research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The first coordination complex of (5R,6R,7S)-5-(furan-2-yl)-7-phenyl-4,5,6,7-tetra­hydro-[1,2,4]triazolo[1,5-a]pyrimidin-6-amine with zinc(II) acetate-chloride

crossmark logo

aSSI Institute for Single Crystals, NAS of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: masha.o.shishkina@gmail.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 21 September 2021; accepted 17 November 2021; online 23 November 2021)

The title complex, systematic name catena-poly[[[acetato­chlorido­zinc(II)]-μ-(5R,6R,7S)-5-(furan-2-yl)-7-phenyl-4,5,6,7-tetra­hydro­[1,2,4]triazolo[1,5-a]py­rimi­din-6-amine] monohydrate], {[Zn(C2H3O2)Cl(C15H15N5O)]·H2O}n, is the first coordination complex in which the neutral tetra­hydro­triazolo­pyrimidine derivative acts as bridging ligand between two zinc mol­ecules. As a result, polymeric chains of the coordination complex are found. The coordination of the zinc metal atom occurs with the lone pairs of the triazolo nitro­gen atom and amino group. The positive charge of the zinc atom is compensated by the chlorine anion and deprotonated acetic acid. The coordination complex exists as a monohydrate in the crystalline phase. The water mol­ecules bind neighbouring polymeric chains by the formation of O—H⋯O, O—H⋯Cl and N—H⋯O hydrogen bonds.

1. Chemical context

Multicomponent reactions of 3-amino-1,2,4-triazole and carbonyl compounds have divergent selectivity, allowing the synthesis of alternative products from the same set of starting reagents (Sedash et al., 2012[Sedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719-6728.]). Such a phenomenon is used in diversity-oriented synthesis to increase the mol­ecular space of biologically active compounds. In previous research, we suggested a plausible reaction mechanism for the annulation of triazole with a tetra­hydro­pyrimidine ring occurring in reactions of 3-amino-1,2,4-triazole, aromatic aldehydes and ketocompounds (Gümüş et al., 2017a[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017a). Chem. Heterocycl. Compd, 53, 1261-1267.],b[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Shishkina, S. V. & Desenko, S. M. (2017b). Tetrahedron Lett. 58, 3446-3448.]). Generally, such reactions proceed via the inter­mediate formation of a Schiff base from the amino­azole and the aldehyde. One of the key stages of the mechanism is a nucleophilic attack of the electron-rich enol carbon atom onto the electron-deficit azo­methine carbon, with the formation of a C—C bond in the cyclization. If the suggested hypothesis is true, other reagents with a polar C=C bond similar to the C=C bond in enoles should possess similar reactivity. Using this analogy, we performed a multicomponent reaction between 3-amino-1,2,4-triazole, β-nitro­styrene and furfural. As expected, a derivative of tetra­hydro-[1,2,4]triazolo[1,5-a]pyrimidine 1 was obtained in high regio- and stereoselectivity. Further reduction of the nitro group in this compound unexpectedly resulted in formation of the zinc polycomplex 2. A single crystal of this compound was characterized by X-ray diffraction.

[Scheme 1]

2. Structural commentary

The title compound 2 is a coordination complex (Fig. 1[link]) in which the zinc cation forms a salt with a chlorine anion and deprotonated acetic acid and is coordinated additionally by 5-furan-2-yl-7-phenyl-4,5,6,7-tetra­hydro-[1,2,4]triazolo[1,5-a]pyrimidin-6-­amine through inter­action with the electron lone pairs of the N4 atom of the triazole ring and the pyramidal amino group [the sum of bond angles, centered at the N5 atom, is 324°]. Thus, the zinc coordination polyhedron is tetra­hedral.

[Figure 1]
Figure 1
The mol­ecular structure of compound 2 (solvent mol­ecule and hydrogen atoms are omitted for clarity). Displacement ellipsoids are shown at the 50% probability level.

The tetra­hydro­pyrimidine ring of the neutral organic ligand adopts an asymmetric half-chair conformation (Fig. 1[link]) with puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) of S = 0.73, Θ = 35.0°, Ψ = 20.3°. The C2 and C1 atoms deviate from the mean-square plane of the remaining atoms of the ring by 0.76 and 0.18 Å, respectively. The three vicinal substituents have different orientations: the furan ring is located in the equatorial position, while the phenyl substituent and amino group are located in axial positions [the C4—N1—C3—C12_1/C12_2, N2—C1—C2—N5 and C4—N2—C1—C6 torsion angles are 161.4 (2), 161.4 (2), −78.2 (2) and 105.5 (3)° respectively].

The amino group and furan ring are cis-oriented. The furan ring is disordered over two positions with an occupancy ratio of 0.707 (11):0.293 (11) and twisted in relation to the N1—C3 endocyclic bond [the N1—C3—C12_1—C13_1 and N1—C3—C12_2—O1_2 torsion angles are −27.6 (9) and −36.5 (8)°, respectively]. This may be due to the strong bifurcated intra­molecular N—H⋯π hydrogen bonds (N5—H5A⋯C12_1/C12_2, N5—H5B⋯C13_1 and N5—H5B⋯O1_2; Table 1[link]). The phenyl substituent is trans-oriented to the amino group and twisted with respect to the N2—C1 endocyclic bond [N2—C1—C6—C11 = −15.4 (4)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1SA⋯O2 0.98 1.91 2.830 (3) 155
O1S—H1SB⋯Cl1 0.98 2.47 3.321 (2) 144
N1—H1⋯Cl1 0.86 2.42 3.198 (2) 151
N5—H5A⋯O3i 0.89 2.48 2.961 (3) 114
N5—H5A⋯C12_1 0.89 2.49 2.966 (3) 114
N5—H5A⋯C13_1 0.89 2.67 3.422 (11) 143
N5—H5A⋯O1_2 0.89 2.33 3.086 (17) 144
N5—H5A⋯C12_2 0.89 2.49 2.966 (3) 114
N5—H5B⋯O1Sii 0.89 2.03 2.904 (3) 169
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal, the coordination complex forms polymeric chains in the [010] direction, in which the neutral organic mol­ecule is bridged between two zinc cations (Fig. 2[link]). The coordination polymer exists as a monohydrate in the crystal. The organic mol­ecule is linked to the chlorine and acetic anions by N1—H⋯Cl and N5—H5A⋯O3i hydrogen bonds (Table 1[link]). Neighbouring polymeric chains are connected through the water mol­ecules by O1S—H1SA⋯O2, O1S—H1SB⋯Cl and N5—H5B⋯O1Sii hydrogen bonds (Table 1[link]).

[Figure 2]
Figure 2
The chain of mol­ecules of 2 linked by N—H⋯Cl and N—H⋯O hydrogen bonds.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]) was used to identify and visualize different types of intra- and inter­molecular inter­actions in the crystal structure. The mol­ecular Hirshfeld surface of the coordination complex was constructed using a standard surface resolution with three-dimensional dnorm surfaces. The areas coloured red on the dnorm surfaces correspond to strong inter­molecular O—H⋯O and N—H⋯O hydrogen bonds (Fig. 3[link]). Bright red spots are also observed at the nitro­gen atom of the triazole ring, chlorine atom and one of the oxygen atoms of the acetic anion.

[Figure 3]
Figure 3
Two views of the Hirshfeld surface of compound 2 mapped over dnorm in the range −0.603 to 1.696 a.u.

The pair of sharp spikes in the two-dimensional fingerprint plot (Fig. 4[link]a) indicates the presence of strong hydrogen bonds in the crystal structure. The main contribution to the Hirshfeld surface is provided by H⋯H contacts (44.5%), shown in Fig. 4[link]b. The contributions of O⋯H/H⋯O (15.3%) and C⋯H/H⋯C (14.8%) contacts associated with X—H⋯O and X—H⋯π hydrogen bonds are much smaller (Fig. 4[link]c, 4d). The smallest contributions in the total Hirshfeld surface are provided by Cl⋯H/H⋯Cl (8.5%) and N⋯H/H⋯N (7.3%) (Fig. 4[link]e, 4f) inter­actions associated with X—H⋯Cl and X—H⋯N hydrogen bonds.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots for compound 2 showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) Cl⋯H/H⋯Cl and (f) N⋯H/H⋯N contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the triazolo­pyrimidine fragment revealed 28 hits of which only 14 have a mol­ecular structure close to that of the neutral mol­ecules in the studied coordination complex [refcodes: CAGVIQ (Desenko et al., 1999[Desenko, S. M., Lipson, V. V., Shishkin, O. V., Komykhov, S. A., Orlov, V. D., Lakin, E. E., Kuznetsov, V. P. & Meier, H. (1999). J. Heterocycl. Chem. 36, 205-208.]), EYATUU (Rudenko et al., 2011[Rudenko, R. V., Komykhov, S. A., Musatov, V. I., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2011). J. Heterocycl. Chem. 48, 888-895.]), HEXKEA(Desenko et al., 1994[Desenko, S. M., Shishkin, O. V., Orlov, V. D., Lipson, V. V., Linderman, S. V. & Struchkov, Yu. T. (1994). Khim. Get. Soedin., SSSR, 7, 981-986.]), HUVCAD (Gorobets et al., 2010[Gorobets, N. Yu., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095-2098.]), OPIMIK (Lipson et al., 2009[Lipson, V. V., Karnozhitskaya, T. M., Shishkina, S. V., Shishkin, O. V. & Turov, A. V. (2009). Izv. Akad. Nauk SSSR, Ser. Khim. 58, 1400-1404.]), PUGDIF (Huang, 2009[Huang, S. (2009). Acta Cryst. E65, o2671.]), QISRIW, QISRUI, QISSAP, QISSET (Zemlyanaya et al., 2018[Zemlyanaya, N. I., Karnozhitskaya, T. M., Musatov, V. I., Konovalova, I. S., Shishkina, S. V. & Lipson, V. V. (2018). Zh. Org. Khim. 54, 1241-1249.]), QOZMEY (Chen et al., 2009[Chen, Q., Jiang, L.-L., Chen, C.-N. & Yang, G.-F. (2009). J. Heterocycl. Chem. 46, 139-148.]), TOMPAN (Sakhno et al., 2008[Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoyev, D. O., Groth, U., Kappe, C. O. & Chebanov, V. A. (2008). Tetrahedron, 64, 11041-11049.]), VEFXEL (Sedash et al., 2012[Sedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719-6728.]), YEHREK (Yu et al., 2011[Yu, W., Goddard, C., Clearfield, E., Mills, C., Xiao, T., Guo, H., Morrey, J. D., Motter, N. E., Zhao, K., Block, T. M., Cuconati, A. & Xu, X. (2011). J. Med. Chem. 54, 5660-5670.])]. However, no triazolo­pyrimidine derivatives coord­inated to a metal atom have been deposited in the Cambridge Structural Database.

6. Synthesis and crystallization

Microwave irradiation experiments were carried out using an EmrysTM Creator EXP (Biotage, Uppsala) equipped with an outer IR temperature sensor. The reaction was performed in a sealed microwave process vial using the `very high' mode, which decreased the initial power to 90 W. Reaction time under microwave conditions refers to the time that the reaction mixture was kept at the set temperature (fixed hold time).

(5R,6R,7S)-5-(Furan-2-yl)-6-nitro-7-phenyl-4,5,6,7-tetra­hydro-[1,2,4]triazolo[1,5-a]pyrimidine (1): In a microwave process vial, a volume of 0.2 mL of 40% HCl solution in EtOH was added to an equimolar mixture (4.0 mmol) of 3-amino-1,2,4-triazole, furfural, and β-nitro­styrene in 2.0 mL of methanol. The vessel was sealed and irradiated at 443 K for 40 min. After cooling, the precipitate that had formed was filtered off and washed with 2–3 mL of methanol. Drying gave compound 1 in a 41% yield, obtained in a mixture with its diastereomer in a ratio of 12:1. Pure compound 1 was obtained by recrystallization from ethanol.

(5R,6R,7S)-5-(Furan-2-yl)-7-phenyl-4,5,6,7-tetra­hydro-[1,2,4]triazolo[1,5-a]pyrimidin-6-amine with zinc(II) acetate-chloride (2): To a solution of 4.0 mmol of 1 in 5.0 mL of acetic acid was added 4.5 mL of concentrated hydro­chloric acid. The mixture was cooled down in an ice–water bath and 1.0 g of zinc dust was slowly added to the mixture portionwise. After the addition, the cooling bath was removed and the mixture was stirred for 30 min and then refluxed until the reducing agent was completely dissolved. The reaction mixture was left undisturbed overnight, and the single crystal used for the X-ray diffraction study was taken directly from the reaction mixture. The isolated yield of 2 was 67%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups, O—H = 0.98 Å, Uiso(H) = 1.5Ueq(O) for the water mol­ecule, Car—H = 0.93 Å, Csp3—H = 0.97 Å, N—H = 0.89 Å and Uiso(H) = 1.2Ueq(parent atom) for all other hydrogen atoms. The furan ring is disordered over two positions with an occupancy ratio of 0.707 (11):0.293 (11).

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C2H3O2)Cl(C15H15N5O)]·H2O
Mr 459.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.6267 (4), 12.8015 (5), 15.1646 (7)
β (°) 104.788 (4)
V3) 1994.63 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.930, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15201, 4572, 3174
Rint 0.042
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.02
No. of reflections 4572
No. of parameters 291
No. of restraints 90
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.32
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[acetatochloridozinc(II)]-µ-(5R,6R,7S)-5-(furan-2-yl)-7-phenyl-4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidin-6-amine] monohydrate] top
Crystal data top
[Zn(C2H3O2)Cl(C15H15N5O)]·H2OF(000) = 944
Mr = 459.20Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.6267 (4) ÅCell parameters from 3540 reflections
b = 12.8015 (5) Åθ = 3.1–29.5°
c = 15.1646 (7) ŵ = 1.40 mm1
β = 104.788 (4)°T = 293 K
V = 1994.63 (15) Å3Needle, colourless
Z = 40.2 × 0.2 × 0.1 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
3174 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.042
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1313
Tmin = 0.930, Tmax = 1.000k = 1616
15201 measured reflectionsl = 1919
4572 independent reflections
Refinement top
Refinement on F290 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.1268P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4572 reflectionsΔρmax = 0.36 e Å3
291 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.42716 (3)0.16102 (3)0.59755 (2)0.03857 (12)
Cl10.62402 (7)0.20953 (6)0.58000 (6)0.0524 (2)
O1S0.4892 (2)0.14368 (17)0.36476 (14)0.0552 (6)
H1SA0.4163470.1209570.3891780.083*
H1SB0.5622470.1631670.4162780.083*
O20.32493 (19)0.10659 (17)0.48190 (13)0.0481 (5)
O30.18743 (19)0.07023 (18)0.56429 (15)0.0545 (6)
N10.5043 (2)0.42425 (18)0.62954 (16)0.0437 (6)
H10.5605040.3819730.6173960.052*
N20.3175 (2)0.44947 (17)0.68186 (15)0.0342 (5)
N30.2161 (2)0.39097 (19)0.69900 (16)0.0424 (6)
N40.3523 (2)0.28948 (17)0.64306 (15)0.0358 (5)
N50.5586 (2)0.55569 (17)0.79892 (14)0.0352 (5)
H5A0.6384910.5419180.7937890.042*
H5B0.5261840.4965100.8147320.042*
C10.3340 (2)0.5612 (2)0.70008 (18)0.0350 (6)
H1A0.3164100.5745880.7594410.042*
C20.4782 (2)0.5873 (2)0.70857 (17)0.0340 (6)
H20.4855070.6633070.7036910.041*
C30.5248 (3)0.5371 (2)0.62890 (19)0.0365 (6)
H30.4726030.5654990.5710840.044*
C40.3965 (2)0.3877 (2)0.64934 (17)0.0328 (6)
C50.2433 (3)0.2978 (2)0.67508 (19)0.0403 (6)
H50.1918260.2402390.6794480.048*
C60.2415 (3)0.6275 (2)0.6302 (2)0.0389 (6)
C70.2274 (3)0.7316 (2)0.6495 (2)0.0541 (8)
H70.2734340.7586260.7053750.065*
C80.1466 (3)0.7960 (3)0.5875 (3)0.0693 (11)
H80.1393030.8663090.6009440.083*
C90.0773 (3)0.7563 (3)0.5065 (3)0.0681 (10)
H90.0209100.7993020.4650390.082*
C100.0898 (3)0.6544 (3)0.4856 (3)0.0641 (10)
H100.0425480.6281250.4297330.077*
C110.1729 (3)0.5892 (3)0.5472 (2)0.0510 (8)
H110.1821720.5196890.5322110.061*
O1_10.6872 (5)0.6493 (4)0.5947 (4)0.0578 (14)0.707 (11)
C12_10.6648 (3)0.5593 (2)0.63613 (19)0.0404 (6)0.707 (11)
C13_10.7773 (9)0.5100 (9)0.6723 (8)0.064 (2)0.707 (11)
H13_10.7865830.4444500.6995580.076*0.707 (11)
C14_10.8815 (6)0.5769 (7)0.6613 (6)0.067 (2)0.707 (11)
H14_10.9704970.5653200.6823550.081*0.707 (11)
C15_10.8216 (7)0.6599 (5)0.6139 (5)0.0609 (17)0.707 (11)
H15_10.8643880.7165530.5963800.073*0.707 (11)
O1_20.7572 (13)0.4952 (13)0.6906 (12)0.054 (3)0.293 (11)
C12_20.6648 (3)0.5593 (2)0.63613 (19)0.0404 (6)0.293 (11)
C13_20.7307 (17)0.6428 (15)0.6144 (16)0.055 (3)0.293 (11)
H13_20.6939060.7036070.5853170.066*0.293 (11)
C14_20.8683 (14)0.6197 (14)0.6447 (13)0.055 (3)0.293 (11)
H14_20.9359270.6602770.6347670.065*0.293 (11)
C15_20.8800 (12)0.5283 (14)0.6901 (10)0.055 (3)0.293 (11)
H15_20.9574380.4938010.7164520.066*0.293 (11)
C16_20.2172 (3)0.0672 (2)0.4915 (2)0.0410 (7)
C17_20.1314 (3)0.0175 (3)0.4078 (2)0.0573 (8)
H17A_20.1246940.0629110.3564460.086*
H17B_20.0464350.0059590.4170390.086*
H17C_20.1683240.0480270.3965370.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0440 (2)0.03285 (19)0.0390 (2)0.00017 (14)0.01079 (14)0.00118 (14)
Cl10.0451 (4)0.0508 (5)0.0657 (5)0.0013 (3)0.0220 (4)0.0036 (4)
O1S0.0621 (14)0.0589 (15)0.0466 (13)0.0016 (11)0.0171 (11)0.0110 (10)
O20.0505 (12)0.0500 (13)0.0450 (12)0.0136 (10)0.0144 (10)0.0036 (10)
O30.0477 (12)0.0654 (15)0.0517 (13)0.0037 (11)0.0148 (10)0.0044 (11)
N10.0453 (13)0.0337 (13)0.0596 (16)0.0047 (11)0.0275 (12)0.0088 (12)
N20.0324 (11)0.0294 (12)0.0413 (13)0.0018 (9)0.0105 (10)0.0006 (10)
N30.0356 (12)0.0390 (14)0.0541 (15)0.0041 (11)0.0143 (11)0.0018 (12)
N40.0386 (12)0.0295 (12)0.0387 (13)0.0032 (10)0.0088 (10)0.0003 (10)
N50.0370 (12)0.0307 (12)0.0380 (13)0.0005 (10)0.0100 (10)0.0021 (10)
C10.0357 (14)0.0313 (14)0.0393 (15)0.0032 (11)0.0119 (12)0.0044 (12)
C20.0374 (14)0.0258 (13)0.0375 (15)0.0002 (11)0.0075 (11)0.0006 (11)
C30.0415 (15)0.0324 (14)0.0366 (15)0.0018 (12)0.0121 (12)0.0001 (12)
C40.0368 (14)0.0303 (14)0.0311 (14)0.0015 (11)0.0081 (11)0.0007 (11)
C50.0369 (14)0.0369 (15)0.0475 (17)0.0056 (12)0.0118 (13)0.0003 (13)
C60.0320 (14)0.0336 (15)0.0517 (18)0.0024 (12)0.0119 (13)0.0030 (13)
C70.0497 (18)0.0392 (18)0.070 (2)0.0094 (15)0.0087 (16)0.0005 (16)
C80.055 (2)0.043 (2)0.108 (3)0.0121 (17)0.018 (2)0.009 (2)
C90.0477 (19)0.069 (3)0.087 (3)0.0123 (19)0.015 (2)0.028 (2)
C100.0494 (19)0.073 (3)0.064 (2)0.0101 (18)0.0042 (17)0.013 (2)
C110.0472 (17)0.0461 (18)0.055 (2)0.0086 (15)0.0051 (15)0.0027 (16)
O1_10.046 (2)0.047 (2)0.082 (3)0.011 (2)0.019 (2)0.016 (2)
C12_10.0424 (14)0.0383 (15)0.0449 (16)0.0020 (12)0.0188 (13)0.0012 (12)
C13_10.054 (4)0.065 (4)0.078 (5)0.005 (3)0.026 (3)0.019 (3)
C14_10.055 (3)0.065 (5)0.085 (5)0.003 (3)0.023 (3)0.008 (4)
C15_10.045 (3)0.053 (3)0.090 (4)0.014 (3)0.028 (3)0.006 (3)
O1_20.038 (5)0.066 (5)0.060 (6)0.002 (4)0.016 (4)0.022 (4)
C12_20.0424 (14)0.0383 (15)0.0449 (16)0.0020 (12)0.0188 (13)0.0012 (12)
C13_20.044 (6)0.048 (6)0.064 (6)0.000 (5)0.003 (6)0.014 (5)
C14_20.041 (5)0.061 (8)0.061 (7)0.000 (5)0.010 (5)0.019 (6)
C15_20.034 (5)0.069 (7)0.061 (6)0.004 (5)0.009 (5)0.017 (5)
C16_20.0451 (16)0.0306 (15)0.0456 (18)0.0043 (12)0.0082 (14)0.0021 (13)
C17_20.0482 (17)0.059 (2)0.060 (2)0.0102 (16)0.0043 (15)0.0079 (17)
Geometric parameters (Å, º) top
Zn1—Cl12.2621 (8)C6—C111.374 (4)
Zn1—O21.9413 (19)C7—H70.9300
Zn1—N42.023 (2)C7—C81.374 (5)
Zn1—N5i2.046 (2)C8—H80.9300
O1S—H1SA0.9832C8—C91.360 (5)
O1S—H1SB0.9829C9—H90.9300
O2—C16_21.293 (3)C9—C101.357 (5)
O3—C16_21.224 (3)C10—H100.9300
N1—H10.8600C10—C111.388 (4)
N1—C31.461 (3)C11—H110.9300
N1—C41.340 (3)O1_1—C12_11.362 (5)
N2—N31.390 (3)O1_1—C15_11.389 (6)
N2—C11.459 (3)C12_1—C13_11.338 (10)
N2—C41.336 (3)C13_1—H13_10.9300
N3—C51.301 (4)C13_1—C14_11.442 (10)
N4—C41.337 (3)C14_1—H14_10.9300
N4—C51.370 (3)C14_1—C15_11.348 (8)
N5—H5A0.8900C15_1—H15_10.9300
N5—H5B0.8900O1_2—C12_21.380 (13)
N5—C21.474 (3)O1_2—C15_21.374 (14)
C1—H1A0.9800C12_2—C13_21.364 (18)
C1—C21.542 (3)C13_2—H13_20.9300
C1—C61.509 (4)C13_2—C14_21.447 (15)
C2—H20.9800C14_2—H14_20.9300
C2—C31.557 (4)C14_2—C15_21.346 (15)
C3—H30.9800C15_2—H15_20.9300
C3—C12_11.491 (4)C16_2—C17_21.501 (4)
C3—C12_21.491 (4)C17_2—H17A_20.9600
C5—H50.9300C17_2—H17B_20.9600
C6—C71.381 (4)C17_2—H17C_20.9600
O2—Zn1—Cl1108.26 (6)C11—C6—C7118.5 (3)
O2—Zn1—N4114.95 (9)C6—C7—H7119.4
O2—Zn1—N5i111.81 (9)C8—C7—C6121.1 (3)
N4—Zn1—Cl1105.83 (6)C8—C7—H7119.4
N4—Zn1—N5i103.45 (9)C7—C8—H8120.2
N5i—Zn1—Cl1112.44 (6)C9—C8—C7119.6 (4)
H1SA—O1S—H1SB108.3C9—C8—H8120.2
C16_2—O2—Zn1110.22 (17)C8—C9—H9119.7
C3—N1—H1120.5C10—C9—C8120.5 (3)
C4—N1—H1120.5C10—C9—H9119.7
C4—N1—C3119.0 (2)C9—C10—H10119.9
N3—N2—C1123.6 (2)C9—C10—C11120.3 (4)
C4—N2—N3109.9 (2)C11—C10—H10119.9
C4—N2—C1126.5 (2)C6—C11—C10120.0 (3)
C5—N3—N2101.8 (2)C6—C11—H11120.0
C4—N4—Zn1128.83 (17)C10—C11—H11120.0
C4—N4—C5102.4 (2)C12_1—O1_1—C15_1106.1 (4)
C5—N4—Zn1128.72 (19)O1_1—C12_1—C3114.6 (3)
Zn1ii—N5—H5A108.2C13_1—C12_1—C3135.3 (5)
Zn1ii—N5—H5B108.2C13_1—C12_1—O1_1110.1 (4)
H5A—N5—H5B107.3C12_1—C13_1—H13_1126.1
C2—N5—Zn1ii116.37 (16)C12_1—C13_1—C14_1107.7 (7)
C2—N5—H5A108.2C14_1—C13_1—H13_1126.1
C2—N5—H5B108.2C13_1—C14_1—H14_1127.5
N2—C1—H1A107.7C15_1—C14_1—C13_1104.9 (6)
N2—C1—C2107.3 (2)C15_1—C14_1—H14_1127.5
N2—C1—C6113.1 (2)O1_1—C15_1—H15_1124.6
C2—C1—H1A107.7C14_1—C15_1—O1_1110.8 (5)
C6—C1—H1A107.7C14_1—C15_1—H15_1124.6
C6—C1—C2113.1 (2)C15_2—O1_2—C12_2110.2 (9)
N5—C2—C1110.2 (2)O1_2—C12_2—C3118.3 (6)
N5—C2—H2107.7C13_2—C12_2—C3134.1 (8)
N5—C2—C3112.6 (2)C13_2—C12_2—O1_2106.3 (8)
C1—C2—H2107.7C12_2—C13_2—H13_2126.2
C1—C2—C3110.6 (2)C12_2—C13_2—C14_2107.6 (11)
C3—C2—H2107.7C14_2—C13_2—H13_2126.2
N1—C3—C2109.0 (2)C13_2—C14_2—H14_2126.4
N1—C3—H3108.8C15_2—C14_2—C13_2107.1 (12)
N1—C3—C12_1109.6 (2)C15_2—C14_2—H14_2126.4
N1—C3—C12_2109.6 (2)O1_2—C15_2—H15_2126.1
C2—C3—H3108.8C14_2—C15_2—O1_2107.9 (11)
C12_1—C3—C2111.9 (2)C14_2—C15_2—H15_2126.1
C12_1—C3—H3108.8O2—C16_2—C17_2115.7 (3)
C12_2—C3—C2111.9 (2)O3—C16_2—O2122.0 (3)
N2—C4—N1121.9 (2)O3—C16_2—C17_2122.3 (3)
N2—C4—N4109.9 (2)C16_2—C17_2—H17A_2109.5
N4—C4—N1128.1 (2)C16_2—C17_2—H17B_2109.5
N3—C5—N4116.0 (2)C16_2—C17_2—H17C_2109.5
N3—C5—H5122.0H17A_2—C17_2—H17B_2109.5
N4—C5—H5122.0H17A_2—C17_2—H17C_2109.5
C7—C6—C1118.7 (3)H17B_2—C17_2—H17C_2109.5
C11—C6—C1122.8 (3)
Zn1—O2—C16_2—O32.8 (4)C2—C3—C12_2—O1_284.5 (10)
Zn1—O2—C16_2—C17_2177.2 (2)C2—C3—C12_2—C13_280.4 (15)
Zn1—N4—C4—N12.3 (4)C3—N1—C4—N210.4 (4)
Zn1—N4—C4—N2179.18 (17)C3—N1—C4—N4171.3 (3)
Zn1—N4—C5—N3179.08 (19)C3—C12_1—C13_1—C14_1176.4 (5)
Zn1ii—N5—C2—C185.3 (2)C3—C12_2—C13_2—C14_2175.5 (10)
Zn1ii—N5—C2—C3150.70 (17)C4—N1—C3—C238.6 (3)
N1—C3—C12_1—O1_1150.2 (4)C4—N1—C3—C12_1161.4 (2)
N1—C3—C12_1—C13_127.6 (9)C4—N1—C3—C12_2161.4 (2)
N1—C3—C12_2—O1_236.5 (10)C4—N2—N3—C50.1 (3)
N1—C3—C12_2—C13_2158.6 (15)C4—N2—C1—C219.9 (3)
N2—N3—C5—N40.6 (3)C4—N2—C1—C6105.5 (3)
N2—C1—C2—N578.2 (2)C4—N4—C5—N30.8 (3)
N2—C1—C2—C347.0 (3)C5—N4—C4—N1177.8 (3)
N2—C1—C6—C7166.3 (2)C5—N4—C4—N20.7 (3)
N2—C1—C6—C1115.4 (4)C6—C1—C2—N5156.3 (2)
N3—N2—C1—C2158.2 (2)C6—C1—C2—C378.5 (3)
N3—N2—C1—C676.3 (3)C6—C7—C8—C91.2 (5)
N3—N2—C4—N1178.1 (2)C7—C6—C11—C101.3 (4)
N3—N2—C4—N40.4 (3)C7—C8—C9—C101.6 (5)
N5—C2—C3—N166.3 (3)C8—C9—C10—C110.5 (6)
N5—C2—C3—C12_155.1 (3)C9—C10—C11—C60.9 (5)
N5—C2—C3—C12_255.1 (3)C11—C6—C7—C80.2 (5)
C1—N2—N3—C5178.3 (2)O1_1—C12_1—C13_1—C14_15.6 (11)
C1—N2—C4—N10.2 (4)C12_1—O1_1—C15_1—C14_13.2 (7)
C1—N2—C4—N4178.8 (2)C12_1—C13_1—C14_1—C15_13.5 (11)
C1—C2—C3—N157.5 (3)C13_1—C14_1—C15_1—O1_10.1 (9)
C1—C2—C3—C12_1178.9 (2)C15_1—O1_1—C12_1—C3176.1 (4)
C1—C2—C3—C12_2178.9 (2)C15_1—O1_1—C12_1—C13_15.5 (8)
C1—C6—C7—C8178.6 (3)O1_2—C12_2—C13_2—C14_29 (2)
C1—C6—C11—C10179.6 (3)C12_2—O1_2—C15_2—C14_27 (2)
C2—C1—C6—C771.5 (3)C12_2—C13_2—C14_2—C15_25 (2)
C2—C1—C6—C11106.9 (3)C13_2—C14_2—C15_2—O1_21 (2)
C2—C3—C12_1—O1_188.7 (4)C15_2—O1_2—C12_2—C3179.0 (10)
C2—C3—C12_1—C13_193.4 (9)C15_2—O1_2—C12_2—C13_210 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SA···O20.981.912.830 (3)155
O1S—H1SB···Cl10.982.473.321 (2)144
N1—H1···Cl10.862.423.198 (2)151
N5—H5A···O3ii0.892.482.961 (3)114
N5—H5A···C12_10.892.492.966 (3)114
N5—H5A···C13_10.892.673.422 (11)143
N5—H5A···O1_20.892.333.086 (17)144
N5—H5A···C12_20.892.492.966 (3)114
N5—H5B···O1Siii0.892.032.904 (3)169
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).

References

First citationChen, Q., Jiang, L.-L., Chen, C.-N. & Yang, G.-F. (2009). J. Heterocycl. Chem. 46, 139–148.  CSD CrossRef CAS Google Scholar
First citationDesenko, S. M., Lipson, V. V., Shishkin, O. V., Komykhov, S. A., Orlov, V. D., Lakin, E. E., Kuznetsov, V. P. & Meier, H. (1999). J. Heterocycl. Chem. 36, 205–208.  CSD CrossRef CAS Google Scholar
First citationDesenko, S. M., Shishkin, O. V., Orlov, V. D., Lipson, V. V., Linderman, S. V. & Struchkov, Yu. T. (1994). Khim. Get. Soedin., SSSR, 7, 981–986.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorobets, N. Yu., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Shishkina, S. V. & Desenko, S. M. (2017b). Tetrahedron Lett. 58, 3446–3448.  Google Scholar
First citationGümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017a). Chem. Heterocycl. Compd, 53, 1261–1267.  Google Scholar
First citationHuang, S. (2009). Acta Cryst. E65, o2671.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLipson, V. V., Karnozhitskaya, T. M., Shishkina, S. V., Shishkin, O. V. & Turov, A. V. (2009). Izv. Akad. Nauk SSSR, Ser. Khim. 58, 1400–1404.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRudenko, R. V., Komykhov, S. A., Musatov, V. I., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2011). J. Heterocycl. Chem. 48, 888–895.  CSD CrossRef CAS Google Scholar
First citationSakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoyev, D. O., Groth, U., Kappe, C. O. & Chebanov, V. A. (2008). Tetrahedron, 64, 11041–11049.  Web of Science CSD CrossRef CAS Google Scholar
First citationSedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719–6728.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationYu, W., Goddard, C., Clearfield, E., Mills, C., Xiao, T., Guo, H., Morrey, J. D., Motter, N. E., Zhao, K., Block, T. M., Cuconati, A. & Xu, X. (2011). J. Med. Chem. 54, 5660–5670.  CSD CrossRef CAS PubMed Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar
First citationZemlyanaya, N. I., Karnozhitskaya, T. M., Musatov, V. I., Konovalova, I. S., Shishkina, S. V. & Lipson, V. V. (2018). Zh. Org. Khim. 54, 1241–1249.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds