research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of racemic (R*,R*)-2,2′-(1,4-phenyl­ene)bis­­(3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one)

crossmark logo

aPennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 September 2021; accepted 2 November 2021; online 9 November 2021)

In the racemic title compound, C26H24N2O2S2, one of the thia­zine rings shows a twisted boat conformation (Q = 0.743 Å, θ = 92.1°) and the other a half-chair puckering (Q = 0.669 Å, θ = 54.3°). The terminal phenyl rings are almost parallel to each other [dihedral angle 21.71 (10)°]. Both of these rings are orthogonal to the central phenyl ring, subtending a dihedral angle of about 78° in each case. The extended structure is consolidated by C—H⋯O and C—H⋯S hydrogen bonds as well as aromatic ring inter­actions of parallel-displaced and T-type. The mol­ecule has approximate C2 local symmetry but this is not carried over to its three-dimensional structure or the inter­molecular inter­actions.

1. Chemical context

Bis-heterocyclic compounds exhibit a variety of biological activities (Shaker, 2012[Shaker, R. M. (2012). Arkivoc, i, 1-44.]). 2,2′-(1,4-Phenyl­ene)-bis-(3-phenyl-1,3-thia­zolidin-4-one), a phenyl­ene-bridged bis-(1,3-thia­zolidin-4-one) in which the bridging benzene ring is connected to C2 of each five-membered heterocycle, has been reported by three groups (Martani, 1956[Martani, A. (1956). Ann. Chim. 46, 256-262.]; Shaker, 1999[Shaker, R. M. (1999). Phosphorus Sulfur Silicon, 149, 7-14.]; Mohammadi et al., 2020[Mohammadi, R., Alamgholiloo, H., Gholipour, B., Rostamnia, S., Khaksar, S., Farajzadeh, M. & Shokouhimehr, M. (2020). J. Photochem. Photobiol. Chem. 402, 112786.]). 2,2′-(1,4-Phenyl­ene)-bis-(3-(4-fluoro­phen­yl)-1,3-thia­zolidin-4-one) has shown good anti­fungal activity (Abdel-Rahman & Ali, 2013[Abdel-Rahman, R. M. & Ali, T. E. (2013). Monatsh. Chem. 144, 1243-1252.]). The only report of a phenyl­ene-bridged bis-(1,3-thia­zin-4-one) in which the bridging benzene ring is connected to C2 of each six-membered heterocycle is of two unsaturated derivatives of 2,2′-(1,4-phenyl­ene)-bis-(3,4-di­hydro-2H-1,3-thia­zin-4-one) (Shaker et al., 2010[Shaker, R. M., Ibrahim, Y. R., Abdel-Latif, F. F. & Hamoda, A. (2010). Z. Naturforsch. Teil B, 65, 1148-1154.]). We have previously reported the synthesis and crystal structure of saturated meso-3,3′-(1,4-phenyl­ene)-bis-(2-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one), in which the bridging benzene ring is connected to the nitro­gen atom of each heterocycle (Yennawar, Moyer & Silverburg, 2018[Yennawar, H. P., Moyer, Q. J. & Silverberg, L. J. (2018). Acta Cryst. E74, 1497-1499.]). Herein, we report the synthesis and crystal structure of the racemic title compound, C26H24N2O2S2.

[Scheme 1]

2. Structural commentary

The title compound has three phenyl rings (C5–C10, C11–C16 and C21–C26) alternating with two 1,3-thia­zine rings, C1–C4/N1/S1 and C17–C20/N2/S2 (Fig. 1[link]). In the arbitrarily chosen asymmetric mol­ecule, atoms C1 and C17 both have an R configuration, but crystal symmetry generates a racemic R,R and S,S mixture. The terminal C5 and C21 phenyl rings are approximately parallel to each other with the inter­planar angle being 21.71 (10)°. Each of these `bookend' rings is orthogonal to the central phenyl ring subtending dihedral angles of 78.50 (9) (C5/C11 rings) and 78.80 (9)° (C11/C21 rings). The thia­zine ring containing atom S1 exhibits a twisted-boat pucker (Q = 0.743 Å, θ = 92.1°) while the ring containing S2 has a half-chair pucker (Q = 0.669 Å, θ = 54.3°) with atom S2 displaced from the plane defined by the remaining five atoms of the ring, by about 0.968 Å. Neither of these puckers are of the most favored type. Despite the different conformations of the heterocyclic rings, the mol­ecule possesses approximate local C2 symmetry with an r.m.s. deviation for the overlapping halves of the mol­ecule of 0.261 Å but this local symmetry does not coincide with any crystallographic symmetry in the lattice. Consequently there is asymmetry in the inter­molecular inter­actions (Fig. 2[link]).

[Figure 1]
Figure 1
Displacement ellipsoid drawing at a 50% probability level of the title compound.
[Figure 2]
Figure 2
Crystal packing diagram showing C—H⋯O bonds as red dashed lines and C—H⋯S as black dashed lines.

3. Supra­molecular features

The surface of the mol­ecule is dominated by hydro­phobic regions with three phenyl rings alternating with two thia­zine rings. The extended structure seems to be primarily a result of hydro­phobic van der Waals inter­actions, further assisted by aromatic–aromatic inter­actions of parallel-displaced and T-type. Of the two sulfur and two oxygen atoms in each mol­ecule, only one of each (O1 and S1) act as acceptors for C—H⋯O and C—H⋯S type inter­molecular inter­actions (Table 1[link]). The donor carbon atoms (C13, C17 and C19) are either members of the central phenyl ring or the other thia­zine ring (containing O2 and S2). Thus although the mol­ecule is chemically symmetric and the structure contains both enanti­omers, the packing shows asymmetry in the inter­actions. A view down the a-axis direction (Fig. 3[link]) shows layers of the aromatic rings and thia­zine rings alternating with each other along the c-axis direction. It is worth noting the C—H⋯S inter­action observed here is a hydrogen bond between non-traditional donor and acceptor atoms. Ghosh et al. (2020[Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482-17493.]) have recently presented experimental and theoretical analyses of such inter­actions, and state that these type of inter­actions `exhibit all the characteristics of conventional hydrogen bonds'.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O1i 0.97 2.46 3.353 (3) 153
C17—H17⋯S1ii 0.98 2.62 3.5094 (19) 151
C13—H13⋯O1iii 0.93 2.52 3.280 (2) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 3]
Figure 3
Crystal packing viewed down the a-axis direction showing alternate layering of aromatic rings and thia­zine rings in the c-axis direction.

4. Database survey

A structure search was done in Scifinder, and a text search (`1,3-thia­zin-4-one') was performed in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; accessed October, 2021). Of the bis-heterocyles mentioned in the Chemical context section above, only our prior paper reports a crystal structure (Yennawar, Moyer & Silverburg, 2018[Yennawar, H. P., Moyer, Q. J. & Silverberg, L. J. (2018). Acta Cryst. E74, 1497-1499.]). Crystal structures of monocyclic 2,3,5,6-tetra­hydro-1,3-thia­zin-4-ones have been reported for four 2,3-diaryl-1,3-thia­zin-4-ones (Yennawar & Silverberg, 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.]; Yennawar et al., 2015[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62-64.]; Yennawar, Bradley et al., 2018[Yennawar, H. P., Bradley, H. G., Perhonitch, K. C., Reppert, H. E. & Silverberg, L. J. (2018). Acta Cryst. E74, 454-457.]), for a bicyclic aza­sugar 2,3-fused 1,3-thia­zin-4-one (Li et al., 2012[Li, X., Qin, Z., Yang, T., Zhang, H., Wei, S., Li, C., Chen, H. & Meng, M. (2012). Bioorg. Med. Chem. Lett. 22, 2712-2716.]) and a 2,2-dialkyl-1,3-thia­zinone (Capps et al., 1985[Capps, N. K., Davies, G. M., Hitchcock, P. B. & Young, D. W. (1985). J. Chem. Soc. Chem. Commun. pp. 843-845.]). The thia­zine rings in these structures exhibit varied puckering. There is a pucker `between half-chair and envelope' in meso-3,3′-(1,4-phenyl­ene)bis­(2-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar, Moyer & Silverberg 2018[Yennawar, H. P., Moyer, Q. J. & Silverberg, L. J. (2018). Acta Cryst. E74, 1497-1499.]), an envelope in 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar & Silverberg, 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.]), envelopes in (2S)-2-(3-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one and rac-2-(4-nitro­phen­yl)-3-phenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar, Bradley et al., 2018[Yennawar, H. P., Bradley, H. G., Perhonitch, K. C., Reppert, H. E. & Silverberg, L. J. (2018). Acta Cryst. E74, 454-457.]), a boat and a half-chair in N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide (Yennawar et al., 2015[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62-64.]), a half-chair in (7R,8R,9R,9aR)-7,8,9-tri­hydroxy­hexa­hydro-4H,6H-pyrido[2,1-b][1,3]thia­zin-4-one (Li et al., 2012[Li, X., Qin, Z., Yang, T., Zhang, H., Wei, S., Li, C., Chen, H. & Meng, M. (2012). Bioorg. Med. Chem. Lett. 22, 2712-2716.]), and a half-chair and a chair in methyl (2R,6R)-6-meth­oxy-4-oxo-2-(prop-1-en-2-yl)-1,3-thia­zinane-2-carboxyl­ate (Capps et al., 1985[Capps, N. K., Davies, G. M., Hitchcock, P. B. & Young, D. W. (1985). J. Chem. Soc. Chem. Commun. pp. 843-845.]).

5. Synthesis and crystallization

A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar. N,N′-(Benzene-1,4-diyldi­methylyl­idene)dianiline (0.572 g, 3.00 mmol) and 3-mercaptopropionic acid (0.7432 g, 7.50 mmol) were added. 2-Methyl­tetra­hydro­furan (2.3 ml) was added and the solution was stirred. Pyridine (2.4 ml, 30 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight percent; 9.2 ml, 15 mmol) was added. The reaction was stirred at room temperature and followed by TLC, then poured into a separatory funnel with di­chloro­methane (20 ml). The mixture was washed with water (10 ml). The aqueous fraction was then extracted twice with di­chloro­methane (10 ml each). The organics were combined and washed with saturated sodium bicarbonate (10 ml) and then saturated sodium chloride (10 ml). The organic fraction was dried over sodium sulfate and concentrated under vacuum to give a pale yellow crude solid. Recrystallization from ethanol solution gave two crops of off-white solid (0.4715 g and 0.1087 g, total 0.5802 g, 42%). m.p. 476.3–483.7 K (decomp.). Crystals suitable for X-ray analysis were grown by slow evaporation from ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H24N2O2S2
Mr 460.59
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 9.6963 (3), 17.6307 (4), 25.7044 (6)
V3) 4394.22 (19)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.41
Crystal size (mm) 0.34 × 0.30 × 0.16
 
Data collection
Diffractometer ROD, Synergy Custom system, HyPix-Arc 150
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.59, 0.81
No. of measured, independent and observed [I > 2σ(I)] reflections 16911, 4317, 3910
Rint 0.035
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.05
No. of reflections 4317
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(R,R)/(S,S)-2,2'-(1,4-Phenylene)bis(3-phenyl-3,4,5,6-tetrahydro-2H-1,3-thiazin-4-one) top
Crystal data top
C26H24N2O2S2Dx = 1.392 Mg m3
Mr = 460.59Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 13210 reflections
a = 9.6963 (3) Åθ = 3.0–74.7°
b = 17.6307 (4) ŵ = 2.41 mm1
c = 25.7044 (6) ÅT = 173 K
V = 4394.22 (19) Å3Block, colorless
Z = 80.34 × 0.30 × 0.16 mm
F(000) = 1936
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
4317 independent reflections
Radiation source: Rotating-anode X-ray tube3910 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.035
ω scansθmax = 75.2°, θmin = 3.4°
Absorption correction: gaussian
(CrysalisPro; Rigaku OD, 2021)
h = 1110
Tmin = 0.59, Tmax = 0.81k = 2121
16911 measured reflectionsl = 3122
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.043P)2 + 2.8735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.34 e Å3
4317 reflectionsΔρmin = 0.30 e Å3
290 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00067 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03452 (5)0.15757 (3)0.35406 (2)0.03576 (14)
S20.74104 (5)0.23378 (3)0.26135 (2)0.03303 (14)
O10.17980 (17)0.07596 (8)0.34004 (5)0.0405 (4)
O20.73414 (19)0.44837 (8)0.33902 (6)0.0498 (4)
N10.17158 (16)0.03164 (8)0.38871 (6)0.0285 (3)
N20.74004 (16)0.32127 (9)0.34850 (6)0.0282 (3)
C10.17917 (19)0.11440 (10)0.38934 (7)0.0283 (4)
H10.1666790.1290950.4258010.034*
C20.0161 (2)0.09064 (12)0.30065 (8)0.0396 (5)
H2A0.0632800.0584720.3069540.048*
H2B0.0000970.1182870.2685850.048*
C30.1439 (2)0.04154 (11)0.29466 (7)0.0351 (4)
H3A0.1333600.0091440.2644200.042*
H3B0.2235720.0737620.2890080.042*
C40.1679 (2)0.00726 (11)0.34247 (7)0.0315 (4)
C50.1762 (2)0.00729 (10)0.43785 (7)0.0289 (4)
C60.0811 (2)0.06443 (10)0.44850 (8)0.0330 (4)
H60.0158140.0784940.4237990.040*
C70.0854 (2)0.09993 (11)0.49658 (8)0.0401 (5)
H70.0238880.1390050.5037830.048*
C80.1797 (3)0.07817 (12)0.53393 (8)0.0441 (5)
H80.1810540.1024120.5660590.053*
C90.2717 (2)0.02062 (12)0.52368 (8)0.0417 (5)
H90.3340190.0051430.5490630.050*
C100.2710 (2)0.01427 (11)0.47510 (8)0.0351 (4)
H100.3345780.0522470.4677030.042*
C110.31846 (18)0.14655 (10)0.37342 (6)0.0257 (4)
C120.33492 (19)0.22501 (10)0.37044 (7)0.0262 (4)
H120.2598940.2564430.3770280.031*
C130.46121 (18)0.25695 (10)0.35783 (6)0.0262 (4)
H130.4700790.3094340.3564590.031*
C140.57488 (19)0.21130 (10)0.34719 (6)0.0251 (4)
C150.5598 (2)0.13267 (10)0.35063 (7)0.0289 (4)
H150.6348640.1013220.3438910.035*
C160.4333 (2)0.10086 (10)0.36410 (7)0.0302 (4)
H160.4252020.0484540.3669080.036*
C170.71351 (19)0.24304 (10)0.33082 (7)0.0267 (4)
H170.7834030.2111860.3475870.032*
C180.6139 (2)0.30351 (11)0.24347 (7)0.0362 (4)
H18A0.6124910.3088690.2059120.043*
H18B0.5235040.2862600.2544750.043*
C190.6438 (3)0.37990 (12)0.26799 (8)0.0437 (5)
H19A0.7032090.4073060.2441480.052*
H19B0.5572060.4073690.2693830.052*
C200.7086 (2)0.38557 (11)0.32129 (7)0.0344 (4)
C210.81722 (19)0.32632 (10)0.39613 (7)0.0292 (4)
C220.7625 (2)0.29558 (11)0.44129 (7)0.0370 (5)
H220.6729420.2766800.4413530.044*
C230.8408 (3)0.29297 (12)0.48625 (8)0.0495 (6)
H230.8043170.2717000.5163640.059*
C240.9725 (3)0.32179 (13)0.48645 (10)0.0544 (7)
H241.0249650.3202410.5167260.065*
C251.0268 (3)0.35300 (14)0.44176 (11)0.0533 (6)
H251.1158240.3726030.4420920.064*
C260.9499 (2)0.35544 (12)0.39634 (9)0.0408 (5)
H260.9871030.3764350.3662600.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0283 (2)0.0316 (2)0.0474 (3)0.00307 (19)0.0025 (2)0.0052 (2)
S20.0318 (3)0.0391 (3)0.0282 (2)0.0025 (2)0.00399 (18)0.00733 (18)
O10.0579 (10)0.0262 (7)0.0374 (7)0.0022 (7)0.0097 (7)0.0020 (6)
O20.0725 (11)0.0269 (7)0.0501 (9)0.0046 (7)0.0080 (8)0.0010 (6)
N10.0342 (8)0.0225 (7)0.0286 (7)0.0038 (6)0.0052 (6)0.0026 (6)
N20.0314 (8)0.0254 (8)0.0277 (7)0.0048 (6)0.0017 (6)0.0021 (6)
C10.0321 (10)0.0225 (8)0.0304 (9)0.0007 (7)0.0045 (8)0.0019 (7)
C20.0385 (11)0.0382 (11)0.0421 (11)0.0035 (9)0.0049 (9)0.0039 (9)
C30.0407 (11)0.0331 (10)0.0313 (10)0.0044 (8)0.0014 (8)0.0012 (8)
C40.0329 (10)0.0285 (9)0.0330 (9)0.0039 (8)0.0064 (8)0.0002 (8)
C50.0346 (10)0.0229 (8)0.0290 (9)0.0015 (7)0.0058 (8)0.0015 (7)
C60.0379 (10)0.0261 (9)0.0351 (10)0.0013 (8)0.0095 (8)0.0002 (8)
C70.0504 (13)0.0279 (9)0.0420 (11)0.0014 (9)0.0165 (10)0.0067 (8)
C80.0612 (15)0.0378 (11)0.0332 (10)0.0099 (10)0.0122 (10)0.0095 (9)
C90.0518 (13)0.0408 (11)0.0326 (10)0.0060 (10)0.0011 (9)0.0002 (9)
C100.0400 (11)0.0298 (9)0.0356 (10)0.0005 (8)0.0029 (8)0.0022 (8)
C110.0288 (9)0.0252 (8)0.0231 (8)0.0007 (7)0.0004 (7)0.0017 (7)
C120.0288 (9)0.0234 (8)0.0265 (8)0.0026 (7)0.0007 (7)0.0001 (7)
C130.0305 (9)0.0220 (8)0.0262 (8)0.0010 (7)0.0015 (7)0.0009 (7)
C140.0280 (9)0.0256 (9)0.0219 (8)0.0018 (7)0.0023 (7)0.0003 (6)
C150.0294 (9)0.0241 (9)0.0332 (9)0.0030 (7)0.0014 (7)0.0005 (7)
C160.0341 (10)0.0208 (8)0.0356 (9)0.0009 (7)0.0033 (8)0.0023 (7)
C170.0281 (9)0.0252 (8)0.0267 (8)0.0015 (7)0.0022 (7)0.0027 (7)
C180.0369 (11)0.0454 (11)0.0264 (9)0.0007 (9)0.0027 (8)0.0000 (8)
C190.0611 (15)0.0363 (11)0.0338 (10)0.0019 (10)0.0029 (10)0.0048 (8)
C200.0409 (11)0.0306 (10)0.0319 (9)0.0011 (8)0.0023 (8)0.0012 (8)
C210.0311 (9)0.0266 (8)0.0301 (9)0.0000 (7)0.0038 (8)0.0064 (7)
C220.0467 (12)0.0331 (10)0.0312 (10)0.0020 (9)0.0043 (9)0.0030 (8)
C230.0799 (18)0.0361 (11)0.0324 (11)0.0070 (11)0.0132 (11)0.0047 (9)
C240.0692 (17)0.0415 (12)0.0526 (14)0.0158 (12)0.0321 (13)0.0159 (11)
C250.0395 (12)0.0482 (13)0.0723 (16)0.0015 (10)0.0205 (12)0.0260 (12)
C260.0372 (11)0.0368 (10)0.0485 (12)0.0057 (9)0.0006 (9)0.0121 (9)
Geometric parameters (Å, º) top
S1—C21.819 (2)C10—H100.9300
S1—C11.8355 (19)C11—C121.395 (2)
S2—C181.801 (2)C11—C161.395 (2)
S2—C171.8130 (18)C12—C131.386 (2)
O1—C41.218 (2)C12—H120.9300
O2—C201.223 (2)C13—C141.392 (3)
N1—C41.373 (2)C13—H130.9300
N1—C51.438 (2)C14—C151.397 (2)
N1—C11.461 (2)C14—C171.516 (2)
N2—C201.367 (2)C15—C161.393 (3)
N2—C211.438 (2)C15—H150.9300
N2—C171.475 (2)C16—H160.9300
C1—C111.521 (2)C17—H170.9800
C1—H10.9800C18—C191.515 (3)
C2—C31.519 (3)C18—H18A0.9700
C2—H2A0.9700C18—H18B0.9700
C2—H2B0.9700C19—C201.510 (3)
C3—C41.518 (3)C19—H19A0.9700
C3—H3A0.9700C19—H19B0.9700
C3—H3B0.9700C21—C261.385 (3)
C5—C101.380 (3)C21—C221.387 (3)
C5—C61.393 (3)C22—C231.384 (3)
C6—C71.386 (3)C22—H220.9300
C6—H60.9300C23—C241.374 (4)
C7—C81.380 (3)C23—H230.9300
C7—H70.9300C24—C251.378 (4)
C8—C91.377 (3)C24—H240.9300
C8—H80.9300C25—C261.386 (3)
C9—C101.392 (3)C25—H250.9300
C9—H90.9300C26—H260.9300
C2—S1—C1100.30 (9)C11—C12—H12119.4
C18—S2—C1795.12 (9)C12—C13—C14120.70 (16)
C4—N1—C5121.52 (15)C12—C13—H13119.6
C4—N1—C1120.65 (15)C14—C13—H13119.6
C5—N1—C1117.73 (14)C13—C14—C15118.60 (17)
C20—N2—C21120.05 (15)C13—C14—C17122.92 (16)
C20—N2—C17125.39 (15)C15—C14—C17118.47 (16)
C21—N2—C17114.27 (14)C16—C15—C14120.49 (17)
N1—C1—C11114.46 (15)C16—C15—H15119.8
N1—C1—S1111.73 (13)C14—C15—H15119.8
C11—C1—S1113.03 (12)C15—C16—C11120.88 (16)
N1—C1—H1105.6C15—C16—H16119.6
C11—C1—H1105.6C11—C16—H16119.6
S1—C1—H1105.6N2—C17—C14114.48 (15)
C3—C2—S1111.48 (14)N2—C17—S2111.22 (12)
C3—C2—H2A109.3C14—C17—S2111.76 (12)
S1—C2—H2A109.3N2—C17—H17106.2
C3—C2—H2B109.3C14—C17—H17106.2
S1—C2—H2B109.3S2—C17—H17106.2
H2A—C2—H2B108.0C19—C18—S2111.69 (15)
C4—C3—C2111.48 (16)C19—C18—H18A109.3
C4—C3—H3A109.3S2—C18—H18A109.3
C2—C3—H3A109.3C19—C18—H18B109.3
C4—C3—H3B109.3S2—C18—H18B109.3
C2—C3—H3B109.3H18A—C18—H18B107.9
H3A—C3—H3B108.0C20—C19—C18121.05 (17)
O1—C4—N1122.58 (17)C20—C19—H19A107.1
O1—C4—C3122.46 (17)C18—C19—H19A107.1
N1—C4—C3114.94 (16)C20—C19—H19B107.1
C10—C5—C6120.24 (18)C18—C19—H19B107.1
C10—C5—N1119.90 (16)H19A—C19—H19B106.8
C6—C5—N1119.81 (17)O2—C20—N2121.00 (18)
C7—C6—C5118.79 (19)O2—C20—C19118.84 (18)
C7—C6—H6120.6N2—C20—C19120.15 (17)
C5—C6—H6120.6C26—C21—C22119.81 (19)
C8—C7—C6121.00 (19)C26—C21—N2120.64 (18)
C8—C7—H7119.5C22—C21—N2119.31 (17)
C6—C7—H7119.5C23—C22—C21120.1 (2)
C9—C8—C7120.08 (19)C23—C22—H22119.9
C9—C8—H8120.0C21—C22—H22119.9
C7—C8—H8120.0C24—C23—C22120.1 (2)
C8—C9—C10119.6 (2)C24—C23—H23120.0
C8—C9—H9120.2C22—C23—H23120.0
C10—C9—H9120.2C23—C24—C25120.0 (2)
C5—C10—C9120.27 (19)C23—C24—H24120.0
C5—C10—H10119.9C25—C24—H24120.0
C9—C10—H10119.9C24—C25—C26120.6 (2)
C12—C11—C16118.17 (16)C24—C25—H25119.7
C12—C11—C1119.09 (16)C26—C25—H25119.7
C16—C11—C1122.66 (15)C21—C26—C25119.4 (2)
C13—C12—C11121.12 (17)C21—C26—H26120.3
C13—C12—H12119.4C25—C26—H26120.3
C4—N1—C1—C1172.6 (2)C13—C14—C15—C160.4 (3)
C5—N1—C1—C11103.92 (18)C17—C14—C15—C16178.19 (16)
C4—N1—C1—S157.5 (2)C14—C15—C16—C111.2 (3)
C5—N1—C1—S1126.00 (15)C12—C11—C16—C151.9 (3)
C2—S1—C1—N137.28 (14)C1—C11—C16—C15178.66 (16)
C2—S1—C1—C1193.55 (14)C20—N2—C17—C1490.8 (2)
C1—S1—C2—C317.14 (16)C21—N2—C17—C1495.38 (18)
S1—C2—C3—C463.06 (19)C20—N2—C17—S237.1 (2)
C5—N1—C4—O16.2 (3)C21—N2—C17—S2136.75 (13)
C1—N1—C4—O1170.11 (18)C13—C14—C17—N225.7 (2)
C5—N1—C4—C3172.13 (17)C15—C14—C17—N2155.73 (16)
C1—N1—C4—C311.5 (3)C13—C14—C17—S2101.90 (17)
C2—C3—C4—O1125.2 (2)C15—C14—C17—S276.68 (18)
C2—C3—C4—N153.2 (2)C18—S2—C17—N259.40 (14)
C4—N1—C5—C10132.03 (19)C18—S2—C17—C1469.93 (14)
C1—N1—C5—C1044.4 (2)C17—S2—C18—C1957.69 (16)
C4—N1—C5—C650.7 (3)S2—C18—C19—C2033.8 (3)
C1—N1—C5—C6132.83 (18)C21—N2—C20—O26.6 (3)
C10—C5—C6—C71.3 (3)C17—N2—C20—O2179.90 (19)
N1—C5—C6—C7178.50 (17)C21—N2—C20—C19172.13 (18)
C5—C6—C7—C81.6 (3)C17—N2—C20—C191.4 (3)
C6—C7—C8—C90.3 (3)C18—C19—C20—O2178.1 (2)
C7—C8—C9—C101.4 (3)C18—C19—C20—N20.6 (3)
C6—C5—C10—C90.4 (3)C20—N2—C21—C2661.7 (2)
N1—C5—C10—C9176.87 (18)C17—N2—C21—C26112.5 (2)
C8—C9—C10—C51.7 (3)C20—N2—C21—C22124.0 (2)
N1—C1—C11—C12177.14 (15)C17—N2—C21—C2261.8 (2)
S1—C1—C11—C1247.7 (2)C26—C21—C22—C230.9 (3)
N1—C1—C11—C166.1 (2)N2—C21—C22—C23173.43 (18)
S1—C1—C11—C16135.58 (15)C21—C22—C23—C240.9 (3)
C16—C11—C12—C130.9 (3)C22—C23—C24—C250.3 (3)
C1—C11—C12—C13177.79 (16)C23—C24—C25—C260.2 (3)
C11—C12—C13—C140.7 (3)C22—C21—C26—C250.4 (3)
C12—C13—C14—C151.4 (3)N2—C21—C26—C25173.87 (19)
C12—C13—C14—C17177.14 (15)C24—C25—C26—C210.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O1i0.972.463.353 (3)153
C17—H17···S1ii0.982.623.5094 (19)151
C13—H13···O1iii0.932.523.280 (2)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Curia for the gift of T3P.

Funding information

Research reported here was partially supported by SIG S10 of the National Institutes of Health under award number 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar. Research was also supported by Penn State Schuylkill (grant No. 800000005972 to Lee J. Silverberg).

References

First citationAbdel-Rahman, R. M. & Ali, T. E. (2013). Monatsh. Chem. 144, 1243–1252.  CAS Google Scholar
First citationCapps, N. K., Davies, G. M., Hitchcock, P. B. & Young, D. W. (1985). J. Chem. Soc. Chem. Commun. pp. 843–845.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482–17493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, X., Qin, Z., Yang, T., Zhang, H., Wei, S., Li, C., Chen, H. & Meng, M. (2012). Bioorg. Med. Chem. Lett. 22, 2712–2716.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMartani, A. (1956). Ann. Chim. 46, 256–262.  CAS Google Scholar
First citationMohammadi, R., Alamgholiloo, H., Gholipour, B., Rostamnia, S., Khaksar, S., Farajzadeh, M. & Shokouhimehr, M. (2020). J. Photochem. Photobiol. Chem. 402, 112786.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShaker, R. M. (1999). Phosphorus Sulfur Silicon, 149, 7–14.  Web of Science CrossRef CAS Google Scholar
First citationShaker, R. M. (2012). Arkivoc, i, 1–44.  Google Scholar
First citationShaker, R. M., Ibrahim, Y. R., Abdel-Latif, F. F. & Hamoda, A. (2010). Z. Naturforsch. Teil B, 65, 1148–1154.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Bradley, H. G., Perhonitch, K. C., Reppert, H. E. & Silverberg, L. J. (2018). Acta Cryst. E74, 454–457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Moyer, Q. J. & Silverberg, L. J. (2018). Acta Cryst. E74, 1497–1499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds