.0119 (6)0.0016 (5)0.0050 (5)0.0042 (5)
N30.0166 (6)0.0160 (6)0.0144 (6)0.0010 (5)0.0068 (5)0.0025 (5)
N40.0129 (6)0.0133 (6)0.0119 (6)0.0009 (5)0.0046 (5)0.0021 (5)
N50.0112 (6)0.0140 (6)0.0130 (6)0.0023 (5)0.0016 (5)0.0003 (5)
O10.0299 (6)0.0148 (6)0.0502 (8)0.0034 (5)0.0149 (6)0.0090 (5)
O20.0235 (6)0.0282 (7)0.0333 (7)0.0095 (5)0.0042 (5)0.0053 (5)
Geometric parameters (Å, º) top
Br1—C71.9071 (16)C19—C201.4925 (19)
Br2—C251.9005 (15)C19—N11.3616 (18)
C1—C21.4940 (19)C19—N41.3115 (18)
C1—N11.3327 (19)C20—C211.4917 (19)
C1—N21.3250 (19)C20—N51.2809 (19)
C2—C31.485 (2)C21—H21A0.9800
C2—N31.2818 (19)C21—H21B0.9800
C3—H3A0.9800C21—H21C0.9800
C3—H3B0.9800C22—C231.5169 (19)
C3—H3C0.9800C22—C301.5775 (19)
C4—C51.514 (2)C22—N41.4513 (17)
C4—C121.5697 (19)C22—N51.4816 (17)
C4—N21.4471 (18)C23—C241.383 (2)
C4—N31.4770 (17)C23—C281.392 (2)
C5—C61.379 (2)C24—H240.9500
C5—C101.390 (2)C24—C251.389 (2)
C6—H60.9500C25—C261.386 (2)
C6—C71.387 (2)C26—H260.9500
C7—C81.389 (2)C26—C271.387 (2)
C8—H80.9500C27—H270.9500
C8—C91.393 (2)C27—C281.390 (2)
C9—H90.9500C28—C291.504 (2)
C9—C101.392 (2)C29—H29A0.9900
C10—C111.512 (2)C29—H29B0.9900
C11—H11A0.9900C29—C301.5489 (19)
C11—H11B0.9900C30—C311.5271 (19)
C11—C121.556 (2)C30—C351.5441 (19)
C12—C131.530 (2)C31—H31A0.9900
C12—C171.545 (2)C31—H31B0.9900
C13—H13A0.9900C31—C321.534 (2)
C13—H13B0.9900C32—H32A0.9900
C13—C141.528 (2)C32—H32B0.9900
C14—H14A0.9900C32—C331.527 (2)
C14—H14B0.9900C33—H331.0000
C14—C151.516 (2)C33—C341.519 (2)
C15—H151.0000C33—O21.4284 (19)
C15—C161.522 (2)C34—H34A0.9900
C15—O11.4311 (19)C34—H34B0.9900
C16—H16A0.9900C34—C351.531 (2)
C16—H16B0.9900C35—H35A0.9900
C16—C171.529 (2)C35—H35B0.9900
C17—H17A0.9900C36—H36A0.9800
C17—H17B0.9900C36—H36B0.9800
C18—H18A0.9800C36—H36C0.9800
C18—H18B0.9800C36—O21.412 (2)
C18—H18C0.9800N2—H20.823 (14)
C18—O11.421 (2)
N1—C1—C2125.17 (13)N5—C20—C21125.43 (13)
N2—C1—C2105.82 (12)C20—C21—H21A109.5
N2—C1—N1128.98 (13)C20—C21—H21B109.5
C3—C2—C1123.12 (13)C20—C21—H21C109.5
N3—C2—C1111.32 (12)H21A—C21—H21B109.5
N3—C2—C3125.56 (13)H21A—C21—H21C109.5
C2—C3—H3A109.5H21B—C21—H21C109.5
C2—C3—H3B109.5C23—C22—C30102.04 (11)
C2—C3—H3C109.5N4—C22—C23114.04 (12)
H3A—C3—H3B109.5N4—C22—C30112.98 (11)
H3A—C3—H3C109.5N4—C22—N5106.87 (11)
H3B—C3—H3C109.5N5—C22—C23109.73 (11)
C5—C4—C12102.45 (11)N5—C22—C30111.22 (11)
N2—C4—C5114.25 (12)C24—C23—C22128.04 (13)
N2—C4—C12114.48 (12)C24—C23—C28122.24 (13)
N2—C4—N3105.19 (11)C28—C23—C22109.71 (12)
N3—C4—C5109.74 (11)C23—C24—H24121.6
N3—C4—C12110.81 (11)C23—C24—C25116.76 (14)
C6—C5—C4127.50 (13)C25—C24—H24121.6
C6—C5—C10122.50 (14)C24—C25—Br2118.99 (12)
C10—C5—C4109.99 (13)C26—C25—Br2118.59 (12)
C5—C6—H6121.3C26—C25—C24122.42 (14)
C5—C6—C7117.34 (14)C25—C26—H26120.2
C7—C6—H6121.3C25—C26—C27119.68 (14)
C6—C7—Br1118.08 (12)C27—C26—H26120.2
C6—C7—C8121.94 (15)C26—C27—H27120.4
C8—C7—Br1119.97 (12)C26—C27—C28119.21 (14)
C7—C8—H8120.3C28—C27—H27120.4
C7—C8—C9119.48 (14)C23—C28—C29110.20 (12)
C9—C8—H8120.3C27—C28—C23119.68 (14)
C8—C9—H9120.2C27—C28—C29130.11 (13)
C10—C9—C8119.57 (14)C28—C29—H29A111.1
C10—C9—H9120.2C28—C29—H29B111.1
C5—C10—C9119.10 (14)C28—C29—C30103.23 (11)
C5—C10—C11109.99 (13)H29A—C29—H29B109.1
C9—C10—C11130.91 (14)C30—C29—H29A111.1
C10—C11—H11A111.0C30—C29—H29B111.1
C10—C11—H11B111.0C29—C30—C22101.61 (11)
C10—C11—C12103.59 (11)C31—C30—C22112.81 (11)
H11A—C11—H11B109.0C31—C30—C29113.80 (12)
C12—C11—H11A111.0C31—C30—C35109.08 (12)
C12—C11—H11B111.0C35—C30—C22109.10 (11)
C11—C12—C4101.86 (11)C35—C30—C29110.20 (11)
C13—C12—C4110.97 (12)C30—C31—H31A109.3
C13—C12—C11114.79 (12)C30—C31—H31B109.3
C13—C12—C17109.50 (12)C30—C31—C32111.72 (12)
C17—C12—C4109.15 (11)H31A—C31—H31B107.9
C17—C12—C11110.28 (12)C32—C31—H31A109.3
C12—C13—H13A108.9C32—C31—H31B109.3
C12—C13—H13B108.9C31—C32—H32A109.3
H13A—C13—H13B107.7C31—C32—H32B109.3
C14—C13—C12113.34 (12)H32A—C32—H32B108.0
C14—C13—H13A108.9C33—C32—C31111.61 (13)
C14—C13—H13B108.9C33—C32—H32A109.3
C13—C14—H14A109.3C33—C32—H32B109.3
C13—C14—H14B109.3C32—C33—H33109.0
H14A—C14—H14B107.9C34—C33—C32111.30 (12)
C15—C14—C13111.74 (13)C34—C33—H33109.0
C15—C14—H14A109.3O2—C33—C32112.32 (13)
C15—C14—H14B109.3O2—C33—H33109.0
C14—C15—H15109.0O2—C33—C34106.11 (13)
C14—C15—C16109.82 (13)C33—C34—H34A109.5
C16—C15—H15109.0C33—C34—H34B109.5
O1—C15—C14106.87 (13)C33—C34—C35110.78 (13)
O1—C15—H15109.0H34A—C34—H34B108.1
O1—C15—C16113.19 (13)C35—C34—H34A109.5
C15—C16—H16A109.7C35—C34—H34B109.5
C15—C16—H16B109.7C30—C35—H35A109.1
C15—C16—C17109.84 (12)C30—C35—H35B109.1
H16A—C16—H16B108.2C34—C35—C30112.68 (12)
C17—C16—H16A109.7C34—C35—H35A109.1
C17—C16—H16B109.7C34—C35—H35B109.1
C12—C17—H17A109.0H35A—C35—H35B107.8
C12—C17—H17B109.0H36A—C36—H36B109.5
C16—C17—C12112.81 (12)H36A—C36—H36C109.5
C16—C17—H17A109.0H36B—C36—H36C109.5
C16—C17—H17B109.0O2—C36—H36A109.5
H17A—C17—H17B107.8O2—C36—H36B109.5
H18A—C18—H18B109.5O2—C36—H36C109.5
H18A—C18—H18C109.5C1—N1—C19114.92 (12)
H18B—C18—H18C109.5C1—N2—C4110.02 (12)
O1—C18—H18A109.5C1—N2—H2119.8 (12)
O1—C18—H18B109.5C4—N2—H2130.1 (12)
O1—C18—H18C109.5C2—N3—C4107.61 (11)
N1—C19—C20123.54 (12)C19—N4—C22107.66 (11)
N4—C19—C20108.12 (12)C20—N5—C22106.51 (11)
N4—C19—N1128.29 (13)C18—O1—C15113.31 (14)
C21—C20—C19123.79 (12)C36—O2—C33113.60 (15)
N5—C20—C19110.78 (12)
Br1—C7—C8—C9178.42 (11)C24—C23—C28—C29178.36 (13)
Br2—C25—C26—C27179.54 (12)C24—C25—C26—C270.7 (2)
C1—C2—N3—C41.52 (16)C25—C26—C27—C280.2 (2)
C2—C1—N1—C19174.58 (13)C26—C27—C28—C230.4 (2)
C2—C1—N2—C41.35 (16)C26—C27—C28—C29178.16 (15)
C3—C2—N3—C4177.80 (14)C27—C28—C29—C30157.17 (15)
C4—C5—C6—C7177.07 (13)C28—C23—C24—C250.1 (2)
C4—C5—C10—C9176.23 (13)C28—C29—C30—C2233.89 (13)
C4—C5—C10—C113.85 (16)C28—C29—C30—C31155.44 (12)
C4—C12—C13—C14171.17 (13)C28—C29—C30—C3581.68 (14)
C4—C12—C17—C16174.63 (12)C29—C30—C31—C3268.08 (16)
C5—C4—C12—C1133.48 (13)C29—C30—C35—C3469.81 (15)
C5—C4—C12—C13156.11 (12)C30—C22—C23—C24156.70 (14)
C5—C4—C12—C1783.12 (13)C30—C22—C23—C2822.73 (14)
C5—C4—N2—C1119.89 (13)C30—C22—N4—C19120.81 (13)
C5—C4—N3—C2124.03 (13)C30—C22—N5—C20123.30 (12)
C5—C6—C7—Br1179.74 (10)C30—C31—C32—C3356.31 (17)
C5—C6—C7—C80.6 (2)C31—C30—C35—C3455.79 (16)
C5—C10—C11—C1218.25 (16)C31—C32—C33—C3455.19 (17)
C6—C5—C10—C92.8 (2)C31—C32—C33—O2174.01 (12)
C6—C5—C10—C11177.14 (13)C32—C33—C34—C3554.55 (17)
C6—C7—C8—C92.0 (2)C32—C33—O2—C3674.54 (18)
C7—C8—C9—C100.9 (2)C33—C34—C35—C3055.86 (16)
C8—C9—C10—C51.4 (2)C34—C33—O2—C36163.64 (15)
C8—C9—C10—C11178.53 (15)C35—C30—C31—C3255.40 (16)
C9—C10—C11—C12161.66 (15)N1—C1—C2—C34.1 (2)
C10—C5—C6—C71.8 (2)N1—C1—C2—N3176.53 (14)
C10—C11—C12—C431.57 (14)N1—C1—N2—C4176.97 (14)
C10—C11—C12—C13151.55 (12)N1—C19—C20—C214.0 (2)
C10—C11—C12—C1784.21 (14)N1—C19—C20—N5175.33 (13)
C11—C12—C13—C1474.04 (17)N1—C19—N4—C22175.04 (14)
C11—C12—C17—C1674.26 (15)N2—C1—C2—C3177.46 (14)
C12—C4—C5—C6157.02 (14)N2—C1—C2—N31.88 (17)
C12—C4—C5—C1024.03 (15)N2—C1—N1—C193.4 (2)
C12—C4—N2—C1122.41 (13)N2—C4—C5—C632.6 (2)
C12—C4—N3—C2123.55 (13)N2—C4—C5—C10148.42 (12)
C12—C13—C14—C1554.37 (18)N2—C4—C12—C11157.73 (12)
C13—C12—C17—C1652.97 (16)N2—C4—C12—C1379.64 (15)
C13—C14—C15—C1657.49 (18)N2—C4—C12—C1741.12 (16)
C13—C14—C15—O1179.37 (13)N2—C4—N3—C20.68 (15)
C14—C15—C16—C1759.04 (17)N3—C4—C5—C685.21 (17)
C14—C15—O1—C18176.19 (14)N3—C4—C5—C1093.74 (14)
C15—C16—C17—C1258.08 (17)N3—C4—C12—C1183.52 (13)
C16—C15—O1—C1862.79 (19)N3—C4—C12—C1339.11 (16)
C17—C12—C13—C1450.61 (17)N3—C4—C12—C17159.88 (11)
C19—C20—N5—C220.97 (15)N3—C4—N2—C10.52 (15)
C20—C19—N1—C1171.64 (13)N4—C19—C20—C21178.47 (13)
C20—C19—N4—C222.37 (15)N4—C19—C20—N52.22 (17)
C21—C20—N5—C22179.73 (13)N4—C19—N1—C15.4 (2)
C22—C23—C24—C25179.31 (13)N4—C22—C23—C2434.6 (2)
C22—C23—C28—C27179.95 (13)N4—C22—C23—C28144.88 (12)
C22—C23—C28—C291.11 (16)N4—C22—C30—C29157.12 (11)
C22—C30—C31—C32176.82 (11)N4—C22—C30—C3180.65 (15)
C22—C30—C35—C34179.43 (12)N4—C22—C30—C3540.75 (15)
C23—C22—C30—C2934.24 (13)N4—C22—N5—C200.44 (15)
C23—C22—C30—C31156.47 (11)N5—C22—C23—C2485.28 (17)
C23—C22—C30—C3582.13 (13)N5—C22—C23—C2895.29 (14)
C23—C22—N4—C19123.27 (13)N5—C22—C30—C2982.70 (13)
C23—C22—N5—C20124.56 (13)N5—C22—C30—C3139.53 (15)
C23—C24—C25—Br2179.61 (10)N5—C22—C30—C35160.93 (11)
C23—C24—C25—C260.7 (2)N5—C22—N4—C191.84 (15)
C23—C28—C29—C3021.51 (15)O1—C15—C16—C17178.38 (13)
C24—C23—C28—C270.5 (2)O2—C33—C34—C35177.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N40.82 (1)1.95 (2)2.5549 (16)129 (2)
Bond lengths (Å) in the N-bridged bis-imidazole core for structures 1 and 2, with bonds denoted as in Fig. 4 top
BondStructure 1Bond orderStructure 2Bond order
1 (N1···C1)1.3327 (19)delocalized1.3081 (18)delocalized
2 (N1···C19)1.3616 (18)delocalized1.3853 (18)delocalized
3 (C1···N2)1.3250 (19)delocalized1.3374 (18)delocalized
4 (C19···N4)1.3115 (18)delocalized1.2983 (18)delocalized
5 (C1—C2)1.4940 (19)single1.4959 (19)single
6 (C19—C20)1.4925 (19)single1.4940 (18)single
7 (N2—C4)1.4471 (18)single1.4509 (17)single
8 (N4—C22)1.4513 (17)single1.4791 (17)single
9 (C2—N3)1.2818 (19)double1.2800 (19)double
10 (N5—C20)1.2809 (19)double1.2837 (18)double
11 (N3—C4)1.4770 (17)single1.4759 (18)single
12 (N5—C22)1.4816 (17)single1.4635 (17)single
 

Acknowledgements

We would like to thank the Engineering and Physical Sciences Research Council (UK) for funding the UK National Crystallography Service.

References

First citationCahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. Engl. 5, 385–415.  CrossRef CAS Web of Science Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Neu-Isenburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds