research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and photophysical properties of bis­­[2,6-di­fluoro-3-(pyridin-2-yl)pyridine-κN](tri­fluoro­methane­sulfonato-κO)silver(I)

crossmark logo

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDepartment of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea, and cDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 October 2021; accepted 26 October 2021; online 4 November 2021)

In the title compound, [Ag(CF3SO3)(C10H6F2N2)2], the AgI centre adopts a highly distorted trigonal–planar coordination environment resulting from its coordination by one O atom of the tri­fluoro­methane­sulfonate anion and the pyridine N atoms of two crystallographically independent 2′,6′-di­fluoro-2,3′-bi­pyridine ligands, which display very similar conformations to one another. Pairwise Ag⋯O–SO2CF3 [Ag⋯O = 2.8314 (14) Å] inter­actions and inter­molecular C—H⋯O inter­actions between inversion-related units lead to the formation of an eight-membered cyclic dimer in which the silver atoms are separated by 6.2152 (3) Å. In the crystal, the dimers are linked through C—H⋯O hydrogen bonds, halogen⋯π and weak ππ stacking inter­actions, resulting in the formation of a three-dimensional supra­molecular network. The title compound exhibits a strong and broad emission band from 400 nm to 550 nm in solution and its photoluminescence quantum efficiency is estimated to be ca 0.2, indicating that the title compound could have applications as an emitting material in organic light-emitting diodes (OLEDs).

1. Chemical context

Recently, great attention has been paid to 2,3′-bi­pyridine-based IrIII and PtII complexes by many researchers because of their applicability to OLEDs and solid-state lighting (Kang et al., 2021[Kang, J., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2021). Adv. Optical Mater. In the press. https://doi.org/10.1002/adom.202101233]; Reddy & Bejoymohandas, 2016[Reddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29-47.]). In particular, 2′,6′-di­fluoro-2,3′-bi­pyridine complexes of iridium(III) are considered to be strong candidates as both blue triplet emitters in phospho­rescent organic light-emitting diodes (PHOLEDs) and single dopants in white organic light-emitting diodes (WOLEDs) (Zaen et al., 2019[Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Adv. Opt. Mater. 7, 1901387.]; Kang et al., 2020[Kang, J., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2020). Cryst. Growth Des. 20, 6129-6138.]; Lee et al., 2018[Lee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639-4647.]). Despite these investigations, reports regarding the structures and photoluminescence properties of 2,3′-bi­pyridine-based group-11 metal complexes are scarce, and related research is limited (Li et al., 2019[Li, X., Liu, A., Du, X., Wang, F. & Wang, C. (2019). Transit. Met. Chem. 44, 311-319.]). Among the group-11 elements, coordination polymers of AgI have been demonstrated to exhibit structural diversity as a result of the d10 configuration of the metal ion (Lee et al., 2020[Lee, E., Hongu, H., Temma, H., Toya, M., Ikeda, M., Kuwahara, S. & Habata, Y. (2020). Cryst. Growth Des. 20, 3284-3292.]). Moreover, the various coordination environments around the AgI centre are generally constructed by the ligands, solvent mol­ecules, and counter-anions (Lee et al., 2016[Lee, J., Kang, Y., Cho, N. S. & Park, K.-M. (2016). Cryst. Growth Des. 16, 996-1004.]). Until now, there has been no report with respect to an AgI complex bearing a 2′,6′-di­fluoro-2,3′-bi­pyridine ligand as compared to 2,2-bi­pyridine-based AgI complexes (Pal et al., 2020[Pal, A., Pal, S. C., Otsubo, K., Lim, D.-W., Chand, S., Kitagawa, H. & Das, M. C. (2020). Chem. Eur. J. 26, 4607-4612.]). This fact prompted us to investigate the structures and luminescent properties of 2,3′-bi­pyridine-based AgI complexes: in this study, we report the preparation, structural characterization and luminescent properties of an AgI complex of 2′,6′-di­fluoro-2,3′-bi­pyridine.

[Scheme 1]

2. Structural commentary

The asymmetric unit in the title compound consists of an AgI cation, a CF3SO3 tri­fluoro­methane­sulfonate anion and two crystallographically independent C10H6F2N2 2′,6′-di­fluoro-2,3′-bi­pyridine ligands, which adopt very similar conformations, such that the dihedral angles between the pyridyl rings in the N1- and N3-containing mol­ecules are 53.11 (5) and 53.10 (7)°, respectively. As shown in Fig. 1[link], the AgI ion is coordinated by two pyridine N atoms (N2 and N4) from two 2′,6′-di­fluoro-2,3′-bi­pyridine ligands and one O atom from the tri­fluoro­methane­sulfonate anion, forming a highly distorted trigonal–planar geometry. Selected bond lengths and angles around the Ag1 atom are given in Table 1[link]: the N—Ag—N and N—Ag—O angles fall in the range 86.55 (5)–148.65 (5)°, deviating significantly from an ideal trigonal–planar geometry. This may reflect the influence of an additional Ag⋯O–SO2CF3 inter­action between the metal ion and an O atom of an adjacent tri­fluoro­methane­sulfonate anion [Ag1⋯O2i = 2.8314 (14) Å; black dashed lines in Fig. 2[link]; symmetry code: (i) −x + 1, −y, −z + 1]. The AgI atom is displaced out of the trigonal N2, N4, O1 coordination plane by 0.1057 (9) Å. The C6–C10/N2 and C16–C20/N4 pyridine rings coordinated to the AgI centre are tilted by 25.75 (10)° with respect to each other. The pairwise Ag⋯O links lead to the formation of an eight-membered [Ag—O—S—O—]2 cyclic dimer, in which the silver atoms are separated by 6.2152 (3) Å. The cyclic dimer is consolidated by C—H⋯O inter­actions (Table 2[link]; yellow dashed lines in Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Ag1—N2 2.2305 (14) Ag1—O1 2.4879 (13)
Ag1—N4 2.2496 (14)    
       
N2—Ag1—N4 148.65 (5) N4—Ag1—O1 86.55 (5)
N2—Ag1—O1 124.02 (5)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.60 3.239 (2) 125
C13—H13⋯O2i 0.95 2.60 3.173 (2) 119
C13—H13⋯O3i 0.95 2.50 3.400 (2) 159
C19—H19⋯O3ii 0.95 2.53 3.294 (2) 137
C20—H20⋯O1 0.95 2.55 3.197 (2) 126
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. The orange dashed line represents an intra­molecular C—H⋯O inter­action.
[Figure 2]
Figure 2
Dimeric structure formed by Ag⋯O (black dashed lines) and C—H⋯O (yellow dashed lines) inter­actions [symmetry code: (i) −x + 1, −y, −z + 1]. Atom colours: violet = silver, yellow = sulfur, green = fluorine, red = oxygen, blue = nitro­gen, grey = carbon and white = hydrogen.

3. Supra­molecular features

In the extended structure, the dimers are linked through C19—H19⋯O3 hydrogen bonds (Table 2[link]) and weak ππ stacking inter­actions [yellow and sky-blue dashed lines in Fig. 3[link], respectively; Cg4⋯Cg4ii = 3.9737 (11) Å; Cg4 is the centroid of the C16–C20/N4 ring; symmetry code: (ii) −x, −y, −z + 1] between the pyridine rings, forming a chain structure propagating along the a-axis direction. Neighbouring chains are connected by halogen⋯π inter­actions [red dashed lines in Fig. 3[link]; F6⋯Cg3iii = 3.06 (2) Å; Cg3 is the centroid of the C11–C15/N3 ring; symmetry code: (iii) x + 1, y − 1, z], thereby generating a two-dimensional supra­molecular network lying parallel to the ab plane. Finally, these networks are stacked along the c-axis direction and connected by halogen⋯π and weak ππ stacking inter­actions [red and sky-blue dashed lines in Fig. 4[link], respectively; F1⋯Cg2iv = 3.974 (2) Å; F2⋯Cg1iv = 3.1424 (19) Å; Cg1⋯Cg1iv = 4.2435 (13) Å; Cg1 and Cg2 are the centroids of the C1–C5/N1 and C6–C10/N2 rings, respectively; symmetry code: (iv) −x + 1, −y, −z], resulting in the formation of a three-dimensional supra­molecular network.

[Figure 3]
Figure 3
The two-dimensional supra­molecular network formed through C—H⋯O hydrogen bonds (yellow dashed lines), F⋯π (red dashed lines) and ππ stacking (sky-blue dashed lines) inter­actions. For clarity, H atoms not involved in the inter­molecular inter­actions have been omitted. Atom colours as in Fig. 2[link].
[Figure 4]
Figure 4
The three-dimensional supra­molecular network formed through F⋯π (red dashed lines) and ππ stacking (sky-blue dashed lines) inter­actions. For clarity, H atoms not involved in the inter­molecular inter­actions have been omitted. Atom colours as in Fig. 2[link].

4. Luminescent properties

In CH2Cl2 solution, the title compound exhibits a strong and broad emission band with λmax = 400 nm, as shown in Fig. 5[link]. This emission band may arise from ππ* transitions of the bi­pyridine ligand because the absorption of the title compound is very similar to that of the free ligand. Inter­estingly, upon the complexation of ligand with the Ag(CF3SO3) unit, significant blue-shifted emissions (> 50 nm) are observed as compared with bi­pyridine based IrIII complexes (Lee et al., 2009[Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]). Moreover, a broad emission from 400 nm to 500 nm in the title compound may be due to the predominantly fluorescent emission from the 2′,6′-di­fluoro-2,3′-bi­pyridine ligand because the emission maximum of the free ligand, i.e. phospho­rescent emission, occurs at approximately 450 nm (triplet energy, T1 = 2.82 eV). The observed emission of the title compound is therefore attributed to ligand-centered ππ* transitions with a minor contribution of an Ag-based metal-to-ligand charge-transfer transition. Similar dual-emission behaviour has been noted for some AgI complexes with 2-methyl­thio­thia­zole (Rogovoy et al., 2019[Rogovoy, M. I., Samsonenko, D. G., Rakhmanova, M. I. & Artem'ev, A. V. (2019). Inorg. Chim. Acta, 489, 19-26.]) and pyridyl­phosphine ligands (Baranov et al., 2019[Baranov, A. Y., Rakhmanova, M. I., Samsonenko, D. G., Malysheva, S. F., Belogorlova, N. A., Bagryanskaya, I. Y., Fedin, V. P. & Artem'ev, A. V. (2019). Inorg. Chim. Acta, 494, 78-83.]). The emission intensity of the title compound was also higher than that of free ligand, as shown in Fig. 5[link]. The photoluminescence quantum efficiency of the title compound was estimated to be ca 0.2 (Fig. 5[link], inset). Such an efficiency is large enough to potentially use the title compound as the emitting material in an organic light-emitting diode (OLED) application.

[Figure 5]
Figure 5
Absorption and emission spectra of the free ligand and the title compound in solution [concentrations = 1.0 × 10−5 M] at room temperature (inset: emission photo); ɛ ≃ 100,000 M−1 cm−1.

5. Database survey

A survey of SciFinder (SciFinder, 2021[SciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed September 27, 2021).]) for transition-metal complexes bearing the 2′,6′-di­fluoro-2,3′-bi­pyridine moiety as a ligand gave 25 hits. They include reports about the crystal structures and photophysical properties of IrIII and PtII complexes based on this ligand (HOVHAC, Lee et al., 2009[Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]; OHUMUB01, Lee et al., 2015[Lee, J., Park, H., Park, K.-M., Kim, J., Lee, J.-Y. & Kang, Y. (2015). Dyes Pigments, 123, 235-241.]; JUDZAL, Park et al., 2015[Park, K.-M., Lee, J. & Kang, Y. (2015). Acta Cryst. E71, 354-356.]). The survey revealed no exact matches for the reported structure of the title complex. To the best of our knowledge, this is the first crystal structure reported for a silver complex with the title ligand.

6. Synthesis and crystallization

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents used in this study were freshly distilled over appropriate drying reagents prior to use. All starting materials were purchased commercially and used without further purification. The 1H NMR spectrum was recorded on a JEOL 400 MHz spectrometer. The ligand, 2′,6′-di­fluoro-2,3′-bi­pyridine (Park et al., 2015[Park, K.-M., Lee, J. & Kang, Y. (2015). Acta Cryst. E71, 354-356.]) was synthesized according to the previous report. The title compound was synthesized as follows: the ligand (0.075 g, 0.39 mmol) in THF (2 ml) was added to Ag(CF3SO3) (0.47 g, 1.0 mmol) in MeOH (2 ml) in the dark at room temperature and the mixture was stirred for 10 min. After that, the mixture was slowly evaporated in the air and a dark environment to obtain crystals suitable for X-ray crystallographic analysis. 1H NMR (400 MHz, CD3CN) δ 8.67 (d, J = 4.4 Hz, 1H), 8.62 (td, J = 8.8, 1.2 Hz, 1H), 7.88–7.80 (m, 2H), 7.37–7.34 (m, 1H), 7.0.8 (dd, J = 9.2, 3.6 Hz, 1H). 19F NMR (376 MHz, CD3CN) δ −69.7, −71.8, 79.1. Analysis calculated for C21H12F7N4O3SAg: C 39.33; H 1.89; N 8.74%; found: C 39.44, H 1.86, N 8.70%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ag(CF3O3S)(C10H6F2N2)2]
Mr 641.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 9.0627 (2), 10.9637 (3), 12.5727 (3)
α, β, γ (°) 82.4508 (11), 73.7215 (11), 71.5490 (11)
V3) 1136.26 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.38 × 0.33 × 0.32
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.610, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19973, 5623, 5262
Rint 0.029
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.12
No. of reflections 5623
No. of parameters 334
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.76
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Bis[2,6-difluoro-3-(pyridin-2-yl)pyridine-κN](trifluoromethanesulfonato-κO)silver(I) top
Crystal data top
[Ag(CF3O3S)(C10H6F2N2)2]Z = 2
Mr = 641.28F(000) = 632
Triclinic, P1Dx = 1.874 Mg m3
a = 9.0627 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9637 (3) ÅCell parameters from 9858 reflections
c = 12.5727 (3) Åθ = 2.5–28.3°
α = 82.4508 (11)°µ = 1.07 mm1
β = 73.7215 (11)°T = 193 K
γ = 71.5490 (11)°Block, colourless
V = 1136.26 (5) Å30.38 × 0.33 × 0.32 mm
Data collection top
Bruker APEXII CCD
diffractometer
5262 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.610, Tmax = 0.746h = 1211
19973 measured reflectionsk = 1414
5623 independent reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.2813P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
5623 reflectionsΔρmax = 0.33 e Å3
334 parametersΔρmin = 0.76 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.39687 (2)0.11579 (2)0.28356 (2)0.02967 (5)
S10.58088 (5)0.20353 (4)0.43046 (4)0.02529 (9)
O10.47418 (19)0.09076 (14)0.39174 (14)0.0444 (4)
O20.54144 (16)0.22732 (14)0.54886 (11)0.0356 (3)
O30.74849 (17)0.22309 (15)0.37857 (12)0.0400 (3)
C210.5358 (3)0.3333 (2)0.38115 (18)0.0392 (4)
F50.5511 (2)0.31983 (18)0.27233 (12)0.0745 (5)
F60.6317 (2)0.44672 (13)0.40282 (16)0.0701 (5)
F70.38549 (17)0.33477 (14)0.42807 (13)0.0562 (4)
F10.7648 (2)0.33112 (13)0.01970 (14)0.0698 (5)
F20.63399 (17)0.08741 (13)0.11751 (10)0.0460 (3)
N10.7033 (2)0.12143 (18)0.06736 (14)0.0414 (4)
N20.57260 (17)0.21084 (14)0.17341 (12)0.0249 (3)
C10.7501 (3)0.21237 (19)0.00565 (19)0.0430 (5)
C20.7813 (3)0.1947 (2)0.10241 (18)0.0414 (5)
H20.81980.26520.15000.050*
C30.7538 (2)0.06916 (18)0.12668 (16)0.0334 (4)
H30.76950.05150.19400.040*
C40.7031 (2)0.03212 (17)0.05317 (14)0.0277 (3)
C50.6836 (2)0.00397 (19)0.04231 (15)0.0324 (4)
C60.6718 (2)0.16833 (17)0.07537 (14)0.0274 (3)
C70.7452 (3)0.2481 (2)0.00157 (18)0.0443 (5)
H70.81570.21580.07000.053*
C80.7154 (3)0.3738 (2)0.0216 (2)0.0518 (6)
H80.76460.42940.03040.062*
C90.6128 (3)0.4179 (2)0.12161 (18)0.0408 (5)
H90.58850.50490.13930.049*
C100.5462 (2)0.33348 (18)0.19542 (16)0.0313 (4)
H100.47830.36350.26520.038*
F30.13496 (19)0.67539 (12)0.27171 (13)0.0583 (4)
F40.07604 (18)0.40180 (14)0.17706 (12)0.0545 (4)
N30.0298 (2)0.53662 (16)0.22662 (15)0.0401 (4)
N40.14448 (16)0.10066 (14)0.33810 (12)0.0244 (3)
C110.1051 (2)0.56069 (17)0.29307 (18)0.0381 (4)
C120.1546 (2)0.48149 (18)0.37758 (17)0.0348 (4)
H120.20700.50580.42340.042*
C130.1239 (2)0.36367 (17)0.39263 (15)0.0280 (3)
H130.15660.30440.44990.034*
C140.04554 (19)0.33106 (16)0.32476 (14)0.0259 (3)
C150.0017 (2)0.42467 (19)0.24485 (16)0.0337 (4)
C160.0162 (2)0.20399 (16)0.33730 (14)0.0252 (3)
C170.1363 (2)0.19243 (19)0.35044 (16)0.0327 (4)
H170.22510.26700.34940.039*
C180.1577 (2)0.0716 (2)0.36507 (17)0.0356 (4)
H180.26130.06190.37470.043*
C190.0260 (2)0.03498 (18)0.36549 (16)0.0333 (4)
H190.03690.11940.37470.040*
C200.1222 (2)0.01603 (17)0.35223 (15)0.0289 (3)
H200.21240.08940.35320.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02256 (8)0.02807 (8)0.03687 (9)0.01100 (5)0.00184 (5)0.00012 (5)
S10.0262 (2)0.02496 (19)0.0277 (2)0.00994 (16)0.01063 (16)0.00272 (15)
O10.0493 (9)0.0297 (7)0.0602 (10)0.0111 (6)0.0309 (8)0.0128 (7)
O20.0324 (7)0.0467 (8)0.0274 (7)0.0118 (6)0.0074 (5)0.0002 (6)
O30.0313 (7)0.0560 (9)0.0356 (7)0.0211 (6)0.0045 (6)0.0003 (6)
C210.0471 (11)0.0352 (10)0.0392 (11)0.0220 (9)0.0053 (9)0.0027 (8)
F50.1206 (15)0.0919 (12)0.0389 (8)0.0719 (12)0.0136 (9)0.0112 (8)
F60.0722 (10)0.0270 (6)0.1019 (14)0.0094 (7)0.0113 (9)0.0083 (7)
F70.0522 (8)0.0609 (9)0.0689 (10)0.0393 (7)0.0093 (7)0.0056 (7)
F10.0974 (13)0.0359 (7)0.0692 (10)0.0239 (8)0.0022 (9)0.0199 (7)
F20.0640 (8)0.0479 (7)0.0289 (6)0.0161 (6)0.0189 (6)0.0037 (5)
N10.0518 (11)0.0434 (10)0.0307 (9)0.0190 (8)0.0027 (7)0.0116 (7)
N20.0255 (7)0.0279 (7)0.0233 (7)0.0113 (6)0.0053 (5)0.0013 (5)
C10.0499 (12)0.0298 (10)0.0431 (12)0.0127 (9)0.0041 (9)0.0126 (8)
C20.0435 (11)0.0324 (10)0.0394 (11)0.0061 (8)0.0046 (9)0.0026 (8)
C30.0355 (10)0.0351 (9)0.0281 (9)0.0097 (8)0.0075 (7)0.0003 (7)
C40.0286 (8)0.0309 (8)0.0229 (8)0.0108 (7)0.0028 (6)0.0022 (7)
C50.0373 (10)0.0373 (10)0.0228 (8)0.0135 (8)0.0047 (7)0.0017 (7)
C60.0299 (8)0.0311 (8)0.0232 (8)0.0128 (7)0.0061 (7)0.0003 (6)
C70.0578 (13)0.0455 (11)0.0290 (10)0.0285 (10)0.0060 (9)0.0039 (8)
C80.0740 (16)0.0464 (12)0.0401 (12)0.0392 (12)0.0005 (11)0.0017 (10)
C90.0546 (13)0.0319 (9)0.0409 (11)0.0217 (9)0.0095 (9)0.0024 (8)
C100.0337 (9)0.0309 (9)0.0317 (9)0.0126 (7)0.0072 (7)0.0046 (7)
F30.0732 (10)0.0287 (6)0.0657 (9)0.0207 (6)0.0007 (7)0.0006 (6)
F40.0618 (9)0.0655 (9)0.0485 (8)0.0220 (7)0.0370 (7)0.0138 (7)
N30.0418 (9)0.0312 (8)0.0376 (9)0.0032 (7)0.0069 (7)0.0060 (7)
N40.0206 (6)0.0277 (7)0.0248 (7)0.0079 (5)0.0052 (5)0.0006 (5)
C110.0393 (10)0.0217 (8)0.0430 (11)0.0070 (7)0.0041 (8)0.0032 (8)
C120.0344 (10)0.0314 (9)0.0384 (10)0.0093 (7)0.0060 (8)0.0089 (8)
C130.0257 (8)0.0286 (8)0.0284 (9)0.0055 (6)0.0071 (7)0.0019 (7)
C140.0205 (7)0.0268 (8)0.0275 (8)0.0030 (6)0.0057 (6)0.0016 (6)
C150.0308 (9)0.0368 (10)0.0306 (9)0.0044 (7)0.0108 (7)0.0010 (8)
C160.0226 (8)0.0303 (8)0.0228 (8)0.0074 (6)0.0063 (6)0.0015 (6)
C170.0219 (8)0.0396 (10)0.0364 (10)0.0064 (7)0.0077 (7)0.0069 (8)
C180.0241 (8)0.0488 (11)0.0380 (10)0.0162 (8)0.0032 (7)0.0121 (8)
C190.0326 (9)0.0345 (9)0.0365 (10)0.0173 (8)0.0034 (8)0.0074 (8)
C200.0271 (8)0.0274 (8)0.0307 (9)0.0085 (7)0.0048 (7)0.0006 (7)
Geometric parameters (Å, º) top
Ag1—N22.2305 (14)C8—C91.378 (3)
Ag1—N42.2496 (14)C8—H80.9500
Ag1—O12.4879 (13)C9—C101.377 (3)
S1—O11.4317 (14)C9—H90.9500
S1—O31.4331 (14)C10—H100.9500
S1—O21.4389 (14)F3—C111.346 (2)
S1—C211.821 (2)F4—C151.338 (2)
C21—F61.317 (3)N3—C151.310 (3)
C21—F71.329 (2)N3—C111.314 (3)
C21—F51.329 (3)N4—C201.339 (2)
F1—C11.338 (2)N4—C161.344 (2)
F2—C51.343 (2)C11—C121.364 (3)
N1—C51.311 (3)C12—C131.384 (3)
N1—C11.314 (3)C12—H120.9500
N2—C101.341 (2)C13—C141.393 (2)
N2—C61.345 (2)C13—H130.9500
C1—C21.374 (3)C14—C151.384 (2)
C2—C31.379 (3)C14—C161.480 (2)
C2—H20.9500C16—C171.390 (2)
C3—C41.394 (3)C17—C181.380 (3)
C3—H30.9500C17—H170.9500
C4—C51.385 (2)C18—C191.382 (3)
C4—C61.478 (2)C18—H180.9500
C6—C71.389 (3)C19—C201.384 (2)
C7—C81.372 (3)C19—H190.9500
C7—H70.9500C20—H200.9500
N2—Ag1—N4148.65 (5)C7—C8—H8120.6
N2—Ag1—O1124.02 (5)C9—C8—H8120.6
N4—Ag1—O186.55 (5)C10—C9—C8118.71 (19)
O1—S1—O3115.37 (9)C10—C9—H9120.6
O1—S1—O2114.61 (9)C8—C9—H9120.6
O3—S1—O2115.25 (8)N2—C10—C9123.12 (18)
O1—S1—C21102.70 (10)N2—C10—H10118.4
O3—S1—C21103.67 (10)C9—C10—H10118.4
O2—S1—C21102.70 (9)C15—N3—C11115.31 (16)
S1—O1—Ag1156.68 (10)C20—N4—C16118.07 (14)
F6—C21—F7107.60 (17)C20—N4—Ag1119.02 (11)
F6—C21—F5108.1 (2)C16—N4—Ag1121.76 (11)
F7—C21—F5106.53 (18)N3—C11—F3114.28 (18)
F6—C21—S1111.59 (15)N3—C11—C12126.40 (18)
F7—C21—S1111.55 (15)F3—C11—C12119.3 (2)
F5—C21—S1111.22 (14)C11—C12—C13116.10 (18)
C5—N1—C1115.27 (18)C11—C12—H12121.9
C10—N2—C6118.01 (15)C13—C12—H12121.9
C10—N2—Ag1114.60 (12)C12—C13—C14120.70 (17)
C6—N2—Ag1125.25 (11)C12—C13—H13119.7
N1—C1—F1114.4 (2)C14—C13—H13119.7
N1—C1—C2126.05 (19)C15—C14—C13114.98 (16)
F1—C1—C2119.5 (2)C15—C14—C16123.52 (16)
C1—C2—C3116.39 (19)C13—C14—C16121.49 (15)
C1—C2—H2121.8N3—C15—F4114.67 (16)
C3—C2—H2121.8N3—C15—C14126.49 (18)
C2—C3—C4120.53 (18)F4—C15—C14118.84 (17)
C2—C3—H3119.7N4—C16—C17121.95 (16)
C4—C3—H3119.7N4—C16—C14116.22 (14)
C5—C4—C3115.13 (17)C17—C16—C14121.82 (15)
C5—C4—C6122.25 (16)C18—C17—C16119.40 (17)
C3—C4—C6122.62 (16)C18—C17—H17120.3
N1—C5—F2114.19 (16)C16—C17—H17120.3
N1—C5—C4126.55 (18)C17—C18—C19118.87 (16)
F2—C5—C4119.21 (17)C17—C18—H18120.6
N2—C6—C7121.54 (17)C19—C18—H18120.6
N2—C6—C4117.53 (15)C18—C19—C20118.52 (17)
C7—C6—C4120.92 (17)C18—C19—H19120.7
C8—C7—C6119.7 (2)C20—C19—H19120.7
C8—C7—H7120.1N4—C20—C19123.19 (16)
C6—C7—H7120.1N4—C20—H20118.4
C7—C8—C9118.86 (19)C19—C20—H20118.4
O3—S1—O1—Ag15.5 (3)C4—C6—C7—C8179.3 (2)
O2—S1—O1—Ag1131.9 (2)C6—C7—C8—C90.1 (4)
C21—S1—O1—Ag1117.5 (3)C7—C8—C9—C101.1 (4)
O1—S1—C21—F6175.69 (16)C6—N2—C10—C91.5 (3)
O3—S1—C21—F655.24 (17)Ag1—N2—C10—C9162.77 (16)
O2—S1—C21—F665.08 (17)C8—C9—C10—N22.0 (3)
O1—S1—C21—F763.92 (17)C15—N3—C11—F3179.02 (17)
O3—S1—C21—F7175.64 (15)C15—N3—C11—C120.4 (3)
O2—S1—C21—F755.32 (17)N3—C11—C12—C131.2 (3)
O1—S1—C21—F554.86 (19)F3—C11—C12—C13178.21 (17)
O3—S1—C21—F565.58 (18)C11—C12—C13—C140.6 (3)
O2—S1—C21—F5174.10 (16)C12—C13—C14—C150.6 (3)
C5—N1—C1—F1178.08 (19)C12—C13—C14—C16178.07 (17)
C5—N1—C1—C21.0 (3)C11—N3—C15—F4179.57 (17)
N1—C1—C2—C33.0 (4)C11—N3—C15—C141.1 (3)
F1—C1—C2—C3175.97 (19)C13—C14—C15—N31.5 (3)
C1—C2—C3—C42.4 (3)C16—C14—C15—N3177.11 (18)
C2—C3—C4—C50.1 (3)C13—C14—C15—F4179.13 (17)
C2—C3—C4—C6179.92 (18)C16—C14—C15—F42.2 (3)
C1—N1—C5—F2179.29 (18)C20—N4—C16—C170.1 (3)
C1—N1—C5—C41.8 (3)Ag1—N4—C16—C17167.60 (13)
C3—C4—C5—N12.2 (3)C20—N4—C16—C14178.26 (15)
C6—C4—C5—N1177.59 (19)Ag1—N4—C16—C1414.0 (2)
C3—C4—C5—F2179.54 (17)C15—C14—C16—N4127.08 (18)
C6—C4—C5—F20.2 (3)C13—C14—C16—N451.5 (2)
C10—N2—C6—C70.1 (3)C15—C14—C16—C1754.6 (3)
Ag1—N2—C6—C7162.31 (15)C13—C14—C16—C17126.87 (19)
C10—N2—C6—C4178.53 (15)N4—C16—C17—C180.2 (3)
Ag1—N2—C6—C419.0 (2)C14—C16—C17—C18178.09 (17)
C5—C4—C6—N2127.75 (19)C16—C17—C18—C190.4 (3)
C3—C4—C6—N252.0 (2)C17—C18—C19—C200.6 (3)
C5—C4—C6—C753.6 (3)C16—N4—C20—C190.3 (3)
C3—C4—C6—C7126.7 (2)Ag1—N4—C20—C19167.75 (14)
N2—C6—C7—C80.7 (3)C18—C19—C20—N40.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.952.603.239 (2)125
C13—H13···O2i0.952.603.173 (2)119
C13—H13···O3i0.952.503.400 (2)159
C19—H19···O3ii0.952.533.294 (2)137
C20—H20···O10.952.553.197 (2)126
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
 

Funding information

Funding for this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01012630).

References

First citationBaranov, A. Y., Rakhmanova, M. I., Samsonenko, D. G., Malysheva, S. F., Belogorlova, N. A., Bagryanskaya, I. Y., Fedin, V. P. & Artem'ev, A. V. (2019). Inorg. Chim. Acta, 494, 78–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKang, J., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2020). Cryst. Growth Des. 20, 6129–6138.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, J., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2021). Adv. Optical Mater. In the press. https://doi.org/10.1002/adom.202101233  Google Scholar
First citationLee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639–4647.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, E., Hongu, H., Temma, H., Toya, M., Ikeda, M., Kuwahara, S. & Habata, Y. (2020). Cryst. Growth Des. 20, 3284–3292.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J., Kang, Y., Cho, N. S. & Park, K.-M. (2016). Cryst. Growth Des. 16, 996–1004.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J., Park, H., Park, K.-M., Kim, J., Lee, J.-Y. & Kang, Y. (2015). Dyes Pigments, 123, 235–241.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X., Liu, A., Du, X., Wang, F. & Wang, C. (2019). Transit. Met. Chem. 44, 311–319.  Web of Science CSD CrossRef CAS Google Scholar
First citationPal, A., Pal, S. C., Otsubo, K., Lim, D.-W., Chand, S., Kitagawa, H. & Das, M. C. (2020). Chem. Eur. J. 26, 4607–4612.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPark, K.-M., Lee, J. & Kang, Y. (2015). Acta Cryst. E71, 354–356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29–47.  Web of Science CrossRef CAS Google Scholar
First citationRogovoy, M. I., Samsonenko, D. G., Rakhmanova, M. I. & Artem'ev, A. V. (2019). Inorg. Chim. Acta, 489, 19–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationSciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed September 27, 2021).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Adv. Opt. Mater. 7, 1901387.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds