research communications
N,N-dimethylformamide monosolvate
of 9-aminoacridinium chlorideaDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania
*Correspondence e-mail: ifritsky@univ.kiev.ua
9-Aminoacridinium chloride N,N-dimethylformamide monosolvate, C13H11N2+Cl−·C3H7NO, crystallizes in the monoclinic P21/c. The salt was crystallized from N,N-dimethylformamide. The consists of two C13H11N2+Cl− formula units. The 9-aminoacridinium (9-AA) molecules are protonated with the proton on the N atom of the central ring. This N atom is connected to an N,N-dimethylformamide molecule by a hydrogen bond. The H atoms of the amino groups create short contacts with two chloride ions. The 9-AA cations in adjacent layers are oriented in an antiparallel manner. The molecules are linked via a network of multidirectional π–π interactions between the 9-AA rings, and the whole lattice is additionally stabilized by electrostatic interactions between ions.
Keywords: crystal structure; 9-aminoacridinium; hydrogen bonds.
CCDC reference: 2120699
1. Chemical context
Aminoacridine (AA) derivatives exhibit antibacterial (Ciric et al., 2011), anticancer (Hassan et al., 2011), antiviral (Kaur & Singh, 2011) and antiprion effects (Villa et al., 2011), as well as other therapeutic properties (Muregi & Ishih, 2010). The synthesis of these compounds and analysis of their interactions is very useful in view of their importance in a wide range of different biological systems (Coupar et al., 1997). Besides, numerous acridine-based derivatives are important for their chemiluminogenic ability and their use as chemiluminescent indicators in immunoassays, nucleic acid diagnostics and quantitative assays of biomolecules, such as antigens, antibodies, hormones and enzymes, as well as DNA–RNA structural analyses (Dodeigne, 2000; Becker et al., 1999). Additionally, photochemical reactions for these compounds in different media have been reported (Machulek et al., 2003). AA derivatives are promising analytical agents, since they exhibit relatively high quantum yields of light emission and stability (Adamczyk et al., 1999; Dodeigne, 2000; Renotte et al., 2000; Smith et al., 2009).
9-AA is a fluorescent dye of the family of nitrogen heterocyclic bases. 9-AA has been proposed as a specific fluorescent probe capable of binding the active center of guanidinobenzoatases (GB) (Murza et al., 2000). Interestingly, cellulose nanocomposites based on [Fe(hptrz)3](OTs)2 nanoparticles were effectively doped with 9-AA, resulting in a thermochromic and thermofluorescent material (Nagy et al., 2014). Previous crystallographic studies of some analogues of 9-AA have revealed that while in some members the acridine ring system is nearly planar (Carrell, 1972), in others it is clamped (Zacharias & Glusker, 1974; Berman & Glusker, 1972; Glusker et al., 1973) with angles of 7–13° between the two outer rings. This publication reports the of 9-aminoacridinium chloride N,N-dimethylformamide solvate (1:1).
2. Structural commentary
The title compound crystallizes in the monoclinic P21/c with two 9-AA+Cl− formula units in the As shown in Fig. 1, the molecules are monoionized with the one proton residing on the N atom, N2 or N5, of the central ring.
The amino groups for two 9-aminoacridine molecules do not readily add a proton. The state of ionization is confirmed by both the H-atom positions (located from the difference map) and by the hydrogen bonding as shown in Table 1. The C—NH2 bonds C1—N1 and C17—N4 are 1.310 (5) and 1.313 (5) Å, respectively. These bond lengths are characteristic for a C=N double bond that can originate from of the cation, as shown on the scheme.
|
The acridine moieties are nearly planar in the crystalline phase with atoms N2, C1, N1 and N5, C17 and N4 arranged almost linearly (N2⋯C1—N1 = 176° and N5⋯C17—N4 = 180°). The dihedral angle between the two outer fused rings is 3.39 (14)° for the molecule containing N2, while the corresponding angle in the molecule containing N5 is 1.18 (15)°. The second value is comparable with that found for acridine (1.2°; Phillips, 1956; Phillips et al., 1960). The 9-AA molecules are almost planar and each of three fused rings taken individually is planar within experimental error.
3. Supramolecular features
The packing of the molecules in the crystal is illustrated in Fig. 2. The features N—H⋯O and N—H⋯Cl hydrogen bonds (Table 1) as well as π–π stacking interactions. The 9-AA molecules form layers (Fig. 3), which stack perpendicularly to the c axis. There are two types of 9-AA fused rings in the which results in the propagation of layers in a zigzag manner along b-axis direction (Fig. 2).
The structure is characterized by the presence of several different kinds of weak interactions, which create a three-dimensional supramolecular network. The atoms H2 and H5A, attached to N2 and N5, form hydrogen bonds to N,N-dimethylformamide atoms, O1 and O2, with d(N⋯O) = 2.723 (5)–2.740 (5) Å, N—H⋯O = 175-176°. The chloride ions are linked via N—H⋯Cl hydrogen bonds [d(N⋯Cl) = 3.209 (3)–3.246 (3) Å, N-H⋯Cl = 160–163°], forming dimers (Fig. 1). In these dimers, the amino groups of the two 9-AA cations and the two halide anions participate in the hydrogen bonding, generating a centrosymmetric R22(8) supramolecular synthon (Etter, 1990; Etter et al., 1990; Aakeröy, 1997). The dimers are also stabilized by C—H⋯Cl hydrogen bonds between C atoms in positions 1 and 8 in the 9-AA skeleton and the halide ions [d(C⋯Cl) = 3.608 (5)–3.688 (4) Å and C—H⋯Cl = 163-172°] (Fig. 2), as is also observed in other 9-AA salts (Sikorski & Trzybiński, 2011a,b; 2013).
Adjacent acridine skeletons are linked via π–π stacking interactions in an AB arrangement (Fig. 3). All of the aromatic rings of the A molecules participate in π–π interactions, propagating in zigzag manner along the c-axis direction with centroid–centroid distances ranging from 3.9786 (3) to 4.2236 (3) Å. On the other hand, only the two aromatic rings of the acridine B molecules participate in π–π interactions, with adjacent acridine skeletons rotated in-plane with respect to one another. The centroid–centroid distances vary from 3.6514 (3) to 4.7445 (5) Å.
4. Database survey
A search of the Cambridge Structure Database (CSD version 5.42, last update February 2021; Groom et al., 2016) revealed that the current structure has never been published before. 101 structures containing 9-AA cations and chloride anions were found. These include 9-aminoacridine hydrochloride monohydrate (refcode: AMACRD; Talacki et al., 1974), which consists of a monoionized 9-aminoacride molecule with the proton on the N atom of the central ring, one water molecule, which is hydrogen bonded to another water molecule, and two chloride ions, which are hydrogen bonded to the amino group of the 9-AA cation. 9-Aminoacridinium 3-chlorobenzoate (AQAGEF; Sikorski & Trzybiński, 2011b) crystallizes in the monoclinic P21/c with an 9-AA cation and a 3-chlorobenzoate anion in the and the features N—H⋯O and C—H⋯O hydrogen bonds and π–π stacking interactions. Inversely oriented cations and anions form a tetramer; these ions are linked via N(amino)—H⋯O (carboxy) hydrogen bonds, forming a ring motif. 9-Aminoacridinium 3-chlorobenzoate (AQAGIJ; (Sikorski & Trzybiński, 2011b) forms triclinic crystals (P space group) with an 9-AA cation, a 4-chlorobenzoate anion and a water molecule in the The features N—H⋯O and O—H⋯O hydrogen bonds and π–π interactions. Analysis of the hydrogen bonds in the structure of this compounds shows that the ions form tetramers and produce an R24(16) hydrogen-bond ring motif. 9-Aminoacridinium 3-hydroxybenzoate (AQAGOP; Sikorski & Trzybiński, 2011b) also crystallizes in the triclinic P the consisting of two 9-AA cations, 3-hydroxybenzoate and chlorate anions as well as two water molecules. This structure is the first of all the known 9-aminoacridinium salts where mixed salts were obtained (Allen, 2002). The average deviations from planarity of the acridine skeleton are 0.015 (2) and 0.027 (2) Å, and the angle between the mean planes of the right- and left-hand halves of the acridine skeleton is 1.5 and 3.7° in cations A and B, respectively. Analysis of the hydrogen bonds in this compound shows that the ions do not form tetramers, but produce two nearly perpendicularly aligned kinds of hydrogen-bonded chain motif. 9-Aminoacridinium chloride methanol solvate (SIDHAQ; Trzybiński & Sikorski, 2013) again forms triclinic crystals (P space group). The amino group of the 9-aminoacridinium cation interacts with the chloride anion via an N—H⋯Cl hydrogen bond and the methanol molecule via an N—H⋯O hydrogen bond, generating a centrosymmetric R24(16) supramolecular synthon. The methanol molecule interacts with the halide ion; the resulting supramolecular synthon R24(12) is not planar but assumes a chair shape. This hydrogen-bonded ring motif is stabilized by the N—H⋯Cl hydrogen bond between the acridinium skeleton and the halide ion.
5. Synthesis and crystallization
9-Aminoacridinium hydrochloride (0.0624 g, 2.71×10 −4 mol) was dissolved in N,N-dimethylformamide (4 ml) under heating at 418 K until the 9-AA·HCl had fully dissolved. The solution was left to cool to 280 K. Single crystals were obtained after 2 days.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogens and the C—H group and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the CH3 group. A rotating model was used for the methyl group.
details are summarized in Table 2Supporting information
CCDC reference: 2120699
https://doi.org/10.1107/S2056989021011816/dx2038sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011816/dx2038Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021011816/dx2038Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H11N2+·Cl−·C3H7NO | F(000) = 1280 |
Mr = 303.78 | Dx = 1.301 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5819 (7) Å | Cell parameters from 3798 reflections |
b = 42.705 (2) Å | θ = 2.1–26.7° |
c = 7.2531 (6) Å | µ = 0.25 mm−1 |
β = 108.800 (8)° | T = 293 K |
V = 3102.8 (4) Å3 | Block, clear intense yellow |
Z = 8 | 0.3 × 0.2 × 0.15 mm |
Xcalibur, Eos diffractometer | 3496 reflections with I > 2σ(I) |
Detector resolution: 8.0797 pixels mm-1 | Rint = 0.040 |
ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −8→12 |
Tmin = 0.955, Tmax = 1.000 | k = −34→50 |
12374 measured reflections | l = −8→8 |
5491 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.085 | H-atom parameters constrained |
wR(F2) = 0.199 | w = 1/[σ2(Fo2) + (0.0638P)2 + 2.1432P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
5491 reflections | Δρmax = 0.58 e Å−3 |
383 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 0.52995 (11) | 0.60004 (2) | 0.42541 (19) | 0.0646 (4) | |
Cl1 | 0.92064 (11) | 0.65087 (2) | 0.79353 (19) | 0.0652 (4) | |
N2 | 0.4780 (3) | 0.75521 (8) | 0.2516 (5) | 0.0473 (9) | |
H2 | 0.439961 | 0.772953 | 0.214055 | 0.057* | |
N4 | 0.8349 (3) | 0.58046 (8) | 0.6530 (5) | 0.0558 (10) | |
H4A | 0.753411 | 0.581081 | 0.577485 | 0.067* | |
H4B | 0.875157 | 0.597465 | 0.702537 | 0.067* | |
N1 | 0.6495 (3) | 0.67060 (8) | 0.4611 (5) | 0.0546 (10) | |
H1A | 0.729108 | 0.669943 | 0.542722 | 0.066* | |
H1B | 0.604150 | 0.653625 | 0.427738 | 0.066* | |
N5 | 1.0324 (4) | 0.49648 (8) | 0.7759 (5) | 0.0572 (10) | |
H5A | 1.074306 | 0.478926 | 0.801115 | 0.069* | |
N3 | 0.1963 (4) | 0.84737 (8) | −0.0005 (6) | 0.0591 (10) | |
N6 | 1.3057 (4) | 0.40331 (10) | 0.9714 (6) | 0.0646 (11) | |
C2 | 0.6704 (4) | 0.72613 (9) | 0.4405 (6) | 0.0407 (10) | |
C7 | 0.6074 (4) | 0.75488 (9) | 0.3723 (6) | 0.0419 (10) | |
C29 | 0.8324 (4) | 0.52493 (9) | 0.6113 (6) | 0.0441 (10) | |
C1 | 0.5973 (4) | 0.69747 (9) | 0.3876 (6) | 0.0411 (10) | |
C13 | 0.4638 (4) | 0.69898 (9) | 0.2499 (6) | 0.0415 (10) | |
C17 | 0.8978 (4) | 0.55353 (9) | 0.6925 (6) | 0.0433 (10) | |
C8 | 0.4070 (4) | 0.72836 (9) | 0.1884 (6) | 0.0427 (10) | |
C18 | 1.0344 (4) | 0.55202 (10) | 0.8188 (6) | 0.0469 (10) | |
C12 | 0.3863 (4) | 0.67215 (10) | 0.1781 (6) | 0.0502 (11) | |
H12 | 0.421945 | 0.652389 | 0.216721 | 0.060* | |
C3 | 0.8063 (4) | 0.72726 (10) | 0.5627 (6) | 0.0478 (11) | |
H3 | 0.851443 | 0.708777 | 0.610598 | 0.057* | |
C23 | 1.0976 (4) | 0.52306 (10) | 0.8578 (6) | 0.0486 (11) | |
C11 | 0.2594 (4) | 0.67488 (11) | 0.0522 (6) | 0.0575 (12) | |
H11 | 0.209574 | 0.656968 | 0.004566 | 0.069* | |
C6 | 0.6752 (5) | 0.78324 (10) | 0.4249 (6) | 0.0533 (12) | |
H6 | 0.631891 | 0.802055 | 0.380356 | 0.064* | |
C24 | 0.9034 (5) | 0.49659 (10) | 0.6557 (6) | 0.0496 (11) | |
O1 | 0.3482 (5) | 0.81000 (10) | 0.1214 (7) | 0.1213 (17) | |
C19 | 1.1073 (4) | 0.57874 (11) | 0.9076 (7) | 0.0578 (12) | |
H19 | 1.067290 | 0.598375 | 0.884741 | 0.069* | |
C28 | 0.6990 (4) | 0.52341 (10) | 0.4876 (7) | 0.0593 (12) | |
H28 | 0.649844 | 0.541808 | 0.454043 | 0.071* | |
C9 | 0.2745 (4) | 0.73091 (11) | 0.0596 (7) | 0.0575 (12) | |
H9 | 0.236582 | 0.750446 | 0.020291 | 0.069* | |
C4 | 0.8703 (4) | 0.75517 (10) | 0.6096 (6) | 0.0559 (12) | |
H4 | 0.959115 | 0.755529 | 0.688614 | 0.067* | |
C5 | 0.8052 (5) | 0.78322 (11) | 0.5416 (6) | 0.0595 (13) | |
H5 | 0.850566 | 0.802089 | 0.575935 | 0.071* | |
C22 | 1.2312 (5) | 0.52056 (12) | 0.9817 (7) | 0.0634 (13) | |
H22 | 1.273053 | 0.501138 | 1.006910 | 0.076* | |
C10 | 0.2037 (5) | 0.70426 (11) | −0.0055 (7) | 0.0625 (13) | |
H10 | 0.116652 | 0.705698 | −0.089990 | 0.075* | |
C25 | 0.8413 (5) | 0.46818 (11) | 0.5788 (7) | 0.0640 (13) | |
H25 | 0.889114 | 0.449551 | 0.608286 | 0.077* | |
C21 | 1.2971 (5) | 0.54672 (12) | 1.0626 (7) | 0.0657 (14) | |
H21 | 1.384991 | 0.545175 | 1.144215 | 0.079* | |
C20 | 1.2366 (5) | 0.57594 (12) | 1.0269 (7) | 0.0649 (13) | |
H20 | 1.284081 | 0.593680 | 1.084266 | 0.078* | |
C14 | 0.3158 (6) | 0.83691 (14) | 0.0906 (8) | 0.0750 (15) | |
H14 | 0.382748 | 0.851803 | 0.136486 | 0.090* | |
C26 | 0.7123 (5) | 0.46777 (11) | 0.4620 (7) | 0.0709 (15) | |
H26 | 0.671583 | 0.448903 | 0.412320 | 0.085* | |
C27 | 0.6406 (5) | 0.49580 (12) | 0.4165 (7) | 0.0689 (14) | |
H27 | 0.552007 | 0.495458 | 0.336611 | 0.083* | |
O2 | 1.1518 (6) | 0.43877 (11) | 0.8412 (8) | 0.149 (2) | |
C16 | 0.1695 (6) | 0.88039 (13) | −0.0371 (11) | 0.115 (2) | |
H16A | 0.248518 | 0.892193 | 0.028244 | 0.172* | |
H16B | 0.098683 | 0.886614 | 0.010836 | 0.172* | |
H16C | 0.143641 | 0.884297 | −0.174604 | 0.172* | |
C32 | 1.3588 (7) | 0.37299 (14) | 1.0227 (10) | 0.121 (3) | |
H32A | 1.371578 | 0.369283 | 1.158012 | 0.181* | |
H32B | 1.442925 | 0.371355 | 0.999575 | 0.181* | |
H32C | 1.297962 | 0.357724 | 0.945223 | 0.181* | |
C30 | 1.1894 (8) | 0.4107 (2) | 0.8729 (11) | 0.127 (3) | |
H30 | 1.127945 | 0.394876 | 0.820824 | 0.152* | |
C15 | 0.0865 (6) | 0.82581 (15) | −0.0790 (11) | 0.120 (3) | |
H15A | 0.056623 | 0.826913 | −0.218681 | 0.180* | |
H15B | 0.014377 | 0.831333 | −0.032063 | 0.180* | |
H15C | 0.115624 | 0.804886 | −0.038441 | 0.180* | |
C31 | 1.3999 (9) | 0.42835 (19) | 1.0510 (12) | 0.158 (3) | |
H31A | 1.449984 | 0.423680 | 1.183929 | 0.237* | |
H31B | 1.352309 | 0.447662 | 1.045383 | 0.237* | |
H31C | 1.459666 | 0.430308 | 0.976317 | 0.237* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.0509 (7) | 0.0407 (6) | 0.0845 (9) | 0.0001 (5) | −0.0026 (6) | 0.0013 (6) |
Cl1 | 0.0487 (7) | 0.0370 (6) | 0.0911 (9) | 0.0017 (5) | −0.0038 (6) | −0.0027 (6) |
N2 | 0.049 (2) | 0.039 (2) | 0.050 (2) | 0.0050 (16) | 0.0093 (17) | 0.0074 (17) |
N4 | 0.043 (2) | 0.039 (2) | 0.075 (3) | 0.0002 (16) | 0.0048 (18) | −0.0053 (19) |
N1 | 0.044 (2) | 0.0325 (19) | 0.073 (3) | −0.0036 (15) | −0.0020 (18) | 0.0044 (18) |
N5 | 0.065 (3) | 0.042 (2) | 0.061 (3) | 0.0161 (19) | 0.017 (2) | 0.0092 (19) |
N3 | 0.058 (2) | 0.044 (2) | 0.074 (3) | 0.0020 (19) | 0.020 (2) | 0.004 (2) |
N6 | 0.054 (2) | 0.064 (3) | 0.077 (3) | 0.012 (2) | 0.023 (2) | 0.014 (2) |
C2 | 0.046 (2) | 0.035 (2) | 0.040 (2) | −0.0028 (18) | 0.0128 (19) | 0.0019 (19) |
C7 | 0.049 (2) | 0.038 (2) | 0.038 (2) | −0.0003 (19) | 0.014 (2) | 0.0001 (19) |
C29 | 0.054 (3) | 0.033 (2) | 0.048 (3) | 0.0019 (19) | 0.021 (2) | 0.000 (2) |
C1 | 0.042 (2) | 0.039 (2) | 0.041 (2) | 0.0038 (18) | 0.0114 (18) | −0.0004 (19) |
C13 | 0.042 (2) | 0.037 (2) | 0.043 (2) | 0.0002 (18) | 0.0107 (18) | 0.0056 (19) |
C17 | 0.048 (2) | 0.038 (2) | 0.045 (2) | 0.0074 (19) | 0.0157 (19) | 0.000 (2) |
C8 | 0.043 (2) | 0.046 (3) | 0.038 (2) | −0.0017 (19) | 0.0116 (18) | 0.005 (2) |
C18 | 0.048 (2) | 0.045 (3) | 0.048 (3) | 0.007 (2) | 0.014 (2) | 0.002 (2) |
C12 | 0.049 (3) | 0.045 (3) | 0.052 (3) | 0.000 (2) | 0.010 (2) | 0.003 (2) |
C3 | 0.045 (2) | 0.043 (3) | 0.048 (3) | 0.0000 (19) | 0.005 (2) | 0.004 (2) |
C23 | 0.055 (3) | 0.046 (3) | 0.045 (3) | 0.008 (2) | 0.016 (2) | 0.004 (2) |
C11 | 0.046 (3) | 0.055 (3) | 0.063 (3) | −0.008 (2) | 0.004 (2) | −0.001 (2) |
C6 | 0.070 (3) | 0.036 (2) | 0.049 (3) | −0.005 (2) | 0.012 (2) | 0.004 (2) |
C24 | 0.065 (3) | 0.040 (3) | 0.048 (3) | 0.004 (2) | 0.023 (2) | 0.002 (2) |
O1 | 0.159 (4) | 0.091 (3) | 0.131 (4) | 0.074 (3) | 0.070 (3) | 0.058 (3) |
C19 | 0.052 (3) | 0.046 (3) | 0.069 (3) | 0.007 (2) | 0.011 (2) | −0.004 (2) |
C28 | 0.059 (3) | 0.041 (3) | 0.071 (3) | 0.000 (2) | 0.011 (2) | −0.009 (2) |
C9 | 0.045 (3) | 0.056 (3) | 0.062 (3) | 0.005 (2) | 0.004 (2) | 0.010 (2) |
C4 | 0.055 (3) | 0.050 (3) | 0.052 (3) | −0.013 (2) | 0.002 (2) | 0.005 (2) |
C5 | 0.075 (3) | 0.045 (3) | 0.051 (3) | −0.016 (2) | 0.010 (2) | 0.000 (2) |
C22 | 0.058 (3) | 0.066 (3) | 0.063 (3) | 0.022 (3) | 0.015 (2) | 0.005 (3) |
C10 | 0.048 (3) | 0.063 (3) | 0.063 (3) | 0.001 (2) | −0.001 (2) | 0.012 (3) |
C25 | 0.088 (4) | 0.038 (3) | 0.066 (3) | 0.005 (2) | 0.024 (3) | −0.002 (2) |
C21 | 0.050 (3) | 0.074 (4) | 0.064 (3) | 0.013 (3) | 0.006 (2) | 0.008 (3) |
C20 | 0.054 (3) | 0.059 (3) | 0.070 (3) | 0.001 (2) | 0.004 (2) | −0.004 (3) |
C14 | 0.077 (4) | 0.073 (4) | 0.074 (4) | 0.009 (3) | 0.023 (3) | 0.007 (3) |
C26 | 0.092 (4) | 0.043 (3) | 0.073 (4) | −0.007 (3) | 0.019 (3) | −0.013 (3) |
C27 | 0.066 (3) | 0.060 (3) | 0.074 (3) | −0.004 (3) | 0.012 (3) | −0.014 (3) |
O2 | 0.183 (5) | 0.100 (4) | 0.181 (5) | 0.093 (4) | 0.082 (4) | 0.065 (4) |
C16 | 0.119 (5) | 0.063 (4) | 0.169 (7) | 0.036 (4) | 0.056 (5) | 0.030 (4) |
C32 | 0.160 (7) | 0.084 (5) | 0.126 (6) | 0.069 (4) | 0.060 (5) | 0.032 (4) |
C30 | 0.111 (6) | 0.147 (7) | 0.122 (6) | 0.048 (5) | 0.039 (5) | 0.044 (5) |
C15 | 0.102 (5) | 0.108 (5) | 0.157 (7) | −0.042 (4) | 0.051 (5) | −0.040 (5) |
C31 | 0.180 (8) | 0.153 (8) | 0.142 (7) | −0.073 (7) | 0.053 (6) | −0.008 (6) |
N2—H2 | 0.8600 | C6—H6 | 0.9300 |
N2—C7 | 1.367 (5) | C6—C5 | 1.363 (6) |
N2—C8 | 1.367 (5) | C24—C25 | 1.407 (6) |
N4—H4A | 0.8600 | O1—C14 | 1.199 (6) |
N4—H4B | 0.8600 | C19—H19 | 0.9300 |
N4—C17 | 1.313 (5) | C19—C20 | 1.368 (6) |
N1—H1A | 0.8600 | C28—H28 | 0.9300 |
N1—H1B | 0.8600 | C28—C27 | 1.354 (6) |
N1—C1 | 1.310 (5) | C9—H9 | 0.9300 |
N5—H5A | 0.8600 | C9—C10 | 1.361 (6) |
N5—C23 | 1.361 (5) | C4—H4 | 0.9300 |
N5—C24 | 1.362 (5) | C4—C5 | 1.391 (6) |
N3—C14 | 1.303 (6) | C5—H5 | 0.9300 |
N3—C16 | 1.446 (6) | C22—H22 | 0.9300 |
N3—C15 | 1.448 (6) | C22—C21 | 1.347 (6) |
N6—C32 | 1.413 (6) | C10—H10 | 0.9300 |
N6—C30 | 1.248 (7) | C25—H25 | 0.9300 |
N6—C31 | 1.449 (7) | C25—C26 | 1.355 (7) |
C2—C7 | 1.409 (5) | C21—H21 | 0.9300 |
C2—C1 | 1.433 (5) | C21—C20 | 1.388 (6) |
C2—C3 | 1.426 (5) | C20—H20 | 0.9300 |
C7—C6 | 1.397 (5) | C14—H14 | 0.9300 |
C29—C17 | 1.434 (5) | C26—H26 | 0.9300 |
C29—C24 | 1.406 (5) | C26—C27 | 1.399 (6) |
C29—C28 | 1.410 (6) | C27—H27 | 0.9300 |
C1—C13 | 1.445 (5) | O2—C30 | 1.260 (8) |
C13—C8 | 1.401 (5) | C16—H16A | 0.9600 |
C13—C12 | 1.408 (5) | C16—H16B | 0.9600 |
C17—C18 | 1.441 (5) | C16—H16C | 0.9600 |
C8—C9 | 1.416 (5) | C32—H32A | 0.9600 |
C18—C23 | 1.391 (5) | C32—H32B | 0.9600 |
C18—C19 | 1.412 (6) | C32—H32C | 0.9600 |
C12—H12 | 0.9300 | C30—H30 | 0.9300 |
C12—C11 | 1.364 (6) | C15—H15A | 0.9600 |
C3—H3 | 0.9300 | C15—H15B | 0.9600 |
C3—C4 | 1.359 (5) | C15—H15C | 0.9600 |
C23—C22 | 1.414 (6) | C31—H31A | 0.9600 |
C11—H11 | 0.9300 | C31—H31B | 0.9600 |
C11—C10 | 1.391 (6) | C31—H31C | 0.9600 |
C7—N2—H2 | 118.8 | C29—C28—H28 | 119.2 |
C7—N2—C8 | 122.3 (3) | C27—C28—C29 | 121.5 (4) |
C8—N2—H2 | 118.8 | C27—C28—H28 | 119.2 |
H4A—N4—H4B | 120.0 | C8—C9—H9 | 120.6 |
C17—N4—H4A | 120.0 | C10—C9—C8 | 118.8 (4) |
C17—N4—H4B | 120.0 | C10—C9—H9 | 120.6 |
H1A—N1—H1B | 120.0 | C3—C4—H4 | 119.4 |
C1—N1—H1A | 120.0 | C3—C4—C5 | 121.1 (4) |
C1—N1—H1B | 120.0 | C5—C4—H4 | 119.4 |
C23—N5—H5A | 118.7 | C6—C5—C4 | 120.4 (4) |
C23—N5—C24 | 122.6 (4) | C6—C5—H5 | 119.8 |
C24—N5—H5A | 118.7 | C4—C5—H5 | 119.8 |
C14—N3—C16 | 121.9 (5) | C23—C22—H22 | 120.5 |
C14—N3—C15 | 120.4 (5) | C21—C22—C23 | 119.0 (4) |
C16—N3—C15 | 117.6 (5) | C21—C22—H22 | 120.5 |
C32—N6—C31 | 114.0 (6) | C11—C10—H10 | 119.4 |
C30—N6—C32 | 128.2 (6) | C9—C10—C11 | 121.2 (4) |
C30—N6—C31 | 117.7 (6) | C9—C10—H10 | 119.4 |
C7—C2—C1 | 119.8 (3) | C24—C25—H25 | 119.8 |
C7—C2—C3 | 117.2 (3) | C26—C25—C24 | 120.5 (4) |
C3—C2—C1 | 123.0 (4) | C26—C25—H25 | 119.8 |
N2—C7—C2 | 119.8 (4) | C22—C21—H21 | 119.3 |
N2—C7—C6 | 119.1 (4) | C22—C21—C20 | 121.4 (4) |
C6—C7—C2 | 121.1 (4) | C20—C21—H21 | 119.3 |
C24—C29—C17 | 119.2 (4) | C19—C20—C21 | 120.2 (5) |
C24—C29—C28 | 117.3 (4) | C19—C20—H20 | 119.9 |
C28—C29—C17 | 123.6 (4) | C21—C20—H20 | 119.9 |
N1—C1—C2 | 121.2 (4) | N3—C14—H14 | 116.7 |
N1—C1—C13 | 120.7 (4) | O1—C14—N3 | 126.6 (6) |
C2—C1—C13 | 118.0 (3) | O1—C14—H14 | 116.7 |
C8—C13—C1 | 118.9 (4) | C25—C26—H26 | 120.1 |
C8—C13—C12 | 118.2 (4) | C25—C26—C27 | 119.8 (5) |
C12—C13—C1 | 122.9 (4) | C27—C26—H26 | 120.1 |
N4—C17—C29 | 120.8 (4) | C28—C27—C26 | 120.6 (5) |
N4—C17—C18 | 120.8 (4) | C28—C27—H27 | 119.7 |
C29—C17—C18 | 118.4 (4) | C26—C27—H27 | 119.7 |
N2—C8—C13 | 120.8 (3) | N3—C16—H16A | 109.5 |
N2—C8—C9 | 118.5 (4) | N3—C16—H16B | 109.5 |
C13—C8—C9 | 120.7 (4) | N3—C16—H16C | 109.5 |
C23—C18—C17 | 119.2 (4) | H16A—C16—H16B | 109.5 |
C23—C18—C19 | 118.0 (4) | H16A—C16—H16C | 109.5 |
C19—C18—C17 | 122.8 (4) | H16B—C16—H16C | 109.5 |
C13—C12—H12 | 119.7 | N6—C32—H32A | 109.5 |
C11—C12—C13 | 120.6 (4) | N6—C32—H32B | 109.5 |
C11—C12—H12 | 119.7 | N6—C32—H32C | 109.5 |
C2—C3—H3 | 119.8 | H32A—C32—H32B | 109.5 |
C4—C3—C2 | 120.4 (4) | H32A—C32—H32C | 109.5 |
C4—C3—H3 | 119.8 | H32B—C32—H32C | 109.5 |
N5—C23—C18 | 120.6 (4) | N6—C30—O2 | 122.7 (8) |
N5—C23—C22 | 118.5 (4) | N6—C30—H30 | 118.6 |
C18—C23—C22 | 120.9 (4) | O2—C30—H30 | 118.6 |
C12—C11—H11 | 119.7 | N3—C15—H15A | 109.5 |
C12—C11—C10 | 120.5 (4) | N3—C15—H15B | 109.5 |
C10—C11—H11 | 119.7 | N3—C15—H15C | 109.5 |
C7—C6—H6 | 120.1 | H15A—C15—H15B | 109.5 |
C5—C6—C7 | 119.8 (4) | H15A—C15—H15C | 109.5 |
C5—C6—H6 | 120.1 | H15B—C15—H15C | 109.5 |
N5—C24—C29 | 120.0 (4) | N6—C31—H31A | 109.5 |
N5—C24—C25 | 119.7 (4) | N6—C31—H31B | 109.5 |
C29—C24—C25 | 120.3 (4) | N6—C31—H31C | 109.5 |
C18—C19—H19 | 119.8 | H31A—C31—H31B | 109.5 |
C20—C19—C18 | 120.4 (4) | H31A—C31—H31C | 109.5 |
C20—C19—H19 | 119.8 | H31B—C31—H31C | 109.5 |
N2—C7—C6—C5 | −178.5 (4) | C8—N2—C7—C2 | −1.9 (6) |
N2—C8—C9—C10 | 179.3 (4) | C8—N2—C7—C6 | 177.6 (4) |
N4—C17—C18—C23 | 179.8 (4) | C8—C13—C12—C11 | −0.1 (6) |
N4—C17—C18—C19 | 0.5 (7) | C8—C9—C10—C11 | 0.0 (7) |
N1—C1—C13—C8 | 174.2 (4) | C18—C23—C22—C21 | 0.1 (7) |
N1—C1—C13—C12 | −4.1 (6) | C18—C19—C20—C21 | −0.3 (7) |
N5—C23—C22—C21 | 179.6 (4) | C12—C13—C8—N2 | −179.3 (4) |
N5—C24—C25—C26 | 178.7 (4) | C12—C13—C8—C9 | 0.9 (6) |
C2—C7—C6—C5 | 1.0 (7) | C12—C11—C10—C9 | 0.8 (8) |
C2—C1—C13—C8 | −6.0 (6) | C3—C2—C7—N2 | 178.7 (4) |
C2—C1—C13—C12 | 175.7 (4) | C3—C2—C7—C6 | −0.8 (6) |
C2—C3—C4—C5 | 0.5 (7) | C3—C2—C1—N1 | 4.9 (6) |
C7—N2—C8—C13 | 1.7 (6) | C3—C2—C1—C13 | −174.9 (4) |
C7—N2—C8—C9 | −178.5 (4) | C3—C4—C5—C6 | −0.3 (7) |
C7—C2—C1—N1 | −174.4 (4) | C23—N5—C24—C29 | 0.2 (6) |
C7—C2—C1—C13 | 5.8 (6) | C23—N5—C24—C25 | −178.9 (4) |
C7—C2—C3—C4 | 0.0 (6) | C23—C18—C19—C20 | 0.4 (7) |
C7—C6—C5—C4 | −0.4 (7) | C23—C22—C21—C20 | 0.0 (8) |
C29—C17—C18—C23 | −0.1 (6) | C24—N5—C23—C18 | −0.9 (7) |
C29—C17—C18—C19 | −179.4 (4) | C24—N5—C23—C22 | 179.6 (4) |
C29—C24—C25—C26 | −0.3 (7) | C24—C29—C17—N4 | 179.5 (4) |
C29—C28—C27—C26 | −0.9 (8) | C24—C29—C17—C18 | −0.6 (6) |
C1—C2—C7—N2 | −1.9 (6) | C24—C29—C28—C27 | 1.0 (7) |
C1—C2—C7—C6 | 178.6 (4) | C24—C25—C26—C27 | 0.4 (8) |
C1—C2—C3—C4 | −179.3 (4) | C19—C18—C23—N5 | −179.8 (4) |
C1—C13—C8—N2 | 2.4 (6) | C19—C18—C23—C22 | −0.3 (7) |
C1—C13—C8—C9 | −177.5 (4) | C28—C29—C17—N4 | −0.6 (7) |
C1—C13—C12—C11 | 178.2 (4) | C28—C29—C17—C18 | 179.4 (4) |
C13—C8—C9—C10 | −0.8 (7) | C28—C29—C24—N5 | −179.4 (4) |
C13—C12—C11—C10 | −0.8 (7) | C28—C29—C24—C25 | −0.3 (6) |
C17—C29—C24—N5 | 0.6 (6) | C22—C21—C20—C19 | 0.1 (8) |
C17—C29—C24—C25 | 179.6 (4) | C25—C26—C27—C28 | 0.2 (8) |
C17—C29—C28—C27 | −179.0 (5) | C16—N3—C14—O1 | −177.2 (6) |
C17—C18—C23—N5 | 0.9 (6) | C32—N6—C30—O2 | 177.7 (6) |
C17—C18—C23—C22 | −179.7 (4) | C15—N3—C14—O1 | −0.8 (9) |
C17—C18—C19—C20 | 179.7 (4) | C31—N6—C30—O2 | −0.1 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.86 | 1.86 | 2.723 (5) | 176 |
N4—H4A···Cl2 | 0.86 | 2.40 | 3.225 (3) | 160 |
N4—H4B···Cl1 | 0.86 | 2.38 | 3.211 (4) | 163 |
N1—H1A···Cl1 | 0.86 | 2.39 | 3.209 (3) | 160 |
N1—H1B···Cl2 | 0.86 | 2.42 | 3.246 (3) | 162 |
N5—H5A···O2 | 0.86 | 1.88 | 2.740 (5) | 175 |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 21BNN-06 for perspective development of a scientific direction "Mathematical sciences and natural sciences" at Taras Shevchenko National University of Kyiv; grant No. 19BF037-01M); Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI (grant No. PN-III-P4-ID-PCE-2020-2000, within PNCDI III).
References
Aakeröy, C. B. (1997). Acta Cryst. B53, 569–586. CrossRef Web of Science IUCr Journals Google Scholar
Adamczyk, M., Chen, Y.-Y., Mattingly, P. G., Moore, J. A. & Shreder, K. (1999). Tetrahedron, 55, 10899–10914. CrossRef CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5603–5611. CrossRef PubMed CAS Google Scholar
Berman, H. M. & Glusker, J. P. (1972). Acta Cryst. B28, 590–596. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Carrell, H. L. (1972). Acta Cryst. B28, 1754–1759. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ciric, L., Mullany, P. & Roberts, A. P. (2011). J. Antimicrob. Chemother. 66, 2235–2239. CrossRef CAS PubMed Google Scholar
Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521–533. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415–439. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Glusker, J. P., Gallen, B. & Carrell, H. L. (1973). Acta Cryst. B29, 2000–2006. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hassan, S., Laryea, D., Mahteme, H., Felth, J., Fryknäs, M., Fayad, W., Linder, S., Rickardson, L., Gullbo, J., Graf, W., Påhlman, L., Glimelius, B., Larsson, R. & Nygren, P. (2011). Cancer Sci. 102, 2206–2213. CrossRef CAS PubMed Google Scholar
Kaur, J. & Singh, P. (2011). Expert Opin. Ther. Pat. 21, 437–454. CrossRef CAS PubMed Google Scholar
Machulek, A., Moisés De Oliveira, H. P. & Gehlen, M. H. (2003). Photochem. Photobiol. Sci. 2, 921–925. PubMed Google Scholar
Muregi, F. W. & Ishih, A. (2010). Drug Dev. Res. 71, 20–32. Web of Science CAS PubMed Google Scholar
Murza, A., Sánchez-Cortés, S., García-Ramos, J. V., Guisan, J. M., Alfonso, C. & Rivas, G. (2000). Biochemistry, 39, 10557–10565. CrossRef PubMed CAS Google Scholar
Nagy, V., Halász, K., Carayon, M.-T., Gural'skiy, I. A., Tricard, S., Molnár, G., Bousseksou, A., Salmon, L. & Csóka, L. (2014). Colloids Surf. A Physicochem. Eng. Asp. 456, 35–40. CrossRef CAS Google Scholar
Phillips, D. C. (1956). Acta Cryst. 9, 237–250. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Phillips, D. C., Ahmed, F. R. & Barnes, W. H. (1960). Acta Cryst. 13, 365–377. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Renotte, R., Sarlet, G., Thunus, L. & Lejeune, R. (2000). Luminescence, 15, 311–320. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sikorski, A. & Trzybiński, D. (2011a). Tetrahedron, 67, 1479–1484. CSD CrossRef CAS Google Scholar
Sikorski, A. & Trzybiński, D. (2011b). Tetrahedron, 67, 2839–2843. CSD CrossRef CAS Google Scholar
Sikorski, A. & Trzybiński, D. (2013). Tetrahedron Lett. 54, 1463–1466. CSD CrossRef CAS Google Scholar
Smith, K., Yang, J.-J., Li, Z., Weeks, I. & Woodhead, J. S. (2009). J. Photochem. Photobiol. Chem. 203, 72–79. CrossRef CAS Google Scholar
Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047. CSD CrossRef IUCr Journals Web of Science Google Scholar
Trzybiński, D. & Sikorski, A. (2013). CrystEngComm, 15, 6808–6818. Google Scholar
Villa, V., Tonelli, M., Thellung, S., Corsaro, A., Tasso, B., Novelli, F., Canu, C., Pino, A., Chiovitti, K., Paludi, D., Russo, C., Sparatore, A., Aceto, A., Boido, V., Sparatore, F. & Florio, T. (2011). Neurotox. Res. 19, 556–574. CrossRef CAS PubMed Google Scholar
Zacharias, D. E. & Glusker, J. P. (1974). Acta Cryst. B30, 2046–2049. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.