research communications
H)-one
and Hirshfeld surface analysis of 3-[2-(3,5-dimethylphenyl)hydrazinylidene]benzofuran-2(3aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the title compound, C16H14N2O2, the 2,3-dihydro-1-benzofuran ring system is essentially planar and makes a dihedral angle of 3.69 (7)° with the dimethylphenyl ring. The molecular conformation is stabilized by an intramolecular N—H⋯O hydrogen bond with an S(6) ring motif. In the crystal, molecules are connected by C—H⋯π and π–π stacking interactions, forming a layer lying parallel to the (11) plane. One methyl group is disordered over two orientations, with occupancies of 0.67 (4) and 0.33 (4). Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (51.2%), O⋯H/H⋯O (17.9%), C⋯H/H⋯C (15.2%) and C⋯C (8.1%) contacts.
Keywords: crystal structure; intramolecular N—H⋯O interactions; C—H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 1983650
1. Chemical context
etc., mainly because of the azo-to-hydrazo tautomerism/isomerism and the optical properties of –N=N– unit (Maharramov et al., 2018; Ma et al., 2020, 2021; Viswanathan et al., 2019). Not only E/Z isomerization, but also azo-hydrazone is important in organic and the coordination chemistry of hydrazone dyes (Ma et al., 2017a,b; Mahmoudi et al., 2017, 2018). The design of hydrazone dyes with or acceptor substituents has led to multidentante ligands, the corresponding coordination compounds of which have been applied effectively as catalysts in oxidation and C—C coupling reactions (Mahmudov et al., 2013; Mizar et al., 2012). Moreover, the functional properties of or their metal complexes can be regulated by attaching functional groups to the =N—NH— unit (Gurbanov et al., 2020a,b; Kopylovich et al., 2011; Mahmudov et al., 2020; Shixaliyev et al., 2014). Thus, we have attached C=O groups and furan and aryl rings to the =N—NH— moiety, leading to a new hydrazone compound, (Z)-3-[2-(3,5-dimethylphenyl)hydrazinylidene]benzofuran-2(3H)-one, which can form intermolecular interactions.
have many applications in diverse areas, such as in optical data storage, as molecular switches and antimicrobial agents, in non-linear optics, molecular recognition, dye-sensitized solar cells, color-changing materials, catalysis, liquid crystals,2. Structural commentary
The molecular conformation of the title compound is stabilized by an intramolecular N—H⋯O hydrogen bond (N2—H2⋯O2; Table 1) with an S(6) ring motif (Fig. 1). The 2,3-dihydro-1-benzofuran ring system (O1/C1–C8) of the title compound is essentially planar [maximum deviations = −0.031 (2) Å for C3 and 0.026 (2) Å for C6] and makes a dihedral angle of 3.69 (7)° with the dimethylphenyl C9–C14 ring. In the molecule, the aromatic C9–C14 ring and the C=N—NH– unit are almost coplanar with a dihedral angle of 4.8 (8)° between them.
3. Supramolecular features
In the crystal, molecules are connected by C—H⋯π interactions [C15—H15A⋯Cg3i and C16—H16F⋯Cg2ii; symmetry codes as given in Table 1; Fig. 2] and π–π stacking interactions [Cg1⋯Cg2îii = 3.6227 (11) Å, slippage = 1.226 Å; Cg1⋯Cg3îi = 3.7128 (10) Å, slippage = 1.339 Å; Symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y + 1, −z + 2], where Cg1 and Cg2 are the centroids of the oxolane O1/C1–C3/C8 and benzene C3–C8 rings, respectively, of the 2,3-dihydro-1-benzofuran ring system while Cg3 is the centroid of the dimethylphenyl C9–C14 ring (Fig. 3). These interactions link the molecules into a layer structure lying parallel to the (11) plane (Fig. 4).
4. Hirshfeld surface analysis
Crystal Explorer17 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.0001 (red) to 1.5993 (blue) a.u. (Fig. 5a). All of the disordered H atoms of the C16 methyl group were taken into account together. The shape-index of the Hirshfeld surface is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5b clearly indicates that there are π–π interactions in the title compound.
Two-dimensional fingerprint plots for the H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are presented in Fig. 6. H⋯H interactions, which are located in the middle region of the fingerprint plot, contribute the most to overall crystal packing, with 51.2% (Fig. 6b). The O⋯H/H⋯O contacts contribute 17.9% (Fig. 6c) to the Hirshfeld surface, while the C⋯H/H⋯C contacts contribute 15.2% (Fig. 6d), resulting in a pair of distinctive wings. The C⋯C interactions account for 8.1% of the Hirshfeld surface. The percentage contributions to the Hirshfeld surface including other minor ones are summarized in Table 2.
|
5. Database survey
A search of the Cambridge Crystallographic Database (CSD version 5.42, updated September 2021; Groom et al., 2016) for the 1-benzofuran-2(3H)-one unit gave 220 hits. Of these, the compound most similar to the title compound is 7-methoxy-3-(2-phenylhydrazinylidene)-1-benzofuran-2(3H)-one, I (CSD refcode IBADIC; Atioğlu et al., 2021). Four compounds reported by Oliveira et al. (2019) are closely related to the title compound, viz. 2-(4-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide, II (TODMEH), 2-(2-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide, III (TODMIL), 2-(4-nitro-1H-imidazol-1-yl)-N′-[phenyl(pyridin-2-yl)methylidene]acetohydrazide, IV (TODMOR) and 2-(4-nitro-1H-imidazol-1-yl)-N′-[phenyl(pyridin-2-yl)methylidene]acetohydrazide, V (TODMUX). Compound I crystallizes in the monoclinic C2/c with Z = 8. In the crystal of I, pairs of molecules are linked into dimers by N—H⋯O hydrogen bonds, forming an R22(12) ring motif, with the dimers stacked along the a-axis direction. These dimers are connected through π–π stacking interactions between the centroids of the benzene and furan rings of their 2,3-dihydro-1-benzofuran ring systems. Furthermore, there exists a C—H⋯π interaction that consolidates the crystal packing. Compounds II and IV crystallize in the monoclinic P21/c with Z = 4. Compound III crystallizes in the monoclinic I2/a with Z = 8 and V crystallizes in the triclinic P with Z = 2. Compound VI crystallizes in the monoclinic P21/c with Z = 4. The E conformation in II, III and V is stabilized by a strong intermolecular N—H⋯O interaction. These interactions lead to the formation of dimeric structural arrangements. In the crystal of IV, an intermolecular N—H⋯N hydrogen bond results in a helical chain structure along the b-axis direction. Non-classical intermolecular C—H⋯N and C—H⋯O interactions are also observed in the crystals of II, III, IV and V.
6. Synthesis and crystallization
(Z)-3-[2-(3,5-Dimethylphenyl)hydrazinylidene]benzofuran-2(3H)-one was synthesized according to the reported method (Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-2-{[2-(3,5-dimethylphenyl)hydrazinylidene]methyl}phenol (240 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 20 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Then the substance was refluxed in methanol for 30 min, and left for evaporation. After three days, single crystals of the title compound suitable for X-ray analysis were obtained. Colorless solid (65%); m.p. 475 K. Analysis calculated for C16H14N2O2 (M = 266.30): C 72.17, H 5.30, N 10.52; found: C 72.13, H 5.26, N 10.48%. 1H NMR (300 MHz, CDCl3) δ 12.04 (1H, NH), 6.79–7.69 (7H, Ar), 2.37 (6H, 2CH3). 13C NMR (75 MHz, CDCl3) δ 160.47, 157.77, 134.91, 125.14, 124.12, 121.77, 121.56, 119.86, 118.21, 114.55, 108.16, 106.59, 16.85 and 16.52. ESI–MS: m/z: 267.23 [M + H]+.
7. details
Crystal data, data collection and structure . The amine H atom was located in a difference-Fourier map and refined freely [N2—H2 = 0.93 (2) Å]. All C-bound H atoms were placed at calculated positions using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The methyl group with the C16 atom attached to the atom C13 is disordered over two orientations, with occupancies of 0.67 (4) and 0.33 (4). Owing to poor agreement, nine reflections ( 14 10, 7 13 0, 6 5, 12 4, 11 1 0, 1 1, 19 6, 0 8 and 17 4) were omitted during the final cycle.
details are summarized in Table 3Supporting information
CCDC reference: 1983650
https://doi.org/10.1107/S2056989021011749/is5559sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011749/is5559Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021011749/is5559Isup3.cml
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H14N2O2 | F(000) = 560 |
Mr = 266.29 | Dx = 1.283 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8644 (4) Å | Cell parameters from 3738 reflections |
b = 19.9222 (8) Å | θ = 2.4–30.5° |
c = 8.1736 (3) Å | µ = 0.09 mm−1 |
β = 107.240 (1)° | T = 296 K |
V = 1378.59 (10) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.21 × 0.06 mm |
Bruker APEXII CCD diffractometer | 2332 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.058 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 30.5°, θmin = 2.4° |
Tmin = 0.684, Tmax = 0.746 | h = −12→12 |
22343 measured reflections | k = −28→28 |
4176 independent reflections | l = −11→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2174P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4176 reflections | Δρmax = 0.15 e Å−3 |
188 parameters | Δρmin = −0.14 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7095 (2) | 0.56971 (8) | 0.9270 (2) | 0.0519 (4) | |
C2 | 0.76884 (18) | 0.52981 (8) | 0.8095 (2) | 0.0482 (4) | |
C3 | 0.92693 (18) | 0.55352 (8) | 0.8274 (2) | 0.0493 (4) | |
C4 | 1.0448 (2) | 0.53565 (9) | 0.7563 (3) | 0.0624 (5) | |
H4 | 1.028478 | 0.502040 | 0.673914 | 0.075* | |
C5 | 1.1879 (2) | 0.56929 (11) | 0.8114 (3) | 0.0728 (6) | |
H5 | 1.268324 | 0.558312 | 0.764500 | 0.087* | |
C6 | 1.2129 (2) | 0.61884 (11) | 0.9347 (3) | 0.0749 (6) | |
H6 | 1.310276 | 0.640405 | 0.969456 | 0.090* | |
C7 | 1.0974 (2) | 0.63715 (10) | 1.0075 (3) | 0.0673 (5) | |
H7 | 1.114142 | 0.670299 | 1.091089 | 0.081* | |
C8 | 0.95594 (19) | 0.60361 (8) | 0.9495 (2) | 0.0538 (4) | |
C9 | 0.4768 (2) | 0.40926 (8) | 0.6127 (2) | 0.0530 (4) | |
C10 | 0.5476 (2) | 0.37321 (9) | 0.5108 (2) | 0.0603 (5) | |
H10 | 0.648784 | 0.384407 | 0.508401 | 0.072* | |
C11 | 0.4678 (3) | 0.32049 (9) | 0.4125 (2) | 0.0702 (6) | |
C12 | 0.3181 (3) | 0.30497 (10) | 0.4188 (3) | 0.0779 (6) | |
H12 | 0.263853 | 0.269826 | 0.351887 | 0.093* | |
C13 | 0.2457 (2) | 0.33984 (10) | 0.5213 (3) | 0.0693 (6) | |
C14 | 0.3266 (2) | 0.39267 (9) | 0.6189 (2) | 0.0598 (5) | |
H14 | 0.280284 | 0.416993 | 0.688386 | 0.072* | |
C15 | 0.5458 (3) | 0.28029 (12) | 0.3040 (3) | 0.1039 (9) | |
H15A | 0.513973 | 0.234174 | 0.302284 | 0.156* | |
H15B | 0.658448 | 0.283384 | 0.351251 | 0.156* | |
H15C | 0.514651 | 0.297710 | 0.189347 | 0.156* | |
C16 | 0.0820 (3) | 0.32121 (12) | 0.5296 (3) | 0.0972 (8) | |
H16D | 0.052299 | 0.350758 | 0.607547 | 0.146* | 0.67 (4) |
H16E | 0.082700 | 0.275746 | 0.568674 | 0.146* | 0.67 (4) |
H16F | 0.007489 | 0.325362 | 0.417644 | 0.146* | 0.67 (4) |
H16A | 0.013993 | 0.359673 | 0.500891 | 0.146* | 0.33 (4) |
H16B | 0.088531 | 0.306500 | 0.643291 | 0.146* | 0.33 (4) |
H16C | 0.039964 | 0.285692 | 0.449682 | 0.146* | 0.33 (4) |
N1 | 0.69683 (16) | 0.48115 (7) | 0.70999 (18) | 0.0508 (3) | |
N2 | 0.55439 (17) | 0.46316 (7) | 0.7133 (2) | 0.0545 (4) | |
H2 | 0.513 (2) | 0.4843 (10) | 0.792 (3) | 0.077 (6)* | |
O1 | 0.82605 (14) | 0.61480 (6) | 1.00954 (16) | 0.0609 (3) | |
O2 | 0.58433 (14) | 0.56775 (7) | 0.95705 (17) | 0.0666 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0428 (9) | 0.0531 (9) | 0.0561 (10) | −0.0041 (7) | 0.0089 (8) | −0.0012 (8) |
C2 | 0.0422 (9) | 0.0501 (9) | 0.0482 (9) | −0.0004 (7) | 0.0073 (7) | 0.0016 (7) |
C3 | 0.0403 (8) | 0.0503 (9) | 0.0546 (10) | 0.0026 (7) | 0.0100 (7) | 0.0083 (7) |
C4 | 0.0525 (11) | 0.0673 (11) | 0.0680 (12) | 0.0056 (9) | 0.0186 (9) | 0.0090 (9) |
C5 | 0.0459 (11) | 0.0842 (14) | 0.0898 (16) | 0.0066 (10) | 0.0223 (11) | 0.0224 (12) |
C6 | 0.0445 (11) | 0.0770 (13) | 0.0958 (16) | −0.0094 (9) | 0.0092 (11) | 0.0179 (12) |
C7 | 0.0512 (11) | 0.0607 (11) | 0.0808 (14) | −0.0092 (9) | 0.0053 (10) | 0.0015 (10) |
C8 | 0.0409 (9) | 0.0531 (9) | 0.0630 (11) | −0.0004 (7) | 0.0088 (8) | 0.0055 (8) |
C9 | 0.0536 (10) | 0.0501 (9) | 0.0461 (9) | −0.0056 (8) | 0.0005 (8) | 0.0030 (7) |
C10 | 0.0700 (12) | 0.0553 (10) | 0.0511 (10) | −0.0063 (9) | 0.0109 (9) | 0.0003 (8) |
C11 | 0.0950 (16) | 0.0537 (11) | 0.0542 (11) | −0.0090 (10) | 0.0102 (11) | −0.0011 (9) |
C12 | 0.0988 (17) | 0.0575 (12) | 0.0572 (12) | −0.0205 (11) | −0.0078 (12) | −0.0005 (10) |
C13 | 0.0649 (12) | 0.0635 (12) | 0.0621 (12) | −0.0153 (9) | −0.0080 (10) | 0.0156 (10) |
C14 | 0.0534 (10) | 0.0616 (11) | 0.0553 (10) | −0.0066 (8) | 0.0020 (8) | 0.0065 (8) |
C15 | 0.150 (2) | 0.0746 (15) | 0.0865 (17) | −0.0083 (15) | 0.0348 (17) | −0.0243 (13) |
C16 | 0.0724 (15) | 0.0949 (17) | 0.1019 (18) | −0.0327 (12) | −0.0085 (13) | 0.0192 (14) |
N1 | 0.0466 (8) | 0.0525 (8) | 0.0497 (8) | −0.0017 (6) | 0.0086 (6) | 0.0028 (6) |
N2 | 0.0475 (8) | 0.0574 (9) | 0.0553 (9) | −0.0059 (7) | 0.0100 (7) | −0.0065 (7) |
O1 | 0.0496 (7) | 0.0610 (7) | 0.0690 (8) | −0.0061 (6) | 0.0127 (6) | −0.0130 (6) |
O2 | 0.0473 (7) | 0.0790 (9) | 0.0757 (9) | −0.0041 (6) | 0.0213 (6) | −0.0101 (7) |
C1—O2 | 1.2064 (19) | C10—H10 | 0.9300 |
C1—O1 | 1.3842 (19) | C11—C12 | 1.378 (3) |
C1—C2 | 1.459 (2) | C11—C15 | 1.506 (3) |
C2—N1 | 1.304 (2) | C12—C13 | 1.384 (3) |
C2—C3 | 1.445 (2) | C12—H12 | 0.9300 |
C3—C8 | 1.380 (2) | C13—C14 | 1.385 (2) |
C3—C4 | 1.385 (2) | C13—C16 | 1.519 (3) |
C4—C5 | 1.386 (3) | C14—H14 | 0.9300 |
C4—H4 | 0.9300 | C15—H15A | 0.9600 |
C5—C6 | 1.381 (3) | C15—H15B | 0.9600 |
C5—H5 | 0.9300 | C15—H15C | 0.9600 |
C6—C7 | 1.377 (3) | C16—H16D | 0.9600 |
C6—H6 | 0.9300 | C16—H16E | 0.9600 |
C7—C8 | 1.375 (2) | C16—H16F | 0.9600 |
C7—H7 | 0.9300 | C16—H16A | 0.9600 |
C8—O1 | 1.397 (2) | C16—H16B | 0.9600 |
C9—C10 | 1.383 (2) | C16—H16C | 0.9600 |
C9—C14 | 1.387 (2) | N1—N2 | 1.3206 (19) |
C9—N2 | 1.402 (2) | N2—H2 | 0.93 (2) |
C10—C11 | 1.383 (2) | ||
O2—C1—O1 | 121.34 (16) | C11—C12—C13 | 122.29 (18) |
O2—C1—C2 | 130.48 (16) | C11—C12—H12 | 118.9 |
O1—C1—C2 | 108.18 (14) | C13—C12—H12 | 118.9 |
N1—C2—C3 | 125.97 (16) | C12—C13—C14 | 118.4 (2) |
N1—C2—C1 | 127.59 (15) | C12—C13—C16 | 121.7 (2) |
C3—C2—C1 | 106.43 (14) | C14—C13—C16 | 119.9 (2) |
C8—C3—C4 | 119.17 (16) | C13—C14—C9 | 119.93 (19) |
C8—C3—C2 | 106.10 (15) | C13—C14—H14 | 120.0 |
C4—C3—C2 | 134.70 (17) | C9—C14—H14 | 120.0 |
C3—C4—C5 | 118.10 (19) | C11—C15—H15A | 109.5 |
C3—C4—H4 | 121.0 | C11—C15—H15B | 109.5 |
C5—C4—H4 | 121.0 | H15A—C15—H15B | 109.5 |
C6—C5—C4 | 121.07 (19) | C11—C15—H15C | 109.5 |
C6—C5—H5 | 119.5 | H15A—C15—H15C | 109.5 |
C4—C5—H5 | 119.5 | H15B—C15—H15C | 109.5 |
C7—C6—C5 | 121.71 (19) | C13—C16—H16D | 109.5 |
C7—C6—H6 | 119.1 | C13—C16—H16E | 109.5 |
C5—C6—H6 | 119.1 | H16D—C16—H16E | 109.5 |
C8—C7—C6 | 116.17 (19) | C13—C16—H16F | 109.5 |
C8—C7—H7 | 121.9 | H16D—C16—H16F | 109.5 |
C6—C7—H7 | 121.9 | H16E—C16—H16F | 109.5 |
C7—C8—C3 | 123.77 (18) | C13—C16—H16A | 109.5 |
C7—C8—O1 | 124.32 (17) | C13—C16—H16B | 109.5 |
C3—C8—O1 | 111.89 (14) | H16A—C16—H16B | 109.5 |
C10—C9—C14 | 120.63 (16) | C13—C16—H16C | 109.5 |
C10—C9—N2 | 121.31 (16) | H16A—C16—H16C | 109.5 |
C14—C9—N2 | 118.05 (17) | H16B—C16—H16C | 109.5 |
C11—C10—C9 | 119.94 (19) | C2—N1—N2 | 118.89 (15) |
C11—C10—H10 | 120.0 | N1—N2—C9 | 120.08 (15) |
C9—C10—H10 | 120.0 | N1—N2—H2 | 117.9 (13) |
C12—C11—C10 | 118.8 (2) | C9—N2—H2 | 121.7 (13) |
C12—C11—C15 | 121.18 (19) | C1—O1—C8 | 107.39 (13) |
C10—C11—C15 | 120.0 (2) | ||
O2—C1—C2—N1 | −1.0 (3) | N2—C9—C10—C11 | −179.74 (16) |
O1—C1—C2—N1 | 178.73 (15) | C9—C10—C11—C12 | −0.1 (3) |
O2—C1—C2—C3 | −179.52 (18) | C9—C10—C11—C15 | −178.83 (18) |
O1—C1—C2—C3 | 0.23 (17) | C10—C11—C12—C13 | −0.7 (3) |
N1—C2—C3—C8 | −178.02 (16) | C15—C11—C12—C13 | 178.06 (19) |
C1—C2—C3—C8 | 0.52 (17) | C11—C12—C13—C14 | 0.8 (3) |
N1—C2—C3—C4 | −0.4 (3) | C11—C12—C13—C16 | −178.75 (19) |
C1—C2—C3—C4 | 178.17 (19) | C12—C13—C14—C9 | −0.3 (3) |
C8—C3—C4—C5 | −0.1 (3) | C16—C13—C14—C9 | 179.33 (17) |
C2—C3—C4—C5 | −177.49 (18) | C10—C9—C14—C13 | −0.5 (3) |
C3—C4—C5—C6 | 0.5 (3) | N2—C9—C14—C13 | 179.91 (15) |
C4—C5—C6—C7 | −0.3 (3) | C3—C2—N1—N2 | 176.94 (15) |
C5—C6—C7—C8 | −0.4 (3) | C1—C2—N1—N2 | −1.3 (2) |
C6—C7—C8—C3 | 0.9 (3) | C2—N1—N2—C9 | −177.48 (14) |
C6—C7—C8—O1 | 179.25 (16) | C10—C9—N2—N1 | 1.1 (2) |
C4—C3—C8—C7 | −0.7 (3) | C14—C9—N2—N1 | −179.26 (15) |
C2—C3—C8—C7 | 177.41 (16) | O2—C1—O1—C8 | 178.89 (16) |
C4—C3—C8—O1 | −179.19 (14) | C2—C1—O1—C8 | −0.88 (17) |
C2—C3—C8—O1 | −1.11 (19) | C7—C8—O1—C1 | −177.24 (17) |
C14—C9—C10—C11 | 0.6 (3) | C3—C8—O1—C1 | 1.27 (19) |
Cg2 and Cg3 are the centroids of the C3–C8 and C9–C14 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.93 (2) | 2.12 (2) | 2.840 (2) | 133.8 (16) |
C15—H15A···Cg3i | 0.96 | 2.90 | 3.591 (3) | 130 |
C16—H16F···Cg2ii | 0.96 | 2.92 | 3.715 (3) | 141 |
Symmetry codes: (i) x, −y−1/2, z−3/2; (ii) −x+1, −y+1, −z+1. |
Contact | Percentage contribution |
H···H | 51.2 |
O···H/H···O | 17.9 |
C···H/H···C | 15.2 |
C···C | 8.1 |
N···C/C···N | 4.2 |
N···H/H···N | 1.9 |
O···C/C···O | 0.9 |
N···N | 0.6 |
O···O | 0.1 |
Acknowledgements
The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, UFA and SHM; X-ray analysis, ZA, RKA and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, UFA, SHM and RKA; supervision, NQS, MA and AB.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).
References
Atioğlu, Z., Akkurt, M., Askerova, U. F., Mukhtarova, S. H., Askerov, R. K. & Mlowe, S. (2021). Acta Cryst. E77, 907–911. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Oliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., da Silva, J. G., Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320–328. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.