research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (+)-(1S,5S,6S,7S,10S,11S,16S)-16-hy­dr­oxy-7-(meth­­oxy­meth­­oxy)-11,15,18,18-tetra­methyl-3,13-dioxo-2,4-dioxa­tetra­cyclo[12.3.1.01,5.06,11]octa­dec-14-en-10-yl benzoate

crossmark logo

aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp

Edited by H. Ishida, Okayama University, Japan (Received 27 October 2021; accepted 31 October 2021; online 4 November 2021)

In the fused tetra­cyclic system of the title compound, C29H36O9, the five-membered dioxolane ring adopts a twist conformation; the two adjacent C atoms deviate alternately from the mean plane of the other three atoms by −0.252 (6) and 0.340 (6) Å. The cyclo­hexane, cyclo­hexene and central cyclo­octane rings show chair, half-chair and boat-chair forms, respectively. There are three intra­molecular C—H⋯O inter­actions supporting the mol­ecular conformation, with one S(6) and two S(7) graph-set motifs. In the crystal, inter­molecular O—H⋯O hydrogen bonds connect the mol­ecules into a helical chain running along the c-axis direction, generating a C(7) graph-set motif. The chains are further linked by inter­molecular C—H⋯O inter­actions to construct a three-dimensional network. There is no valid C—H⋯π inter­action.

1. Chemical context

Paclitaxel (systematic name: (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-diacet­oxy-1,9-dihy­droxy-15-{[(2R,3S)-3-benzoyl­amino-2-hy­droxy-3-phen­yl]propano­yl}­oxy-10,14,17,17-tetra­methyl-11-oxo-6-oxa-tetra­cyclo­[11.3.1.03,10.04,7]hepta­dec-13-en-2-yl benzoate) is a well-known natural diterpenoid con­taining a taxane framework (tri­cyclo­[9.3.1.03,8]penta­decane; Fig. 1[link]), with potent anti­tumor activity (Wall & Wani, 1995[Wall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18-30.]). Its highly complicated structure and significant bioactivity have attracted wide chemical and medicinal inter­est.

[Scheme 1]
[Figure 1]
Figure 1
Left: Structure of tri­cyclo­[9.3.1.03,8]penta­decane (taxane) skeleton. Right: Core structure of the title compound. Red lines indicate the taxane skeleton. R1 = OC(=O)Ph, R2 = OCH2OCH3.

The title compound, which has a fused tetra­cyclic core composed of a taxane skeleton with an external cyclic carbonate, was afforded as a chiral form in an improved synthesis of paclitaxel (Iiyama et al., 2021[Iiyama, S., Fukaya, K., Yamaguchi, Y., Watanabe, A., Yamamoto, H., Mochizuki, S., Saio, R., Noguchi, T., Oishi, T., Sato, T. & Chida, N. (2021). In preparation.]). Several closely related structures (Oishi, Yamaguchi et al., 2015[Oishi, T., Yamaguchi, Y., Fukaya, K., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 8-11.]; Oishi, Fukaya et al., 2015a[Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015a). Acta Cryst. E71, 466-472.],b[Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015b). Acta Cryst. E71, 490-493.]) obtained in another synthetic pathway (Fukaya, Tanaka et al., 2015[Fukaya, K., Tanaka, Y., Sato, A. C., Kodama, K., Yamazaki, H., Ishimoto, T., Nozaki, Y., Iwaki, Y. M., Yuki, Y., Umei, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Oishi, T., Sato, T. & Chida, N. (2015). Org. Lett. 17, 2570-2573.]; Fukaya, Kodama et al., 2015[Fukaya, K., Kodama, K., Tanaka, Y., Yamazaki, H., Sugai, T., Yamaguchi, Y., Watanabe, A., Oishi, T., Sato, T. & Chida, N. (2015). Org. Lett. 17, 2574-2577.]) have been reported previously as racemic crystals.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The dioxolane ring (C1/C2/O22/C21/O20) adopts a twisted form with puckering parameters of Q(2) = 0.351 (2) Å and φ(2) = 56.6 (4)°. Atoms C1 and C2 deviate from the mean plane of the other three atoms by −0.250 (6) and 0.342 (6) Å, respectively. The cyclo­hexane ring (C3–C8) adopts a chair form with puckering parameters of Q = 0.580 (2) Å, θ = 8.0 (2)°, φ = 296.5 (17)°, Q(2) = 0.083 (2) Å and Q(3) = 0.574 (2) Å. The large substituents at C3, C4, C7 and C8 are in equatorial positions. The cyclo­hexene ring (C1/C14/C13/C12/C11/C15) adopts a half-chair form with puckering parameters of Q = 0.657 (3) Å, θ = 108.2 (3)°, φ = 135.8 (2)°, Q(2) = 0.624 (3) Å and Q(3) = −0.205 (3) Å. Atoms C1 and C14 deviate by 1.123 (4) and 0.811 (4) Å respectively, from the mean plane of the other four atoms with a maximum deviation of 0.0314 (15) Å at C12. The tetra­substituted olefin (C10/C15/C11=C12/C13/C18) is skewed from an ideal planar structure owing to strain in the fused-ring system. The torsion angles C10—C11=C12—C18, C15—C11=C12—C13, C10—C11=C12—C13 and C15—C11=C12—C18 are −14.1 (4), −7.0 (3), 159.6 (2) and 179.3 (2)°, respectively, and the dihedral angle between the C10/C11/C15 and C18/C12/C13 planes is 19.70 (17)°. The central cyclo­octane ring (C1–C3/C8–C11/C15) adopts a boat-chair form with puckering parameters of Q = 1.200 (2) Å, Q(2) = 0.948 (2) Å, φ(2) = 183.33 (15)°, Q(3) = 0.588 (2) Å, φ(3) = 3.3 (2)° and Q(4) = 0.444 (2) Å.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound with the atom labels. Displacement ellipsoids are drawn at the 30% probability levels. Only H atoms connected to O and chiral C atoms are shown for clarity.

There are three intra­molecular C—H⋯O inter­actions (C35—H35A⋯O22, C18—H18A⋯O33 and C14—H14B⋯O34; Table 1[link]), generating S(7), S(6) and S(7) graph-set motifs, respectively (Fig. 3[link]). The absolute structure was confirmed by the Flack parameter of 0.01 (7) with 1649 quotients [(I+) − (I)]/[(I+) + (I )] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O38—H38⋯O33i 0.84 2.49 3.251 (2) 151
C14—H14B⋯O34 0.99 2.57 3.423 (3) 145
C18—H18A⋯O33 0.98 2.53 3.244 (3) 130
C35—H35A⋯O22 0.99 2.36 2.990 (3) 121
C16—H16C⋯O26ii 0.98 2.43 3.331 (3) 153
C19—H19B⋯O26ii 0.98 2.59 3.534 (3) 162
C37—H37A⋯O23iii 0.98 2.52 3.445 (3) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecular conformation with the intra­molecular C—H⋯O inter­actions (black dashed lines). Only H atoms involved in these inter­actions and the hy­droxy H atom are shown for clarity.

3. Supra­molecular features

The crystal packing is stabilized by an O—H⋯O hydrogen bond (O38—H38⋯O33i; symmetry code as given in Table 1[link]), connecting the mol­ecules into a helical chain running along the c-axis direction, with a C(7) graph-set motif (Fig. 4[link]). The chains are linked by an inter­molecular C—H⋯O hydrogen bond (C16—H16C⋯O26ii; Table 1[link]) to build a three-dimensional architecture. Furthermore, two weak C—H⋯O inter­actions (C37—H37A⋯O23iii and C19—H19B⋯O26ii; Table 1[link]) support to form the network densely (Figs. 5[link] and 6[link]). There is no valid C—H⋯π inter­action.

[Figure 4]
Figure 4
A partial packing diagram viewed down [110]. Yellow lines indicate the inter­molecular O—H⋯O hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry code: (i) −x + [{1\over 2}], −y + 1, z − [{1\over 2}].]
[Figure 5]
Figure 5
A partial packing diagram, showing the inter­molecular C—H⋯O inter­actions (black dashed lines) making a layer structure parallel to the (100) plane. Only H atoms involved in these inter­actions are shown for clarity. [Symmetry codes: (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 6]
Figure 6
A packing diagram viewed down the c axis. Overlapping mol­ecules (projected as `N′ and inverted `N′ letter shapes) indicate the helical chains running along the c axis, which are connected by the inter­molecular C—H⋯O inter­actions (black dashed lines). Only H atoms involved in these inter­actions are shown for clarity. [Symmetry codes: (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}].]

4. Database survey

In the Cambridge Structural Database (CSD Version 5.42, last update September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 113 structures containing a tri­cyclo­[9.3.1.03,8]penta­dec-11-ene skeleton, (a), are registered (Fig. 7[link]). These include two chiral compounds (CSD refcodes NEGBOQ; Poujol et al., 1997[Poujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169-5184.] and SUBQAJ; Hirai et al., 2015[Hirai, S., Utsugi, M., Iwamoto, M. & Nakada, M. (2015). Chem. Eur. J. 21, 355-359.]) possessing a 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­dec-14-ene skeleton, (b), composed of syn-AB, anti-BC and anti-BD fused-ring systems similar to the title compound. Their ring conformations of the fused tetra­cycles (dioxolane, cyclo­hexane, cyclo­hexene and central cyclo­octa­ne) in the former structure are envelope, chair, half-chair and boat-chair forms, respectively, while those in the latter one are similar to the title compound as twist, chair, half-chair and boat-chair, respectively.

[Figure 7]
Figure 7
Core structures for database survey; tri­cyclo[9.3.1.03,8]penta­decane (taxane) and its (a) 11-ene derivative, (b) 2,4-dioxa­tetra­cyclo[12.3.1.01,5.06,11]octa­dec-14-ene as the main frame of the title compound with ring-labelling, and its (c) regioisomer of olefin, (d) 16,17-de­hydro or (e) 8,9-de­hydro derivatives. The geometries of ring-fusion are similar to the title compound in every related structures, as syn-AB, anti-BC and anti-BD.

Four racemic structures closely related to the title compound, afforded by our previous synthesis, were also documented (XULNAV, XULMOI and XULMUO; Oishi, Fukaya et al., 2015a[Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015a). Acta Cryst. E71, 466-472.] and GUHWUD; Oishi, Fukaya et al., 2015b[Oishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015b). Acta Cryst. E71, 490-493.]). For the former three structures, possessing a 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­dec-15-ene core, (c), their ring conformations of the tetra­cycles (dioxolane, cyclo­hexane, cyclo­hexene and central cyclo­octa­ne) are similar to one another as essentially planar, chair, half-chair and chair-chair forms, respectively. For the latter structure with a 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­deca-14,16-diene skeleton, (d), the ring conformations of dioxolane, cyclo­hexane, cyclo­hexene and central cyclo­octane are twist, chair, half-boat and boat-chair forms, respectively. Although two crystalline compounds with a 2,4-dioxa­tetra­cyclo­[12.3.1.01,5.06,11]octa­deca-8,14-diene skeleton, (e), have been reported (Nicolaou, Ueno et al., 1995[Nicolaou, K. C., Ueno, H., Liu, J.-J., Nantermet, P. G., Yang, Z., Renaud, J., Paulvannan, K. & Chadha, R. (1995). J. Am. Chem. Soc. 117, 653-659.]; Nicolaou, Yang et al., 1995[Nicolaou, K. C., Yang, Z., Liu, J.-J., Nantermet, P. G., Claiborne, C. F., Renaud, J., Guy, R. K. & Shibayama, K. (1995). J. Am. Chem. Soc. 117, 645-652.]), they are not registered in the CSD.

5. Synthesis and crystallization

The title compound was provided in an improved chiral synthesis of paclitaxel (Iiyama et al., 2021[Iiyama, S., Fukaya, K., Yamaguchi, Y., Watanabe, A., Yamamoto, H., Mochizuki, S., Saio, R., Noguchi, T., Oishi, T., Sato, T. & Chida, N. (2021). In preparation.]). The cyclo­hexene unit (C1/C14/C13/C12/C11/C15) was prepared according to the reported procedure (Nicolaou, Liu et al., 1995[Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634-644.]) from cyclo­hexa­ne-1,3-dione, while the tetra­substituted chiral cyclo­hexane unit (C3–C8) was derived from 3-meth­oxy­toluene (Fukaya et al., 2016[Fukaya, K., Yamaguchi, Y., Watanabe, A., Yamamoto, H., Sugai, T., Sugai, T., Sato, T. & Chida, N. (2016). J. Antibiot. 69, 273-279.]). Coupling reaction of these two units by utilizing a Shapiro reaction (Nicolaou, Liu et al., 1995[Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634-644.]) led to generate the taxane framework, and further manipulations of the functional groups afforded the title compound. Purification was carried out by silica gel chromatography, and colorless crystals were obtained from a benzene solution under pentane-saturated atmosphere, by slow evaporation at ambient temperature. M.p. 505–508 K. [α]27D + 13.2 (c 0.99, CHCl3). HRMS (ESI) m/z calculated for C29H36O9Na+ [M + Na]+: 551.2257; found: 551.2249.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The hy­droxy H atom was located in a difference map and was allowed to refine as riding, with O—H = 0.84 Å, and with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C29H36O9
Mr 528.58
Crystal system, space group Orthorhombic, P212121
Temperature (K) 90
a, b, c (Å) 13.2073 (2), 13.2580 (2), 14.8563 (2)
V3) 2601.37 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.83
Crystal size (mm) 0.27 × 0.14 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 17552, 4488, 4049
Rint 0.041
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.058, 1.01
No. of reflections 4488
No. of parameters 349
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.17
Absolute structure Flack x determined using 1649 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.01 (7)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT(Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2020).

(+)-(1S,5S,6S,7S,10S,11S,16S)-16-Hydroxy-7-(methoxymethoxy)-11,15,18,18-tetramethyl-3,13-dioxo-2,4-dioxatetracyclo[12.3.1.01,5.06,11]octadec-14-en-10-yl benzoate top
Crystal data top
C29H36O9Dx = 1.350 Mg m3
Mr = 528.58Melting point = 508–505 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
a = 13.2073 (2) ÅCell parameters from 6149 reflections
b = 13.2580 (2) Åθ = 4.5–66.6°
c = 14.8563 (2) ŵ = 0.83 mm1
V = 2601.37 (7) Å3T = 90 K
Z = 4Needle, colorless
F(000) = 11280.27 × 0.14 × 0.09 mm
Data collection top
Bruker D8 Venture
diffractometer
4488 independent reflections
Radiation source: fine-focus sealed tube4049 reflections with I > 2σ(I)
Multilayered confocal mirror monochromatorRint = 0.041
Detector resolution: 10.4167 pixels mm-1θmax = 66.6°, θmin = 4.5°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1315
Tmin = 0.84, Tmax = 0.93l = 1717
17552 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + 0.9512P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4488 reflectionsΔρmax = 0.19 e Å3
349 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack x determined using 1649 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Problematic ten reflections (1 7 0, 0 9 1, 5 1 5, 0 0 8, 1 11 1, 2 7 0, –2 13 2, 2 1 7, 1 12 2, 2 13 2) with |I(obs)-I(calc)|/σW(I) greater than 10 have been omitted in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29313 (18)0.36157 (17)0.52288 (15)0.0185 (5)
C20.40702 (17)0.34711 (17)0.54120 (14)0.0165 (5)
H20.41480.28220.57480.02*
C30.46542 (17)0.42818 (16)0.59392 (14)0.0154 (5)
H30.41590.48320.60730.019*
C40.55414 (18)0.47775 (16)0.54327 (14)0.0170 (5)
H40.60450.42580.5240.02*
C50.60464 (18)0.55792 (19)0.60195 (15)0.0222 (5)
H5A0.66690.58150.57130.027*
H5B0.55840.61640.60720.027*
C60.63253 (18)0.52209 (18)0.69649 (15)0.0199 (5)
H6A0.68880.47290.69280.024*
H6B0.65580.58020.73280.024*
C70.54246 (17)0.47339 (16)0.74180 (14)0.0171 (5)
H70.48810.5250.75030.02*
C80.49959 (17)0.38399 (17)0.68729 (14)0.0163 (5)
C90.41449 (18)0.33002 (18)0.74281 (15)0.0190 (5)
H9A0.4050.26280.71510.023*
H9B0.44270.31810.80360.023*
C100.30917 (18)0.37388 (17)0.75641 (16)0.0192 (5)
C110.25421 (17)0.40784 (17)0.67406 (15)0.0184 (5)
C120.24790 (18)0.50668 (17)0.65522 (16)0.0194 (5)
C130.22472 (18)0.54081 (18)0.55976 (15)0.0219 (5)
H130.14980.54870.55330.026*
C140.26259 (19)0.46571 (18)0.48757 (15)0.0206 (5)
H14A0.20850.45680.44210.025*
H14B0.32170.49590.45660.025*
C150.22581 (18)0.32944 (18)0.60119 (15)0.0203 (5)
C160.23971 (19)0.21823 (17)0.62803 (16)0.0240 (5)
H16A0.20240.17510.58590.036*
H16B0.21370.20780.68910.036*
H16C0.31180.20090.62620.036*
C170.11267 (19)0.3400 (2)0.57840 (17)0.0283 (6)
H17A0.09720.41080.56520.042*
H17B0.0720.31750.62980.042*
H17C0.09670.29850.52570.042*
C180.2724 (2)0.58910 (19)0.72090 (16)0.0278 (6)
H18A0.28730.55950.77990.042*
H18B0.21430.63470.72620.042*
H18C0.33140.62690.69950.042*
C190.58214 (18)0.30291 (17)0.67462 (16)0.0197 (5)
H19A0.63840.33120.63980.03*
H19B0.55360.2450.64240.03*
H19C0.60690.2810.73360.03*
O200.28228 (12)0.29062 (12)0.44657 (10)0.0221 (4)
C210.37150 (19)0.28495 (18)0.40342 (16)0.0220 (5)
O220.44552 (12)0.33066 (11)0.45053 (10)0.0193 (4)
O230.38417 (14)0.24438 (14)0.33279 (11)0.0302 (4)
O240.57161 (12)0.43307 (11)0.82891 (10)0.0175 (3)
C250.56613 (17)0.49480 (17)0.90059 (15)0.0177 (5)
O260.54871 (13)0.58399 (12)0.89538 (11)0.0247 (4)
C270.57910 (17)0.43860 (18)0.98644 (15)0.0184 (5)
C280.56861 (19)0.33481 (19)0.99105 (16)0.0241 (6)
H280.55960.29710.93730.029*
C290.5710 (2)0.2853 (2)1.07304 (17)0.0320 (6)
H290.56360.21411.07580.038*
C300.5845 (2)0.3411 (2)1.15120 (17)0.0355 (7)
H300.58360.30821.2080.043*
C310.5993 (2)0.4441 (2)1.14701 (16)0.0326 (7)
H310.61160.48121.20060.039*
C320.59611 (17)0.4935 (2)1.06494 (16)0.0237 (6)
H320.60550.56451.06220.028*
O330.27312 (13)0.37839 (13)0.83187 (11)0.0279 (4)
O340.51273 (12)0.52911 (12)0.46645 (10)0.0189 (4)
C350.56149 (19)0.50924 (19)0.38360 (15)0.0235 (5)
H35A0.5590.43580.37190.028*
H35B0.52350.54330.33480.028*
O360.66209 (13)0.54080 (13)0.38042 (11)0.0262 (4)
C370.6726 (2)0.6481 (2)0.37659 (18)0.0299 (6)
H37A0.63690.6740.32360.045*
H37B0.74450.66570.37250.045*
H37C0.64360.67820.43110.045*
O380.27143 (15)0.63683 (12)0.54668 (12)0.0311 (4)
H380.26020.65690.4940.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (13)0.0182 (13)0.0153 (12)0.0001 (9)0.0062 (10)0.0049 (9)
C20.0206 (12)0.0169 (13)0.0121 (11)0.0014 (9)0.0000 (9)0.0006 (9)
C30.0181 (12)0.0143 (12)0.0139 (10)0.0033 (9)0.0001 (10)0.0004 (9)
C40.0198 (12)0.0166 (13)0.0146 (11)0.0021 (9)0.0008 (10)0.0015 (9)
C50.0231 (13)0.0230 (14)0.0204 (12)0.0060 (10)0.0013 (11)0.0029 (10)
C60.0221 (13)0.0172 (14)0.0204 (12)0.0046 (9)0.0034 (10)0.0015 (9)
C70.0237 (13)0.0151 (13)0.0124 (11)0.0021 (9)0.0030 (9)0.0005 (9)
C80.0187 (12)0.0156 (12)0.0148 (11)0.0003 (9)0.0017 (10)0.0007 (9)
C90.0251 (14)0.0174 (12)0.0144 (11)0.0032 (9)0.0033 (10)0.0012 (9)
C100.0255 (13)0.0129 (12)0.0193 (13)0.0056 (9)0.0010 (11)0.0023 (9)
C110.0141 (12)0.0226 (14)0.0184 (11)0.0001 (9)0.0031 (10)0.0020 (9)
C120.0162 (11)0.0219 (13)0.0202 (12)0.0033 (9)0.0029 (10)0.0032 (9)
C130.0218 (13)0.0201 (13)0.0238 (12)0.0048 (10)0.0001 (10)0.0005 (10)
C140.0207 (13)0.0241 (13)0.0169 (11)0.0034 (10)0.0029 (10)0.0004 (9)
C150.0196 (13)0.0208 (13)0.0204 (12)0.0012 (10)0.0026 (10)0.0003 (10)
C160.0246 (13)0.0214 (13)0.0258 (13)0.0052 (10)0.0020 (11)0.0016 (10)
C170.0220 (14)0.0322 (16)0.0308 (14)0.0043 (11)0.0020 (11)0.0027 (11)
C180.0402 (16)0.0227 (14)0.0206 (12)0.0036 (11)0.0015 (12)0.0039 (10)
C190.0241 (13)0.0185 (13)0.0166 (11)0.0019 (9)0.0047 (10)0.0001 (9)
O200.0252 (9)0.0228 (9)0.0182 (8)0.0006 (7)0.0064 (7)0.0071 (7)
C210.0291 (14)0.0180 (13)0.0190 (12)0.0069 (10)0.0067 (11)0.0015 (10)
O220.0238 (9)0.0204 (9)0.0138 (8)0.0029 (7)0.0007 (7)0.0039 (6)
O230.0401 (11)0.0314 (11)0.0189 (9)0.0117 (8)0.0075 (8)0.0098 (8)
O240.0239 (9)0.0150 (9)0.0134 (7)0.0014 (6)0.0047 (7)0.0004 (6)
C250.0161 (11)0.0186 (14)0.0183 (11)0.0016 (9)0.0003 (10)0.0035 (9)
O260.0350 (10)0.0170 (10)0.0221 (9)0.0007 (7)0.0006 (8)0.0025 (7)
C270.0149 (12)0.0245 (14)0.0159 (11)0.0008 (9)0.0006 (10)0.0000 (9)
C280.0253 (14)0.0276 (15)0.0193 (12)0.0007 (11)0.0033 (11)0.0005 (10)
C290.0337 (15)0.0334 (16)0.0287 (15)0.0021 (12)0.0025 (12)0.0114 (11)
C300.0332 (16)0.055 (2)0.0186 (13)0.0010 (13)0.0009 (12)0.0112 (12)
C310.0275 (14)0.055 (2)0.0150 (12)0.0018 (13)0.0016 (11)0.0082 (12)
C320.0188 (13)0.0300 (15)0.0224 (13)0.0014 (10)0.0001 (10)0.0056 (10)
O330.0354 (10)0.0296 (10)0.0188 (9)0.0012 (8)0.0062 (8)0.0013 (7)
O340.0247 (9)0.0197 (9)0.0124 (8)0.0025 (6)0.0011 (7)0.0023 (6)
C350.0290 (14)0.0253 (14)0.0163 (12)0.0019 (11)0.0031 (10)0.0004 (9)
O360.0272 (10)0.0276 (10)0.0236 (9)0.0022 (7)0.0067 (7)0.0051 (7)
C370.0298 (15)0.0291 (16)0.0307 (14)0.0024 (11)0.0034 (12)0.0113 (11)
O380.0482 (12)0.0182 (10)0.0269 (9)0.0012 (8)0.0030 (9)0.0029 (7)
Geometric parameters (Å, º) top
C1—O201.480 (3)C15—C171.539 (3)
C1—C141.531 (3)C16—H16A0.98
C1—C151.525 (3)C16—H16B0.98
C1—C21.541 (3)C16—H16C0.98
C2—O221.456 (3)C17—H17A0.98
C2—C31.537 (3)C17—H17B0.98
C2—H21.0C17—H17C0.98
C3—C41.540 (3)C18—H18A0.98
C3—C81.572 (3)C18—H18B0.98
C3—H31.0C18—H18C0.98
C4—O341.437 (3)C19—H19A0.98
C4—C51.528 (3)C19—H19B0.98
C4—H41.0C19—H19C0.98
C5—C61.528 (3)O20—C211.344 (3)
C5—H5A0.99C21—O231.191 (3)
C5—H5B0.99C21—O221.346 (3)
C6—C71.512 (3)O24—C251.345 (3)
C6—H6A0.99C25—O261.207 (3)
C6—H6B0.99C25—C271.487 (3)
C7—O241.452 (3)C27—C281.385 (4)
C7—C81.543 (3)C27—C321.393 (3)
C7—H71.0C28—C291.384 (3)
C8—C191.543 (3)C28—H280.95
C8—C91.567 (3)C29—C301.389 (4)
C9—C101.521 (3)C29—H290.95
C9—H9A0.99C30—C311.380 (4)
C9—H9B0.99C30—H300.95
C10—O331.219 (3)C31—C321.385 (4)
C10—C111.492 (3)C31—H310.95
C11—C121.343 (3)C32—H320.95
C11—C151.547 (3)O34—C351.414 (3)
C12—C181.500 (3)C35—O361.394 (3)
C12—C131.520 (3)C35—H35A0.99
C13—O381.428 (3)C35—H35B0.99
C13—C141.547 (3)O36—C371.431 (3)
C13—H131.0C37—H37A0.98
C14—H14A0.99C37—H37B0.98
C14—H14B0.99C37—H37C0.98
C15—C161.538 (3)O38—H380.84
O20—C1—C14106.57 (17)H14A—C14—H14B107.5
O20—C1—C15110.51 (18)C16—C15—C1113.3 (2)
C14—C1—C15111.1 (2)C16—C15—C11115.70 (19)
O20—C1—C298.67 (17)C1—C15—C11101.82 (18)
C14—C1—C2115.5 (2)C16—C15—C17105.1 (2)
C15—C1—C2113.56 (18)C1—C15—C17111.90 (19)
O22—C2—C1101.31 (16)C11—C15—C17109.2 (2)
O22—C2—C3113.62 (18)C15—C16—H16A109.5
C1—C2—C3119.53 (18)C15—C16—H16B109.5
O22—C2—H2107.2H16A—C16—H16B109.5
C1—C2—H2107.2C15—C16—H16C109.5
C3—C2—H2107.2H16A—C16—H16C109.5
C4—C3—C2115.54 (18)H16B—C16—H16C109.5
C4—C3—C8111.83 (18)C15—C17—H17A109.5
C2—C3—C8109.45 (17)C15—C17—H17B109.5
C4—C3—H3106.5H17A—C17—H17B109.5
C2—C3—H3106.5C15—C17—H17C109.5
C8—C3—H3106.5H17A—C17—H17C109.5
O34—C4—C5106.83 (17)H17B—C17—H17C109.5
O34—C4—C3107.50 (18)C12—C18—H18A109.5
C5—C4—C3110.50 (18)C12—C18—H18B109.5
O34—C4—H4110.6H18A—C18—H18B109.5
C5—C4—H4110.6C12—C18—H18C109.5
C3—C4—H4110.6H18A—C18—H18C109.5
C6—C5—C4114.42 (19)H18B—C18—H18C109.5
C6—C5—H5A108.7C8—C19—H19A109.5
C4—C5—H5A108.7C8—C19—H19B109.5
C6—C5—H5B108.7H19A—C19—H19B109.5
C4—C5—H5B108.7C8—C19—H19C109.5
H5A—C5—H5B107.6H19A—C19—H19C109.5
C7—C6—C5110.63 (19)H19B—C19—H19C109.5
C7—C6—H6A109.5C21—O20—C1108.42 (17)
C5—C6—H6A109.5O23—C21—O22124.0 (2)
C7—C6—H6B109.5O23—C21—O20124.7 (2)
C5—C6—H6B109.5O22—C21—O20111.32 (19)
H6A—C6—H6B108.1C21—O22—C2107.14 (17)
O24—C7—C6110.20 (18)C25—O24—C7117.86 (17)
O24—C7—C8106.39 (17)O26—C25—O24123.7 (2)
C6—C7—C8112.53 (18)O26—C25—C27124.6 (2)
O24—C7—H7109.2O24—C25—C27111.59 (19)
C6—C7—H7109.2C28—C27—C32119.6 (2)
C8—C7—H7109.2C28—C27—C25121.9 (2)
C19—C8—C7109.88 (18)C32—C27—C25118.3 (2)
C19—C8—C9104.65 (18)C27—C28—C29120.8 (2)
C7—C8—C9109.74 (17)C27—C28—H28119.6
C19—C8—C3110.79 (17)C29—C28—H28119.6
C7—C8—C3106.39 (17)C28—C29—C30119.1 (3)
C9—C8—C3115.39 (18)C28—C29—H29120.5
C10—C9—C8123.5 (2)C30—C29—H29120.5
C10—C9—H9A106.5C31—C30—C29120.5 (2)
C8—C9—H9A106.5C31—C30—H30119.7
C10—C9—H9B106.5C29—C30—H30119.7
C8—C9—H9B106.5C30—C31—C32120.2 (2)
H9A—C9—H9B106.5C30—C31—H31119.9
O33—C10—C11123.3 (2)C32—C31—H31119.9
O33—C10—C9119.9 (2)C31—C32—C27119.7 (3)
C11—C10—C9116.8 (2)C31—C32—H32120.2
C12—C11—C10119.7 (2)C27—C32—H32120.2
C12—C11—C15119.7 (2)C35—O34—C4115.45 (17)
C10—C11—C15119.28 (19)O36—C35—O34114.06 (19)
C11—C12—C18124.2 (2)O36—C35—H35A108.7
C11—C12—C13119.8 (2)O34—C35—H35A108.7
C18—C12—C13115.7 (2)O36—C35—H35B108.7
O38—C13—C12107.78 (19)O34—C35—H35B108.7
O38—C13—C14109.87 (19)H35A—C35—H35B107.6
C12—C13—C14112.97 (19)C35—O36—C37113.11 (19)
O38—C13—H13108.7O36—C37—H37A109.5
C12—C13—H13108.7O36—C37—H37B109.5
C14—C13—H13108.7H37A—C37—H37B109.5
C1—C14—C13115.35 (19)O36—C37—H37C109.5
C1—C14—H14A108.4H37A—C37—H37C109.5
C13—C14—H14A108.4H37B—C37—H37C109.5
C1—C14—H14B108.4C13—O38—H38109.5
C13—C14—H14B108.4
O20—C1—C2—O2234.44 (19)C15—C1—C14—C1334.9 (3)
C14—C1—C2—O2278.6 (2)C2—C1—C14—C1396.3 (2)
C15—C1—C2—O22151.38 (18)O38—C13—C14—C1134.1 (2)
O20—C1—C2—C3160.10 (18)C12—C13—C14—C113.7 (3)
C14—C1—C2—C347.0 (3)O20—C1—C15—C1651.3 (2)
C15—C1—C2—C383.0 (3)C14—C1—C15—C16169.37 (19)
O22—C2—C3—C40.3 (3)C2—C1—C15—C1658.5 (3)
C1—C2—C3—C4119.9 (2)O20—C1—C15—C11176.24 (17)
O22—C2—C3—C8127.57 (19)C14—C1—C15—C1165.7 (2)
C1—C2—C3—C8112.8 (2)C2—C1—C15—C1166.4 (2)
C2—C3—C4—O3462.8 (2)O20—C1—C15—C1767.3 (3)
C8—C3—C4—O34171.15 (16)C14—C1—C15—C1750.8 (3)
C2—C3—C4—C5179.00 (18)C2—C1—C15—C17177.11 (19)
C8—C3—C4—C554.9 (2)C12—C11—C15—C16177.6 (2)
O34—C4—C5—C6167.08 (19)C10—C11—C15—C1610.9 (3)
C3—C4—C5—C650.4 (3)C12—C11—C15—C154.3 (3)
C4—C5—C6—C751.3 (3)C10—C11—C15—C1112.5 (2)
C5—C6—C7—O24175.86 (18)C12—C11—C15—C1764.2 (3)
C5—C6—C7—C857.3 (3)C10—C11—C15—C17129.1 (2)
O24—C7—C8—C1961.5 (2)C14—C1—O20—C2191.8 (2)
C6—C7—C8—C1959.3 (2)C15—C1—O20—C21147.45 (19)
O24—C7—C8—C953.1 (2)C2—C1—O20—C2128.2 (2)
C6—C7—C8—C9173.87 (19)C1—O20—C21—O23170.0 (2)
O24—C7—C8—C3178.56 (17)C1—O20—C21—O2210.3 (2)
C6—C7—C8—C360.7 (2)O23—C21—O22—C2165.5 (2)
C4—C3—C8—C1960.1 (2)O20—C21—O22—C214.2 (2)
C2—C3—C8—C1969.2 (2)C1—C2—O22—C2131.1 (2)
C4—C3—C8—C759.2 (2)C3—C2—O22—C21160.57 (18)
C2—C3—C8—C7171.41 (18)C6—C7—O24—C2588.2 (2)
C4—C3—C8—C9178.81 (18)C8—C7—O24—C25149.56 (18)
C2—C3—C8—C949.5 (2)C7—O24—C25—O268.0 (3)
C19—C8—C9—C10168.0 (2)C7—O24—C25—C27169.16 (18)
C7—C8—C9—C1074.2 (3)O26—C25—C27—C28160.2 (2)
C3—C8—C9—C1045.9 (3)O24—C25—C27—C2817.0 (3)
C8—C9—C10—O33130.2 (2)O26—C25—C27—C3215.8 (4)
C8—C9—C10—C1150.9 (3)O24—C25—C27—C32167.0 (2)
O33—C10—C11—C1277.9 (3)C32—C27—C28—C292.4 (4)
C9—C10—C11—C12103.3 (3)C25—C27—C28—C29173.5 (2)
O33—C10—C11—C15115.4 (3)C27—C28—C29—C300.2 (4)
C9—C10—C11—C1563.4 (3)C28—C29—C30—C312.5 (4)
C10—C11—C12—C1814.1 (4)C29—C30—C31—C323.0 (4)
C15—C11—C12—C18179.3 (2)C30—C31—C32—C270.7 (4)
C10—C11—C12—C13159.6 (2)C28—C27—C32—C312.0 (4)
C15—C11—C12—C137.0 (3)C25—C27—C32—C31174.1 (2)
C11—C12—C13—O38150.6 (2)C5—C4—O34—C35110.5 (2)
C18—C12—C13—O3823.6 (3)C3—C4—O34—C35130.85 (19)
C11—C12—C13—C1429.0 (3)C4—O34—C35—O3663.4 (3)
C18—C12—C13—C14145.2 (2)O34—C35—O36—C3771.5 (3)
O20—C1—C14—C13155.30 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O38—H38···O33i0.842.493.251 (2)151
C14—H14B···O340.992.573.423 (3)145
C18—H18A···O330.982.533.244 (3)130
C35—H35A···O220.992.362.990 (3)121
C16—H16C···O26ii0.982.433.331 (3)153
C19—H19B···O26ii0.982.593.534 (3)162
C37—H37A···O23iii0.982.523.445 (3)158
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor S. Ohba (Keio University, Japan) for his fruitful advice.

Funding information

Funding for this research was provided by: Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFukaya, K., Kodama, K., Tanaka, Y., Yamazaki, H., Sugai, T., Yamaguchi, Y., Watanabe, A., Oishi, T., Sato, T. & Chida, N. (2015). Org. Lett. 17, 2574–2577.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFukaya, K., Tanaka, Y., Sato, A. C., Kodama, K., Yamazaki, H., Ishimoto, T., Nozaki, Y., Iwaki, Y. M., Yuki, Y., Umei, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Oishi, T., Sato, T. & Chida, N. (2015). Org. Lett. 17, 2570–2573.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFukaya, K., Yamaguchi, Y., Watanabe, A., Yamamoto, H., Sugai, T., Sugai, T., Sato, T. & Chida, N. (2016). J. Antibiot. 69, 273–279.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirai, S., Utsugi, M., Iwamoto, M. & Nakada, M. (2015). Chem. Eur. J. 21, 355–359.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIiyama, S., Fukaya, K., Yamaguchi, Y., Watanabe, A., Yamamoto, H., Mochizuki, S., Saio, R., Noguchi, T., Oishi, T., Sato, T. & Chida, N. (2021). In preparationGoogle Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634–644.  CrossRef CAS Web of Science Google Scholar
First citationNicolaou, K. C., Ueno, H., Liu, J.-J., Nantermet, P. G., Yang, Z., Renaud, J., Paulvannan, K. & Chadha, R. (1995). J. Am. Chem. Soc. 117, 653–659.  CrossRef CAS Web of Science Google Scholar
First citationNicolaou, K. C., Yang, Z., Liu, J.-J., Nantermet, P. G., Claiborne, C. F., Renaud, J., Guy, R. K. & Shibayama, K. (1995). J. Am. Chem. Soc. 117, 645–652.  CrossRef CAS Web of Science Google Scholar
First citationOishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015a). Acta Cryst. E71, 466–472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOishi, T., Fukaya, K., Yamaguchi, Y., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015b). Acta Cryst. E71, 490–493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOishi, T., Yamaguchi, Y., Fukaya, K., Sugai, T., Watanabe, A., Sato, T. & Chida, N. (2015). Acta Cryst. E71, 8–11.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPoujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169–5184.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18–30.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds