research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-[2-(3,5-di­methyl­phen­yl)hydrazinyl­­idene]benzo­furan-2(3H)-one

crossmark logo

aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 20 October 2021; accepted 5 November 2021; online 12 November 2021)

In the title compound, C16H14N2O2, the 2,3-di­hydro-1-benzo­furan ring system is essentially planar and makes a dihedral angle of 3.69 (7)° with the di­methyl­phenyl ring. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. In the crystal, mol­ecules are connected by C—H⋯π and ππ stacking inter­actions, forming a layer lying parallel to the (11[\overline{1}]) plane. One methyl group is disordered over two orientations, with occupancies of 0.67 (4) and 0.33 (4). Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (51.2%), O⋯H/H⋯O (17.9%), C⋯H/H⋯C (15.2%) and C⋯C (8.1%) contacts.

1. Chemical context

Hydrazones have many applications in diverse areas, such as in optical data storage, as mol­ecular switches and anti­microbial agents, in non-linear optics, mol­ecular recognition, dye-sensitized solar cells, color-changing materials, catalysis, liquid crystals, etc., mainly because of the azo-to-hydrazo tautomerism/isomerism and the optical properties of –N=N– unit (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). Not only E/Z isomerization, but also azo-hydrazone tautomerism is important in organic and the coordination chemistry of hydrazone dyes (Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; Mahmoudi et al., 2017[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017). Eur. J. Inorg. Chem. pp. 4763-4772.], 2018[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395-4408.]). The design of hydrazone dyes with electron donor or acceptor substituents has led to multidentante ligands, the corresponding coordination compounds of which have been applied effectively as catalysts in oxidation and C—C coupling reactions (Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]). Moreover, the functional properties of hydrazones or their metal complexes can be regulated by attaching functional groups to the =N—NH— unit (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Mahmudov et al., 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Thus, we have attached C=O groups and furan and aryl rings to the =N—NH— moiety, leading to a new hydrazone compound, (Z)-3-[2-(3,5-di­methyl­phen­yl)hydrazinyl­idene]benzo­furan-2(3H)-one, which can form inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

The mol­ecular conformation of the title compound is stabilized by an intra­molecular N—H⋯O hydrogen bond (N2—H2⋯O2; Table 1[link]) with an S(6) ring motif (Fig. 1[link]). The 2,3-di­hydro-1-benzo­furan ring system (O1/C1–C8) of the title compound is essentially planar [maximum deviations = −0.031 (2) Å for C3 and 0.026 (2) Å for C6] and makes a dihedral angle of 3.69 (7)° with the di­methyl­phenyl C9–C14 ring. In the mol­ecule, the aromatic C9–C14 ring and the C=N—NH– unit are almost coplanar with a dihedral angle of 4.8 (8)° between them.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C3–C8 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.93 (2) 2.12 (2) 2.840 (2) 133.8 (16)
C15—H15ACg3i 0.96 2.90 3.591 (3) 130
C16—H16FCg2ii 0.96 2.92 3.715 (3) 141
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected by C—H⋯π inter­actions [C15—H15ACg3i and C16—H16FCg2ii; symmetry codes as given in Table 1[link]; Fig. 2[link]] and ππ stacking inter­actions [Cg1⋯Cg2îii = 3.6227 (11) Å, slippage = 1.226 Å; Cg1⋯Cg3îi = 3.7128 (10) Å, slippage = 1.339 Å; Symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y + 1, −z + 2], where Cg1 and Cg2 are the centroids of the oxolane O1/C1–C3/C8 and benzene C3–C8 rings, respectively, of the 2,3-di­hydro-1-benzo­furan ring system while Cg3 is the centroid of the di­methyl­phenyl C9–C14 ring (Fig. 3[link]). These inter­actions link the mol­ecules into a layer structure lying parallel to the (11[\overline{1}]) plane (Fig. 4[link]).

[Figure 2]
Figure 2
A partial packing view of the title compound, showing the C—H⋯π inter­actions (dashed lines). Only H atoms involved in the inter­actions and N-bound H atoms are shown for clarity [Symmetry codes: (i) x, −y − [{1\over 2}], z − [{3\over 2}]; (ii) −x + 1, −y + 1, −z + 1.]
[Figure 3]
Figure 3
A partial packing view of the title compound, showing the ππ stacking inter­actions (dashed lines). Only N-bound H atoms are shown for clarity [Symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) 2 − x, 1 − y, 2 − z.]
[Figure 4]
Figure 4
A packing diagram of the title compound viewed along the a-axis, showing C—H⋯π inter­actions (dashed lines). Only H atoms involved in the inter­actions and N-bound H atoms are shown for clarity.

4. Hirshfeld surface analysis

Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.0001 (red) to 1.5993 (blue) a.u. (Fig. 5a[link]). All of the disordered H atoms of the C16 methyl group were taken into account together. The shape-index of the Hirshfeld surface is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link]b clearly indicates that there are ππ inter­actions in the title compound.

[Figure 5]
Figure 5
Hirshfeld surfaces of the title mol­ecule, (a) mapped with dnorm in the range −0.0001 to 1.5993 a.u. and (b) plotted over shape-index.

Two-dimensional fingerprint plots for the H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are presented in Fig. 6[link]. H⋯H inter­actions, which are located in the middle region of the fingerprint plot, contribute the most to overall crystal packing, with 51.2% (Fig. 6b[link]). The O⋯H/H⋯O contacts contribute 17.9% (Fig. 6c[link]) to the Hirshfeld surface, while the C⋯H/H⋯C contacts contribute 15.2% (Fig. 6d[link]), resulting in a pair of distinctive wings. The C⋯C inter­actions account for 8.1% of the Hirshfeld surface. The percentage contributions to the Hirshfeld surface including other minor ones are summarized in Table 2[link].

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title compound

Contact Percentage contribution
H⋯H 51.2
O⋯H/H⋯O 17.9
C⋯H/H⋯C 15.2
C⋯C 8.1
N⋯C/C⋯N 4.2
N⋯H/H⋯N 1.9
O⋯C/C⋯O 0.9
N⋯N 0.6
O⋯O 0.1
[Figure 6]
Figure 6
Fingerprint plots showing (a) all inter­molecular inter­actions and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts.

5. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.42, updated September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-benzo­furan-2(3H)-one unit gave 220 hits. Of these, the compound most similar to the title compound is 7-meth­oxy-3-(2-phenyl­hydrazinyl­idene)-1-benzo­furan-2(3H)-one, I (CSD refcode IBADIC; Atioğlu et al., 2021[Atioğlu, Z., Akkurt, M., Askerova, U. F., Mukhtarova, S. H., Askerov, R. K. & Mlowe, S. (2021). Acta Cryst. E77, 907-911.]). Four compounds reported by Oliveira et al. (2019[Oliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., da Silva, J. G., Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320-328.]) are closely related to the title compound, viz. 2-(4-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide, II (TODMEH), 2-(2-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide, III (TODMIL), 2-(4-nitro-1H-imidazol-1-yl)-N′-[phen­yl(pyridin-2-yl)methyl­idene]acetohydrazide, IV (TODMOR) and 2-(4-nitro-1H-imidazol-1-yl)-N′-[phen­yl(pyridin-2-yl)methyl­idene]acetohydrazide, V (TODMUX). Compound I crystallizes in the monoclinic space group C2/c with Z = 8. In the crystal of I, pairs of mol­ecules are linked into dimers by N—H⋯O hydrogen bonds, forming an R22(12) ring motif, with the dimers stacked along the a-axis direction. These dimers are connected through ππ stacking inter­actions between the centroids of the benzene and furan rings of their 2,3-di­hydro-1-benzo­furan ring systems. Furthermore, there exists a C—H⋯π inter­action that consolidates the crystal packing. Compounds II and IV crystallize in the monoclinic space group P21/c with Z = 4. Compound III crystallizes in the monoclinic space group I2/a with Z = 8 and V crystallizes in the triclinic space group P[\overline{1}] with Z = 2. Compound VI crystallizes in the monoclinic space group P21/c with Z = 4. The E conformation in II, III and V is stabilized by a strong inter­molecular N—H⋯O inter­action. These inter­actions lead to the formation of dimeric structural arrangements. In the crystal of IV, an inter­molecular N—H⋯N hydrogen bond results in a helical chain structure along the b-axis direction. Non-classical inter­molecular C—H⋯N and C—H⋯O inter­actions are also observed in the crystals of II, III, IV and V.

6. Synthesis and crystallization

(Z)-3-[2-(3,5-Di­methyl­phen­yl)hydrazinyl­idene]benzo­furan-2(3H)-one was synthesized according to the reported method (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-2-{[2-(3,5-di­methyl­phen­yl)hydrazinyl­idene]meth­yl}phenol (240 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 20 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Then the substance was refluxed in methanol for 30 min, and left for evaporation. After three days, single crystals of the title compound suitable for X-ray analysis were obtained. Colorless solid (65%); m.p. 475 K. Analysis calculated for C16H14N2O2 (M = 266.30): C 72.17, H 5.30, N 10.52; found: C 72.13, H 5.26, N 10.48%. 1H NMR (300 MHz, CDCl3) δ 12.04 (1H, NH), 6.79–7.69 (7H, Ar), 2.37 (6H, 2CH3). 13C NMR (75 MHz, CDCl3) δ 160.47, 157.77, 134.91, 125.14, 124.12, 121.77, 121.56, 119.86, 118.21, 114.55, 108.16, 106.59, 16.85 and 16.52. ESI–MS: m/z: 267.23 [M + H]+.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The amine H atom was located in a difference-Fourier map and refined freely [N2—H2 = 0.93 (2) Å]. All C-bound H atoms were placed at calculated positions using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The methyl group with the C16 atom attached to the atom C13 is disordered over two orientations, with occupancies of 0.67 (4) and 0.33 (4). Owing to poor agreement, nine reflections ([\overline{5}] 14 10, 7 13 0, [\overline{11}] 6 5, [\overline{10}] 12 4, 11 1 0, [\overline{11}] 1 1, [\overline{8}] 19 6, [\overline{8}] 0 8 and [\overline{10}] 17 4) were omitted during the final refinement cycle.

Table 3
Experimental details

Crystal data
Chemical formula C16H14N2O2
Mr 266.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.8644 (4), 19.9222 (8), 8.1736 (3)
β (°) 107.240 (1)
V3) 1378.59 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.21 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin.])
Tmin, Tmax 0.684, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22343, 4176, 2332
Rint 0.058
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.146, 1.04
No. of reflections 4176
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.14
Computer programs: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin.]), SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

3-[2-(3,5-Dimethylphenyl)hydrazinylidene]benzofuran-2(3H)-one top
Crystal data top
C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.8644 (4) ÅCell parameters from 3738 reflections
b = 19.9222 (8) Åθ = 2.4–30.5°
c = 8.1736 (3) ŵ = 0.09 mm1
β = 107.240 (1)°T = 296 K
V = 1378.59 (10) Å3Prism, colourless
Z = 40.40 × 0.21 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2332 reflections with I > 2σ(I)
φ and ω scansRint = 0.058
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 30.5°, θmin = 2.4°
Tmin = 0.684, Tmax = 0.746h = 1212
22343 measured reflectionsk = 2828
4176 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2174P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4176 reflectionsΔρmax = 0.15 e Å3
188 parametersΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7095 (2)0.56971 (8)0.9270 (2)0.0519 (4)
C20.76884 (18)0.52981 (8)0.8095 (2)0.0482 (4)
C30.92693 (18)0.55352 (8)0.8274 (2)0.0493 (4)
C41.0448 (2)0.53565 (9)0.7563 (3)0.0624 (5)
H41.0284780.5020400.6739140.075*
C51.1879 (2)0.56929 (11)0.8114 (3)0.0728 (6)
H51.2683240.5583120.7645000.087*
C61.2129 (2)0.61884 (11)0.9347 (3)0.0749 (6)
H61.3102760.6404050.9694560.090*
C71.0974 (2)0.63715 (10)1.0075 (3)0.0673 (5)
H71.1141420.6702991.0910890.081*
C80.95594 (19)0.60361 (8)0.9495 (2)0.0538 (4)
C90.4768 (2)0.40926 (8)0.6127 (2)0.0530 (4)
C100.5476 (2)0.37321 (9)0.5108 (2)0.0603 (5)
H100.6487840.3844070.5084010.072*
C110.4678 (3)0.32049 (9)0.4125 (2)0.0702 (6)
C120.3181 (3)0.30497 (10)0.4188 (3)0.0779 (6)
H120.2638530.2698260.3518870.093*
C130.2457 (2)0.33984 (10)0.5213 (3)0.0693 (6)
C140.3266 (2)0.39267 (9)0.6189 (2)0.0598 (5)
H140.2802840.4169930.6883860.072*
C150.5458 (3)0.28029 (12)0.3040 (3)0.1039 (9)
H15A0.5139730.2341740.3022840.156*
H15B0.6584480.2833840.3512510.156*
H15C0.5146510.2977100.1893470.156*
C160.0820 (3)0.32121 (12)0.5296 (3)0.0972 (8)
H16D0.0522990.3507580.6075470.146*0.67 (4)
H16E0.0827000.2757460.5686740.146*0.67 (4)
H16F0.0074890.3253620.4176440.146*0.67 (4)
H16A0.0139930.3596730.5008910.146*0.33 (4)
H16B0.0885310.3065000.6432910.146*0.33 (4)
H16C0.0399640.2856920.4496820.146*0.33 (4)
N10.69683 (16)0.48115 (7)0.70999 (18)0.0508 (3)
N20.55439 (17)0.46316 (7)0.7133 (2)0.0545 (4)
H20.513 (2)0.4843 (10)0.792 (3)0.077 (6)*
O10.82605 (14)0.61480 (6)1.00954 (16)0.0609 (3)
O20.58433 (14)0.56775 (7)0.95705 (17)0.0666 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (9)0.0531 (9)0.0561 (10)0.0041 (7)0.0089 (8)0.0012 (8)
C20.0422 (9)0.0501 (9)0.0482 (9)0.0004 (7)0.0073 (7)0.0016 (7)
C30.0403 (8)0.0503 (9)0.0546 (10)0.0026 (7)0.0100 (7)0.0083 (7)
C40.0525 (11)0.0673 (11)0.0680 (12)0.0056 (9)0.0186 (9)0.0090 (9)
C50.0459 (11)0.0842 (14)0.0898 (16)0.0066 (10)0.0223 (11)0.0224 (12)
C60.0445 (11)0.0770 (13)0.0958 (16)0.0094 (9)0.0092 (11)0.0179 (12)
C70.0512 (11)0.0607 (11)0.0808 (14)0.0092 (9)0.0053 (10)0.0015 (10)
C80.0409 (9)0.0531 (9)0.0630 (11)0.0004 (7)0.0088 (8)0.0055 (8)
C90.0536 (10)0.0501 (9)0.0461 (9)0.0056 (8)0.0005 (8)0.0030 (7)
C100.0700 (12)0.0553 (10)0.0511 (10)0.0063 (9)0.0109 (9)0.0003 (8)
C110.0950 (16)0.0537 (11)0.0542 (11)0.0090 (10)0.0102 (11)0.0011 (9)
C120.0988 (17)0.0575 (12)0.0572 (12)0.0205 (11)0.0078 (12)0.0005 (10)
C130.0649 (12)0.0635 (12)0.0621 (12)0.0153 (9)0.0080 (10)0.0156 (10)
C140.0534 (10)0.0616 (11)0.0553 (10)0.0066 (8)0.0020 (8)0.0065 (8)
C150.150 (2)0.0746 (15)0.0865 (17)0.0083 (15)0.0348 (17)0.0243 (13)
C160.0724 (15)0.0949 (17)0.1019 (18)0.0327 (12)0.0085 (13)0.0192 (14)
N10.0466 (8)0.0525 (8)0.0497 (8)0.0017 (6)0.0086 (6)0.0028 (6)
N20.0475 (8)0.0574 (9)0.0553 (9)0.0059 (7)0.0100 (7)0.0065 (7)
O10.0496 (7)0.0610 (7)0.0690 (8)0.0061 (6)0.0127 (6)0.0130 (6)
O20.0473 (7)0.0790 (9)0.0757 (9)0.0041 (6)0.0213 (6)0.0101 (7)
Geometric parameters (Å, º) top
C1—O21.2064 (19)C10—H100.9300
C1—O11.3842 (19)C11—C121.378 (3)
C1—C21.459 (2)C11—C151.506 (3)
C2—N11.304 (2)C12—C131.384 (3)
C2—C31.445 (2)C12—H120.9300
C3—C81.380 (2)C13—C141.385 (2)
C3—C41.385 (2)C13—C161.519 (3)
C4—C51.386 (3)C14—H140.9300
C4—H40.9300C15—H15A0.9600
C5—C61.381 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.377 (3)C16—H16D0.9600
C6—H60.9300C16—H16E0.9600
C7—C81.375 (2)C16—H16F0.9600
C7—H70.9300C16—H16A0.9600
C8—O11.397 (2)C16—H16B0.9600
C9—C101.383 (2)C16—H16C0.9600
C9—C141.387 (2)N1—N21.3206 (19)
C9—N21.402 (2)N2—H20.93 (2)
C10—C111.383 (2)
O2—C1—O1121.34 (16)C11—C12—C13122.29 (18)
O2—C1—C2130.48 (16)C11—C12—H12118.9
O1—C1—C2108.18 (14)C13—C12—H12118.9
N1—C2—C3125.97 (16)C12—C13—C14118.4 (2)
N1—C2—C1127.59 (15)C12—C13—C16121.7 (2)
C3—C2—C1106.43 (14)C14—C13—C16119.9 (2)
C8—C3—C4119.17 (16)C13—C14—C9119.93 (19)
C8—C3—C2106.10 (15)C13—C14—H14120.0
C4—C3—C2134.70 (17)C9—C14—H14120.0
C3—C4—C5118.10 (19)C11—C15—H15A109.5
C3—C4—H4121.0C11—C15—H15B109.5
C5—C4—H4121.0H15A—C15—H15B109.5
C6—C5—C4121.07 (19)C11—C15—H15C109.5
C6—C5—H5119.5H15A—C15—H15C109.5
C4—C5—H5119.5H15B—C15—H15C109.5
C7—C6—C5121.71 (19)C13—C16—H16D109.5
C7—C6—H6119.1C13—C16—H16E109.5
C5—C6—H6119.1H16D—C16—H16E109.5
C8—C7—C6116.17 (19)C13—C16—H16F109.5
C8—C7—H7121.9H16D—C16—H16F109.5
C6—C7—H7121.9H16E—C16—H16F109.5
C7—C8—C3123.77 (18)C13—C16—H16A109.5
C7—C8—O1124.32 (17)C13—C16—H16B109.5
C3—C8—O1111.89 (14)H16A—C16—H16B109.5
C10—C9—C14120.63 (16)C13—C16—H16C109.5
C10—C9—N2121.31 (16)H16A—C16—H16C109.5
C14—C9—N2118.05 (17)H16B—C16—H16C109.5
C11—C10—C9119.94 (19)C2—N1—N2118.89 (15)
C11—C10—H10120.0N1—N2—C9120.08 (15)
C9—C10—H10120.0N1—N2—H2117.9 (13)
C12—C11—C10118.8 (2)C9—N2—H2121.7 (13)
C12—C11—C15121.18 (19)C1—O1—C8107.39 (13)
C10—C11—C15120.0 (2)
O2—C1—C2—N11.0 (3)N2—C9—C10—C11179.74 (16)
O1—C1—C2—N1178.73 (15)C9—C10—C11—C120.1 (3)
O2—C1—C2—C3179.52 (18)C9—C10—C11—C15178.83 (18)
O1—C1—C2—C30.23 (17)C10—C11—C12—C130.7 (3)
N1—C2—C3—C8178.02 (16)C15—C11—C12—C13178.06 (19)
C1—C2—C3—C80.52 (17)C11—C12—C13—C140.8 (3)
N1—C2—C3—C40.4 (3)C11—C12—C13—C16178.75 (19)
C1—C2—C3—C4178.17 (19)C12—C13—C14—C90.3 (3)
C8—C3—C4—C50.1 (3)C16—C13—C14—C9179.33 (17)
C2—C3—C4—C5177.49 (18)C10—C9—C14—C130.5 (3)
C3—C4—C5—C60.5 (3)N2—C9—C14—C13179.91 (15)
C4—C5—C6—C70.3 (3)C3—C2—N1—N2176.94 (15)
C5—C6—C7—C80.4 (3)C1—C2—N1—N21.3 (2)
C6—C7—C8—C30.9 (3)C2—N1—N2—C9177.48 (14)
C6—C7—C8—O1179.25 (16)C10—C9—N2—N11.1 (2)
C4—C3—C8—C70.7 (3)C14—C9—N2—N1179.26 (15)
C2—C3—C8—C7177.41 (16)O2—C1—O1—C8178.89 (16)
C4—C3—C8—O1179.19 (14)C2—C1—O1—C80.88 (17)
C2—C3—C8—O11.11 (19)C7—C8—O1—C1177.24 (17)
C14—C9—C10—C110.6 (3)C3—C8—O1—C11.27 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C3–C8 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.93 (2)2.12 (2)2.840 (2)133.8 (16)
C15—H15A···Cg3i0.962.903.591 (3)130
C16—H16F···Cg2ii0.962.923.715 (3)141
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y+1, z+1.
Percentage contributions of interatomic contacts to the Hirshfeld surface of the title compound top
ContactPercentage contribution
H···H51.2
O···H/H···O17.9
C···H/H···C15.2
C···C8.1
N···C/C···N4.2
N···H/H···N1.9
O···C/C···O0.9
N···N0.6
O···O0.1
 

Acknowledgements

The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, UFA and SHM; X-ray analysis, ZA, RKA and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, UFA, SHM and RKA; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).

References

First citationAtioğlu, Z., Akkurt, M., Askerova, U. F., Mukhtarova, S. H., Askerov, R. K. & Mlowe, S. (2021). Acta Cryst. E77, 907–911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationOliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., da Silva, J. G., Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320–328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds