research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Salts of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium and iodide anions with different cation:iodine stoichiometric ratios

crossmark logo

aFarmak JSC, 63 Kyrylivska str., Kyiv 04080, Ukraine, bDepartment of Organic Chemistry, National Technical University of Ukraine, 37 Pobedy ave., Kyiv 03056, Ukraine, cSSI "Institute for Single Crystals", NAS of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine, and dV.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61022, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 11 October 2021; accepted 27 October 2021; online 2 November 2021)

The two iodide salts, 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide–iodine (2/1), C14H15N2O+·I·0.5I2, I, and 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium triiodide, C14H15N2O+·I3, II, with different cation:iodine atoms ratios were studied. Salt I contains one cation, one iodide anion and half of the neutral I2 mol­ecule in the asymmetric unit (cation:iodine atoms ratio is 1:2). Salt II contains two cations, one triiodide anion (I3) and two half triiodide anions (cation:iodine atoms ratio is 1:3). The NH group forms N—H⋯I hydrogen bonds with the I anion in the crystal of I or N—H⋯O hydrogen bonds in II where only triiodide anions are present.

1. Chemical context

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide, chemical formula C14H15N2O+·I, is used as a multimodal anti­viral drug (te Velthuis et al., 2020[Velthuis, A. J. W. te, Zubkova, T. G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Müller, L. & Margitich, V. (2020). Antimicrobial Agents and Chemotherapy, 64, https://doi.org/10.1128/AAC.02605-20.]; Boltz et al., 2018[Boltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. 26 https://doi.org/10.1177/2040206618811416.]; Buhtiarova et al., 2003[Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72-74.]; Frolov et al., 2004[Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69-74.]). Its mol­ecular and crystal structure have been studied in detail by diffraction and spectroscopic methods (Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]). The formation of different polymorphic modifications of an API is of great importance for the pharmaceutical industry (Bernstein, 2002[Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford: Clarendon Press.]; Brittain, 2009[Brittain, H. G. (2009). Polymorphism in pharmaceutical solids, 2nd ed. New York: Informa.]; Hilfiker, 2006[Hilfiker, R. (2006). Polymorphism in the Pharmaceutical Industry. Weinheim: John Wiley & Sons.]). Unfortunately, all attempts to find polymorphic modifications of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide resulting from varying the solvents and crystallization conditions have failed. Only one crystal form with the P212121 ortho­rhom­bic space group has been determined by single-crystal X-ray diffraction (Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]).

[Scheme 1]

In a continuation of this work, we attempted to obtain a new polymorphic form of this compound using not only different solvents (ethanol, methanol, 2-propanol, etc.), but also non-standard methods of activating the crystallization process. To do this, experiments on recrystallization from water under an ultrasonic field effect were carried out. It should be noted that under normal conditions, 4-[(benzyl­amino) carbon­yl]-1-methyl­pyridinium iodide does not dissolve in water. As result, we did not obtain any new polymorphic modifications of this salt, but two compounds with cation–iodine ratios different from the equimolar [1:2 (salt I) and 1:3 (salt II)] were obtained.

2. Structural commentary

The crystal structures of the salts under study consist of the same 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium cation (C14H15N2O+) and different anions. There is one cation, one iodide anion and half of the neutral I2 mol­ecule in the asymmetric unit of compound I (Fig. 1[link], left). The neutral I2 mol­ecule is located in a special position in relation to the symmetry centre coinciding with the midpoint of the I—I bond. Thus, the cation:iodine atoms ratio is 1:2 in compound I. The asymmetric unit of compound II contains two cations (A and B), one triiodide anion (I3) and two halves of triiodide anions located on special positions in relation to the symmetry centre (Fig. 1[link], right). The cation:iodine atoms ration is 1:3 in compound II.

[Figure 1]
Figure 1
Mol­ecular structures of I (on the left) and II (on the right), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The positive charge of the cation is localized at the quaternized nitro­gen atom of the pyridine ring. This results in the N1—C6 and N1—C2 bond elongation (Table 1[link]). The carbamide group is non-coplanar to the plane of the aromatic ring (as evidenced by the N2—C7—C4—C3 torsion angles; Table 1[link]) as a result of steric repulsion between them [with short H2⋯H3 and H2⋯C3 contacts (as compared to the van der Waals radii sums; Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) of 2.34 and 2.87 Å, respectively]. The cations in the two compounds under study differ in the conformation of the benzyl substituent. The phenyl fragment of the benzyl substituent is located in a −sc position relatively to the C7—N2 bond in I or in a +sc position in mol­ecule A and an ap position in mol­ecule B of II (cf the C7—N2—C8—C9 torsion angles in Table 1[link]). The aromatic ring is turned relative to the carbamide fragment (see the N2—C8—C9—C10 torsion angles).

Table 1
Selected geometrical parameters (Å, °) for the cations in salts I and II

Parameter I IIA IIB
N1—C2 1.338 (10) 1.327 (19) 1.32 (2)
N1—C6 1.324 (11) 1.35 (2) 1.313 (18)
N2—C7—C4—C3 18.1 (13) −16 (2) 18 (2)
C7—N2—C8—C9 −75.0 (11) −81 (2) 178.3 (14)
N2—C8—C9—C10 −77.6 (11) −61.6 (18) −53 (2)
H2⋯H3 2.09 2.14 2.11
C3⋯H2 2.55 2.61 2.57

3. Supra­molecular features

The main difference in the crystal structures of the studied salts is the participation of the carbamide group in inter­molecular inter­actions. In the structure of I, the carbamide group participates in the N—H⋯I′ hydrogen bond between the cation and the anion, while the carbonyl oxygen atom acts as an acceptor in the very weak C5—H⋯O1′ inter­molecular inter­action (Fig. 2[link], left; Table 2[link]). In the structure of II, the carbamide group participates in the N—H⋯O′ hydrogen bonds between the cations (Fig. 2[link], right; Table 3[link]). As a result, chains in the [100] crystallographic direction are formed. The triiodide anions occupy voids between neighbouring chains in the crystal. In addition, a set of weak C—H⋯I and C—H⋯π hydrogen bonds are found in both structures (Tables 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯I2 0.86 2.84 3.632 (7) 154
C2—H2A⋯I2i 0.93 3.18 4.053 (9) 158
C1—H1B⋯I2i 0.96 3.11 3.992 (9) 153
C1—H1C⋯I2ii 0.96 2.96 3.908 (9) 171
C1—H1A⋯I1iii 0.96 3.00 3.824 (10) 145
C5—H5⋯O1iv 0.93 2.59 3.328 (11) 136
C8—H8B⋯C11v 0.97 2.80 3.590 (15) 140
C8—H8B⋯C10v 0.97 2.76 3.694 (14) 162
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, -y+1, -z+1]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O1B 0.86 2.02 2.846 (14) 160
C3A—H3A⋯O1B 0.93 2.53 3.381 (18) 152
C2A—H2AA⋯I3 0.93 3.08 3.998 (17) 169
C1A—H1AC⋯C12Ai 0.96 2.72 3.62 (2) 158
C1A—H1AA⋯I7i 0.96 3.09 3.966 (19) 153
N2B—H2B⋯O1Aii 0.86 2.13 2.986 (14) 176
C3B—H3B⋯O1Aii 0.93 2.21 3.060 (17) 151
C2B—H2BA⋯C12Aiii 0.93 2.85 3.72 (2) 156
C1B—H1BB⋯I7iv 0.96 3.07 3.819 (18) 136
C6B—H6B⋯I4v 0.93 3.12 4.019 (17) 164
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y+1, -z+1]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen bond formation in structure I (on the left) and II (on the right).

In the structure of II, the A and B cations form stacking dimers as a result of the inter­action of the aromatic systems of the pyridine and benzene rings [the distance between the planes of aromatic cycles is 3.45 (1) Å, slippage 1.119 Å).

4. Hirshfeld surface analysis

Inter­molecular inter­actions can be analyzed using Hirshfeld surface analysis and 2D fingerprint plots (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]). The Hirshfeld surfaces were calculated for the cations found in two structures under study using a standard high surface resolution, mapped over dnorm (Fig. 3[link]). The red spots, corresponding to contacts that are shorter than the van der Waals radii sum of the closest atoms, are observed at the hydrogen atom of the amino group. At the carbonyl group, red spots are found only in the cations of II. The two-dimensional fingerprint plots show that the hydrogen bonds in II are stronger (note the sharp spikes in Fig. 3[link]).

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm.(at the top) and two-dimensional fingerprint plots (at the bottom) of cation in structure I and II.

To compare inter­molecular inter­actions of different types in more qu­anti­tative way, their contributions to the total Hirshfeld surfaces were analysed (Fig. 4[link]). The main contribution is provided by H⋯H short contacts (44.9% for I, 45% for cation A and 36.8% for cation B in II). The contribution of the I⋯H/H⋯I short contacts is also significant [17.3% in I, 21.7% (mol­ecule A) and 25.5% (mol­ecule B) in II], as is that of the C⋯H/H⋯C inter­actions [17.2% in I, 15.5% (mol­ecule A) and 10.7% (mol­ecule B) in II]. Surprisingly, the contributions of the O⋯H/H⋯O inter­actions are very similar in the two structures [9.7% in I, 9.5% (mol­ecule A) and 9.6% (mol­ecule B) in II] despite the stronger N—H⋯O hydrogen bonds in the structure of II.

[Figure 4]
Figure 4
Relative contributions of the strongest inter­molecular inter­actions (in %) to the total Hirshfeld surface of cation in two iodide salts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of the AmI salt with an equimolar cation:iodine atoms ratio (refcode BEBFIA; Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]). A comparison of the cation conformations showed its flexibility resulting from rotation about the N—Csp3 and Csp3—Car bonds.

6. Synthesis and crystallization

Benzyl­amide isonicotinic acid (124 g, 0.585 mol) and 270 mL of 90% ethanol were loaded into a glass flask. The obtained solution was heated to a temperature of 313–314 K, and then methyl iodide (91g, 0.641 mol) was added dropwise. The reaction was stirred at a temperature of 313–314 K for 1 h, heated to boiling and boiled for 1 h. The reaction spontaneously cooled to a temperature of 313 K, then to a temperature of 283–288 K in a cooling water bath, and was stirred for 1.5 h at this temperature. The reaction mixture was filtered and the precipitate rinsed on the filter twice with 60 mL of cooled 96% ethanol. The product was dried at 313 K for 12 h. Yield: 145.5 g of crude 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide (88%); yellow crystals.

145.5 g of crude 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide were dissolved in 450 mL of water under ultrasonic activation. The reaction was heated to boiling temperature, stirred at boiling for 30 min and filtered. The obtained solution was cooled slowly and evaporated for three weeks. The rod-shaped crystals of I and block-shaped crystals of II crystallized almost simultaneously.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Despite the presence of iodine atoms, crystals of salt II diffracted poorly due to their small size. All of the hydrogen atoms were located in difference-Fourier maps. Then, hydrogen atoms were refined as riding (AFIX 33 and 137 commands) with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups (AFIX 43) and Car—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic rings (AFIX 23) and Csp2—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for the methyl­ene fragment.

Table 4
Experimental details

  I II
Crystal data
Chemical formula C14H15N2O+·I·0.5I2 C14H15N2O+·I3
Mr 481.08 608.61
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 14.407 (3), 8.8491 (10), 14.555 (4) 9.914 (2), 27.805 (4), 14.113 (3)
β (°) 119.63 (3) 107.83 (2)
V3) 1613.0 (7) 3703.4 (12)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.89 5.07
Crystal size (mm) 0.60 × 0.10 × 0.05 0.03 × 0.03 × 0.02
 
Data collection
Diffractometer Xcalibur, Sapphire3 Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.159, 1.000 0.347, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11491, 3698, 1941 21040, 6496, 2548
Rint 0.083 0.124
(sin θ/λ)max−1) 0.650 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.03 0.065, 0.187, 0.97
No. of reflections 3698 6496
No. of parameters 173 371
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.90 0.70, −0.77
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

8. Powder diffraction characterization

A powder diffraction pattern of salt II was registered using a Siemens D500 powder diffractometer (Cu Kα radiation, Bragg–Brentano geometry, curved graphite monochromator on the counter arm, 4 < 2θ < 60°, D2θ = 0.02°, time per step of 2 s). The Rietveld refinement of the obtained pattern (Fig. 5[link], left) was carried out with FULLPROF (Rodriguez-Carvajal, 2001[Rodríguez-Carvajal, J. (2001). Commission on Powder Diffraction (IUCr) Newsletter, 26, 12-19.]) and WINPLOTR (Roisnel & Rodriguez-Carvajal, 2000[Roisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR, a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118-123.]) using an external standard (NIST SRM1976) for the calculation of the instrumental profile function and the single-crystal results as the structure model for the refinement. A powder pattern for salt I was not obtained because of the small amount of the crystal sample. For comparison, Fig. 5[link] (right) shows the pattern calculated for salt I.

[Figure 5]
Figure 5
Final Rietveld plots for II (on the left). Observed data points are indicated by red circles, the best-fit profile (black upper trace) and the difference pattern (blue lower trace) are shown as solid lines. The vertical green bars correspond to the Bragg positions of peaks. The calculated powder pattern for I is shown on the right.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I) top
Crystal data top
C14H15N2O+·I·0.5I2F(000) = 908
Mr = 481.08Dx = 1.981 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.407 (3) ÅCell parameters from 928 reflections
b = 8.8491 (10) Åθ = 3.6–21.8°
c = 14.555 (4) ŵ = 3.89 mm1
β = 119.63 (3)°T = 293 K
V = 1613.0 (7) Å3Stick, red
Z = 40.60 × 0.10 × 0.05 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
3698 independent reflections
Radiation source: Enhance (Mo) X-ray Source1941 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.083
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1818
Tmin = 0.159, Tmax = 1.000k = 1111
11491 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3698 reflectionsΔρmax = 0.90 e Å3
173 parametersΔρmin = 0.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.51630 (5)0.11900 (6)0.57075 (6)0.0696 (2)
I20.55433 (5)0.39112 (7)0.74152 (6)0.0738 (3)
O10.1044 (5)0.3003 (8)0.5772 (6)0.090 (2)
N10.1782 (6)0.6060 (7)0.3371 (6)0.0614 (18)
N20.2820 (6)0.2698 (8)0.6521 (6)0.0652 (19)
H20.3385190.2953720.6500100.078*
C10.1732 (8)0.7074 (10)0.2544 (8)0.075 (3)
H1A0.1277570.6638160.1860850.113*
H1B0.2436790.7207600.2641250.113*
H1C0.1450510.8036130.2590120.113*
C20.2636 (7)0.5182 (10)0.3929 (8)0.069 (3)
H2A0.3200820.5210970.3790740.083*
C30.2692 (7)0.4235 (10)0.4707 (8)0.067 (2)
H30.3278380.3602590.5069760.081*
C40.1885 (6)0.4224 (9)0.4944 (8)0.062 (2)
C50.1012 (7)0.5127 (12)0.4336 (8)0.078 (3)
H50.0435100.5116320.4455340.093*
C60.0979 (7)0.6028 (10)0.3569 (8)0.070 (3)
H60.0383160.6633030.3175560.084*
C70.1885 (6)0.3260 (10)0.5791 (7)0.057 (2)
C80.2932 (8)0.1666 (10)0.7357 (8)0.073 (3)
H8A0.3625310.1179250.7663150.087*
H8B0.2391420.0884880.7047060.087*
C90.2828 (7)0.2439 (8)0.8213 (7)0.057 (2)
C100.3668 (7)0.3281 (10)0.8984 (8)0.068 (2)
H100.4312310.3338130.8983760.082*
C110.3548 (9)0.4014 (10)0.9732 (9)0.081 (3)
H110.4101370.4615761.0220650.097*
C120.2622 (9)0.3890 (10)0.9788 (9)0.078 (3)
H120.2550820.4393781.0310400.094*
C130.1810 (9)0.3010 (13)0.9058 (9)0.083 (3)
H130.1186640.2899200.9094310.099*
C140.1904 (7)0.2294 (10)0.8280 (9)0.071 (3)
H140.1344820.1702910.7788820.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0651 (4)0.0655 (4)0.0790 (5)0.0033 (3)0.0364 (4)0.0008 (3)
I20.0669 (4)0.0799 (4)0.0809 (5)0.0121 (3)0.0413 (4)0.0181 (3)
O10.050 (3)0.118 (5)0.100 (6)0.008 (3)0.036 (4)0.012 (5)
N10.060 (4)0.060 (4)0.056 (5)0.006 (3)0.023 (4)0.002 (3)
N20.058 (4)0.068 (4)0.074 (6)0.007 (3)0.036 (4)0.003 (4)
C10.081 (6)0.070 (6)0.062 (7)0.008 (5)0.025 (5)0.008 (5)
C20.066 (6)0.070 (6)0.080 (8)0.013 (4)0.042 (6)0.002 (5)
C30.057 (5)0.083 (6)0.073 (7)0.018 (4)0.040 (5)0.006 (5)
C40.051 (5)0.066 (5)0.060 (6)0.003 (4)0.021 (4)0.019 (4)
C50.048 (5)0.121 (8)0.067 (7)0.008 (5)0.030 (5)0.004 (6)
C60.059 (5)0.075 (6)0.073 (7)0.017 (4)0.031 (5)0.005 (5)
C70.050 (4)0.063 (5)0.060 (6)0.006 (4)0.029 (4)0.002 (4)
C80.075 (6)0.066 (5)0.077 (7)0.001 (5)0.037 (6)0.013 (5)
C90.067 (5)0.048 (4)0.060 (6)0.005 (4)0.035 (5)0.006 (4)
C100.059 (5)0.072 (6)0.072 (7)0.004 (4)0.033 (5)0.010 (5)
C110.086 (7)0.068 (6)0.074 (8)0.012 (5)0.028 (6)0.002 (5)
C120.092 (8)0.072 (6)0.073 (8)0.027 (5)0.043 (7)0.017 (5)
C130.075 (6)0.106 (8)0.070 (7)0.014 (6)0.039 (6)0.019 (6)
C140.053 (5)0.075 (6)0.083 (8)0.003 (4)0.032 (5)0.016 (5)
Geometric parameters (Å, º) top
I1—I1i2.8182 (13)C5—C61.353 (13)
O1—C71.221 (9)C5—H50.9300
N1—C61.324 (11)C6—H60.9300
N1—C21.338 (10)C8—C91.494 (12)
N1—C11.475 (11)C8—H8A0.9700
N2—C71.332 (11)C8—H8B0.9700
N2—C81.465 (11)C9—C141.387 (11)
N2—H20.8600C9—C101.391 (12)
