research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 9-amino­acridinium chloride N,N-di­methyl­formamide monosolvate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania
*Correspondence e-mail: ifritsky@univ.kiev.ua

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 15 October 2021; accepted 8 November 2021; online 16 November 2021)

9-Amino­acridinium chloride N,N-di­methyl­formamide monosolvate, C13H11N2+Cl·C3H7NO, crystallizes in the monoclinic space group P21/c. The salt was crystallized from N,N-di­methyl­formamide. The asymmetric unit consists of two C13H11N2+Cl formula units. The 9-amino­acridinium (9-AA) mol­ecules are protonated with the proton on the N atom of the central ring. This N atom is connected to an N,N-di­methyl­formamide mol­ecule by a hydrogen bond. The H atoms of the amino groups create short contacts with two chloride ions. The 9-AA cations in adjacent layers are oriented in an anti­parallel manner. The mol­ecules are linked via a network of multidirectional ππ inter­actions between the 9-AA rings, and the whole lattice is additionally stabilized by electrostatic inter­actions between ions.

1. Chemical context

Amino­acridine (AA) derivatives exhibit anti­bacterial (Ciric et al., 2011[Ciric, L., Mullany, P. & Roberts, A. P. (2011). J. Antimicrob. Chemother. 66, 2235-2239.]), anti­cancer (Hassan et al., 2011[Hassan, S., Laryea, D., Mahteme, H., Felth, J., Fryknäs, M., Fayad, W., Linder, S., Rickardson, L., Gullbo, J., Graf, W., Påhlman, L., Glimelius, B., Larsson, R. & Nygren, P. (2011). Cancer Sci. 102, 2206-2213.]), anti­viral (Kaur & Singh, 2011[Kaur, J. & Singh, P. (2011). Expert Opin. Ther. Pat. 21, 437-454.]) and anti­prion effects (Villa et al., 2011[Villa, V., Tonelli, M., Thellung, S., Corsaro, A., Tasso, B., Novelli, F., Canu, C., Pino, A., Chiovitti, K., Paludi, D., Russo, C., Sparatore, A., Aceto, A., Boido, V., Sparatore, F. & Florio, T. (2011). Neurotox. Res. 19, 556-574.]), as well as other therapeutic properties (Muregi & Ishih, 2010[Muregi, F. W. & Ishih, A. (2010). Drug Dev. Res. 71, 20-32.]). The synthesis of these compounds and analysis of their inter­actions is very useful in view of their importance in a wide range of different biological systems (Coupar et al., 1997[Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521-533.]). Besides, numerous acridine-based derivatives are important for their chemiluminogenic ability and their use as chemiluminescent indicators in immunoassays, nucleic acid diagnostics and quan­ti­tative assays of biomolecules, such as anti­gens, anti­bodies, hormones and enzymes, as well as DNA–RNA structural analyses (Dodeigne, 2000[Dodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415-439.]; Becker et al., 1999[Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5603-5611.]). Additionally, photochemical reactions for these compounds in different media have been reported (Machulek et al., 2003[Machulek, A., Moisés De Oliveira, H. P. & Gehlen, M. H. (2003). Photochem. Photobiol. Sci. 2, 921-925.]). AA derivatives are promising analytical agents, since they exhibit relatively high quantum yields of light emission and stability (Adamczyk et al., 1999[Adamczyk, M., Chen, Y.-Y., Mattingly, P. G., Moore, J. A. & Shreder, K. (1999). Tetrahedron, 55, 10899-10914.]; Dodeigne, 2000[Dodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415-439.]; Renotte et al., 2000[Renotte, R., Sarlet, G., Thunus, L. & Lejeune, R. (2000). Luminescence, 15, 311-320.]; Smith et al., 2009[Smith, K., Yang, J.-J., Li, Z., Weeks, I. & Woodhead, J. S. (2009). J. Photochem. Photobiol. Chem. 203, 72-79.]).

9-AA is a fluorescent dye of the family of nitro­gen heterocyclic bases. 9-AA has been proposed as a specific fluorescent probe capable of binding the active center of guanidinobenzoatases (GB) (Murza et al., 2000[Murza, A., Sánchez-Cortés, S., García-Ramos, J. V., Guisan, J. M., Alfonso, C. & Rivas, G. (2000). Biochemistry, 39, 10557-10565.]). Inter­estingly, cellulose nanocomposites based on [Fe(hptrz)3](OTs)2 nanoparticles were effectively doped with 9-AA, resulting in a thermochromic and thermofluorescent material (Nagy et al., 2014[Nagy, V., Halász, K., Carayon, M.-T., Gural'skiy, I. A., Tricard, S., Molnár, G., Bousseksou, A., Salmon, L. & Csóka, L. (2014). Colloids Surf. A Physicochem. Eng. Asp. 456, 35-40.]). Previous crystallographic studies of some analogues of 9-AA have revealed that while in some members the acridine ring system is nearly planar (Carrell, 1972[Carrell, H. L. (1972). Acta Cryst. B28, 1754-1759.]), in others it is clamped (Zacharias & Glusker, 1974[Zacharias, D. E. & Glusker, J. P. (1974). Acta Cryst. B30, 2046-2049.]; Berman & Glusker, 1972[Berman, H. M. & Glusker, J. P. (1972). Acta Cryst. B28, 590-596.]; Glusker et al., 1973[Glusker, J. P., Gallen, B. & Carrell, H. L. (1973). Acta Cryst. B29, 2000-2006.]) with angles of 7–13° between the two outer rings. This publication reports the crystal structure of 9-amino­acridinium chloride N,N-di­methyl­formamide solvate (1:1).

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic P21/c space group, with two 9-AA+Cl formula units in the asymmetric unit. As shown in Fig. 1[link], the mol­ecules are monoionized with the one proton residing on the N atom, N2 or N5, of the central ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are represented by dashed lines. Two amine groups and two chloride ions form a supra­molecular R22(8) synthon.

The amino groups for two 9-amino­acridine mol­ecules do not readily add a proton. The state of ionization is confirmed by both the H-atom positions (located from the difference map) and by the hydrogen bonding as shown in Table 1[link]. The C—NH2 bonds C1—N1 and C17—N4 are 1.310 (5) and 1.313 (5) Å, respectively. These bond lengths are characteristic for a C=N double bond that can originate from tautomerism of the cation, as shown on the scheme.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.86 2.723 (5) 176
N4—H4A⋯Cl2 0.86 2.40 3.225 (3) 160
N4—H4B⋯Cl1 0.86 2.38 3.211 (4) 163
N1—H1A⋯Cl1 0.86 2.39 3.209 (3) 160
N1—H1B⋯Cl2 0.86 2.42 3.246 (3) 162
N5—H5A⋯O2 0.86 1.88 2.740 (5) 175

The acridine moieties are nearly planar in the crystalline phase with atoms N2, C1, N1 and N5, C17 and N4 arranged almost linearly (N2⋯C1—N1 = 176° and N5⋯C17—N4 = 180°). The dihedral angle between the two outer fused rings is 3.39 (14)° for the mol­ecule containing N2, while the corresponding angle in the mol­ecule containing N5 is 1.18 (15)°. The second value is comparable with that found for acridine (1.2°; Phillips, 1956[Phillips, D. C. (1956). Acta Cryst. 9, 237-250.]; Phillips et al., 1960[Phillips, D. C., Ahmed, F. R. & Barnes, W. H. (1960). Acta Cryst. 13, 365-377.]). The 9-AA mol­ecules are almost planar and each of three fused rings taken individually is planar within experimental error.

3. Supra­molecular features

The packing of the mol­ecules in the crystal is illustrated in Fig. 2[link]. The crystal structure features N—H⋯O and N—H⋯Cl hydrogen bonds (Table 1[link]) as well as ππ stacking inter­actions. The 9-AA mol­ecules form layers (Fig. 3[link]), which stack perpendicularly to the c axis. There are two types of 9-AA fused rings in the crystal structure, which results in the propagation of layers in a zigzag manner along b-axis direction (Fig. 2[link]).

[Figure 2]
Figure 2
Crystal packing viewed along the c axis. The N—H⋯Cl and N—H⋯O inter­actions are represented by green and red dashed lines, respectively. The A and B acridine mol­ecules are coloured green and blue, respectively.
[Figure 3]
Figure 3
Layers of 9-AA. ππ stacking inter­actions between the 9-amino­acridinium rings of different layers are shown by orange dashed lines.

The structure is characterized by the presence of several different kinds of weak inter­actions, which create a three-dimensional supra­molecular network. The atoms H2 and H5A, attached to N2 and N5, form hydrogen bonds to N,N-di­methyl­formamide atoms, O1 and O2, with d(N⋯O) = 2.723 (5)–2.740 (5) Å, N—H⋯O = 175-176°. The chloride ions are linked via N—H⋯Cl hydrogen bonds [d(N⋯Cl) = 3.209 (3)–3.246 (3) Å, N-H⋯Cl = 160–163°], forming di­mers (Fig. 1[link]). In these di­mers, the amino groups of the two 9-AA cations and the two halide anions participate in the hydrogen bonding, generating a centrosymmetric R22(8) supra­molecular synthon (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Aakeröy, 1997[Aakeröy, C. B. (1997). Acta Cryst. B53, 569-586.]). The di­mers are also stabilized by C—H⋯Cl hydrogen bonds between C atoms in positions 1 and 8 in the 9-AA skeleton and the halide ions [d(C⋯Cl) = 3.608 (5)–3.688 (4) Å and C—H⋯Cl = 163-172°] (Fig. 2[link]), as is also observed in other 9-AA salts (Sikorski & Trzybiński, 2011a[Sikorski, A. & Trzybiński, D. (2011a). Tetrahedron, 67, 1479-1484.],b[Sikorski, A. & Trzybiński, D. (2011b). Tetrahedron, 67, 2839-2843.]; 2013[Sikorski, A. & Trzybiński, D. (2013). Tetrahedron Lett. 54, 1463-1466.]).

Adjacent acridine skeletons are linked via ππ stacking inter­actions in an AB arrangement (Fig. 3[link]). All of the aromatic rings of the A mol­ecules participate in ππ inter­actions, propagating in zigzag manner along the c-axis direction with centroid–centroid distances ranging from 3.9786 (3) to 4.2236 (3) Å. On the other hand, only the two aromatic rings of the acridine B mol­ecules participate in ππ inter­actions, with adjacent acridine skeletons rotated in-plane with respect to one another. The centroid–centroid distances vary from 3.6514 (3) to 4.7445 (5) Å.

4. Database survey

A search of the Cambridge Structure Database (CSD version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the current structure has never been published before. 101 structures containing 9-AA cations and chloride anions were found. These include 9-amino­acridine hydro­chloride monohydrate (refcode: AMACRD; Talacki et al., 1974[Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.]), which consists of a monoionized 9-amino­acride mol­ecule with the proton on the N atom of the central ring, one water mol­ecule, which is hydrogen bonded to another water mol­ecule, and two chloride ions, which are hydrogen bonded to the amino group of the 9-AA cation. 9-Amino­acridinium 3-chloro­benzoate (AQAGEF; Sikorski & Trzybiński, 2011b[Sikorski, A. & Trzybiński, D. (2011b). Tetrahedron, 67, 2839-2843.]) crystallizes in the monoclinic P21/c space group with an 9-AA cation and a 3-chloro­benzoate anion in the asymmetric unit and the crystal structure features N—H⋯O and C—H⋯O hydrogen bonds and ππ stacking inter­actions. Inversely oriented cations and anions form a tetra­mer; these ions are linked via N(amino)—H⋯O (carb­oxy) hydrogen bonds, forming a ring motif. 9-Amino­acridinium 3-chloro­benzoate (AQAGIJ; (Sikorski & Trzybiński, 2011b[Sikorski, A. & Trzybiński, D. (2011b). Tetrahedron, 67, 2839-2843.]) forms triclinic crystals (P[\overline{1}] space group) with an 9-AA cation, a 4-chloro­benzoate anion and a water mol­ecule in the asymmetric unit. The crystal structure features N—H⋯O and O—H⋯O hydrogen bonds and ππ inter­actions. Analysis of the hydrogen bonds in the structure of this compounds shows that the ions form tetra­mers and produce an R24(16) hydrogen-bond ring motif. 9-Amino­acridinium 3-hy­droxy­benzoate (AQAGOP; Sikorski & Trzybiński, 2011b[Sikorski, A. & Trzybiński, D. (2011b). Tetrahedron, 67, 2839-2843.]) also crystallizes in the triclinic P[\overline{1}] space group, the asymmetric unit consisting of two 9-AA cations, 3-hy­droxy­benzoate and chlorate anions as well as two water mol­ecules. This structure is the first of all the known 9-amino­acridinium salts where mixed salts were obtained (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The average deviations from planarity of the acridine skeleton are 0.015 (2) and 0.027 (2) Å, and the angle between the mean planes of the right- and left-hand halves of the acridine skeleton is 1.5 and 3.7° in cations A and B, respectively. Analysis of the hydrogen bonds in this compound shows that the ions do not form tetra­mers, but produce two nearly perpendicularly aligned kinds of hydrogen-bonded chain motif. 9-Amino­acridinium chloride methanol solvate (SIDHAQ; Trzybiński & Sikorski, 2013[Trzybiński, D. & Sikorski, A. (2013). CrystEngComm, 15, 6808-6818.]) again forms triclinic crystals (P[\overline{1}] space group). The amino group of the 9-amino­acridinium cation inter­acts with the chloride anion via an N—H⋯Cl hydrogen bond and the methanol mol­ecule via an N—H⋯O hydrogen bond, generating a centrosymmetric R24(16) supra­molecular synthon. The methanol mol­ecule inter­acts with the halide ion; the resulting supra­molecular synthon R24(12) is not planar but assumes a chair shape. This hydrogen-bonded ring motif is stabilized by the N—H⋯Cl hydrogen bond between the acridinium skeleton and the halide ion.

5. Synthesis and crystallization

9-Amino­acridinium hydro­chloride (0.0624 g, 2.71×10 −4 mol) was dissolved in N,N-di­methyl­formamide (4 ml) under heating at 418 K until the 9-AA·HCl had fully dissolved. The solution was left to cool to 280 K. Single crystals were obtained after 2 days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed geom­etrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogens and the C—H group and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the CH3 group. A rotating model was used for the methyl group.

Table 2
Experimental details

Crystal data
Chemical formula C13H11N2+·Cl·C3H7NO
Mr 303.78
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.5819 (7), 42.705 (2), 7.2531 (6)
β (°) 108.800 (8)
V3) 3102.8 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.3 × 0.2 × 0.15
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.955, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12374, 5491, 3496
Rint 0.040
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.199, 1.10
No. of reflections 5491
No. of parameters 383
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.][Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

9-Aminoacridinium chloride N,N-dimethylformamide monosolvate top
Crystal data top
C13H11N2+·Cl·C3H7NOF(000) = 1280
Mr = 303.78Dx = 1.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5819 (7) ÅCell parameters from 3798 reflections
b = 42.705 (2) Åθ = 2.1–26.7°
c = 7.2531 (6) ŵ = 0.25 mm1
β = 108.800 (8)°T = 293 K
V = 3102.8 (4) Å3Block, clear intense yellow
Z = 80.3 × 0.2 × 0.15 mm
Data collection top
Xcalibur, Eos
diffractometer
3496 reflections with I > 2σ(I)
Detector resolution: 8.0797 pixels mm-1Rint = 0.040
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 812
Tmin = 0.955, Tmax = 1.000k = 3450
12374 measured reflectionsl = 88
5491 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.085H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0638P)2 + 2.1432P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5491 reflectionsΔρmax = 0.58 e Å3
383 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.52995 (11)0.60004 (2)0.42541 (19)0.0646 (4)
Cl10.92064 (11)0.65087 (2)0.79353 (19)0.0652 (4)
N20.4780 (3)0.75521 (8)0.2516 (5)0.0473 (9)
H20.4399610.7729530.2140550.057*
N40.8349 (3)0.58046 (8)0.6530 (5)0.0558 (10)
H4A0.7534110.5810810.5774850.067*
H4B0.8751570.5974650.7025370.067*
N10.6495 (3)0.67060 (8)0.4611 (5)0.0546 (10)
H1A0.7291080.6699430.5427220.066*
H1B0.6041500.6536250.4277380.066*
N51.0324 (4)0.49648 (8)0.7759 (5)0.0572 (10)
H5A1.0743060.4789260.8011150.069*
N30.1963 (4)0.84737 (8)0.0005 (6)0.0591 (10)
N61.3057 (4)0.40331 (10)0.9714 (6)0.0646 (11)
C20.6704 (4)0.72613 (9)0.4405 (6)0.0407 (10)
C70.6074 (4)0.75488 (9)0.3723 (6)0.0419 (10)
C290.8324 (4)0.52493 (9)0.6113 (6)0.0441 (10)
C10.5973 (4)0.69747 (9)0.3876 (6)0.0411 (10)
C130.4638 (4)0.69898 (9)0.2499 (6)0.0415 (10)
C170.8978 (4)0.55353 (9)0.6925 (6)0.0433 (10)
C80.4070 (4)0.72836 (9)0.1884 (6)0.0427 (10)
C181.0344 (4)0.55202 (10)0.8188 (6)0.0469 (10)
C120.3863 (4)0.67215 (10)0.1781 (6)0.0502 (11)
H120.4219450.6523890.2167210.060*
C30.8063 (4)0.72726 (10)0.5627 (6)0.0478 (11)
H30.8514430.7087770.6105980.057*
C231.0976 (4)0.52306 (10)0.8578 (6)0.0486 (11)
C110.2594 (4)0.67488 (11)0.0522 (6)0.0575 (12)
H110.2095740.6569680.0045660.069*
C60.6752 (5)0.78324 (10)0.4249 (6)0.0533 (12)
H60.6318910.8020550.3803560.064*
C240.9034 (5)0.49659 (10)0.6557 (6)0.0496 (11)
O10.3482 (5)0.81000 (10)0.1214 (7)0.1213 (17)
C191.1073 (4)0.57874 (11)0.9076 (7)0.0578 (12)
H191.0672900.5983750.8847410.069*
C280.6990 (4)0.52341 (10)0.4876 (7)0.0593 (12)
H280.6498440.5418080.4540430.071*
C90.2745 (4)0.73091 (11)0.0596 (7)0.0575 (12)
H90.2365820.7504460.0202910.069*
C40.8703 (4)0.75517 (10)0.6096 (6)0.0559 (12)
H40.9591150.7555290.6886140.067*
C50.8052 (5)0.78322 (11)0.5416 (6)0.0595 (13)
H50.8505660.8020890.5759350.071*
C221.2312 (5)0.52056 (12)0.9817 (7)0.0634 (13)
H221.2730530.5011381.0069100.076*
C100.2037 (5)0.70426 (11)0.0055 (7)0.0625 (13)
H100.1166520.7056980.0899900.075*
C250.8413 (5)0.46818 (11)0.5788 (7)0.0640 (13)
H250.8891140.4495510.6082860.077*
C211.2971 (5)0.54672 (12)1.0626 (7)0.0657 (14)
H211.3849910.5451751.1442150.079*
C201.2366 (5)0.57594 (12)1.0269 (7)0.0649 (13)
H201.2840810.5936801.0842660.078*
C140.3158 (6)0.83691 (14)0.0906 (8)0.0750 (15)
H140.3827480.8518030.1364860.090*
C260.7123 (5)0.46777 (11)0.4620 (7)0.0709 (15)
H260.6715830.4489030.4123200.085*
C270.6406 (5)0.49580 (12)0.4165 (7)0.0689 (14)
H270.5520070.4954580.3366110.083*
O21.1518 (6)0.43877 (11)0.8412 (8)0.149 (2)
C160.1695 (6)0.88039 (13)0.0371 (11)0.115 (2)
H16A0.2485180.8921930.0282440.172*
H16B0.0986830.8866140.0108360.172*
H16C0.1436410.8842970.1746040.172*
C321.3588 (7)0.37299 (14)1.0227 (10)0.121 (3)
H32A1.3715780.3692831.1580120.181*
H32B1.4429250.3713550.9995750.181*
H32C1.2979620.3577240.9452230.181*
C301.1894 (8)0.4107 (2)0.8729 (11)0.127 (3)
H301.1279450.3948760.8208240.152*
C150.0865 (6)0.82581 (15)0.0790 (11)0.120 (3)
H15A0.0566230.8269130.2186810.180*
H15B0.0143770.8313330.0320630.180*
H15C0.1156240.8048860.0384410.180*
C311.3999 (9)0.42835 (19)1.0510 (12)0.158 (3)
H31A1.4499840.4236801.1839290.237*
H31B1.3523090.4476621.0453830.237*
H31C1.4596660.4303080.9763170.237*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0509 (7)0.0407 (6)0.0845 (9)0.0001 (5)0.0026 (6)0.0013 (6)
Cl10.0487 (7)0.0370 (6)0.0911 (9)0.0017 (5)0.0038 (6)0.0027 (6)
N20.049 (2)0.039 (2)0.050 (2)0.0050 (16)0.0093 (17)0.0074 (17)
N40.043 (2)0.039 (2)0.075 (3)0.0002 (16)0.0048 (18)0.0053 (19)
N10.044 (2)0.0325 (19)0.073 (3)0.0036 (15)0.0020 (18)0.0044 (18)
N50.065 (3)0.042 (2)0.061 (3)0.0161 (19)0.017 (2)0.0092 (19)
N30.058 (2)0.044 (2)0.074 (3)0.0020 (19)0.020 (2)0.004 (2)
N60.054 (2)0.064 (3)0.077 (3)0.012 (2)0.023 (2)0.014 (2)
C20.046 (2)0.035 (2)0.040 (2)0.0028 (18)0.0128 (19)0.0019 (19)
C70.049 (2)0.038 (2)0.038 (2)0.0003 (19)0.014 (2)0.0001 (19)
C290.054 (3)0.033 (2)0.048 (3)0.0019 (19)0.021 (2)0.000 (2)
C10.042 (2)0.039 (2)0.041 (2)0.0038 (18)0.0114 (18)0.0004 (19)
C130.042 (2)0.037 (2)0.043 (2)0.0002 (18)0.0107 (18)0.0056 (19)
C170.048 (2)0.038 (2)0.045 (2)0.0074 (19)0.0157 (19)0.000 (2)
C80.043 (2)0.046 (3)0.038 (2)0.0017 (19)0.0116 (18)0.005 (2)
C180.048 (2)0.045 (3)0.048 (3)0.007 (2)0.014 (2)0.002 (2)
C120.049 (3)0.045 (3)0.052 (3)0.000 (2)0.010 (2)0.003 (2)
C30.045 (2)0.043 (3)0.048 (3)0.0000 (19)0.005 (2)0.004 (2)
C230.055 (3)0.046 (3)0.045 (3)0.008 (2)0.016 (2)0.004 (2)
C110.046 (3)0.055 (3)0.063 (3)0.008 (2)0.004 (2)0.001 (2)
C60.070 (3)0.036 (2)0.049 (3)0.005 (2)0.012 (2)0.004 (2)
C240.065 (3)0.040 (3)0.048 (3)0.004 (2)0.023 (2)0.002 (2)
O10.159 (4)0.091 (3)0.131 (4)0.074 (3)0.070 (3)0.058 (3)
C190.052 (3)0.046 (3)0.069 (3)0.007 (2)0.011 (2)0.004 (2)
C280.059 (3)0.041 (3)0.071 (3)0.000 (2)0.011 (2)0.009 (2)
C90.045 (3)0.056 (3)0.062 (3)0.005 (2)0.004 (2)0.010 (2)
C40.055 (3)0.050 (3)0.052 (3)0.013 (2)0.002 (2)0.005 (2)
C50.075 (3)0.045 (3)0.051 (3)0.016 (2)0.010 (2)0.000 (2)
C220.058 (3)0.066 (3)0.063 (3)0.022 (3)0.015 (2)0.005 (3)
C100.048 (3)0.063 (3)0.063 (3)0.001 (2)0.001 (2)0.012 (3)
C250.088 (4)0.038 (3)0.066 (3)0.005 (2)0.024 (3)0.002 (2)
C210.050 (3)0.074 (4)0.064 (3)0.013 (3)0.006 (2)0.008 (3)
C200.054 (3)0.059 (3)0.070 (3)0.001 (2)0.004 (2)0.004 (3)
C140.077 (4)0.073 (4)0.074 (4)0.009 (3)0.023 (3)0.007 (3)
C260.092 (4)0.043 (3)0.073 (4)0.007 (3)0.019 (3)0.013 (3)
C270.066 (3)0.060 (3)0.074 (3)0.004 (3)0.012 (3)0.014 (3)
O20.183 (5)0.100 (4)0.181 (5)0.093 (4)0.082 (4)0.065 (4)
C160.119 (5)0.063 (4)0.169 (7)0.036 (4)0.056 (5)0.030 (4)
C320.160 (7)0.084 (5)0.126 (6)0.069 (4)0.060 (5)0.032 (4)
C300.111 (6)0.147 (7)0.122 (6)0.048 (5)0.039 (5)0.044 (5)
C150.102 (5)0.108 (5)0.157 (7)0.042 (4)0.051 (5)0.040 (5)
C310.180 (8)0.153 (8)0.142 (7)0.073 (7)0.053 (6)0.008 (6)
Geometric parameters (Å, º) top
N2—H20.8600C6—H60.9300
N2—C71.367 (5)C6—C51.363 (6)
N2—C81.367 (5)C24—C251.407 (6)
N4—H4A0.8600O1—C141.199 (6)
N4—H4B0.8600C19—H190.9300
N4—C171.313 (5)C19—C201.368 (6)
N1—H1A0.8600C28—H280.9300
N1—H1B0.8600C28—C271.354 (6)
N1—C11.310 (5)C9—H90.9300
N5—H5A0.8600C9—C101.361 (6)
N5—C231.361 (5)C4—H40.9300
N5—C241.362 (5)C4—C51.391 (6)
N3—C141.303 (6)C5—H50.9300
N3—C161.446 (6)C22—H220.9300
N3—C151.448 (6)C22—C211.347 (6)
N6—C321.413 (6)C10—H100.9300
N6—C301.248 (7)C25—H250.9300
N6—C311.449 (7)C25—C261.355 (7)
C2—C71.409 (5)C21—H210.9300
C2—C11.433 (5)C21—C201.388 (6)
C2—C31.426 (5)C20—H200.9300
C7—C61.397 (5)C14—H140.9300
C29—C171.434 (5)C26—H260.9300
C29—C241.406 (5)C26—C271.399 (6)
C29—C281.410 (6)C27—H270.9300
C1—C131.445 (5)O2—C301.260 (8)
C13—C81.401 (5)C16—H16A0.9600
C13—C121.408 (5)C16—H16B0.9600
C17—C181.441 (5)C16—H16C0.9600
C8—C91.416 (5)C32—H32A0.9600
C18—C231.391 (5)C32—H32B0.9600
C18—C191.412 (6)C32—H32C0.9600
C12—H120.9300C30—H300.9300
C12—C111.364 (6)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C3—C41.359 (5)C15—H15C0.9600
C23—C221.414 (6)C31—H31A0.9600
C11—H110.9300C31—H31B0.9600
C11—C101.391 (6)C31—H31C0.9600
C7—N2—H2118.8C29—C28—H28119.2
C7—N2—C8122.3 (3)C27—C28—C29121.5 (4)
C8—N2—H2118.8C27—C28—H28119.2
H4A—N4—H4B120.0C8—C9—H9120.6
C17—N4—H4A120.0C10—C9—C8118.8 (4)
C17—N4—H4B120.0C10—C9—H9120.6
H1A—N1—H1B120.0C3—C4—H4119.4
C1—N1—H1A120.0C3—C4—C5121.1 (4)
C1—N1—H1B120.0C5—C4—H4119.4
C23—N5—H5A118.7C6—C5—C4120.4 (4)
C23—N5—C24122.6 (4)C6—C5—H5119.8
C24—N5—H5A118.7C4—C5—H5119.8
C14—N3—C16121.9 (5)C23—C22—H22120.5
C14—N3—C15120.4 (5)C21—C22—C23119.0 (4)
C16—N3—C15117.6 (5)C21—C22—H22120.5
C32—N6—C31114.0 (6)C11—C10—H10119.4
C30—N6—C32128.2 (6)C9—C10—C11121.2 (4)
C30—N6—C31117.7 (6)C9—C10—H10119.4
C7—C2—C1119.8 (3)C24—C25—H25119.8
C7—C2—C3117.2 (3)C26—C25—C24120.5 (4)
C3—C2—C1123.0 (4)C26—C25—H25119.8
N2—C7—C2119.8 (4)C22—C21—H21119.3
N2—C7—C6119.1 (4)C22—C21—C20121.4 (4)
C6—C7—C2121.1 (4)C20—C21—H21119.3
C24—C29—C17119.2 (4)C19—C20—C21120.2 (5)
C24—C29—C28117.3 (4)C19—C20—H20119.9
C28—C29—C17123.6 (4)C21—C20—H20119.9
N1—C1—C2121.2 (4)N3—C14—H14116.7
N1—C1—C13120.7 (4)O1—C14—N3126.6 (6)
C2—C1—C13118.0 (3)O1—C14—H14116.7
C8—C13—C1118.9 (4)C25—C26—H26120.1
C8—C13—C12118.2 (4)C25—C26—C27119.8 (5)
C12—C13—C1122.9 (4)C27—C26—H26120.1
N4—C17—C29120.8 (4)C28—C27—C26120.6 (5)
N4—C17—C18120.8 (4)C28—C27—H27119.7
C29—C17—C18118.4 (4)C26—C27—H27119.7
N2—C8—C13120.8 (3)N3—C16—H16A109.5
N2—C8—C9118.5 (4)N3—C16—H16B109.5
C13—C8—C9120.7 (4)N3—C16—H16C109.5
C23—C18—C17119.2 (4)H16A—C16—H16B109.5
C23—C18—C19118.0 (4)H16A—C16—H16C109.5
C19—C18—C17122.8 (4)H16B—C16—H16C109.5
C13—C12—H12119.7N6—C32—H32A109.5
C11—C12—C13120.6 (4)N6—C32—H32B109.5
C11—C12—H12119.7N6—C32—H32C109.5
C2—C3—H3119.8H32A—C32—H32B109.5
C4—C3—C2120.4 (4)H32A—C32—H32C109.5
C4—C3—H3119.8H32B—C32—H32C109.5
N5—C23—C18120.6 (4)N6—C30—O2122.7 (8)
N5—C23—C22118.5 (4)N6—C30—H30118.6
C18—C23—C22120.9 (4)O2—C30—H30118.6
C12—C11—H11119.7N3—C15—H15A109.5
C12—C11—C10120.5 (4)N3—C15—H15B109.5
C10—C11—H11119.7N3—C15—H15C109.5
C7—C6—H6120.1H15A—C15—H15B109.5
C5—C6—C7119.8 (4)H15A—C15—H15C109.5
C5—C6—H6120.1H15B—C15—H15C109.5
N5—C24—C29120.0 (4)N6—C31—H31A109.5
N5—C24—C25119.7 (4)N6—C31—H31B109.5
C29—C24—C25120.3 (4)N6—C31—H31C109.5
C18—C19—H19119.8H31A—C31—H31B109.5
C20—C19—C18120.4 (4)H31A—C31—H31C109.5
C20—C19—H19119.8H31B—C31—H31C109.5
N2—C7—C6—C5178.5 (4)C8—N2—C7—C21.9 (6)
N2—C8—C9—C10179.3 (4)C8—N2—C7—C6177.6 (4)
N4—C17—C18—C23179.8 (4)C8—C13—C12—C110.1 (6)
N4—C17—C18—C190.5 (7)C8—C9—C10—C110.0 (7)
N1—C1—C13—C8174.2 (4)C18—C23—C22—C210.1 (7)
N1—C1—C13—C124.1 (6)C18—C19—C20—C210.3 (7)
N5—C23—C22—C21179.6 (4)C12—C13—C8—N2179.3 (4)
N5—C24—C25—C26178.7 (4)C12—C13—C8—C90.9 (6)
C2—C7—C6—C51.0 (7)C12—C11—C10—C90.8 (8)
C2—C1—C13—C86.0 (6)C3—C2—C7—N2178.7 (4)
C2—C1—C13—C12175.7 (4)C3—C2—C7—C60.8 (6)
C2—C3—C4—C50.5 (7)C3—C2—C1—N14.9 (6)
C7—N2—C8—C131.7 (6)C3—C2—C1—C13174.9 (4)
C7—N2—C8—C9178.5 (4)C3—C4—C5—C60.3 (7)
C7—C2—C1—N1174.4 (4)C23—N5—C24—C290.2 (6)
C7—C2—C1—C135.8 (6)C23—N5—C24—C25178.9 (4)
C7—C2—C3—C40.0 (6)C23—C18—C19—C200.4 (7)
C7—C6—C5—C40.4 (7)C23—C22—C21—C200.0 (8)
C29—C17—C18—C230.1 (6)C24—N5—C23—C180.9 (7)
C29—C17—C18—C19179.4 (4)C24—N5—C23—C22179.6 (4)
C29—C24—C25—C260.3 (7)C24—C29—C17—N4179.5 (4)
C29—C28—C27—C260.9 (8)C24—C29—C17—C180.6 (6)
C1—C2—C7—N21.9 (6)C24—C29—C28—C271.0 (7)
C1—C2—C7—C6178.6 (4)C24—C25—C26—C270.4 (8)
C1—C2—C3—C4179.3 (4)C19—C18—C23—N5179.8 (4)
C1—C13—C8—N22.4 (6)C19—C18—C23—C220.3 (7)
C1—C13—C8—C9177.5 (4)C28—C29—C17—N40.6 (7)
C1—C13—C12—C11178.2 (4)C28—C29—C17—C18179.4 (4)
C13—C8—C9—C100.8 (7)C28—C29—C24—N5179.4 (4)
C13—C12—C11—C100.8 (7)C28—C29—C24—C250.3 (6)
C17—C29—C24—N50.6 (6)C22—C21—C20—C190.1 (8)
C17—C29—C24—C25179.6 (4)C25—C26—C27—C280.2 (8)
C17—C29—C28—C27179.0 (5)C16—N3—C14—O1177.2 (6)
C17—C18—C23—N50.9 (6)C32—N6—C30—O2177.7 (6)
C17—C18—C23—C22179.7 (4)C15—N3—C14—O10.8 (9)
C17—C18—C19—C20179.7 (4)C31—N6—C30—O20.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.862.723 (5)176
N4—H4A···Cl20.862.403.225 (3)160
N4—H4B···Cl10.862.383.211 (4)163
N1—H1A···Cl10.862.393.209 (3)160
N1—H1B···Cl20.862.423.246 (3)162
N5—H5A···O20.861.882.740 (5)175
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 21BNN-06 for perspective development of a scientific direction "Mathematical sciences and natural sciences" at Taras Shevchenko National University of Kyiv; grant No. 19BF037-01M); Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI (grant No. PN-III-P4-ID-PCE-2020-2000, within PNCDI III).

References

First citationAakeröy, C. B. (1997). Acta Cryst. B53, 569–586.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAdamczyk, M., Chen, Y.-Y., Mattingly, P. G., Moore, J. A. & Shreder, K. (1999). Tetrahedron, 55, 10899–10914.  CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBecker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5603–5611.  CrossRef PubMed CAS Google Scholar
First citationBerman, H. M. & Glusker, J. P. (1972). Acta Cryst. B28, 590–596.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCarrell, H. L. (1972). Acta Cryst. B28, 1754–1759.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCiric, L., Mullany, P. & Roberts, A. P. (2011). J. Antimicrob. Chemother. 66, 2235–2239.  CrossRef CAS PubMed Google Scholar
First citationCoupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521–533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415–439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGlusker, J. P., Gallen, B. & Carrell, H. L. (1973). Acta Cryst. B29, 2000–2006.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHassan, S., Laryea, D., Mahteme, H., Felth, J., Fryknäs, M., Fayad, W., Linder, S., Rickardson, L., Gullbo, J., Graf, W., Påhlman, L., Glimelius, B., Larsson, R. & Nygren, P. (2011). Cancer Sci. 102, 2206–2213.  CrossRef CAS PubMed Google Scholar
First citationKaur, J. & Singh, P. (2011). Expert Opin. Ther. Pat. 21, 437–454.  CrossRef CAS PubMed Google Scholar
First citationMachulek, A., Moisés De Oliveira, H. P. & Gehlen, M. H. (2003). Photochem. Photobiol. Sci. 2, 921–925.  PubMed Google Scholar
First citationMuregi, F. W. & Ishih, A. (2010). Drug Dev. Res. 71, 20–32.  Web of Science CAS PubMed Google Scholar
First citationMurza, A., Sánchez-Cortés, S., García-Ramos, J. V., Guisan, J. M., Alfonso, C. & Rivas, G. (2000). Biochemistry, 39, 10557–10565.  CrossRef PubMed CAS Google Scholar
First citationNagy, V., Halász, K., Carayon, M.-T., Gural'skiy, I. A., Tricard, S., Molnár, G., Bousseksou, A., Salmon, L. & Csóka, L. (2014). Colloids Surf. A Physicochem. Eng. Asp. 456, 35–40.  CrossRef CAS Google Scholar
First citationPhillips, D. C. (1956). Acta Cryst. 9, 237–250.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPhillips, D. C., Ahmed, F. R. & Barnes, W. H. (1960). Acta Cryst. 13, 365–377.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRenotte, R., Sarlet, G., Thunus, L. & Lejeune, R. (2000). Luminescence, 15, 311–320.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikorski, A. & Trzybiński, D. (2011a). Tetrahedron, 67, 1479–1484.  CSD CrossRef CAS Google Scholar
First citationSikorski, A. & Trzybiński, D. (2011b). Tetrahedron, 67, 2839–2843.  CSD CrossRef CAS Google Scholar
First citationSikorski, A. & Trzybiński, D. (2013). Tetrahedron Lett. 54, 1463–1466.  CSD CrossRef CAS Google Scholar
First citationSmith, K., Yang, J.-J., Li, Z., Weeks, I. & Woodhead, J. S. (2009). J. Photochem. Photobiol. Chem. 203, 72–79.  CrossRef CAS Google Scholar
First citationTalacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationTrzybiński, D. & Sikorski, A. (2013). CrystEngComm, 15, 6808–6818.  Google Scholar
First citationVilla, V., Tonelli, M., Thellung, S., Corsaro, A., Tasso, B., Novelli, F., Canu, C., Pino, A., Chiovitti, K., Paludi, D., Russo, C., Sparatore, A., Aceto, A., Boido, V., Sparatore, F. & Florio, T. (2011). Neurotox. Res. 19, 556–574.  CrossRef CAS PubMed Google Scholar
First citationZacharias, D. E. & Glusker, J. P. (1974). Acta Cryst. B30, 2046–2049.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds