research communications
Synthesis and R*,R*)-2,2′-(1,4-phenylene)bis(3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one)
of racemic (aPennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu
In the racemic title compound, C26H24N2O2S2, one of the thiazine rings shows a twisted boat conformation (Q = 0.743 Å, θ = 92.1°) and the other a half-chair puckering (Q = 0.669 Å, θ = 54.3°). The terminal phenyl rings are almost parallel to each other [dihedral angle 21.71 (10)°]. Both of these rings are orthogonal to the central phenyl ring, subtending a dihedral angle of about 78° in each case. The extended structure is consolidated by C—H⋯O and C—H⋯S hydrogen bonds as well as aromatic ring interactions of parallel-displaced and T-type. The molecule has approximate C2 but this is not carried over to its three-dimensional structure or the intermolecular interactions.
Keywords: bis-heterocycle; twisted boat pucker; half-chair pucker and 1,3-thiazin-4-one; C—H⋯S hydrogen bonding; crystal structure.
CCDC reference: 2119921
1. Chemical context
Bis-heterocyclic compounds exhibit a variety of biological activities (Shaker, 2012). 2,2′-(1,4-Phenylene)-bis-(3-phenyl-1,3-thiazolidin-4-one), a phenylene-bridged bis-(1,3-thiazolidin-4-one) in which the bridging benzene ring is connected to C2 of each five-membered heterocycle, has been reported by three groups (Martani, 1956; Shaker, 1999; Mohammadi et al., 2020). 2,2′-(1,4-Phenylene)-bis-(3-(4-fluorophenyl)-1,3-thiazolidin-4-one) has shown good antifungal activity (Abdel-Rahman & Ali, 2013). The only report of a phenylene-bridged bis-(1,3-thiazin-4-one) in which the bridging benzene ring is connected to C2 of each six-membered heterocycle is of two unsaturated derivatives of 2,2′-(1,4-phenylene)-bis-(3,4-dihydro-2H-1,3-thiazin-4-one) (Shaker et al., 2010). We have previously reported the synthesis and of saturated meso-3,3′-(1,4-phenylene)-bis-(2-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one), in which the bridging benzene ring is connected to the nitrogen atom of each heterocycle (Yennawar, Moyer & Silverburg, 2018). Herein, we report the synthesis and of the racemic title compound, C26H24N2O2S2.
2. Structural commentary
The title compound has three phenyl rings (C5–C10, C11–C16 and C21–C26) alternating with two 1,3-thiazine rings, C1–C4/N1/S1 and C17–C20/N2/S2 (Fig. 1). In the arbitrarily chosen asymmetric molecule, atoms C1 and C17 both have an R configuration, but crystal symmetry generates a racemic R,R and S,S mixture. The terminal C5 and C21 phenyl rings are approximately parallel to each other with the interplanar angle being 21.71 (10)°. Each of these `bookend' rings is orthogonal to the central phenyl ring subtending dihedral angles of 78.50 (9) (C5/C11 rings) and 78.80 (9)° (C11/C21 rings). The thiazine ring containing atom S1 exhibits a twisted-boat pucker (Q = 0.743 Å, θ = 92.1°) while the ring containing S2 has a half-chair pucker (Q = 0.669 Å, θ = 54.3°) with atom S2 displaced from the plane defined by the remaining five atoms of the ring, by about 0.968 Å. Neither of these puckers are of the most favored type. Despite the different conformations of the heterocyclic rings, the molecule possesses approximate local C2 symmetry with an r.m.s. deviation for the overlapping halves of the molecule of 0.261 Å but this does not coincide with any in the lattice. Consequently there is asymmetry in the intermolecular interactions (Fig. 2).
3. Supramolecular features
The surface of the molecule is dominated by hydrophobic regions with three phenyl rings alternating with two thiazine rings. The extended structure seems to be primarily a result of hydrophobic van der Waals interactions, further assisted by aromatic–aromatic interactions of parallel-displaced and T-type. Of the two sulfur and two oxygen atoms in each molecule, only one of each (O1 and S1) act as acceptors for C—H⋯O and C—H⋯S type intermolecular interactions (Table 1). The donor carbon atoms (C13, C17 and C19) are either members of the central phenyl ring or the other thiazine ring (containing O2 and S2). Thus although the molecule is chemically symmetric and the structure contains both enantiomers, the packing shows asymmetry in the interactions. A view down the a-axis direction (Fig. 3) shows layers of the aromatic rings and thiazine rings alternating with each other along the c-axis direction. It is worth noting the C—H⋯S interaction observed here is a hydrogen bond between non-traditional donor and acceptor atoms. Ghosh et al. (2020) have recently presented experimental and theoretical analyses of such interactions, and state that these type of interactions `exhibit all the characteristics of conventional hydrogen bonds'.
4. Database survey
A structure search was done in Scifinder, and a text search (`1,3-thiazin-4-one') was performed in the Cambridge Structural Database (Groom et al., 2016; accessed October, 2021). Of the bis-heterocyles mentioned in the Chemical context section above, only our prior paper reports a (Yennawar, Moyer & Silverburg, 2018). Crystal structures of monocyclic 2,3,5,6-tetrahydro-1,3-thiazin-4-ones have been reported for four 2,3-diaryl-1,3-thiazin-4-ones (Yennawar & Silverberg, 2014; Yennawar et al., 2015; Yennawar, Bradley et al., 2018), for a bicyclic azasugar 2,3-fused 1,3-thiazin-4-one (Li et al., 2012) and a 2,2-dialkyl-1,3-thiazinone (Capps et al., 1985). The thiazine rings in these structures exhibit varied puckering. There is a pucker `between half-chair and envelope' in meso-3,3′-(1,4-phenylene)bis(2-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (Yennawar, Moyer & Silverberg 2018), an envelope in 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (Yennawar & Silverberg, 2014), envelopes in (2S)-2-(3-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one and rac-2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (Yennawar, Bradley et al., 2018), a boat and a half-chair in N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (Yennawar et al., 2015), a half-chair in (7R,8R,9R,9aR)-7,8,9-trihydroxyhexahydro-4H,6H-pyrido[2,1-b][1,3]thiazin-4-one (Li et al., 2012), and a half-chair and a chair in methyl (2R,6R)-6-methoxy-4-oxo-2-(prop-1-en-2-yl)-1,3-thiazinane-2-carboxylate (Capps et al., 1985).
5. Synthesis and crystallization
A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar. N,N′-(Benzene-1,4-diyldimethylylidene)dianiline (0.572 g, 3.00 mmol) and 3-mercaptopropionic acid (0.7432 g, 7.50 mmol) were added. 2-Methyltetrahydrofuran (2.3 ml) was added and the solution was stirred. Pyridine (2.4 ml, 30 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) in 2-methyltetrahydrofuran (50 weight percent; 9.2 ml, 15 mmol) was added. The reaction was stirred at room temperature and followed by TLC, then poured into a separatory funnel with dichloromethane (20 ml). The mixture was washed with water (10 ml). The aqueous fraction was then extracted twice with dichloromethane (10 ml each). The organics were combined and washed with saturated sodium bicarbonate (10 ml) and then saturated sodium chloride (10 ml). The organic fraction was dried over sodium sulfate and concentrated under vacuum to give a pale yellow crude solid. Recrystallization from ethanol solution gave two crops of off-white solid (0.4715 g and 0.1087 g, total 0.5802 g, 42%). m.p. 476.3–483.7 K (decomp.). Crystals suitable for X-ray analysis were grown by slow evaporation from ethanol solution.
6. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Supporting information
CCDC reference: 2119921
https://doi.org/10.1107/S2056989021011592/hb7986sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989021011592/hb7986Isup3.cml
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011592/hb7986Isup4.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C26H24N2O2S2 | Dx = 1.392 Mg m−3 |
Mr = 460.59 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 13210 reflections |
a = 9.6963 (3) Å | θ = 3.0–74.7° |
b = 17.6307 (4) Å | µ = 2.41 mm−1 |
c = 25.7044 (6) Å | T = 173 K |
V = 4394.22 (19) Å3 | Block, colorless |
Z = 8 | 0.34 × 0.30 × 0.16 mm |
F(000) = 1936 |
ROD, Synergy Custom system, HyPix-Arc 150 diffractometer | 4317 independent reflections |
Radiation source: Rotating-anode X-ray tube | 3910 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.035 |
ω scans | θmax = 75.2°, θmin = 3.4° |
Absorption correction: gaussian (CrysalisPro; Rigaku OD, 2021) | h = −11→10 |
Tmin = 0.59, Tmax = 0.81 | k = −21→21 |
16911 measured reflections | l = −31→22 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.043P)2 + 2.8735P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.34 e Å−3 |
4317 reflections | Δρmin = −0.30 e Å−3 |
290 parameters | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00067 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.03452 (5) | 0.15757 (3) | 0.35406 (2) | 0.03576 (14) | |
S2 | 0.74104 (5) | 0.23378 (3) | 0.26135 (2) | 0.03303 (14) | |
O1 | 0.17980 (17) | −0.07596 (8) | 0.34004 (5) | 0.0405 (4) | |
O2 | 0.73414 (19) | 0.44837 (8) | 0.33902 (6) | 0.0498 (4) | |
N1 | 0.17158 (16) | 0.03164 (8) | 0.38871 (6) | 0.0285 (3) | |
N2 | 0.74004 (16) | 0.32127 (9) | 0.34850 (6) | 0.0282 (3) | |
C1 | 0.17917 (19) | 0.11440 (10) | 0.38934 (7) | 0.0283 (4) | |
H1 | 0.166679 | 0.129095 | 0.425801 | 0.034* | |
C2 | 0.0161 (2) | 0.09064 (12) | 0.30065 (8) | 0.0396 (5) | |
H2A | −0.063280 | 0.058472 | 0.306954 | 0.048* | |
H2B | 0.000097 | 0.118287 | 0.268585 | 0.048* | |
C3 | 0.1439 (2) | 0.04154 (11) | 0.29466 (7) | 0.0351 (4) | |
H3A | 0.133360 | 0.009144 | 0.264420 | 0.042* | |
H3B | 0.223572 | 0.073762 | 0.289008 | 0.042* | |
C4 | 0.1679 (2) | −0.00726 (11) | 0.34247 (7) | 0.0315 (4) | |
C5 | 0.1762 (2) | −0.00729 (10) | 0.43785 (7) | 0.0289 (4) | |
C6 | 0.0811 (2) | −0.06443 (10) | 0.44850 (8) | 0.0330 (4) | |
H6 | 0.015814 | −0.078494 | 0.423799 | 0.040* | |
C7 | 0.0854 (2) | −0.09993 (11) | 0.49658 (8) | 0.0401 (5) | |
H7 | 0.023888 | −0.139005 | 0.503783 | 0.048* | |
C8 | 0.1797 (3) | −0.07817 (12) | 0.53393 (8) | 0.0441 (5) | |
H8 | 0.181054 | −0.102412 | 0.566059 | 0.053* | |
C9 | 0.2717 (2) | −0.02062 (12) | 0.52368 (8) | 0.0417 (5) | |
H9 | 0.334019 | −0.005143 | 0.549063 | 0.050* | |
C10 | 0.2710 (2) | 0.01427 (11) | 0.47510 (8) | 0.0351 (4) | |
H10 | 0.334578 | 0.052247 | 0.467703 | 0.042* | |
C11 | 0.31846 (18) | 0.14655 (10) | 0.37342 (6) | 0.0257 (4) | |
C12 | 0.33492 (19) | 0.22501 (10) | 0.37044 (7) | 0.0262 (4) | |
H12 | 0.259894 | 0.256443 | 0.377028 | 0.031* | |
C13 | 0.46121 (18) | 0.25695 (10) | 0.35783 (6) | 0.0262 (4) | |
H13 | 0.470079 | 0.309434 | 0.356459 | 0.031* | |
C14 | 0.57488 (19) | 0.21130 (10) | 0.34719 (6) | 0.0251 (4) | |
C15 | 0.5598 (2) | 0.13267 (10) | 0.35063 (7) | 0.0289 (4) | |
H15 | 0.634864 | 0.101322 | 0.343891 | 0.035* | |
C16 | 0.4333 (2) | 0.10086 (10) | 0.36410 (7) | 0.0302 (4) | |
H16 | 0.425202 | 0.048454 | 0.366908 | 0.036* | |
C17 | 0.71351 (19) | 0.24304 (10) | 0.33082 (7) | 0.0267 (4) | |
H17 | 0.783403 | 0.211186 | 0.347587 | 0.032* | |
C18 | 0.6139 (2) | 0.30351 (11) | 0.24347 (7) | 0.0362 (4) | |
H18A | 0.612491 | 0.308869 | 0.205912 | 0.043* | |
H18B | 0.523504 | 0.286260 | 0.254475 | 0.043* | |
C19 | 0.6438 (3) | 0.37990 (12) | 0.26799 (8) | 0.0437 (5) | |
H19A | 0.703209 | 0.407306 | 0.244148 | 0.052* | |
H19B | 0.557206 | 0.407369 | 0.269383 | 0.052* | |
C20 | 0.7086 (2) | 0.38557 (11) | 0.32129 (7) | 0.0344 (4) | |
C21 | 0.81722 (19) | 0.32632 (10) | 0.39613 (7) | 0.0292 (4) | |
C22 | 0.7625 (2) | 0.29558 (11) | 0.44129 (7) | 0.0370 (5) | |
H22 | 0.672942 | 0.276680 | 0.441353 | 0.044* | |
C23 | 0.8408 (3) | 0.29297 (12) | 0.48625 (8) | 0.0495 (6) | |
H23 | 0.804317 | 0.271700 | 0.516364 | 0.059* | |
C24 | 0.9725 (3) | 0.32179 (13) | 0.48645 (10) | 0.0544 (7) | |
H24 | 1.024965 | 0.320241 | 0.516726 | 0.065* | |
C25 | 1.0268 (3) | 0.35300 (14) | 0.44176 (11) | 0.0533 (6) | |
H25 | 1.115824 | 0.372603 | 0.442092 | 0.064* | |
C26 | 0.9499 (2) | 0.35544 (12) | 0.39634 (9) | 0.0408 (5) | |
H26 | 0.987103 | 0.376435 | 0.366260 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0283 (2) | 0.0316 (2) | 0.0474 (3) | 0.00307 (19) | 0.0025 (2) | 0.0052 (2) |
S2 | 0.0318 (3) | 0.0391 (3) | 0.0282 (2) | −0.0025 (2) | 0.00399 (18) | −0.00733 (18) |
O1 | 0.0579 (10) | 0.0262 (7) | 0.0374 (7) | −0.0022 (7) | 0.0097 (7) | −0.0020 (6) |
O2 | 0.0725 (11) | 0.0269 (7) | 0.0501 (9) | −0.0046 (7) | −0.0080 (8) | −0.0010 (6) |
N1 | 0.0342 (8) | 0.0225 (7) | 0.0286 (7) | −0.0038 (6) | 0.0052 (6) | 0.0026 (6) |
N2 | 0.0314 (8) | 0.0254 (8) | 0.0277 (7) | −0.0048 (6) | −0.0017 (6) | −0.0021 (6) |
C1 | 0.0321 (10) | 0.0225 (8) | 0.0304 (9) | −0.0007 (7) | 0.0045 (8) | 0.0019 (7) |
C2 | 0.0385 (11) | 0.0382 (11) | 0.0421 (11) | −0.0035 (9) | −0.0049 (9) | 0.0039 (9) |
C3 | 0.0407 (11) | 0.0331 (10) | 0.0313 (10) | −0.0044 (8) | 0.0014 (8) | 0.0012 (8) |
C4 | 0.0329 (10) | 0.0285 (9) | 0.0330 (9) | −0.0039 (8) | 0.0064 (8) | 0.0002 (8) |
C5 | 0.0346 (10) | 0.0229 (8) | 0.0290 (9) | 0.0015 (7) | 0.0058 (8) | 0.0015 (7) |
C6 | 0.0379 (10) | 0.0261 (9) | 0.0351 (10) | −0.0013 (8) | 0.0095 (8) | −0.0002 (8) |
C7 | 0.0504 (13) | 0.0279 (9) | 0.0420 (11) | 0.0014 (9) | 0.0165 (10) | 0.0067 (8) |
C8 | 0.0612 (15) | 0.0378 (11) | 0.0332 (10) | 0.0099 (10) | 0.0122 (10) | 0.0095 (9) |
C9 | 0.0518 (13) | 0.0408 (11) | 0.0326 (10) | 0.0060 (10) | −0.0011 (9) | −0.0002 (9) |
C10 | 0.0400 (11) | 0.0298 (9) | 0.0356 (10) | −0.0005 (8) | 0.0029 (8) | 0.0022 (8) |
C11 | 0.0288 (9) | 0.0252 (8) | 0.0231 (8) | −0.0007 (7) | 0.0004 (7) | 0.0017 (7) |
C12 | 0.0288 (9) | 0.0234 (8) | 0.0265 (8) | 0.0026 (7) | 0.0007 (7) | 0.0001 (7) |
C13 | 0.0305 (9) | 0.0220 (8) | 0.0262 (8) | −0.0010 (7) | −0.0015 (7) | 0.0009 (7) |
C14 | 0.0280 (9) | 0.0256 (9) | 0.0219 (8) | −0.0018 (7) | −0.0023 (7) | −0.0003 (6) |
C15 | 0.0294 (9) | 0.0241 (9) | 0.0332 (9) | 0.0030 (7) | 0.0014 (7) | −0.0005 (7) |
C16 | 0.0341 (10) | 0.0208 (8) | 0.0356 (9) | 0.0009 (7) | 0.0033 (8) | 0.0023 (7) |
C17 | 0.0281 (9) | 0.0252 (8) | 0.0267 (8) | −0.0015 (7) | −0.0022 (7) | −0.0027 (7) |
C18 | 0.0369 (11) | 0.0454 (11) | 0.0264 (9) | −0.0007 (9) | −0.0027 (8) | 0.0000 (8) |
C19 | 0.0611 (15) | 0.0363 (11) | 0.0338 (10) | 0.0019 (10) | −0.0029 (10) | 0.0048 (8) |
C20 | 0.0409 (11) | 0.0306 (10) | 0.0319 (9) | −0.0011 (8) | 0.0023 (8) | 0.0012 (8) |
C21 | 0.0311 (9) | 0.0266 (8) | 0.0301 (9) | 0.0000 (7) | −0.0038 (8) | −0.0064 (7) |
C22 | 0.0467 (12) | 0.0331 (10) | 0.0312 (10) | −0.0020 (9) | −0.0043 (9) | −0.0030 (8) |
C23 | 0.0799 (18) | 0.0361 (11) | 0.0324 (11) | 0.0070 (11) | −0.0132 (11) | −0.0047 (9) |
C24 | 0.0692 (17) | 0.0415 (12) | 0.0526 (14) | 0.0158 (12) | −0.0321 (13) | −0.0159 (11) |
C25 | 0.0395 (12) | 0.0482 (13) | 0.0723 (16) | 0.0015 (10) | −0.0205 (12) | −0.0260 (12) |
C26 | 0.0372 (11) | 0.0368 (10) | 0.0485 (12) | −0.0057 (9) | 0.0006 (9) | −0.0121 (9) |
S1—C2 | 1.819 (2) | C10—H10 | 0.9300 |
S1—C1 | 1.8355 (19) | C11—C12 | 1.395 (2) |
S2—C18 | 1.801 (2) | C11—C16 | 1.395 (2) |
S2—C17 | 1.8130 (18) | C12—C13 | 1.386 (2) |
O1—C4 | 1.218 (2) | C12—H12 | 0.9300 |
O2—C20 | 1.223 (2) | C13—C14 | 1.392 (3) |
N1—C4 | 1.373 (2) | C13—H13 | 0.9300 |
N1—C5 | 1.438 (2) | C14—C15 | 1.397 (2) |
N1—C1 | 1.461 (2) | C14—C17 | 1.516 (2) |
N2—C20 | 1.367 (2) | C15—C16 | 1.393 (3) |
N2—C21 | 1.438 (2) | C15—H15 | 0.9300 |
N2—C17 | 1.475 (2) | C16—H16 | 0.9300 |
C1—C11 | 1.521 (2) | C17—H17 | 0.9800 |
C1—H1 | 0.9800 | C18—C19 | 1.515 (3) |
C2—C3 | 1.519 (3) | C18—H18A | 0.9700 |
C2—H2A | 0.9700 | C18—H18B | 0.9700 |
C2—H2B | 0.9700 | C19—C20 | 1.510 (3) |
C3—C4 | 1.518 (3) | C19—H19A | 0.9700 |
C3—H3A | 0.9700 | C19—H19B | 0.9700 |
C3—H3B | 0.9700 | C21—C26 | 1.385 (3) |
C5—C10 | 1.380 (3) | C21—C22 | 1.387 (3) |
C5—C6 | 1.393 (3) | C22—C23 | 1.384 (3) |
C6—C7 | 1.386 (3) | C22—H22 | 0.9300 |
C6—H6 | 0.9300 | C23—C24 | 1.374 (4) |
C7—C8 | 1.380 (3) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C24—C25 | 1.378 (4) |
C8—C9 | 1.377 (3) | C24—H24 | 0.9300 |
C8—H8 | 0.9300 | C25—C26 | 1.386 (3) |
C9—C10 | 1.392 (3) | C25—H25 | 0.9300 |
C9—H9 | 0.9300 | C26—H26 | 0.9300 |
C2—S1—C1 | 100.30 (9) | C11—C12—H12 | 119.4 |
C18—S2—C17 | 95.12 (9) | C12—C13—C14 | 120.70 (16) |
C4—N1—C5 | 121.52 (15) | C12—C13—H13 | 119.6 |
C4—N1—C1 | 120.65 (15) | C14—C13—H13 | 119.6 |
C5—N1—C1 | 117.73 (14) | C13—C14—C15 | 118.60 (17) |
C20—N2—C21 | 120.05 (15) | C13—C14—C17 | 122.92 (16) |
C20—N2—C17 | 125.39 (15) | C15—C14—C17 | 118.47 (16) |
C21—N2—C17 | 114.27 (14) | C16—C15—C14 | 120.49 (17) |
N1—C1—C11 | 114.46 (15) | C16—C15—H15 | 119.8 |
N1—C1—S1 | 111.73 (13) | C14—C15—H15 | 119.8 |
C11—C1—S1 | 113.03 (12) | C15—C16—C11 | 120.88 (16) |
N1—C1—H1 | 105.6 | C15—C16—H16 | 119.6 |
C11—C1—H1 | 105.6 | C11—C16—H16 | 119.6 |
S1—C1—H1 | 105.6 | N2—C17—C14 | 114.48 (15) |
C3—C2—S1 | 111.48 (14) | N2—C17—S2 | 111.22 (12) |
C3—C2—H2A | 109.3 | C14—C17—S2 | 111.76 (12) |
S1—C2—H2A | 109.3 | N2—C17—H17 | 106.2 |
C3—C2—H2B | 109.3 | C14—C17—H17 | 106.2 |
S1—C2—H2B | 109.3 | S2—C17—H17 | 106.2 |
H2A—C2—H2B | 108.0 | C19—C18—S2 | 111.69 (15) |
C4—C3—C2 | 111.48 (16) | C19—C18—H18A | 109.3 |
C4—C3—H3A | 109.3 | S2—C18—H18A | 109.3 |
C2—C3—H3A | 109.3 | C19—C18—H18B | 109.3 |
C4—C3—H3B | 109.3 | S2—C18—H18B | 109.3 |
C2—C3—H3B | 109.3 | H18A—C18—H18B | 107.9 |
H3A—C3—H3B | 108.0 | C20—C19—C18 | 121.05 (17) |
O1—C4—N1 | 122.58 (17) | C20—C19—H19A | 107.1 |
O1—C4—C3 | 122.46 (17) | C18—C19—H19A | 107.1 |
N1—C4—C3 | 114.94 (16) | C20—C19—H19B | 107.1 |
C10—C5—C6 | 120.24 (18) | C18—C19—H19B | 107.1 |
C10—C5—N1 | 119.90 (16) | H19A—C19—H19B | 106.8 |
C6—C5—N1 | 119.81 (17) | O2—C20—N2 | 121.00 (18) |
C7—C6—C5 | 118.79 (19) | O2—C20—C19 | 118.84 (18) |
C7—C6—H6 | 120.6 | N2—C20—C19 | 120.15 (17) |
C5—C6—H6 | 120.6 | C26—C21—C22 | 119.81 (19) |
C8—C7—C6 | 121.00 (19) | C26—C21—N2 | 120.64 (18) |
C8—C7—H7 | 119.5 | C22—C21—N2 | 119.31 (17) |
C6—C7—H7 | 119.5 | C23—C22—C21 | 120.1 (2) |
C9—C8—C7 | 120.08 (19) | C23—C22—H22 | 119.9 |
C9—C8—H8 | 120.0 | C21—C22—H22 | 119.9 |
C7—C8—H8 | 120.0 | C24—C23—C22 | 120.1 (2) |
C8—C9—C10 | 119.6 (2) | C24—C23—H23 | 120.0 |
C8—C9—H9 | 120.2 | C22—C23—H23 | 120.0 |
C10—C9—H9 | 120.2 | C23—C24—C25 | 120.0 (2) |
C5—C10—C9 | 120.27 (19) | C23—C24—H24 | 120.0 |
C5—C10—H10 | 119.9 | C25—C24—H24 | 120.0 |
C9—C10—H10 | 119.9 | C24—C25—C26 | 120.6 (2) |
C12—C11—C16 | 118.17 (16) | C24—C25—H25 | 119.7 |
C12—C11—C1 | 119.09 (16) | C26—C25—H25 | 119.7 |
C16—C11—C1 | 122.66 (15) | C21—C26—C25 | 119.4 (2) |
C13—C12—C11 | 121.12 (17) | C21—C26—H26 | 120.3 |
C13—C12—H12 | 119.4 | C25—C26—H26 | 120.3 |
C4—N1—C1—C11 | −72.6 (2) | C13—C14—C15—C16 | 0.4 (3) |
C5—N1—C1—C11 | 103.92 (18) | C17—C14—C15—C16 | −178.19 (16) |
C4—N1—C1—S1 | 57.5 (2) | C14—C15—C16—C11 | 1.2 (3) |
C5—N1—C1—S1 | −126.00 (15) | C12—C11—C16—C15 | −1.9 (3) |
C2—S1—C1—N1 | −37.28 (14) | C1—C11—C16—C15 | −178.66 (16) |
C2—S1—C1—C11 | 93.55 (14) | C20—N2—C17—C14 | −90.8 (2) |
C1—S1—C2—C3 | −17.14 (16) | C21—N2—C17—C14 | 95.38 (18) |
S1—C2—C3—C4 | 63.06 (19) | C20—N2—C17—S2 | 37.1 (2) |
C5—N1—C4—O1 | −6.2 (3) | C21—N2—C17—S2 | −136.75 (13) |
C1—N1—C4—O1 | 170.11 (18) | C13—C14—C17—N2 | 25.7 (2) |
C5—N1—C4—C3 | 172.13 (17) | C15—C14—C17—N2 | −155.73 (16) |
C1—N1—C4—C3 | −11.5 (3) | C13—C14—C17—S2 | −101.90 (17) |
C2—C3—C4—O1 | 125.2 (2) | C15—C14—C17—S2 | 76.68 (18) |
C2—C3—C4—N1 | −53.2 (2) | C18—S2—C17—N2 | −59.40 (14) |
C4—N1—C5—C10 | 132.03 (19) | C18—S2—C17—C14 | 69.93 (14) |
C1—N1—C5—C10 | −44.4 (2) | C17—S2—C18—C19 | 57.69 (16) |
C4—N1—C5—C6 | −50.7 (3) | S2—C18—C19—C20 | −33.8 (3) |
C1—N1—C5—C6 | 132.83 (18) | C21—N2—C20—O2 | −6.6 (3) |
C10—C5—C6—C7 | −1.3 (3) | C17—N2—C20—O2 | 179.90 (19) |
N1—C5—C6—C7 | −178.50 (17) | C21—N2—C20—C19 | 172.13 (18) |
C5—C6—C7—C8 | 1.6 (3) | C17—N2—C20—C19 | −1.4 (3) |
C6—C7—C8—C9 | −0.3 (3) | C18—C19—C20—O2 | 178.1 (2) |
C7—C8—C9—C10 | −1.4 (3) | C18—C19—C20—N2 | −0.6 (3) |
C6—C5—C10—C9 | −0.4 (3) | C20—N2—C21—C26 | −61.7 (2) |
N1—C5—C10—C9 | 176.87 (18) | C17—N2—C21—C26 | 112.5 (2) |
C8—C9—C10—C5 | 1.7 (3) | C20—N2—C21—C22 | 124.0 (2) |
N1—C1—C11—C12 | 177.14 (15) | C17—N2—C21—C22 | −61.8 (2) |
S1—C1—C11—C12 | 47.7 (2) | C26—C21—C22—C23 | −0.9 (3) |
N1—C1—C11—C16 | −6.1 (2) | N2—C21—C22—C23 | 173.43 (18) |
S1—C1—C11—C16 | −135.58 (15) | C21—C22—C23—C24 | 0.9 (3) |
C16—C11—C12—C13 | 0.9 (3) | C22—C23—C24—C25 | −0.3 (3) |
C1—C11—C12—C13 | 177.79 (16) | C23—C24—C25—C26 | −0.2 (3) |
C11—C12—C13—C14 | 0.7 (3) | C22—C21—C26—C25 | 0.4 (3) |
C12—C13—C14—C15 | −1.4 (3) | N2—C21—C26—C25 | −173.87 (19) |
C12—C13—C14—C17 | 177.14 (15) | C24—C25—C26—C21 | 0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19A···O1i | 0.97 | 2.46 | 3.353 (3) | 153 |
C17—H17···S1ii | 0.98 | 2.62 | 3.5094 (19) | 151 |
C13—H13···O1iii | 0.93 | 2.52 | 3.280 (2) | 139 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+1/2, y+1/2, z. |
Acknowledgements
The authors thank Curia for the gift of T3P.
Funding information
Research reported here was partially supported by SIG S10 of the National Institutes of Health under award number 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar. Research was also supported by Penn State Schuylkill (grant No. 800000005972 to Lee J. Silverberg).
References
Abdel-Rahman, R. M. & Ali, T. E. (2013). Monatsh. Chem. 144, 1243–1252. CAS Google Scholar
Capps, N. K., Davies, G. M., Hitchcock, P. B. & Young, D. W. (1985). J. Chem. Soc. Chem. Commun. pp. 843–845. CSD CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482–17493. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Li, X., Qin, Z., Yang, T., Zhang, H., Wei, S., Li, C., Chen, H. & Meng, M. (2012). Bioorg. Med. Chem. Lett. 22, 2712–2716. Web of Science CSD CrossRef CAS PubMed Google Scholar
Martani, A. (1956). Ann. Chim. 46, 256–262. CAS Google Scholar
Mohammadi, R., Alamgholiloo, H., Gholipour, B., Rostamnia, S., Khaksar, S., Farajzadeh, M. & Shokouhimehr, M. (2020). J. Photochem. Photobiol. Chem. 402, 112786. Web of Science CrossRef Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Shaker, R. M. (1999). Phosphorus Sulfur Silicon, 149, 7–14. Web of Science CrossRef CAS Google Scholar
Shaker, R. M. (2012). Arkivoc, i, 1–44. Google Scholar
Shaker, R. M., Ibrahim, Y. R., Abdel-Latif, F. F. & Hamoda, A. (2010). Z. Naturforsch. Teil B, 65, 1148–1154. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yennawar, H. P., Bradley, H. G., Perhonitch, K. C., Reppert, H. E. & Silverberg, L. J. (2018). Acta Cryst. E74, 454–457. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yennawar, H. P., Moyer, Q. J. & Silverberg, L. J. (2018). Acta Cryst. E74, 1497–1499. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. CSD CrossRef IUCr Journals Google Scholar
Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.