C1—H1A0.9600C10—C111.350 (14)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.381 (14)
C2—C31.378 (12)C11—H110.9300
C2—H2A0.9300C12—C131.369 (15)
C3—C41.366 (11)C12—H120.9300
C3—H30.9300C13—C141.362 (14)
C4—C51.380 (12)C13—H130.9300
C4—C71.499 (13)C14—H140.9300
C6—N1—C2119.8 (8)O1—C7—N2123.3 (8)
C6—N1—C1119.7 (7)O1—C7—C4119.4 (8)
C2—N1—C1120.5 (8)N2—C7—C4117.2 (7)
C7—N2—C8123.3 (7)N2—C8—C9113.1 (7)
C7—N2—H2118.4N2—C8—H8A109.0
C8—N2—H2118.4C9—C8—H8A109.0
N1—C1—H1A109.5N2—C8—H8B109.0
N1—C1—H1B109.5C9—C8—H8B109.0
H1A—C1—H1B109.5H8A—C8—H8B107.8
N1—C1—H1C109.5C14—C9—C10118.4 (9)
H1A—C1—H1C109.5C14—C9—C8120.8 (9)
H1B—C1—H1C109.5C10—C9—C8120.8 (8)
N1—C2—C3120.9 (8)C11—C10—C9120.0 (9)
N1—C2—H2A119.5C11—C10—H10120.0
C3—C2—H2A119.5C9—C10—H10120.0
C4—C3—C2120.0 (8)C10—C11—C12121.5 (10)
C4—C3—H3120.0C10—C11—H11119.3
C2—C3—H3120.0C12—C11—H11119.3
C3—C4—C5116.9 (9)C13—C12—C11118.7 (10)
C3—C4—C7123.9 (8)C13—C12—H12120.7
C5—C4—C7119.1 (8)C11—C12—H12120.7
C6—C5—C4121.4 (8)C14—C13—C12120.7 (10)
C6—C5—H5119.3C14—C13—H13119.6
C4—C5—H5119.3C12—C13—H13119.6
N1—C6—C5120.9 (8)C13—C14—C9120.6 (10)
N1—C6—H6119.6C13—C14—H14119.7
C5—C6—H6119.6C9—C14—H14119.7
C6—N1—C2—C30.4 (14)C3—C4—C7—N218.1 (13)
C1—N1—C2—C3179.7 (9)C5—C4—C7—N2164.0 (9)
N1—C2—C3—C42.5 (14)C7—N2—C8—C975.0 (11)
C2—C3—C4—C53.5 (13)N2—C8—C9—C14104.6 (9)
C2—C3—C4—C7178.6 (9)N2—C8—C9—C1077.6 (11)
C3—C4—C5—C62.7 (14)C14—C9—C10—C114.3 (13)
C7—C4—C5—C6179.3 (9)C8—C9—C10—C11177.8 (9)
C2—N1—C6—C50.5 (14)C9—C10—C11—C123.4 (15)
C1—N1—C6—C5178.9 (9)C10—C11—C12—C130.5 (15)
C4—C5—C6—N10.7 (16)C11—C12—C13—C141.3 (15)
C8—N2—C7—O12.3 (14)C12—C13—C14—C90.2 (15)
C8—N2—C7—C4176.2 (8)C10—C9—C14—C132.6 (13)
C3—C4—C7—O1160.5 (9)C8—C9—C14—C13179.5 (9)
C5—C4—C7—O117.4 (13)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···I20.862.843.632 (7)154
C2—H2A···I2ii0.933.184.053 (9)158
C1—H1B···I2ii0.963.113.992 (9)153
C1—H1C···I2iii0.962.963.908 (9)171
C1—H1A···I1iv0.963.003.824 (10)145
C5—H5···O1v0.932.593.328 (11)136
C8—H8B···C11vi0.972.803.590 (15)140
C8—H8B···C10vi0.972.763.694 (14)162
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z+1; (vi) x+1/2, y1/2, z+3/2.
4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II) top
Crystal data top
C14H15N2O+·I3F(000) = 2242
Mr = 608.61Dx = 2.183 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.914 (2) ÅCell parameters from 1078 reflections
b = 27.805 (4) Åθ = 3.1–18.1°
c = 14.113 (3) ŵ = 5.07 mm1
β = 107.83 (2)°T = 293 K
V = 3703.4 (12) Å3Block, yellow
Z = 80.03 × 0.03 × 0.02 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
6496 independent reflections
Radiation source: Enhance (Mo) X-ray Source2548 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.124
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 811
Tmin = 0.347, Tmax = 1.000k = 3333
21040 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
6496 reflectionsΔρmax = 0.70 e Å3
371 parametersΔρmin = 0.77 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.45921 (12)0.79328 (4)0.65364 (9)0.0868 (4)
I20.46503 (14)0.71598 (5)0.78702 (11)0.1072 (4)
I30.45434 (15)0.87375 (4)0.50883 (10)0.1061 (5)
I40.0000001.0000000.5000000.1048 (6)
I50.09620 (18)0.93095 (5)0.62111 (13)0.1313 (6)
I60.4785 (8)0.5112 (2)0.5262 (5)0.130 (2)0.5
I70.3252 (7)0.5746 (2)0.6849 (5)0.1504 (17)0.5
I7A0.3531 (7)0.5527 (2)0.6302 (5)0.1504 (17)0.5
O1A0.1281 (11)0.6399 (4)0.3910 (8)0.092 (3)
N1A0.0042 (18)0.8083 (4)0.3781 (10)0.081 (4)
N2A0.0997 (12)0.6306 (4)0.4111 (9)0.078 (4)
H2A0.1755860.6431980.4046940.094*
C1A0.004 (2)0.8621 (5)0.3785 (13)0.110 (6)
H1AA0.0915080.8735320.3494460.165*
H1AB0.0397440.8735270.4457620.165*
H1AC0.0622840.8738110.3405570.165*
C2A0.1245 (19)0.7843 (6)0.4148 (13)0.096 (5)
H2AA0.2093430.8010510.4387590.115*
C3A0.1251 (16)0.7345 (6)0.4178 (12)0.088 (5)
H3A0.2102050.7177860.4409840.106*
C4A0.0012 (16)0.7105 (6)0.3867 (12)0.079 (4)
C5A0.1202 (19)0.7349 (6)0.3482 (12)0.089 (5)
H5A0.2056550.7184590.3249950.107*
C6A0.1183 (19)0.7837 (7)0.3431 (13)0.095 (5)
H6A0.2025050.8003790.3150600.114*
C7A0.0134 (16)0.6579 (6)0.3940 (11)0.079 (4)
C8A0.1044 (17)0.5796 (5)0.4403 (13)0.092 (5)
H8AA0.1815840.5640570.4234950.110*
H8AB0.0169590.5642550.4016880.110*
C9A0.1238 (18)0.5715 (5)0.5504 (12)0.074 (4)
C10A0.252 (2)0.5902 (6)0.6130 (16)0.097 (6)
H10A0.3161060.6054990.5871260.117*
C11A0.279 (2)0.5848 (6)0.7157 (17)0.106 (6)
H11A0.3601080.5976690.7601620.128*
C12A0.184 (2)0.5606 (7)0.7493 (16)0.106 (6)
H12A0.2036000.5549330.8171300.127*
C13A0.060 (2)0.5444 (6)0.685 (2)0.107 (7)
H13A0.0053240.5295270.7109070.128*
C14A0.027 (2)0.5491 (7)0.5838 (17)0.121 (7)
H14A0.0579240.5375760.5407000.145*
O1B0.3841 (10)0.6543 (4)0.4242 (8)0.086 (3)
N1B0.4543 (16)0.5322 (5)0.1922 (12)0.088 (4)
N2B0.6125 (12)0.6628 (4)0.4475 (8)0.076 (4)
H2B0.6845950.6550030.4291310.091*
C1B0.4388 (19)0.4928 (6)0.1164 (14)0.108 (6)
H1BA0.5307470.4807080.1196420.162*
H1BB0.3824010.4672820.1301340.162*
H1BC0.3933750.5054620.0510880.162*
C2B0.581 (2)0.5433 (6)0.2527 (16)0.102 (6)
H2BA0.6589940.5252930.2505890.123*
C3B0.5997 (15)0.5805 (5)0.3180 (12)0.074 (4)
H3B0.6909850.5892530.3555990.088*
C4B0.4836 (14)0.6059 (5)0.3296 (11)0.069 (4)
C5B0.356 (2)0.5904 (6)0.2686 (12)0.089 (5)
H5B0.2739940.6052030.2729630.107*
C6B0.3436 (18)0.5548 (6)0.2030 (12)0.090 (5)
H6B0.2535720.5457490.1635280.107*
C7B0.4904 (17)0.6428 (5)0.4034 (11)0.071 (4)
C8B0.6312 (18)0.6988 (5)0.5285 (12)0.085 (5)
H8BA0.5699280.7261280.5027820.102*
H8BB0.6011060.6845950.5814910.102*
C9B0.7765 (16)0.7161 (6)0.5702 (11)0.072 (4)
C10B0.8890 (17)0.6853 (6)0.6049 (12)0.084 (4)
H10B0.8721790.6523120.6012740.100*
C11B1.024 (2)0.7013 (7)0.6443 (13)0.097 (5)
H11B1.0974430.6793750.6688210.116*
C12B1.0525 (19)0.7495 (8)0.6480 (11)0.094 (5)
H12B1.1446600.7604300.6766790.112*
C13B0.946 (2)0.7812 (7)0.6098 (13)0.096 (5)
H13B0.9661270.8138240.6081680.115*
C14B0.8040 (16)0.7646 (6)0.5720 (11)0.081 (5)
H14B0.7301160.7863630.5487350.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0752 (7)0.0882 (8)0.0963 (8)0.0041 (6)0.0254 (6)0.0169 (6)
I20.0868 (9)0.0985 (9)0.1316 (11)0.0025 (7)0.0264 (8)0.0075 (8)
I30.1210 (11)0.0961 (9)0.0995 (9)0.0168 (8)0.0312 (8)0.0034 (7)
I40.0852 (12)0.0960 (13)0.1177 (14)0.0118 (10)0.0082 (10)0.0004 (10)
I50.1384 (14)0.1108 (11)0.1504 (14)0.0019 (10)0.0526 (12)0.0023 (9)
I60.099 (4)0.131 (5)0.180 (7)0.027 (3)0.072 (5)0.077 (4)
I70.117 (3)0.148 (4)0.200 (6)0.001 (3)0.069 (4)0.048 (3)
I7A0.117 (3)0.148 (4)0.200 (6)0.001 (3)0.069 (4)0.048 (3)
O1A0.068 (7)0.091 (8)0.123 (10)0.009 (6)0.039 (7)0.023 (6)
N1A0.106 (11)0.062 (8)0.085 (9)0.004 (8)0.043 (9)0.012 (7)
N2A0.048 (7)0.080 (9)0.105 (10)0.015 (7)0.022 (7)0.018 (7)
C1A0.137 (18)0.073 (11)0.116 (15)0.004 (11)0.031 (13)0.013 (10)
C2A0.071 (12)0.091 (13)0.124 (15)0.013 (10)0.029 (11)0.002 (11)
C3A0.058 (10)0.079 (11)0.115 (14)0.002 (9)0.008 (9)0.013 (9)
C4A0.048 (9)0.093 (12)0.086 (11)0.011 (9)0.005 (8)0.001 (9)
C5A0.085 (13)0.089 (13)0.087 (12)0.024 (11)0.018 (10)0.002 (9)
C6A0.069 (11)0.121 (16)0.098 (13)0.017 (12)0.031 (10)0.017 (11)
C7A0.050 (9)0.110 (14)0.076 (11)0.004 (10)0.021 (8)0.010 (9)
C8A0.078 (12)0.075 (11)0.125 (16)0.011 (9)0.035 (11)0.017 (10)
C9A0.080 (11)0.064 (10)0.067 (11)0.006 (8)0.009 (9)0.018 (8)
C10A0.108 (15)0.081 (12)0.122 (16)0.001 (11)0.063 (14)0.017 (11)
C11A0.087 (14)0.105 (15)0.125 (18)0.001 (11)0.029 (13)0.021 (12)
C12A0.094 (15)0.113 (16)0.112 (16)0.024 (13)0.034 (14)0.002 (12)
C13A0.114 (17)0.074 (12)0.16 (2)0.003 (12)0.084 (17)0.024 (13)
C14A0.125 (18)0.140 (18)0.120 (19)0.011 (15)0.072 (16)0.011 (14)
O1B0.058 (7)0.107 (8)0.098 (8)0.007 (6)0.029 (6)0.016 (6)
N1B0.087 (10)0.073 (9)0.120 (12)0.009 (8)0.058 (10)0.002 (8)
N2B0.042 (7)0.105 (10)0.078 (9)0.011 (7)0.014 (6)0.018 (7)
C1B0.105 (15)0.101 (13)0.120 (15)0.017 (11)0.036 (13)0.017 (12)
C2B0.075 (13)0.060 (11)0.18 (2)0.006 (10)0.048 (14)0.007 (12)
C3B0.056 (9)0.054 (9)0.109 (13)0.012 (7)0.021 (9)0.012 (8)
C4B0.043 (8)0.073 (10)0.086 (11)0.010 (7)0.011 (7)0.005 (8)
C5B0.113 (15)0.084 (12)0.085 (12)0.011 (11)0.054 (12)0.009 (9)
C6B0.072 (11)0.116 (15)0.081 (12)0.019 (11)0.023 (10)0.007 (10)
C7B0.073 (10)0.075 (10)0.077 (11)0.015 (9)0.038 (9)0.005 (8)
C8B0.094 (13)0.075 (10)0.086 (11)0.011 (9)0.028 (10)0.014 (9)
C9B0.068 (10)0.077 (11)0.075 (10)0.012 (9)0.030 (8)0.018 (8)
C10B0.066 (11)0.089 (12)0.089 (12)0.011 (10)0.014 (9)0.003 (9)
C11B0.077 (13)0.125 (16)0.092 (13)0.005 (12)0.030 (11)0.003 (11)
C12B0.072 (12)0.140 (17)0.064 (11)0.021 (13)0.014 (9)0.016 (11)
C13B0.090 (13)0.104 (13)0.097 (13)0.006 (12)0.034 (11)0.002 (11)
C14B0.052 (9)0.112 (14)0.069 (10)0.014 (9)0.005 (8)0.014 (9)
Geometric parameters (Å, º) top
I1—I22.8459 (18)C12A—H12A0.9300
I1—I33.0206 (17)C13A—C14A1.37 (3)
I4—I52.9181 (15)C13A—H13A0.9300
I4—I5i2.9181 (15)C14A—H14A0.9300
I6—I6ii0.962 (9)O1B—C7B1.220 (15)
I6—I7A1.977 (7)N1B—C6B1.313 (18)
I6—I72.890 (7)N1B—C2B1.32 (2)
I6—I7Aii2.925 (7)N1B—C1B1.504 (19)
I7—I7A0.957 (7)N2B—C7B1.305 (17)
O1A—C7A1.231 (16)N2B—C8B1.488 (17)
N1A—C2A1.327 (19)N2B—H2B0.8600
N1A—C6A1.35 (2)C1B—H1BA0.9600
N1A—C1A1.495 (17)C1B—H1BB0.9600
N2A—C7A1.315 (17)C1B—H1BC0.9600
N2A—C8A1.472 (17)C2B—C3B1.36 (2)
N2A—H2A0.8600C2B—H2BA0.9300
C1A—H1AA0.9600C3B—C4B1.403 (18)
C1A—H1AB0.9600C3B—H3B0.9300
C1A—H1AC0.9600C4B—C5B1.36 (2)
C2A—C3A1.39 (2)C4B—C7B1.447 (19)
C2A—H2AA0.9300C5B—C6B1.335 (19)
C3A—C4A1.348 (19)C5B—H5B0.9300
C3A—H3A0.9300C6B—H6B0.9300
C4A—C5A1.34 (2)C8B—C9B1.46 (2)
C4A—C7A1.48 (2)C8B—H8BA0.9700
C5A—C6A1.36 (2)C8B—H8BB0.9700
C5A—H5A0.9300C9B—C10B1.372 (19)
C6A—H6A0.9300C9B—C14B1.374 (19)
C8A—C9A1.52 (2)C10B—C11B1.36 (2)
C8A—H8AA0.9700C10B—H10B0.9300
C8A—H8AB0.9700C11B—C12B1.37 (2)
C9A—C14A1.35 (2)C11B—H11B0.9300
C9A—C10A1.40 (2)C12B—C13B1.35 (2)
C10A—C11A1.40 (2)C12B—H12B0.9300
C10A—H10A0.9300C13B—C14B1.42 (2)
C11A—C12A1.35 (2)C13B—H13B0.9300
C11A—H11A0.9300C14B—H14B0.9300
C12A—C13A1.36 (3)
I2—I1—I3178.72 (5)C12A—C13A—C14A122.8 (18)
I5—I4—I5i180.0C12A—C13A—H13A118.6
I6ii—I6—I7A168.1 (11)C14A—C13A—H13A118.6
I6ii—I6—I7174.9 (11)C9A—C14A—C13A116 (2)
I7A—I6—I76.9 (3)C9A—C14A—H14A121.9
I6ii—I6—I7Aii8.0 (8)C13A—C14A—H14A121.9
I7A—I6—I7Aii176.1 (4)C6B—N1B—C2B118.4 (15)
I7—I6—I7Aii176.9 (4)C6B—N1B—C1B121.6 (16)
I7A—I7—I614.4 (7)C2B—N1B—C1B120.0 (15)
I7—I7A—I6158.7 (10)C7B—N2B—C8B122.2 (12)
I7—I7A—I6ii162.5 (9)C7B—N2B—H2B118.9
I6—I7A—I6ii3.9 (4)C8B—N2B—H2B118.9
C2A—N1A—C6A119.2 (14)N1B—C1B—H1BA109.5
C2A—N1A—C1A120.4 (16)N1B—C1B—H1BB109.5
C6A—N1A—C1A120.3 (16)H1BA—C1B—H1BB109.5
C7A—N2A—C8A124.0 (13)N1B—C1B—H1BC109.5
C7A—N2A—H2A118.0H1BA—C1B—H1BC109.5
C8A—N2A—H2A118.0H1BB—C1B—H1BC109.5
N1A—C1A—H1AA109.5N1B—C2B—C3B121.5 (16)
N1A—C1A—H1AB109.5N1B—C2B—H2BA119.3
H1AA—C1A—H1AB109.5C3B—C2B—H2BA119.3
N1A—C1A—H1AC109.5C2B—C3B—C4B121.0 (15)
H1AA—C1A—H1AC109.5C2B—C3B—H3B119.5
H1AB—C1A—H1AC109.5C4B—C3B—H3B119.5
N1A—C2A—C3A120.7 (16)C5B—C4B—C3B113.7 (14)
N1A—C2A—H2AA119.6C5B—C4B—C7B120.6 (14)
C3A—C2A—H2AA119.6C3B—C4B—C7B125.5 (14)
C4A—C3A—C2A119.3 (16)C6B—C5B—C4B122.9 (16)
C4A—C3A—H3A120.3C6B—C5B—H5B118.5
C2A—C3A—H3A120.3C4B—C5B—H5B118.5
C5A—C4A—C3A119.7 (16)N1B—C6B—C5B122.2 (17)
C5A—C4A—C7A115.8 (14)N1B—C6B—H6B118.9
C3A—C4A—C7A124.5 (15)C5B—C6B—H6B118.9
C4A—C5A—C6A120.1 (17)O1B—C7B—N2B121.1 (14)
C4A—C5A—H5A120.0O1B—C7B—C4B120.4 (15)
C6A—C5A—H5A120.0N2B—C7B—C4B118.6 (13)
N1A—C6A—C5A120.8 (17)C9B—C8B—N2B113.9 (13)
N1A—C6A—H6A119.6C9B—C8B—H8BA108.8
C5A—C6A—H6A119.6N2B—C8B—H8BA108.8
O1A—C7A—N2A119.8 (16)C9B—C8B—H8BB108.8
O1A—C7A—C4A120.7 (14)N2B—C8B—H8BB108.8
N2A—C7A—C4A119.3 (14)H8BA—C8B—H8BB107.7
N2A—C8A—C9A114.4 (12)C10B—C9B—C14B118.1 (15)
N2A—C8A—H8AA108.7C10B—C9B—C8B122.2 (15)
C9A—C8A—H8AA108.7C14B—C9B—C8B119.6 (15)
N2A—C8A—H8AB108.7C11B—C10B—C9B122.2 (17)
C9A—C8A—H8AB108.7C11B—C10B—H10B118.9
H8AA—C8A—H8AB107.6C9B—C10B—H10B118.9
C14A—C9A—C10A123.7 (18)C10B—C11B—C12B120.2 (18)
C14A—C9A—C8A123.0 (17)C10B—C11B—H11B119.9
C10A—C9A—C8A113.2 (16)C12B—C11B—H11B119.9
C11A—C10A—C9A117.4 (17)C13B—C12B—C11B119.9 (18)
C11A—C10A—H10A121.3C13B—C12B—H12B120.1
C9A—C10A—H10A121.3C11B—C12B—H12B120.1
C12A—C11A—C10A119 (2)C12B—C13B—C14B119.9 (17)
C12A—C11A—H11A120.5C12B—C13B—H13B120.1
C10A—C11A—H11A120.5C14B—C13B—H13B120.1
C11A—C12A—C13A121 (2)C9B—C14B—C13B119.6 (16)
C11A—C12A—H12A119.6C9B—C14B—H14B120.2
C13A—C12A—H12A119.6C13B—C14B—H14B120.2
I6—I7—I7A—I6ii2.0 (11)C6B—N1B—C2B—C3B7 (3)
C6A—N1A—C2A—C3A0 (2)C1B—N1B—C2B—C3B176.0 (14)
C1A—N1A—C2A—C3A177.8 (15)N1B—C2B—C3B—C4B6 (3)
N1A—C2A—C3A—C4A3 (3)C2B—C3B—C4B—C5B2 (2)
C2A—C3A—C4A—C5A4 (3)C2B—C3B—C4B—C7B173.6 (15)
C2A—C3A—C4A—C7A174.6 (15)C3B—C4B—C5B—C6B1 (2)
C3A—C4A—C5A—C6A2 (3)C7B—C4B—C5B—C6B176.4 (14)
C7A—C4A—C5A—C6A176.7 (14)C2B—N1B—C6B—C5B4 (3)
C2A—N1A—C6A—C5A2 (2)C1B—N1B—C6B—C5B178.7 (15)
C1A—N1A—C6A—C5A175.8 (14)C4B—C5B—C6B—N1B0 (3)
C4A—C5A—C6A—N1A1 (2)C8B—N2B—C7B—O1B3 (2)
C8A—N2A—C7A—O1A8 (2)C8B—N2B—C7B—C4B176.2 (13)
C8A—N2A—C7A—C4A166.8 (14)C5B—C4B—C7B—O1B13 (2)
C5A—C4A—C7A—O1A19 (2)C3B—C4B—C7B—O1B161.8 (15)
C3A—C4A—C7A—O1A159.5 (17)C5B—C4B—C7B—N2B167.7 (14)
C5A—C4A—C7A—N2A166.0 (15)C3B—C4B—C7B—N2B18 (2)
C3A—C4A—C7A—N2A16 (2)C7B—N2B—C8B—C9B178.3 (14)
C7A—N2A—C8A—C9A81 (2)N2B—C8B—C9B—C10B53 (2)
N2A—C8A—C9A—C14A117.5 (17)N2B—C8B—C9B—C14B124.6 (15)
N2A—C8A—C9A—C10A61.6 (18)C14B—C9B—C10B—C11B3 (2)
C14A—C9A—C10A—C11A0 (3)C8B—C9B—C10B—C11B179.5 (15)
C8A—C9A—C10A—C11A179.4 (14)C9B—C10B—C11B—C12B2 (3)
C9A—C10A—C11A—C12A2 (3)C10B—C11B—C12B—C13B2 (3)
C10A—C11A—C12A—C13A4 (3)C11B—C12B—C13B—C14B4 (2)
C11A—C12A—C13A—C14A4 (3)C10B—C9B—C14B—C13B0 (2)
C10A—C9A—C14A—C13A1 (3)C8B—C9B—C14B—C13B178.0 (14)
C8A—C9A—C14A—C13A179.8 (15)C12B—C13B—C14B—C9B3 (2)
C12A—C13A—C14A—C9A1 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1B0.862.022.846 (14)160
C3A—H3A···O1B0.932.533.381 (18)152
C2A—H2AA···I30.933.083.998 (17)169
C1A—H1AC···C12Aiii0.962.723.62 (2)158
C1A—H1AA···I7iii0.963.093.966 (19)153
N2B—H2B···O1Aiv0.862.132.986 (14)176
C3B—H3B···O1Aiv0.932.213.060 (17)151
C2B—H2BA···C12Av0.932.853.72 (2)156
C1B—H1BB···I7vi0.963.073.819 (18)136
C6B—H6B···I4vii0.933.124.019 (17)164
Symmetry codes: (iii) x, y+3/2, z1/2; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x, y1/2, z+1/2.
Selected geometrical parameters (Å, °) for the cations in salts I and II top
ParameterIIIAIIB
N1—C21.338 (10)1.327 (19)1.32 (2)
N1—C61.324 (11)1.35 (2)1.313 (18)
N2—C7—C4—C318.1 (13)-16 (2)18 (2)
C7—N2—C8—C9-75.0 (11)-81 (2)178.3 (14)
N2—C8—C9—C10-77.6 (11)-61.6 (18)-53 (2)
H2···H32.092.142.11
C3···H22.552.612.57
 

Acknowledgements

The authors are grateful to Farmak JSC for support.

Funding information

Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).

References

First citationBernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford: Clarendon Press.  Google Scholar
First citationBoltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. 26 https://doi.org/10.1177/2040206618811416.  Google Scholar
First citationBrittain, H. G. (2009). Polymorphism in pharmaceutical solids, 2nd ed. New York: Informa.  Google Scholar
First citationBuhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72–74.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967–970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69–74.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHilfiker, R. (2006). Polymorphism in the Pharmaceutical Industry. Weinheim: John Wiley & Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRodríguez-Carvajal, J. (2001). Commission on Powder Diffraction (IUCr) Newsletter, 26, 12–19.  Google Scholar
First citationRoisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR, a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118–123.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationVelthuis, A. J. W. te, Zubkova, T. G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Müller, L. & Margitich, V. (2020). Antimicrobial Agents and Chemotherapy, 64, https://doi.org/10.1128/AAC.02605-20.  Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds