research communications
Salts of 4-[(benzylamino)carbonyl]-1-methylpyridinium and iodide anions with different cation:iodine stoichiometric ratios
aFarmak JSC, 63 Kyrylivska str., Kyiv 04080, Ukraine, bDepartment of Organic Chemistry, National Technical University of Ukraine, 37 Pobedy ave., Kyiv 03056, Ukraine, cSSI "Institute for Single Crystals", NAS of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine, and dV.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61022, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com
The two iodide salts, 4-[(benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1), C14H15N2O+·I−·0.5I2, I, and 4-[(benzylamino)carbonyl]-1-methylpyridinium triiodide, C14H15N2O+·I3−, II, with different cation:iodine atoms ratios were studied. Salt I contains one cation, one iodide anion and half of the neutral I2 molecule in the (cation:iodine atoms ratio is 1:2). Salt II contains two cations, one triiodide anion (I3−) and two half triiodide anions (cation:iodine atoms ratio is 1:3). The NH group forms N—H⋯I hydrogen bonds with the I− anion in the crystal of I or N—H⋯O hydrogen bonds in II where only triiodide anions are present.
1. Chemical context
4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide, chemical formula C14H15N2O+·I−, is used as a multimodal antiviral drug (te Velthuis et al., 2020; Boltz et al., 2018; Buhtiarova et al., 2003; Frolov et al., 2004). Its molecular and have been studied in detail by diffraction and spectroscopic methods (Drebushchak et al., 2017). The formation of different polymorphic modifications of an API is of great importance for the pharmaceutical industry (Bernstein, 2002; Brittain, 2009; Hilfiker, 2006). Unfortunately, all attempts to find polymorphic modifications of 4-[(benzylamino)carbonyl]-1-methylpyridinium iodide resulting from varying the solvents and crystallization conditions have failed. Only one crystal form with the P212121 orthorhombic has been determined by single-crystal X-ray diffraction (Drebushchak et al., 2017).
In a continuation of this work, we attempted to obtain a new polymorphic form of this compound using not only different solvents (ethanol, methanol, 2-propanol, etc.), but also non-standard methods of activating the crystallization process. To do this, experiments on recrystallization from water under an ultrasonic were carried out. It should be noted that under normal conditions, 4-[(benzylamino) carbonyl]-1-methylpyridinium iodide does not dissolve in water. As result, we did not obtain any new polymorphic modifications of this salt, but two compounds with cation–iodine ratios different from the equimolar [1:2 (salt I) and 1:3 (salt II)] were obtained.
2. Structural commentary
The crystal structures of the salts under study consist of the same 4-[(benzylamino)carbonyl]-1-methylpyridinium cation (C14H15N2O+) and different anions. There is one cation, one iodide anion and half of the neutral I2 molecule in the of compound I (Fig. 1, left). The neutral I2 molecule is located in a special position in relation to the symmetry centre coinciding with the midpoint of the I—I bond. Thus, the cation:iodine atoms ratio is 1:2 in compound I. The of compound II contains two cations (A and B), one triiodide anion (I3−) and two halves of triiodide anions located on special positions in relation to the symmetry centre (Fig. 1, right). The cation:iodine atoms ration is 1:3 in compound II.
The positive charge of the cation is localized at the quaternized nitrogen atom of the pyridine ring. This results in the N1—C6 and N1—C2 bond elongation (Table 1). The carbamide group is non-coplanar to the plane of the aromatic ring (as evidenced by the N2—C7—C4—C3 torsion angles; Table 1) as a result of steric repulsion between them [with short H2⋯H3 and H2⋯C3 contacts (as compared to the van der Waals radii sums; Zefirov, 1997) of 2.34 and 2.87 Å, respectively]. The cations in the two compounds under study differ in the conformation of the benzyl substituent. The phenyl fragment of the benzyl substituent is located in a −sc position relatively to the C7—N2 bond in I or in a +sc position in molecule A and an ap position in molecule B of II (cf the C7—N2—C8—C9 torsion angles in Table 1). The aromatic ring is turned relative to the carbamide fragment (see the N2—C8—C9—C10 torsion angles).
|
3. Supramolecular features
The main difference in the crystal structures of the studied salts is the participation of the carbamide group in intermolecular interactions. In the structure of I, the carbamide group participates in the N—H⋯I′ hydrogen bond between the cation and the anion, while the carbonyl oxygen atom acts as an acceptor in the very weak C5—H⋯O1′ intermolecular interaction (Fig. 2, left; Table 2). In the structure of II, the carbamide group participates in the N—H⋯O′ hydrogen bonds between the cations (Fig. 2, right; Table 3). As a result, chains in the [100] crystallographic direction are formed. The triiodide anions occupy voids between neighbouring chains in the crystal. In addition, a set of weak C—H⋯I and C—H⋯π hydrogen bonds are found in both structures (Tables 2 and 3).
|
In the structure of II, the A and B cations form stacking dimers as a result of the interaction of the aromatic systems of the pyridine and benzene rings [the distance between the planes of aromatic cycles is 3.45 (1) Å, slippage 1.119 Å).
4. Hirshfeld surface analysis
Intermolecular interactions can be analyzed using Hirshfeld surface analysis and 2D fingerprint plots (Turner et al., 2017). The Hirshfeld surfaces were calculated for the cations found in two structures under study using a standard high surface resolution, mapped over dnorm (Fig. 3). The red spots, corresponding to contacts that are shorter than the van der Waals radii sum of the closest atoms, are observed at the hydrogen atom of the amino group. At the carbonyl group, red spots are found only in the cations of II. The two-dimensional fingerprint plots show that the hydrogen bonds in II are stronger (note the sharp spikes in Fig. 3).
To compare intermolecular interactions of different types in more quantitative way, their contributions to the total Hirshfeld surfaces were analysed (Fig. 4). The main contribution is provided by H⋯H short contacts (44.9% for I, 45% for cation A and 36.8% for cation B in II). The contribution of the I⋯H/H⋯I short contacts is also significant [17.3% in I, 21.7% (molecule A) and 25.5% (molecule B) in II], as is that of the C⋯H/H⋯C interactions [17.2% in I, 15.5% (molecule A) and 10.7% (molecule B) in II]. Surprisingly, the contributions of the O⋯H/H⋯O interactions are very similar in the two structures [9.7% in I, 9.5% (molecule A) and 9.6% (molecule B) in II] despite the stronger N—H⋯O hydrogen bonds in the structure of II.
5. Database survey
A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016) revealed the structure of the AmI salt with an equimolar cation:iodine atoms ratio (refcode BEBFIA; Drebushchak et al., 2017). A comparison of the cation conformations showed its flexibility resulting from rotation about the N—Csp3 and Csp3—Car bonds.
6. Synthesis and crystallization
Benzylamide isonicotinic acid (124 g, 0.585 mol) and 270 mL of 90% ethanol were loaded into a glass flask. The obtained solution was heated to a temperature of 313–314 K, and then methyl iodide (91g, 0.641 mol) was added dropwise. The reaction was stirred at a temperature of 313–314 K for 1 h, heated to boiling and boiled for 1 h. The reaction spontaneously cooled to a temperature of 313 K, then to a temperature of 283–288 K in a cooling water bath, and was stirred for 1.5 h at this temperature. The reaction mixture was filtered and the precipitate rinsed on the filter twice with 60 mL of cooled 96% ethanol. The product was dried at 313 K for 12 h. Yield: 145.5 g of crude 4-[(benzylamino)carbonyl]-1-methylpyridinium iodide (88%); yellow crystals.
145.5 g of crude 4-[(benzylamino)carbonyl]-1-methylpyridinium iodide were dissolved in 450 mL of water under ultrasonic activation. The reaction was heated to boiling temperature, stirred at boiling for 30 min and filtered. The obtained solution was cooled slowly and evaporated for three weeks. The rod-shaped crystals of I and block-shaped crystals of II crystallized almost simultaneously.
7. Refinement
Crystal data, data collection and structure . Despite the presence of iodine atoms, crystals of salt II diffracted poorly due to their small size. All of the hydrogen atoms were located in difference-Fourier maps. Then, hydrogen atoms were refined as riding (AFIX 33 and 137 commands) with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups (AFIX 43) and Car—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic rings (AFIX 23) and Csp2—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for the methylene fragment.
details are summarized in Table 4
|
8. Powder diffraction characterization
A powder diffraction pattern of salt II was registered using a Siemens D500 powder diffractometer (Cu Kα radiation, Bragg–Brentano geometry, curved graphite monochromator on the counter arm, 4 < 2θ < 60°, D2θ = 0.02°, time per step of 2 s). The of the obtained pattern (Fig. 5, left) was carried out with FULLPROF (Rodriguez-Carvajal, 2001) and WINPLOTR (Roisnel & Rodriguez-Carvajal, 2000) using an (NIST SRM1976) for the calculation of the instrumental profile function and the single-crystal results as the structure model for the A powder pattern for salt I was not obtained because of the small amount of the crystal sample. For comparison, Fig. 5 (right) shows the pattern calculated for salt I.
Supporting information
https://doi.org/10.1107/S2056989021011300/ex2050sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011300/ex2050Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989021011300/ex2050IIsup3.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C14H15N2O+·I−·0.5I2 | F(000) = 908 |
Mr = 481.08 | Dx = 1.981 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.407 (3) Å | Cell parameters from 928 reflections |
b = 8.8491 (10) Å | θ = 3.6–21.8° |
c = 14.555 (4) Å | µ = 3.89 mm−1 |
β = 119.63 (3)° | T = 293 K |
V = 1613.0 (7) Å3 | Stick, red |
Z = 4 | 0.60 × 0.10 × 0.05 mm |
Xcalibur, Sapphire3 diffractometer | 3698 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1941 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.083 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −18→18 |
Tmin = 0.159, Tmax = 1.000 | k = −11→11 |
11491 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.157 | w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3698 reflections | Δρmax = 0.90 e Å−3 |
173 parameters | Δρmin = −0.89 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.51630 (5) | 0.11900 (6) | 0.57075 (6) | 0.0696 (2) | |
I2 | 0.55433 (5) | 0.39112 (7) | 0.74152 (6) | 0.0738 (3) | |
O1 | 0.1044 (5) | 0.3003 (8) | 0.5772 (6) | 0.090 (2) | |
N1 | 0.1782 (6) | 0.6060 (7) | 0.3371 (6) | 0.0614 (18) | |
N2 | 0.2820 (6) | 0.2698 (8) | 0.6521 (6) | 0.0652 (19) | |
H2 | 0.338519 | 0.295372 | 0.650010 | 0.078* | |
C1 | 0.1732 (8) | 0.7074 (10) | 0.2544 (8) | 0.075 (3) | |
H1A | 0.127757 | 0.663816 | 0.186085 | 0.113* | |
H1B | 0.243679 | 0.720760 | 0.264125 | 0.113* | |
H1C | 0.145051 | 0.803613 | 0.259012 | 0.113* | |
C2 | 0.2636 (7) | 0.5182 (10) | 0.3929 (8) | 0.069 (3) | |
H2A | 0.320082 | 0.521097 | 0.379074 | 0.083* | |
C3 | 0.2692 (7) | 0.4235 (10) | 0.4707 (8) | 0.067 (2) | |
H3 | 0.327838 | 0.360259 | 0.506976 | 0.081* | |
C4 | 0.1885 (6) | 0.4224 (9) | 0.4944 (8) | 0.062 (2) | |
C5 | 0.1012 (7) | 0.5127 (12) | 0.4336 (8) | 0.078 (3) | |
H5 | 0.043510 | 0.511632 | 0.445534 | 0.093* | |
C6 | 0.0979 (7) | 0.6028 (10) | 0.3569 (8) | 0.070 (3) | |
H6 | 0.038316 | 0.663303 | 0.317556 | 0.084* | |
C7 | 0.1885 (6) | 0.3260 (10) | 0.5791 (7) | 0.057 (2) | |
C8 | 0.2932 (8) | 0.1666 (10) | 0.7357 (8) | 0.073 (3) | |
H8A | 0.362531 | 0.117925 | 0.766315 | 0.087* | |
H8B | 0.239142 | 0.088488 | 0.704706 | 0.087* | |
C9 | 0.2828 (7) | 0.2439 (8) | 0.8213 (7) | 0.057 (2) | |
C10 | 0.3668 (7) | 0.3281 (10) | 0.8984 (8) | 0.068 (2) | |
H10 | 0.431231 | 0.333813 | 0.898376 | 0.082* | |
C11 | 0.3548 (9) | 0.4014 (10) | 0.9732 (9) | 0.081 (3) | |
H11 | 0.410137 | 0.461576 | 1.022065 | 0.097* | |
C12 | 0.2622 (9) | 0.3890 (10) | 0.9788 (9) | 0.078 (3) | |
H12 | 0.255082 | 0.439378 | 1.031040 | 0.094* | |
C13 | 0.1810 (9) | 0.3010 (13) | 0.9058 (9) | 0.083 (3) | |
H13 | 0.118664 | 0.289920 | 0.909431 | 0.099* | |
C14 | 0.1904 (7) | 0.2294 (10) | 0.8280 (9) | 0.071 (3) | |
H14 | 0.134482 | 0.170291 | 0.778882 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0651 (4) | 0.0655 (4) | 0.0790 (5) | 0.0033 (3) | 0.0364 (4) | −0.0008 (3) |
I2 | 0.0669 (4) | 0.0799 (4) | 0.0809 (5) | −0.0121 (3) | 0.0413 (4) | −0.0181 (3) |
O1 | 0.050 (3) | 0.118 (5) | 0.100 (6) | −0.008 (3) | 0.036 (4) | 0.012 (5) |
N1 | 0.060 (4) | 0.060 (4) | 0.056 (5) | 0.006 (3) | 0.023 (4) | −0.002 (3) |
N2 | 0.058 (4) | 0.068 (4) | 0.074 (6) | −0.007 (3) | 0.036 (4) | 0.003 (4) |
C1 | 0.081 (6) | 0.070 (6) | 0.062 (7) | 0.008 (5) | 0.025 (5) | 0.008 (5) |
C2 | 0.066 (6) | 0.070 (6) | 0.080 (8) | 0.013 (4) | 0.042 (6) | −0.002 (5) |
C3 | 0.057 (5) | 0.083 (6) | 0.073 (7) | 0.018 (4) | 0.040 (5) | 0.006 (5) |
C4 | 0.051 (5) | 0.066 (5) | 0.060 (6) | 0.003 (4) | 0.021 (4) | −0.019 (4) |
C5 | 0.048 (5) | 0.121 (8) | 0.067 (7) | 0.008 (5) | 0.030 (5) | 0.004 (6) |
C6 | 0.059 (5) | 0.075 (6) | 0.073 (7) | 0.017 (4) | 0.031 (5) | 0.005 (5) |
C7 | 0.050 (4) | 0.063 (5) | 0.060 (6) | −0.006 (4) | 0.029 (4) | −0.002 (4) |
C8 | 0.075 (6) | 0.066 (5) | 0.077 (7) | 0.001 (5) | 0.037 (6) | 0.013 (5) |
C9 | 0.067 (5) | 0.048 (4) | 0.060 (6) | 0.005 (4) | 0.035 (5) | 0.006 (4) |
C10 | 0.059 (5) | 0.072 (6) | 0.072 (7) | −0.004 (4) | 0.033 (5) | 0.010 (5) |
C11 | 0.086 (7) | 0.068 (6) | 0.074 (8) | −0.012 (5) | 0.028 (6) | −0.002 (5) |
C12 | 0.092 (8) | 0.072 (6) | 0.073 (8) | 0.027 (5) | 0.043 (7) | 0.017 (5) |
C13 | 0.075 (6) | 0.106 (8) | 0.070 (7) | 0.014 (6) | 0.039 (6) | 0.019 (6) |
C14 | 0.053 (5) | 0.075 (6) | 0.083 (8) | −0.003 (4) | 0.032 (5) | 0.016 (5) |
I1—I1i | 2.8182 (13) | C5—C6 | 1.353 (13) |
O1—C7 | 1.221 (9) | C5—H5 | 0.9300 |
N1—C6 | 1.324 (11) | C6—H6 | 0.9300 |
N1—C2 | 1.338 (10) | C8—C9 | 1.494 (12) |
N1—C1 | 1.475 (11) | C8—H8A | 0.9700 |
N2—C7 | 1.332 (11) | C8—H8B | 0.9700 |
N2—C8 | 1.465 (11) | C9—C14 | 1.387 (11) |
N2—H2 | 0.8600 | C9—C10 | 1.391 (12) |
C1—H1A | 0.9600 | C10—C11 | 1.350 (14) |
C1—H1B | 0.9600 | C10—H10 | 0.9300 |
C1—H1C | 0.9600 | C11—C12 | 1.381 (14) |
C2—C3 | 1.378 (12) | C11—H11 | 0.9300 |
C2—H2A | 0.9300 | C12—C13 | 1.369 (15) |
C3—C4 | 1.366 (11) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—C14 | 1.362 (14) |
C4—C5 | 1.380 (12) | C13—H13 | 0.9300 |
C4—C7 | 1.499 (13) | C14—H14 | 0.9300 |
C6—N1—C2 | 119.8 (8) | O1—C7—N2 | 123.3 (8) |
C6—N1—C1 | 119.7 (7) | O1—C7—C4 | 119.4 (8) |
C2—N1—C1 | 120.5 (8) | N2—C7—C4 | 117.2 (7) |
C7—N2—C8 | 123.3 (7) | N2—C8—C9 | 113.1 (7) |
C7—N2—H2 | 118.4 | N2—C8—H8A | 109.0 |
C8—N2—H2 | 118.4 | C9—C8—H8A | 109.0 |
N1—C1—H1A | 109.5 | N2—C8—H8B | 109.0 |
N1—C1—H1B | 109.5 | C9—C8—H8B | 109.0 |
H1A—C1—H1B | 109.5 | H8A—C8—H8B | 107.8 |
N1—C1—H1C | 109.5 | C14—C9—C10 | 118.4 (9) |
H1A—C1—H1C | 109.5 | C14—C9—C8 | 120.8 (9) |
H1B—C1—H1C | 109.5 | C10—C9—C8 | 120.8 (8) |
N1—C2—C3 | 120.9 (8) | C11—C10—C9 | 120.0 (9) |
N1—C2—H2A | 119.5 | C11—C10—H10 | 120.0 |
C3—C2—H2A | 119.5 | C9—C10—H10 | 120.0 |
C4—C3—C2 | 120.0 (8) | C10—C11—C12 | 121.5 (10) |
C4—C3—H3 | 120.0 | C10—C11—H11 | 119.3 |
C2—C3—H3 | 120.0 | C12—C11—H11 | 119.3 |
C3—C4—C5 | 116.9 (9) | C13—C12—C11 | 118.7 (10) |
C3—C4—C7 | 123.9 (8) | C13—C12—H12 | 120.7 |
C5—C4—C7 | 119.1 (8) | C11—C12—H12 | 120.7 |
C6—C5—C4 | 121.4 (8) | C14—C13—C12 | 120.7 (10) |
C6—C5—H5 | 119.3 | C14—C13—H13 | 119.6 |
C4—C5—H5 | 119.3 | C12—C13—H13 | 119.6 |
N1—C6—C5 | 120.9 (8) | C13—C14—C9 | 120.6 (10) |
N1—C6—H6 | 119.6 | C13—C14—H14 | 119.7 |
C5—C6—H6 | 119.6 | C9—C14—H14 | 119.7 |
C6—N1—C2—C3 | 0.4 (14) | C3—C4—C7—N2 | 18.1 (13) |
C1—N1—C2—C3 | 179.7 (9) | C5—C4—C7—N2 | −164.0 (9) |
N1—C2—C3—C4 | −2.5 (14) | C7—N2—C8—C9 | −75.0 (11) |
C2—C3—C4—C5 | 3.5 (13) | N2—C8—C9—C14 | 104.6 (9) |
C2—C3—C4—C7 | −178.6 (9) | N2—C8—C9—C10 | −77.6 (11) |
C3—C4—C5—C6 | −2.7 (14) | C14—C9—C10—C11 | −4.3 (13) |
C7—C4—C5—C6 | 179.3 (9) | C8—C9—C10—C11 | 177.8 (9) |
C2—N1—C6—C5 | 0.5 (14) | C9—C10—C11—C12 | 3.4 (15) |
C1—N1—C6—C5 | −178.9 (9) | C10—C11—C12—C13 | −0.5 (15) |
C4—C5—C6—N1 | 0.7 (16) | C11—C12—C13—C14 | −1.3 (15) |
C8—N2—C7—O1 | 2.3 (14) | C12—C13—C14—C9 | 0.2 (15) |
C8—N2—C7—C4 | −176.2 (8) | C10—C9—C14—C13 | 2.6 (13) |
C3—C4—C7—O1 | −160.5 (9) | C8—C9—C14—C13 | −179.5 (9) |
C5—C4—C7—O1 | 17.4 (13) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···I2 | 0.86 | 2.84 | 3.632 (7) | 154 |
C2—H2A···I2ii | 0.93 | 3.18 | 4.053 (9) | 158 |
C1—H1B···I2ii | 0.96 | 3.11 | 3.992 (9) | 153 |
C1—H1C···I2iii | 0.96 | 2.96 | 3.908 (9) | 171 |
C1—H1A···I1iv | 0.96 | 3.00 | 3.824 (10) | 145 |
C5—H5···O1v | 0.93 | 2.59 | 3.328 (11) | 136 |
C8—H8B···C11vi | 0.97 | 2.80 | 3.590 (15) | 140 |
C8—H8B···C10vi | 0.97 | 2.76 | 3.694 (14) | 162 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+3/2, z−1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+3/2. |
C14H15N2O+·I3− | F(000) = 2242 |
Mr = 608.61 | Dx = 2.183 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.914 (2) Å | Cell parameters from 1078 reflections |
b = 27.805 (4) Å | θ = 3.1–18.1° |
c = 14.113 (3) Å | µ = 5.07 mm−1 |
β = 107.83 (2)° | T = 293 K |
V = 3703.4 (12) Å3 | Block, yellow |
Z = 8 | 0.03 × 0.03 × 0.02 mm |
Xcalibur, Sapphire3 diffractometer | 6496 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2548 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.124 |
ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −8→11 |
Tmin = 0.347, Tmax = 1.000 | k = −33→33 |
21040 measured reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.0424P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
6496 reflections | Δρmax = 0.70 e Å−3 |
371 parameters | Δρmin = −0.77 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 0.45921 (12) | 0.79328 (4) | 0.65364 (9) | 0.0868 (4) | |
I2 | 0.46503 (14) | 0.71598 (5) | 0.78702 (11) | 0.1072 (4) | |
I3 | 0.45434 (15) | 0.87375 (4) | 0.50883 (10) | 0.1061 (5) | |
I4 | 0.000000 | 1.000000 | 0.500000 | 0.1048 (6) | |
I5 | −0.09620 (18) | 0.93095 (5) | 0.62111 (13) | 0.1313 (6) | |
I6 | −0.4785 (8) | 0.5112 (2) | 0.5262 (5) | 0.130 (2) | 0.5 |
I7 | −0.3252 (7) | 0.5746 (2) | 0.6849 (5) | 0.1504 (17) | 0.5 |
I7A | −0.3531 (7) | 0.5527 (2) | 0.6302 (5) | 0.1504 (17) | 0.5 |
O1A | −0.1281 (11) | 0.6399 (4) | 0.3910 (8) | 0.092 (3) | |
N1A | 0.0042 (18) | 0.8083 (4) | 0.3781 (10) | 0.081 (4) | |
N2A | 0.0997 (12) | 0.6306 (4) | 0.4111 (9) | 0.078 (4) | |
H2A | 0.175586 | 0.643198 | 0.404694 | 0.094* | |
C1A | 0.004 (2) | 0.8621 (5) | 0.3785 (13) | 0.110 (6) | |
H1AA | −0.091508 | 0.873532 | 0.349446 | 0.165* | |
H1AB | 0.039744 | 0.873527 | 0.445762 | 0.165* | |
H1AC | 0.062284 | 0.873811 | 0.340557 | 0.165* | |
C2A | 0.1245 (19) | 0.7843 (6) | 0.4148 (13) | 0.096 (5) | |
H2AA | 0.209343 | 0.801051 | 0.438759 | 0.115* | |
C3A | 0.1251 (16) | 0.7345 (6) | 0.4178 (12) | 0.088 (5) | |
H3A | 0.210205 | 0.717786 | 0.440984 | 0.106* | |
C4A | 0.0012 (16) | 0.7105 (6) | 0.3867 (12) | 0.079 (4) | |
C5A | −0.1202 (19) | 0.7349 (6) | 0.3482 (12) | 0.089 (5) | |
H5A | −0.205655 | 0.718459 | 0.324995 | 0.107* | |
C6A | −0.1183 (19) | 0.7837 (7) | 0.3431 (13) | 0.095 (5) | |
H6A | −0.202505 | 0.800379 | 0.315060 | 0.114* | |
C7A | −0.0134 (16) | 0.6579 (6) | 0.3940 (11) | 0.079 (4) | |
C8A | 0.1044 (17) | 0.5796 (5) | 0.4403 (13) | 0.092 (5) | |
H8AA | 0.181584 | 0.564057 | 0.423495 | 0.110* | |
H8AB | 0.016959 | 0.564255 | 0.401688 | 0.110* | |
C9A | 0.1238 (18) | 0.5715 (5) | 0.5504 (12) | 0.074 (4) | |
C10A | 0.252 (2) | 0.5902 (6) | 0.6130 (16) | 0.097 (6) | |
H10A | 0.316106 | 0.605499 | 0.587126 | 0.117* | |
C11A | 0.279 (2) | 0.5848 (6) | 0.7157 (17) | 0.106 (6) | |
H11A | 0.360108 | 0.597669 | 0.760162 | 0.128* | |
C12A | 0.184 (2) | 0.5606 (7) | 0.7493 (16) | 0.106 (6) | |
H12A | 0.203600 | 0.554933 | 0.817130 | 0.127* | |
C13A | 0.060 (2) | 0.5444 (6) | 0.685 (2) | 0.107 (7) | |
H13A | −0.005324 | 0.529527 | 0.710907 | 0.128* | |
C14A | 0.027 (2) | 0.5491 (7) | 0.5838 (17) | 0.121 (7) | |
H14A | −0.057924 | 0.537576 | 0.540700 | 0.145* | |
O1B | 0.3841 (10) | 0.6543 (4) | 0.4242 (8) | 0.086 (3) | |
N1B | 0.4543 (16) | 0.5322 (5) | 0.1922 (12) | 0.088 (4) | |
N2B | 0.6125 (12) | 0.6628 (4) | 0.4475 (8) | 0.076 (4) | |
H2B | 0.684595 | 0.655003 | 0.429131 | 0.091* | |
C1B | 0.4388 (19) | 0.4928 (6) | 0.1164 (14) | 0.108 (6) | |
H1BA | 0.530747 | 0.480708 | 0.119642 | 0.162* | |
H1BB | 0.382401 | 0.467282 | 0.130134 | 0.162* | |
H1BC | 0.393375 | 0.505462 | 0.051088 | 0.162* | |
C2B | 0.581 (2) | 0.5433 (6) | 0.2527 (16) | 0.102 (6) | |
H2BA | 0.658994 | 0.525293 | 0.250589 | 0.123* | |
C3B | 0.5997 (15) | 0.5805 (5) | 0.3180 (12) | 0.074 (4) | |
H3B | 0.690985 | 0.589253 | 0.355599 | 0.088* | |
C4B | 0.4836 (14) | 0.6059 (5) | 0.3296 (11) | 0.069 (4) | |
C5B | 0.356 (2) | 0.5904 (6) | 0.2686 (12) | 0.089 (5) | |
H5B | 0.273994 | 0.605203 | 0.272963 | 0.107* | |
C6B | 0.3436 (18) | 0.5548 (6) | 0.2030 (12) | 0.090 (5) | |
H6B | 0.253572 | 0.545749 | 0.163528 | 0.107* | |
C7B | 0.4904 (17) | 0.6428 (5) | 0.4034 (11) | 0.071 (4) | |
C8B | 0.6312 (18) | 0.6988 (5) | 0.5285 (12) | 0.085 (5) | |
H8BA | 0.569928 | 0.726128 | 0.502782 | 0.102* | |
H8BB | 0.601106 | 0.684595 | 0.581491 | 0.102* | |
C9B | 0.7765 (16) | 0.7161 (6) | 0.5702 (11) | 0.072 (4) | |
C10B | 0.8890 (17) | 0.6853 (6) | 0.6049 (12) | 0.084 (4) | |
H10B | 0.872179 | 0.652312 | 0.601274 | 0.100* | |
C11B | 1.024 (2) | 0.7013 (7) | 0.6443 (13) | 0.097 (5) | |
H11B | 1.097443 | 0.679375 | 0.668821 | 0.116* | |
C12B | 1.0525 (19) | 0.7495 (8) | 0.6480 (11) | 0.094 (5) | |
H12B | 1.144660 | 0.760430 | 0.676679 | 0.112* | |
C13B | 0.946 (2) | 0.7812 (7) | 0.6098 (13) | 0.096 (5) | |
H13B | 0.966127 | 0.813824 | 0.608168 | 0.115* | |
C14B | 0.8040 (16) | 0.7646 (6) | 0.5720 (11) | 0.081 (5) | |
H14B | 0.730116 | 0.786363 | 0.548735 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0752 (7) | 0.0882 (8) | 0.0963 (8) | −0.0041 (6) | 0.0254 (6) | −0.0169 (6) |
I2 | 0.0868 (9) | 0.0985 (9) | 0.1316 (11) | −0.0025 (7) | 0.0264 (8) | 0.0075 (8) |
I3 | 0.1210 (11) | 0.0961 (9) | 0.0995 (9) | −0.0168 (8) | 0.0312 (8) | −0.0034 (7) |
I4 | 0.0852 (12) | 0.0960 (13) | 0.1177 (14) | 0.0118 (10) | 0.0082 (10) | −0.0004 (10) |
I5 | 0.1384 (14) | 0.1108 (11) | 0.1504 (14) | 0.0019 (10) | 0.0526 (12) | 0.0023 (9) |
I6 | 0.099 (4) | 0.131 (5) | 0.180 (7) | 0.027 (3) | 0.072 (5) | 0.077 (4) |
I7 | 0.117 (3) | 0.148 (4) | 0.200 (6) | −0.001 (3) | 0.069 (4) | 0.048 (3) |
I7A | 0.117 (3) | 0.148 (4) | 0.200 (6) | −0.001 (3) | 0.069 (4) | 0.048 (3) |
O1A | 0.068 (7) | 0.091 (8) | 0.123 (10) | −0.009 (6) | 0.039 (7) | −0.023 (6) |
N1A | 0.106 (11) | 0.062 (8) | 0.085 (9) | 0.004 (8) | 0.043 (9) | 0.012 (7) |
N2A | 0.048 (7) | 0.080 (9) | 0.105 (10) | −0.015 (7) | 0.022 (7) | −0.018 (7) |
C1A | 0.137 (18) | 0.073 (11) | 0.116 (15) | −0.004 (11) | 0.031 (13) | 0.013 (10) |
C2A | 0.071 (12) | 0.091 (13) | 0.124 (15) | −0.013 (10) | 0.029 (11) | 0.002 (11) |
C3A | 0.058 (10) | 0.079 (11) | 0.115 (14) | −0.002 (9) | 0.008 (9) | 0.013 (9) |
C4A | 0.048 (9) | 0.093 (12) | 0.086 (11) | −0.011 (9) | 0.005 (8) | −0.001 (9) |
C5A | 0.085 (13) | 0.089 (13) | 0.087 (12) | −0.024 (11) | 0.018 (10) | −0.002 (9) |
C6A | 0.069 (11) | 0.121 (16) | 0.098 (13) | 0.017 (12) | 0.031 (10) | 0.017 (11) |
C7A | 0.050 (9) | 0.110 (14) | 0.076 (11) | −0.004 (10) | 0.021 (8) | −0.010 (9) |
C8A | 0.078 (12) | 0.075 (11) | 0.125 (16) | −0.011 (9) | 0.035 (11) | −0.017 (10) |
C9A | 0.080 (11) | 0.064 (10) | 0.067 (11) | −0.006 (8) | 0.009 (9) | −0.018 (8) |
C10A | 0.108 (15) | 0.081 (12) | 0.122 (16) | −0.001 (11) | 0.063 (14) | −0.017 (11) |
C11A | 0.087 (14) | 0.105 (15) | 0.125 (18) | −0.001 (11) | 0.029 (13) | −0.021 (12) |
C12A | 0.094 (15) | 0.113 (16) | 0.112 (16) | 0.024 (13) | 0.034 (14) | 0.002 (12) |
C13A | 0.114 (17) | 0.074 (12) | 0.16 (2) | 0.003 (12) | 0.084 (17) | 0.024 (13) |
C14A | 0.125 (18) | 0.140 (18) | 0.120 (19) | −0.011 (15) | 0.072 (16) | −0.011 (14) |
O1B | 0.058 (7) | 0.107 (8) | 0.098 (8) | −0.007 (6) | 0.029 (6) | −0.016 (6) |
N1B | 0.087 (10) | 0.073 (9) | 0.120 (12) | 0.009 (8) | 0.058 (10) | −0.002 (8) |
N2B | 0.042 (7) | 0.105 (10) | 0.078 (9) | −0.011 (7) | 0.014 (6) | −0.018 (7) |
C1B | 0.105 (15) | 0.101 (13) | 0.120 (15) | −0.017 (11) | 0.036 (13) | −0.017 (12) |
C2B | 0.075 (13) | 0.060 (11) | 0.18 (2) | −0.006 (10) | 0.048 (14) | 0.007 (12) |
C3B | 0.056 (9) | 0.054 (9) | 0.109 (13) | −0.012 (7) | 0.021 (9) | −0.012 (8) |
C4B | 0.043 (8) | 0.073 (10) | 0.086 (11) | −0.010 (7) | 0.011 (7) | −0.005 (8) |
C5B | 0.113 (15) | 0.084 (12) | 0.085 (12) | 0.011 (11) | 0.054 (12) | −0.009 (9) |
C6B | 0.072 (11) | 0.116 (15) | 0.081 (12) | −0.019 (11) | 0.023 (10) | −0.007 (10) |
C7B | 0.073 (10) | 0.075 (10) | 0.077 (11) | 0.015 (9) | 0.038 (9) | 0.005 (8) |
C8B | 0.094 (13) | 0.075 (10) | 0.086 (11) | −0.011 (9) | 0.028 (10) | −0.014 (9) |
C9B | 0.068 (10) | 0.077 (11) | 0.075 (10) | −0.012 (9) | 0.030 (8) | −0.018 (8) |
C10B | 0.066 (11) | 0.089 (12) | 0.089 (12) | 0.011 (10) | 0.014 (9) | 0.003 (9) |
C11B | 0.077 (13) | 0.125 (16) | 0.092 (13) | 0.005 (12) | 0.030 (11) | 0.003 (11) |
C12B | 0.072 (12) | 0.140 (17) | 0.064 (11) | −0.021 (13) | 0.014 (9) | −0.016 (11) |
C13B | 0.090 (13) | 0.104 (13) | 0.097 (13) | −0.006 (12) | 0.034 (11) | 0.002 (11) |
C14B | 0.052 (9) | 0.112 (14) | 0.069 (10) | 0.014 (9) | 0.005 (8) | −0.014 (9) |
I1—I2 | 2.8459 (18) | C12A—H12A | 0.9300 |
I1—I3 | 3.0206 (17) | C13A—C14A | 1.37 (3) |
I4—I5 | 2.9181 (15) | C13A—H13A | 0.9300 |
I4—I5i | 2.9181 (15) | C14A—H14A | 0.9300 |
I6—I6ii | 0.962 (9) | O1B—C7B | 1.220 (15) |
I6—I7A | 1.977 (7) | N1B—C6B | 1.313 (18) |
I6—I7 | 2.890 (7) | N1B—C2B | 1.32 (2) |
I6—I7Aii | 2.925 (7) | N1B—C1B | 1.504 (19) |
I7—I7A | 0.957 (7) | N2B—C7B | 1.305 (17) |
O1A—C7A | 1.231 (16) | N2B—C8B | 1.488 (17) |
N1A—C2A | 1.327 (19) | N2B—H2B | 0.8600 |
N1A—C6A | 1.35 (2) | C1B—H1BA | 0.9600 |
N1A—C1A | 1.495 (17) | C1B—H1BB | 0.9600 |
N2A—C7A | 1.315 (17) | C1B—H1BC | 0.9600 |
N2A—C8A | 1.472 (17) | C2B—C3B | 1.36 (2) |
N2A—H2A | 0.8600 | C2B—H2BA | 0.9300 |
C1A—H1AA | 0.9600 | C3B—C4B | 1.403 (18) |
C1A—H1AB | 0.9600 | C3B—H3B | 0.9300 |
C1A—H1AC | 0.9600 | C4B—C5B | 1.36 (2) |
C2A—C3A | 1.39 (2) | C4B—C7B | 1.447 (19) |
C2A—H2AA | 0.9300 | C5B—C6B | 1.335 (19) |
C3A—C4A | 1.348 (19) | C5B—H5B | 0.9300 |
C3A—H3A | 0.9300 | C6B—H6B | 0.9300 |
C4A—C5A | 1.34 (2) | C8B—C9B | 1.46 (2) |
C4A—C7A | 1.48 (2) | C8B—H8BA | 0.9700 |
C5A—C6A | 1.36 (2) | C8B—H8BB | 0.9700 |
C5A—H5A | 0.9300 | C9B—C10B | 1.372 (19) |
C6A—H6A | 0.9300 | C9B—C14B | 1.374 (19) |
C8A—C9A | 1.52 (2) | C10B—C11B | 1.36 (2) |
C8A—H8AA | 0.9700 | C10B—H10B | 0.9300 |
C8A—H8AB | 0.9700 | C11B—C12B | 1.37 (2) |
C9A—C14A | 1.35 (2) | C11B—H11B | 0.9300 |
C9A—C10A | 1.40 (2) | C12B—C13B | 1.35 (2) |
C10A—C11A | 1.40 (2) | C12B—H12B | 0.9300 |
C10A—H10A | 0.9300 | C13B—C14B | 1.42 (2) |
C11A—C12A | 1.35 (2) | C13B—H13B | 0.9300 |
C11A—H11A | 0.9300 | C14B—H14B | 0.9300 |
C12A—C13A | 1.36 (3) | ||
I2—I1—I3 | 178.72 (5) | C12A—C13A—C14A | 122.8 (18) |
I5—I4—I5i | 180.0 | C12A—C13A—H13A | 118.6 |
I6ii—I6—I7A | 168.1 (11) | C14A—C13A—H13A | 118.6 |
I6ii—I6—I7 | 174.9 (11) | C9A—C14A—C13A | 116 (2) |
I7A—I6—I7 | 6.9 (3) | C9A—C14A—H14A | 121.9 |
I6ii—I6—I7Aii | 8.0 (8) | C13A—C14A—H14A | 121.9 |
I7A—I6—I7Aii | 176.1 (4) | C6B—N1B—C2B | 118.4 (15) |
I7—I6—I7Aii | 176.9 (4) | C6B—N1B—C1B | 121.6 (16) |
I7A—I7—I6 | 14.4 (7) | C2B—N1B—C1B | 120.0 (15) |
I7—I7A—I6 | 158.7 (10) | C7B—N2B—C8B | 122.2 (12) |
I7—I7A—I6ii | 162.5 (9) | C7B—N2B—H2B | 118.9 |
I6—I7A—I6ii | 3.9 (4) | C8B—N2B—H2B | 118.9 |
C2A—N1A—C6A | 119.2 (14) | N1B—C1B—H1BA | 109.5 |
C2A—N1A—C1A | 120.4 (16) | N1B—C1B—H1BB | 109.5 |
C6A—N1A—C1A | 120.3 (16) | H1BA—C1B—H1BB | 109.5 |
C7A—N2A—C8A | 124.0 (13) | N1B—C1B—H1BC | 109.5 |
C7A—N2A—H2A | 118.0 | H1BA—C1B—H1BC | 109.5 |
C8A—N2A—H2A | 118.0 | H1BB—C1B—H1BC | 109.5 |
N1A—C1A—H1AA | 109.5 | N1B—C2B—C3B | 121.5 (16) |
N1A—C1A—H1AB | 109.5 | N1B—C2B—H2BA | 119.3 |
H1AA—C1A—H1AB | 109.5 | C3B—C2B—H2BA | 119.3 |
N1A—C1A—H1AC | 109.5 | C2B—C3B—C4B | 121.0 (15) |
H1AA—C1A—H1AC | 109.5 | C2B—C3B—H3B | 119.5 |
H1AB—C1A—H1AC | 109.5 | C4B—C3B—H3B | 119.5 |
N1A—C2A—C3A | 120.7 (16) | C5B—C4B—C3B | 113.7 (14) |
N1A—C2A—H2AA | 119.6 | C5B—C4B—C7B | 120.6 (14) |
C3A—C2A—H2AA | 119.6 | C3B—C4B—C7B | 125.5 (14) |
C4A—C3A—C2A | 119.3 (16) | C6B—C5B—C4B | 122.9 (16) |
C4A—C3A—H3A | 120.3 | C6B—C5B—H5B | 118.5 |
C2A—C3A—H3A | 120.3 | C4B—C5B—H5B | 118.5 |
C5A—C4A—C3A | 119.7 (16) | N1B—C6B—C5B | 122.2 (17) |
C5A—C4A—C7A | 115.8 (14) | N1B—C6B—H6B | 118.9 |
C3A—C4A—C7A | 124.5 (15) | C5B—C6B—H6B | 118.9 |
C4A—C5A—C6A | 120.1 (17) | O1B—C7B—N2B | 121.1 (14) |
C4A—C5A—H5A | 120.0 | O1B—C7B—C4B | 120.4 (15) |
C6A—C5A—H5A | 120.0 | N2B—C7B—C4B | 118.6 (13) |
N1A—C6A—C5A | 120.8 (17) | C9B—C8B—N2B | 113.9 (13) |
N1A—C6A—H6A | 119.6 | C9B—C8B—H8BA | 108.8 |
C5A—C6A—H6A | 119.6 | N2B—C8B—H8BA | 108.8 |
O1A—C7A—N2A | 119.8 (16) | C9B—C8B—H8BB | 108.8 |
O1A—C7A—C4A | 120.7 (14) | N2B—C8B—H8BB | 108.8 |
N2A—C7A—C4A | 119.3 (14) | H8BA—C8B—H8BB | 107.7 |
N2A—C8A—C9A | 114.4 (12) | C10B—C9B—C14B | 118.1 (15) |
N2A—C8A—H8AA | 108.7 | C10B—C9B—C8B | 122.2 (15) |
C9A—C8A—H8AA | 108.7 | C14B—C9B—C8B | 119.6 (15) |
N2A—C8A—H8AB | 108.7 | C11B—C10B—C9B | 122.2 (17) |
C9A—C8A—H8AB | 108.7 | C11B—C10B—H10B | 118.9 |
H8AA—C8A—H8AB | 107.6 | C9B—C10B—H10B | 118.9 |
C14A—C9A—C10A | 123.7 (18) | C10B—C11B—C12B | 120.2 (18) |
C14A—C9A—C8A | 123.0 (17) | C10B—C11B—H11B | 119.9 |
C10A—C9A—C8A | 113.2 (16) | C12B—C11B—H11B | 119.9 |
C11A—C10A—C9A | 117.4 (17) | C13B—C12B—C11B | 119.9 (18) |
C11A—C10A—H10A | 121.3 | C13B—C12B—H12B | 120.1 |
C9A—C10A—H10A | 121.3 | C11B—C12B—H12B | 120.1 |
C12A—C11A—C10A | 119 (2) | C12B—C13B—C14B | 119.9 (17) |
C12A—C11A—H11A | 120.5 | C12B—C13B—H13B | 120.1 |
C10A—C11A—H11A | 120.5 | C14B—C13B—H13B | 120.1 |
C11A—C12A—C13A | 121 (2) | C9B—C14B—C13B | 119.6 (16) |
C11A—C12A—H12A | 119.6 | C9B—C14B—H14B | 120.2 |
C13A—C12A—H12A | 119.6 | C13B—C14B—H14B | 120.2 |
I6—I7—I7A—I6ii | −2.0 (11) | C6B—N1B—C2B—C3B | −7 (3) |
C6A—N1A—C2A—C3A | 0 (2) | C1B—N1B—C2B—C3B | 176.0 (14) |
C1A—N1A—C2A—C3A | 177.8 (15) | N1B—C2B—C3B—C4B | 6 (3) |
N1A—C2A—C3A—C4A | −3 (3) | C2B—C3B—C4B—C5B | −2 (2) |
C2A—C3A—C4A—C5A | 4 (3) | C2B—C3B—C4B—C7B | 173.6 (15) |
C2A—C3A—C4A—C7A | −174.6 (15) | C3B—C4B—C5B—C6B | −1 (2) |
C3A—C4A—C5A—C6A | −2 (3) | C7B—C4B—C5B—C6B | −176.4 (14) |
C7A—C4A—C5A—C6A | 176.7 (14) | C2B—N1B—C6B—C5B | 4 (3) |
C2A—N1A—C6A—C5A | 2 (2) | C1B—N1B—C6B—C5B | −178.7 (15) |
C1A—N1A—C6A—C5A | −175.8 (14) | C4B—C5B—C6B—N1B | 0 (3) |
C4A—C5A—C6A—N1A | −1 (2) | C8B—N2B—C7B—O1B | 3 (2) |
C8A—N2A—C7A—O1A | −8 (2) | C8B—N2B—C7B—C4B | −176.2 (13) |
C8A—N2A—C7A—C4A | 166.8 (14) | C5B—C4B—C7B—O1B | 13 (2) |
C5A—C4A—C7A—O1A | −19 (2) | C3B—C4B—C7B—O1B | −161.8 (15) |
C3A—C4A—C7A—O1A | 159.5 (17) | C5B—C4B—C7B—N2B | −167.7 (14) |
C5A—C4A—C7A—N2A | 166.0 (15) | C3B—C4B—C7B—N2B | 18 (2) |
C3A—C4A—C7A—N2A | −16 (2) | C7B—N2B—C8B—C9B | 178.3 (14) |
C7A—N2A—C8A—C9A | −81 (2) | N2B—C8B—C9B—C10B | −53 (2) |
N2A—C8A—C9A—C14A | 117.5 (17) | N2B—C8B—C9B—C14B | 124.6 (15) |
N2A—C8A—C9A—C10A | −61.6 (18) | C14B—C9B—C10B—C11B | 3 (2) |
C14A—C9A—C10A—C11A | 0 (3) | C8B—C9B—C10B—C11B | −179.5 (15) |
C8A—C9A—C10A—C11A | 179.4 (14) | C9B—C10B—C11B—C12B | −2 (3) |
C9A—C10A—C11A—C12A | 2 (3) | C10B—C11B—C12B—C13B | −2 (3) |
C10A—C11A—C12A—C13A | −4 (3) | C11B—C12B—C13B—C14B | 4 (2) |
C11A—C12A—C13A—C14A | 4 (3) | C10B—C9B—C14B—C13B | 0 (2) |
C10A—C9A—C14A—C13A | −1 (3) | C8B—C9B—C14B—C13B | −178.0 (14) |
C8A—C9A—C14A—C13A | 179.8 (15) | C12B—C13B—C14B—C9B | −3 (2) |
C12A—C13A—C14A—C9A | −1 (3) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x−1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H2A···O1B | 0.86 | 2.02 | 2.846 (14) | 160 |
C3A—H3A···O1B | 0.93 | 2.53 | 3.381 (18) | 152 |
C2A—H2AA···I3 | 0.93 | 3.08 | 3.998 (17) | 169 |
C1A—H1AC···C12Aiii | 0.96 | 2.72 | 3.62 (2) | 158 |
C1A—H1AA···I7iii | 0.96 | 3.09 | 3.966 (19) | 153 |
N2B—H2B···O1Aiv | 0.86 | 2.13 | 2.986 (14) | 176 |
C3B—H3B···O1Aiv | 0.93 | 2.21 | 3.060 (17) | 151 |
C2B—H2BA···C12Av | 0.93 | 2.85 | 3.72 (2) | 156 |
C1B—H1BB···I7vi | 0.96 | 3.07 | 3.819 (18) | 136 |
C6B—H6B···I4vii | 0.93 | 3.12 | 4.019 (17) | 164 |
Symmetry codes: (iii) x, −y+3/2, z−1/2; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1; (vii) −x, y−1/2, −z+1/2. |
Parameter | I | IIA | IIB |
N1—C2 | 1.338 (10) | 1.327 (19) | 1.32 (2) |
N1—C6 | 1.324 (11) | 1.35 (2) | 1.313 (18) |
N2—C7—C4—C3 | 18.1 (13) | -16 (2) | 18 (2) |
C7—N2—C8—C9 | -75.0 (11) | -81 (2) | 178.3 (14) |
N2—C8—C9—C10 | -77.6 (11) | -61.6 (18) | -53 (2) |
H2···H3 | 2.09 | 2.14 | 2.11 |
C3···H2 | 2.55 | 2.61 | 2.57 |
Acknowledgements
The authors are grateful to Farmak JSC for support.
Funding information
Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).
References
Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford: Clarendon Press. Google Scholar
Boltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. 26 https://doi.org/10.1177/2040206618811416. Google Scholar
Brittain, H. G. (2009). Polymorphism in pharmaceutical solids, 2nd ed. New York: Informa. Google Scholar
Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72–74. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967–970. Web of Science CSD CrossRef IUCr Journals Google Scholar
Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69–74. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hilfiker, R. (2006). Polymorphism in the Pharmaceutical Industry. Weinheim: John Wiley & Sons. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rodríguez-Carvajal, J. (2001). Commission on Powder Diffraction (IUCr) Newsletter, 26, 12–19. Google Scholar
Roisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR, a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118–123. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
Velthuis, A. J. W. te, Zubkova, T. G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Müller, L. & Margitich, V. (2020). Antimicrobial Agents and Chemotherapy, 64, https://doi.org/10.1128/AAC.02605-20. Google Scholar
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.