research communications
The first coordination complex of (5R,6R,7S)-5-(furan-2-yl)-7-phenyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidin-6-amine with zinc(II) acetate-chloride
aSSI Institute for Single Crystals, NAS of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: masha.o.shishkina@gmail.com
The title complex, catena-poly[[[acetatochloridozinc(II)]-μ-(5R,6R,7S)-5-(furan-2-yl)-7-phenyl-4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidin-6-amine] monohydrate], {[Zn(C2H3O2)Cl(C15H15N5O)]·H2O}n, is the first coordination complex in which the neutral tetrahydrotriazolopyrimidine derivative acts as bridging ligand between two zinc molecules. As a result, polymeric chains of the coordination complex are found. The coordination of the zinc metal atom occurs with the lone pairs of the triazolo nitrogen atom and amino group. The positive charge of the zinc atom is compensated by the chlorine anion and deprotonated acetic acid. The coordination complex exists as a monohydrate in the crystalline phase. The water molecules bind neighbouring polymeric chains by the formation of O—H⋯O, O—H⋯Cl and N—H⋯O hydrogen bonds.
Keywords: (5R,6R,7S)-5-(furan-2-yl)-7-phenyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-α]pyrimidin-6-aminozinc(II)acetate-chloride; polymeric coordination complex; molecular structure; crystal structure; Hirshfeld surface analysis.
CCDC reference: 2122655
1. Chemical context
Multicomponent reactions of 3-amino-1,2,4-triazole and et al., 2012). Such a phenomenon is used in diversity-oriented synthesis to increase the molecular space of biologically active compounds. In previous research, we suggested a plausible for the of triazole with a tetrahydropyrimidine ring occurring in reactions of 3-amino-1,2,4-triazole, aromatic and ketocompounds (Gümüş et al., 2017a,b). Generally, such reactions proceed via the intermediate formation of a Schiff base from the aminoazole and the aldehyde. One of the key stages of the mechanism is a nucleophilic attack of the electron-rich enol carbon atom onto the electron-deficit azomethine carbon, with the formation of a C—C bond in the If the suggested hypothesis is true, other reagents with a polar C=C bond similar to the C=C bond in enoles should possess similar reactivity. Using this analogy, we performed a multicomponent reaction between 3-amino-1,2,4-triazole, β-nitrostyrene and furfural. As expected, a derivative of tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine 1 was obtained in high regio- and stereoselectivity. Further reduction of the nitro group in this compound unexpectedly resulted in formation of the zinc polycomplex 2. A single crystal of this compound was characterized by X-ray diffraction.
have divergent selectivity, allowing the synthesis of alternative products from the same set of starting reagents (Sedash2. Structural commentary
The title compound 2 is a coordination complex (Fig. 1) in which the zinc cation forms a salt with a chlorine anion and deprotonated acetic acid and is coordinated additionally by 5-furan-2-yl-7-phenyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidin-6-amine through interaction with the electron lone pairs of the N4 atom of the triazole ring and the pyramidal amino group [the sum of bond angles, centered at the N5 atom, is 324°]. Thus, the zinc is tetrahedral.
The tetrahydropyrimidine ring of the neutral organic ligand adopts an asymmetric half-chair conformation (Fig. 1) with puckering parameters (Zefirov et al., 1990) of S = 0.73, Θ = 35.0°, Ψ = 20.3°. The C2 and C1 atoms deviate from the mean-square plane of the remaining atoms of the ring by 0.76 and 0.18 Å, respectively. The three vicinal substituents have different orientations: the furan ring is located in the equatorial position, while the phenyl substituent and amino group are located in axial positions [the C4—N1—C3—C12_1/C12_2, N2—C1—C2—N5 and C4—N2—C1—C6 torsion angles are 161.4 (2), 161.4 (2), −78.2 (2) and 105.5 (3)° respectively].
The amino group and furan ring are cis-oriented. The furan ring is disordered over two positions with an occupancy ratio of 0.707 (11):0.293 (11) and twisted in relation to the N1—C3 endocyclic bond [the N1—C3—C12_1—C13_1 and N1—C3—C12_2—O1_2 torsion angles are −27.6 (9) and −36.5 (8)°, respectively]. This may be due to the strong bifurcated intramolecular N—H⋯π hydrogen bonds (N5—H5A⋯C12_1/C12_2, N5—H5B⋯C13_1 and N5—H5B⋯O1_2; Table 1). The phenyl substituent is trans-oriented to the amino group and twisted with respect to the N2—C1 endocyclic bond [N2—C1—C6—C11 = −15.4 (4)°].
3. Supramolecular features
In the crystal, the coordination complex forms polymeric chains in the [010] direction, in which the neutral organic molecule is bridged between two zinc cations (Fig. 2). The coordination polymer exists as a monohydrate in the crystal. The organic molecule is linked to the chlorine and acetic anions by N1—H⋯Cl and N5—H5A⋯O3i hydrogen bonds (Table 1). Neighbouring polymeric chains are connected through the water molecules by O1S—H1SA⋯O2, O1S—H1SB⋯Cl and N5—H5B⋯O1Sii hydrogen bonds (Table 1).
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Turner et al., 2017) was used to identify and visualize different types of intra- and intermolecular interactions in the The molecular Hirshfeld surface of the coordination complex was constructed using a standard surface resolution with three-dimensional dnorm surfaces. The areas coloured red on the dnorm surfaces correspond to strong intermolecular O—H⋯O and N—H⋯O hydrogen bonds (Fig. 3). Bright red spots are also observed at the nitrogen atom of the triazole ring, chlorine atom and one of the oxygen atoms of the acetic anion.
The pair of sharp spikes in the two-dimensional fingerprint plot (Fig. 4a) indicates the presence of strong hydrogen bonds in the The main contribution to the Hirshfeld surface is provided by H⋯H contacts (44.5%), shown in Fig. 4b. The contributions of O⋯H/H⋯O (15.3%) and C⋯H/H⋯C (14.8%) contacts associated with X—H⋯O and X—H⋯π hydrogen bonds are much smaller (Fig. 4c, 4d). The smallest contributions in the total Hirshfeld surface are provided by Cl⋯H/H⋯Cl (8.5%) and N⋯H/H⋯N (7.3%) (Fig. 4e, 4f) interactions associated with X—H⋯Cl and X—H⋯N hydrogen bonds.
5. Database survey
A search of the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016) for the triazolopyrimidine fragment revealed 28 hits of which only 14 have a molecular structure close to that of the neutral molecules in the studied coordination complex [refcodes: CAGVIQ (Desenko et al., 1999), EYATUU (Rudenko et al., 2011), HEXKEA(Desenko et al., 1994), HUVCAD (Gorobets et al., 2010), OPIMIK (Lipson et al., 2009), PUGDIF (Huang, 2009), QISRIW, QISRUI, QISSAP, QISSET (Zemlyanaya et al., 2018), QOZMEY (Chen et al., 2009), TOMPAN (Sakhno et al., 2008), VEFXEL (Sedash et al., 2012), YEHREK (Yu et al., 2011)]. However, no triazolopyrimidine derivatives coordinated to a metal atom have been deposited in the Cambridge Structural Database.
6. Synthesis and crystallization
Microwave irradiation experiments were carried out using an EmrysTM Creator EXP (Biotage, Uppsala) equipped with an outer IR temperature sensor. The reaction was performed in a sealed microwave process vial using the `very high' mode, which decreased the initial power to 90 W. Reaction time under microwave conditions refers to the time that the reaction mixture was kept at the set temperature (fixed hold time).
(5R,6R,7S)-5-(Furan-2-yl)-6-nitro-7-phenyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine (1): In a microwave process vial, a volume of 0.2 mL of 40% HCl solution in EtOH was added to an equimolar mixture (4.0 mmol) of 3-amino-1,2,4-triazole, furfural, and β-nitrostyrene in 2.0 mL of methanol. The vessel was sealed and irradiated at 443 K for 40 min. After cooling, the precipitate that had formed was filtered off and washed with 2–3 mL of methanol. Drying gave compound 1 in a 41% yield, obtained in a mixture with its diastereomer in a ratio of 12:1. Pure compound 1 was obtained by recrystallization from ethanol.
(5R,6R,7S)-5-(Furan-2-yl)-7-phenyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidin-6-amine with zinc(II) acetate-chloride (2): To a solution of 4.0 mmol of 1 in 5.0 mL of acetic acid was added 4.5 mL of concentrated hydrochloric acid. The mixture was cooled down in an ice–water bath and 1.0 g of zinc dust was slowly added to the mixture portionwise. After the addition, the cooling bath was removed and the mixture was stirred for 30 min and then refluxed until the reducing agent was completely dissolved. The reaction mixture was left undisturbed overnight, and the single crystal used for the X-ray diffraction study was taken directly from the reaction mixture. The isolated yield of 2 was 67%.
7. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups, O—H = 0.98 Å, Uiso(H) = 1.5Ueq(O) for the water molecule, Car—H = 0.93 Å, Csp3—H = 0.97 Å, N—H = 0.89 Å and Uiso(H) = 1.2Ueq(parent atom) for all other hydrogen atoms. The furan ring is disordered over two positions with an occupancy ratio of 0.707 (11):0.293 (11).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2122655
https://doi.org/10.1107/S2056989021012226/jy2010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021012226/jy2010Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Zn(C2H3O2)Cl(C15H15N5O)]·H2O | F(000) = 944 |
Mr = 459.20 | Dx = 1.529 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.6267 (4) Å | Cell parameters from 3540 reflections |
b = 12.8015 (5) Å | θ = 3.1–29.5° |
c = 15.1646 (7) Å | µ = 1.40 mm−1 |
β = 104.788 (4)° | T = 293 K |
V = 1994.63 (15) Å3 | Needle, colourless |
Z = 4 | 0.2 × 0.2 × 0.1 mm |
Xcalibur, Sapphire3 diffractometer | 3174 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.042 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −13→13 |
Tmin = 0.930, Tmax = 1.000 | k = −16→16 |
15201 measured reflections | l = −19→19 |
4572 independent reflections |
Refinement on F2 | 90 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0493P)2 + 0.1268P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
4572 reflections | Δρmax = 0.36 e Å−3 |
291 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.42716 (3) | 0.16102 (3) | 0.59755 (2) | 0.03857 (12) | |
Cl1 | 0.62402 (7) | 0.20953 (6) | 0.58000 (6) | 0.0524 (2) | |
O1S | 0.4892 (2) | 0.14368 (17) | 0.36476 (14) | 0.0552 (6) | |
H1SA | 0.416347 | 0.120957 | 0.389178 | 0.083* | |
H1SB | 0.562247 | 0.163167 | 0.416278 | 0.083* | |
O2 | 0.32493 (19) | 0.10659 (17) | 0.48190 (13) | 0.0481 (5) | |
O3 | 0.18743 (19) | 0.07023 (18) | 0.56429 (15) | 0.0545 (6) | |
N1 | 0.5043 (2) | 0.42425 (18) | 0.62954 (16) | 0.0437 (6) | |
H1 | 0.560504 | 0.381973 | 0.617396 | 0.052* | |
N2 | 0.3175 (2) | 0.44947 (17) | 0.68186 (15) | 0.0342 (5) | |
N3 | 0.2161 (2) | 0.39097 (19) | 0.69900 (16) | 0.0424 (6) | |
N4 | 0.3523 (2) | 0.28948 (17) | 0.64306 (15) | 0.0358 (5) | |
N5 | 0.5586 (2) | 0.55569 (17) | 0.79892 (14) | 0.0352 (5) | |
H5A | 0.638491 | 0.541918 | 0.793789 | 0.042* | |
H5B | 0.526184 | 0.496510 | 0.814732 | 0.042* | |
C1 | 0.3340 (2) | 0.5612 (2) | 0.70008 (18) | 0.0350 (6) | |
H1A | 0.316410 | 0.574588 | 0.759441 | 0.042* | |
C2 | 0.4782 (2) | 0.5873 (2) | 0.70857 (17) | 0.0340 (6) | |
H2 | 0.485507 | 0.663307 | 0.703691 | 0.041* | |
C3 | 0.5248 (3) | 0.5371 (2) | 0.62890 (19) | 0.0365 (6) | |
H3 | 0.472603 | 0.565499 | 0.571084 | 0.044* | |
C4 | 0.3965 (2) | 0.3877 (2) | 0.64934 (17) | 0.0328 (6) | |
C5 | 0.2433 (3) | 0.2978 (2) | 0.67508 (19) | 0.0403 (6) | |
H5 | 0.191826 | 0.240239 | 0.679448 | 0.048* | |
C6 | 0.2415 (3) | 0.6275 (2) | 0.6302 (2) | 0.0389 (6) | |
C7 | 0.2274 (3) | 0.7316 (2) | 0.6495 (2) | 0.0541 (8) | |
H7 | 0.273434 | 0.758626 | 0.705375 | 0.065* | |
C8 | 0.1466 (3) | 0.7960 (3) | 0.5875 (3) | 0.0693 (11) | |
H8 | 0.139303 | 0.866309 | 0.600944 | 0.083* | |
C9 | 0.0773 (3) | 0.7563 (3) | 0.5065 (3) | 0.0681 (10) | |
H9 | 0.020910 | 0.799302 | 0.465039 | 0.082* | |
C10 | 0.0898 (3) | 0.6544 (3) | 0.4856 (3) | 0.0641 (10) | |
H10 | 0.042548 | 0.628125 | 0.429733 | 0.077* | |
C11 | 0.1729 (3) | 0.5892 (3) | 0.5472 (2) | 0.0510 (8) | |
H11 | 0.182172 | 0.519689 | 0.532211 | 0.061* | |
O1_1 | 0.6872 (5) | 0.6493 (4) | 0.5947 (4) | 0.0578 (14) | 0.707 (11) |
C12_1 | 0.6648 (3) | 0.5593 (2) | 0.63613 (19) | 0.0404 (6) | 0.707 (11) |
C13_1 | 0.7773 (9) | 0.5100 (9) | 0.6723 (8) | 0.064 (2) | 0.707 (11) |
H13_1 | 0.786583 | 0.444450 | 0.699558 | 0.076* | 0.707 (11) |
C14_1 | 0.8815 (6) | 0.5769 (7) | 0.6613 (6) | 0.067 (2) | 0.707 (11) |
H14_1 | 0.970497 | 0.565320 | 0.682355 | 0.081* | 0.707 (11) |
C15_1 | 0.8216 (7) | 0.6599 (5) | 0.6139 (5) | 0.0609 (17) | 0.707 (11) |
H15_1 | 0.864388 | 0.716553 | 0.596380 | 0.073* | 0.707 (11) |
O1_2 | 0.7572 (13) | 0.4952 (13) | 0.6906 (12) | 0.054 (3) | 0.293 (11) |
C12_2 | 0.6648 (3) | 0.5593 (2) | 0.63613 (19) | 0.0404 (6) | 0.293 (11) |
C13_2 | 0.7307 (17) | 0.6428 (15) | 0.6144 (16) | 0.055 (3) | 0.293 (11) |
H13_2 | 0.693906 | 0.703607 | 0.585317 | 0.066* | 0.293 (11) |
C14_2 | 0.8683 (14) | 0.6197 (14) | 0.6447 (13) | 0.055 (3) | 0.293 (11) |
H14_2 | 0.935927 | 0.660277 | 0.634767 | 0.065* | 0.293 (11) |
C15_2 | 0.8800 (12) | 0.5283 (14) | 0.6901 (10) | 0.055 (3) | 0.293 (11) |
H15_2 | 0.957438 | 0.493801 | 0.716452 | 0.066* | 0.293 (11) |
C16_2 | 0.2172 (3) | 0.0672 (2) | 0.4915 (2) | 0.0410 (7) | |
C17_2 | 0.1314 (3) | 0.0175 (3) | 0.4078 (2) | 0.0573 (8) | |
H17A_2 | 0.124694 | 0.062911 | 0.356446 | 0.086* | |
H17B_2 | 0.046435 | 0.005959 | 0.417039 | 0.086* | |
H17C_2 | 0.168324 | −0.048027 | 0.396537 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0440 (2) | 0.03285 (19) | 0.0390 (2) | −0.00017 (14) | 0.01079 (14) | 0.00118 (14) |
Cl1 | 0.0451 (4) | 0.0508 (5) | 0.0657 (5) | −0.0013 (3) | 0.0220 (4) | −0.0036 (4) |
O1S | 0.0621 (14) | 0.0589 (15) | 0.0466 (13) | −0.0016 (11) | 0.0171 (11) | −0.0110 (10) |
O2 | 0.0505 (12) | 0.0500 (13) | 0.0450 (12) | −0.0136 (10) | 0.0144 (10) | −0.0036 (10) |
O3 | 0.0477 (12) | 0.0654 (15) | 0.0517 (13) | −0.0037 (11) | 0.0148 (10) | −0.0044 (11) |
N1 | 0.0453 (13) | 0.0337 (13) | 0.0596 (16) | −0.0047 (11) | 0.0275 (12) | −0.0088 (12) |
N2 | 0.0324 (11) | 0.0294 (12) | 0.0413 (13) | −0.0018 (9) | 0.0105 (10) | 0.0006 (10) |
N3 | 0.0356 (12) | 0.0390 (14) | 0.0541 (15) | −0.0041 (11) | 0.0143 (11) | 0.0018 (12) |
N4 | 0.0386 (12) | 0.0295 (12) | 0.0387 (13) | −0.0032 (10) | 0.0088 (10) | −0.0003 (10) |
N5 | 0.0370 (12) | 0.0307 (12) | 0.0380 (13) | 0.0005 (10) | 0.0100 (10) | −0.0021 (10) |
C1 | 0.0357 (14) | 0.0313 (14) | 0.0393 (15) | 0.0032 (11) | 0.0119 (12) | −0.0044 (12) |
C2 | 0.0374 (14) | 0.0258 (13) | 0.0375 (15) | −0.0002 (11) | 0.0075 (11) | 0.0006 (11) |
C3 | 0.0415 (15) | 0.0324 (14) | 0.0366 (15) | −0.0018 (12) | 0.0121 (12) | 0.0001 (12) |
C4 | 0.0368 (14) | 0.0303 (14) | 0.0311 (14) | −0.0015 (11) | 0.0081 (11) | 0.0007 (11) |
C5 | 0.0369 (14) | 0.0369 (15) | 0.0475 (17) | −0.0056 (12) | 0.0118 (13) | 0.0003 (13) |
C6 | 0.0320 (14) | 0.0336 (15) | 0.0517 (18) | 0.0024 (12) | 0.0119 (13) | 0.0030 (13) |
C7 | 0.0497 (18) | 0.0392 (18) | 0.070 (2) | 0.0094 (15) | 0.0087 (16) | −0.0005 (16) |
C8 | 0.055 (2) | 0.043 (2) | 0.108 (3) | 0.0121 (17) | 0.018 (2) | 0.009 (2) |
C9 | 0.0477 (19) | 0.069 (3) | 0.087 (3) | 0.0123 (19) | 0.015 (2) | 0.028 (2) |
C10 | 0.0494 (19) | 0.073 (3) | 0.064 (2) | 0.0101 (18) | 0.0042 (17) | 0.013 (2) |
C11 | 0.0472 (17) | 0.0461 (18) | 0.055 (2) | 0.0086 (15) | 0.0051 (15) | 0.0027 (16) |
O1_1 | 0.046 (2) | 0.047 (2) | 0.082 (3) | −0.011 (2) | 0.019 (2) | 0.016 (2) |
C12_1 | 0.0424 (14) | 0.0383 (15) | 0.0449 (16) | −0.0020 (12) | 0.0188 (13) | 0.0012 (12) |
C13_1 | 0.054 (4) | 0.065 (4) | 0.078 (5) | 0.005 (3) | 0.026 (3) | 0.019 (3) |
C14_1 | 0.055 (3) | 0.065 (5) | 0.085 (5) | 0.003 (3) | 0.023 (3) | 0.008 (4) |
C15_1 | 0.045 (3) | 0.053 (3) | 0.090 (4) | −0.014 (3) | 0.028 (3) | 0.006 (3) |
O1_2 | 0.038 (5) | 0.066 (5) | 0.060 (6) | 0.002 (4) | 0.016 (4) | 0.022 (4) |
C12_2 | 0.0424 (14) | 0.0383 (15) | 0.0449 (16) | −0.0020 (12) | 0.0188 (13) | 0.0012 (12) |
C13_2 | 0.044 (6) | 0.048 (6) | 0.064 (6) | 0.000 (5) | −0.003 (6) | 0.014 (5) |
C14_2 | 0.041 (5) | 0.061 (8) | 0.061 (7) | 0.000 (5) | 0.010 (5) | 0.019 (6) |
C15_2 | 0.034 (5) | 0.069 (7) | 0.061 (6) | 0.004 (5) | 0.009 (5) | 0.017 (5) |
C16_2 | 0.0451 (16) | 0.0306 (15) | 0.0456 (18) | 0.0043 (12) | 0.0082 (14) | 0.0021 (13) |
C17_2 | 0.0482 (17) | 0.059 (2) | 0.060 (2) | −0.0102 (16) | 0.0043 (15) | −0.0079 (17) |
Zn1—Cl1 | 2.2621 (8) | C6—C11 | 1.374 (4) |
Zn1—O2 | 1.9413 (19) | C7—H7 | 0.9300 |
Zn1—N4 | 2.023 (2) | C7—C8 | 1.374 (5) |
Zn1—N5i | 2.046 (2) | C8—H8 | 0.9300 |
O1S—H1SA | 0.9832 | C8—C9 | 1.360 (5) |
O1S—H1SB | 0.9829 | C9—H9 | 0.9300 |
O2—C16_2 | 1.293 (3) | C9—C10 | 1.357 (5) |
O3—C16_2 | 1.224 (3) | C10—H10 | 0.9300 |
N1—H1 | 0.8600 | C10—C11 | 1.388 (4) |
N1—C3 | 1.461 (3) | C11—H11 | 0.9300 |
N1—C4 | 1.340 (3) | O1_1—C12_1 | 1.362 (5) |
N2—N3 | 1.390 (3) | O1_1—C15_1 | 1.389 (6) |
N2—C1 | 1.459 (3) | C12_1—C13_1 | 1.338 (10) |
N2—C4 | 1.336 (3) | C13_1—H13_1 | 0.9300 |
N3—C5 | 1.301 (4) | C13_1—C14_1 | 1.442 (10) |
N4—C4 | 1.337 (3) | C14_1—H14_1 | 0.9300 |
N4—C5 | 1.370 (3) | C14_1—C15_1 | 1.348 (8) |
N5—H5A | 0.8900 | C15_1—H15_1 | 0.9300 |
N5—H5B | 0.8900 | O1_2—C12_2 | 1.380 (13) |
N5—C2 | 1.474 (3) | O1_2—C15_2 | 1.374 (14) |
C1—H1A | 0.9800 | C12_2—C13_2 | 1.364 (18) |
C1—C2 | 1.542 (3) | C13_2—H13_2 | 0.9300 |
C1—C6 | 1.509 (4) | C13_2—C14_2 | 1.447 (15) |
C2—H2 | 0.9800 | C14_2—H14_2 | 0.9300 |
C2—C3 | 1.557 (4) | C14_2—C15_2 | 1.346 (15) |
C3—H3 | 0.9800 | C15_2—H15_2 | 0.9300 |
C3—C12_1 | 1.491 (4) | C16_2—C17_2 | 1.501 (4) |
C3—C12_2 | 1.491 (4) | C17_2—H17A_2 | 0.9600 |
C5—H5 | 0.9300 | C17_2—H17B_2 | 0.9600 |
C6—C7 | 1.381 (4) | C17_2—H17C_2 | 0.9600 |
O2—Zn1—Cl1 | 108.26 (6) | C11—C6—C7 | 118.5 (3) |
O2—Zn1—N4 | 114.95 (9) | C6—C7—H7 | 119.4 |
O2—Zn1—N5i | 111.81 (9) | C8—C7—C6 | 121.1 (3) |
N4—Zn1—Cl1 | 105.83 (6) | C8—C7—H7 | 119.4 |
N4—Zn1—N5i | 103.45 (9) | C7—C8—H8 | 120.2 |
N5i—Zn1—Cl1 | 112.44 (6) | C9—C8—C7 | 119.6 (4) |
H1SA—O1S—H1SB | 108.3 | C9—C8—H8 | 120.2 |
C16_2—O2—Zn1 | 110.22 (17) | C8—C9—H9 | 119.7 |
C3—N1—H1 | 120.5 | C10—C9—C8 | 120.5 (3) |
C4—N1—H1 | 120.5 | C10—C9—H9 | 119.7 |
C4—N1—C3 | 119.0 (2) | C9—C10—H10 | 119.9 |
N3—N2—C1 | 123.6 (2) | C9—C10—C11 | 120.3 (4) |
C4—N2—N3 | 109.9 (2) | C11—C10—H10 | 119.9 |
C4—N2—C1 | 126.5 (2) | C6—C11—C10 | 120.0 (3) |
C5—N3—N2 | 101.8 (2) | C6—C11—H11 | 120.0 |
C4—N4—Zn1 | 128.83 (17) | C10—C11—H11 | 120.0 |
C4—N4—C5 | 102.4 (2) | C12_1—O1_1—C15_1 | 106.1 (4) |
C5—N4—Zn1 | 128.72 (19) | O1_1—C12_1—C3 | 114.6 (3) |
Zn1ii—N5—H5A | 108.2 | C13_1—C12_1—C3 | 135.3 (5) |
Zn1ii—N5—H5B | 108.2 | C13_1—C12_1—O1_1 | 110.1 (4) |
H5A—N5—H5B | 107.3 | C12_1—C13_1—H13_1 | 126.1 |
C2—N5—Zn1ii | 116.37 (16) | C12_1—C13_1—C14_1 | 107.7 (7) |
C2—N5—H5A | 108.2 | C14_1—C13_1—H13_1 | 126.1 |
C2—N5—H5B | 108.2 | C13_1—C14_1—H14_1 | 127.5 |
N2—C1—H1A | 107.7 | C15_1—C14_1—C13_1 | 104.9 (6) |
N2—C1—C2 | 107.3 (2) | C15_1—C14_1—H14_1 | 127.5 |
N2—C1—C6 | 113.1 (2) | O1_1—C15_1—H15_1 | 124.6 |
C2—C1—H1A | 107.7 | C14_1—C15_1—O1_1 | 110.8 (5) |
C6—C1—H1A | 107.7 | C14_1—C15_1—H15_1 | 124.6 |
C6—C1—C2 | 113.1 (2) | C15_2—O1_2—C12_2 | 110.2 (9) |
N5—C2—C1 | 110.2 (2) | O1_2—C12_2—C3 | 118.3 (6) |
N5—C2—H2 | 107.7 | C13_2—C12_2—C3 | 134.1 (8) |
N5—C2—C3 | 112.6 (2) | C13_2—C12_2—O1_2 | 106.3 (8) |
C1—C2—H2 | 107.7 | C12_2—C13_2—H13_2 | 126.2 |
C1—C2—C3 | 110.6 (2) | C12_2—C13_2—C14_2 | 107.6 (11) |
C3—C2—H2 | 107.7 | C14_2—C13_2—H13_2 | 126.2 |
N1—C3—C2 | 109.0 (2) | C13_2—C14_2—H14_2 | 126.4 |
N1—C3—H3 | 108.8 | C15_2—C14_2—C13_2 | 107.1 (12) |
N1—C3—C12_1 | 109.6 (2) | C15_2—C14_2—H14_2 | 126.4 |
N1—C3—C12_2 | 109.6 (2) | O1_2—C15_2—H15_2 | 126.1 |
C2—C3—H3 | 108.8 | C14_2—C15_2—O1_2 | 107.9 (11) |
C12_1—C3—C2 | 111.9 (2) | C14_2—C15_2—H15_2 | 126.1 |
C12_1—C3—H3 | 108.8 | O2—C16_2—C17_2 | 115.7 (3) |
C12_2—C3—C2 | 111.9 (2) | O3—C16_2—O2 | 122.0 (3) |
N2—C4—N1 | 121.9 (2) | O3—C16_2—C17_2 | 122.3 (3) |
N2—C4—N4 | 109.9 (2) | C16_2—C17_2—H17A_2 | 109.5 |
N4—C4—N1 | 128.1 (2) | C16_2—C17_2—H17B_2 | 109.5 |
N3—C5—N4 | 116.0 (2) | C16_2—C17_2—H17C_2 | 109.5 |
N3—C5—H5 | 122.0 | H17A_2—C17_2—H17B_2 | 109.5 |
N4—C5—H5 | 122.0 | H17A_2—C17_2—H17C_2 | 109.5 |
C7—C6—C1 | 118.7 (3) | H17B_2—C17_2—H17C_2 | 109.5 |
C11—C6—C1 | 122.8 (3) | ||
Zn1—O2—C16_2—O3 | 2.8 (4) | C2—C3—C12_2—O1_2 | 84.5 (10) |
Zn1—O2—C16_2—C17_2 | −177.2 (2) | C2—C3—C12_2—C13_2 | −80.4 (15) |
Zn1—N4—C4—N1 | −2.3 (4) | C3—N1—C4—N2 | −10.4 (4) |
Zn1—N4—C4—N2 | 179.18 (17) | C3—N1—C4—N4 | 171.3 (3) |
Zn1—N4—C5—N3 | −179.08 (19) | C3—C12_1—C13_1—C14_1 | −176.4 (5) |
Zn1ii—N5—C2—C1 | −85.3 (2) | C3—C12_2—C13_2—C14_2 | 175.5 (10) |
Zn1ii—N5—C2—C3 | 150.70 (17) | C4—N1—C3—C2 | 38.6 (3) |
N1—C3—C12_1—O1_1 | 150.2 (4) | C4—N1—C3—C12_1 | 161.4 (2) |
N1—C3—C12_1—C13_1 | −27.6 (9) | C4—N1—C3—C12_2 | 161.4 (2) |
N1—C3—C12_2—O1_2 | −36.5 (10) | C4—N2—N3—C5 | 0.1 (3) |
N1—C3—C12_2—C13_2 | 158.6 (15) | C4—N2—C1—C2 | −19.9 (3) |
N2—N3—C5—N4 | −0.6 (3) | C4—N2—C1—C6 | 105.5 (3) |
N2—C1—C2—N5 | −78.2 (2) | C4—N4—C5—N3 | 0.8 (3) |
N2—C1—C2—C3 | 47.0 (3) | C5—N4—C4—N1 | 177.8 (3) |
N2—C1—C6—C7 | 166.3 (2) | C5—N4—C4—N2 | −0.7 (3) |
N2—C1—C6—C11 | −15.4 (4) | C6—C1—C2—N5 | 156.3 (2) |
N3—N2—C1—C2 | 158.2 (2) | C6—C1—C2—C3 | −78.5 (3) |
N3—N2—C1—C6 | −76.3 (3) | C6—C7—C8—C9 | 1.2 (5) |
N3—N2—C4—N1 | −178.1 (2) | C7—C6—C11—C10 | −1.3 (4) |
N3—N2—C4—N4 | 0.4 (3) | C7—C8—C9—C10 | −1.6 (5) |
N5—C2—C3—N1 | 66.3 (3) | C8—C9—C10—C11 | 0.5 (6) |
N5—C2—C3—C12_1 | −55.1 (3) | C9—C10—C11—C6 | 0.9 (5) |
N5—C2—C3—C12_2 | −55.1 (3) | C11—C6—C7—C8 | 0.2 (5) |
C1—N2—N3—C5 | −178.3 (2) | O1_1—C12_1—C13_1—C14_1 | 5.6 (11) |
C1—N2—C4—N1 | 0.2 (4) | C12_1—O1_1—C15_1—C14_1 | 3.2 (7) |
C1—N2—C4—N4 | 178.8 (2) | C12_1—C13_1—C14_1—C15_1 | −3.5 (11) |
C1—C2—C3—N1 | −57.5 (3) | C13_1—C14_1—C15_1—O1_1 | 0.1 (9) |
C1—C2—C3—C12_1 | −178.9 (2) | C15_1—O1_1—C12_1—C3 | 176.1 (4) |
C1—C2—C3—C12_2 | −178.9 (2) | C15_1—O1_1—C12_1—C13_1 | −5.5 (8) |
C1—C6—C7—C8 | 178.6 (3) | O1_2—C12_2—C13_2—C14_2 | 9 (2) |
C1—C6—C11—C10 | −179.6 (3) | C12_2—O1_2—C15_2—C14_2 | 7 (2) |
C2—C1—C6—C7 | −71.5 (3) | C12_2—C13_2—C14_2—C15_2 | −5 (2) |
C2—C1—C6—C11 | 106.9 (3) | C13_2—C14_2—C15_2—O1_2 | −1 (2) |
C2—C3—C12_1—O1_1 | −88.7 (4) | C15_2—O1_2—C12_2—C3 | −179.0 (10) |
C2—C3—C12_1—C13_1 | 93.4 (9) | C15_2—O1_2—C12_2—C13_2 | −10 (2) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1SA···O2 | 0.98 | 1.91 | 2.830 (3) | 155 |
O1S—H1SB···Cl1 | 0.98 | 2.47 | 3.321 (2) | 144 |
N1—H1···Cl1 | 0.86 | 2.42 | 3.198 (2) | 151 |
N5—H5A···O3ii | 0.89 | 2.48 | 2.961 (3) | 114 |
N5—H5A···C12_1 | 0.89 | 2.49 | 2.966 (3) | 114 |
N5—H5A···C13_1 | 0.89 | 2.67 | 3.422 (11) | 143 |
N5—H5A···O1_2 | 0.89 | 2.33 | 3.086 (17) | 144 |
N5—H5A···C12_2 | 0.89 | 2.49 | 2.966 (3) | 114 |
N5—H5B···O1Siii | 0.89 | 2.03 | 2.904 (3) | 169 |
Symmetry codes: (ii) −x+1, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2. |
Funding information
Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).
References
Chen, Q., Jiang, L.-L., Chen, C.-N. & Yang, G.-F. (2009). J. Heterocycl. Chem. 46, 139–148. CSD CrossRef CAS Google Scholar
Desenko, S. M., Lipson, V. V., Shishkin, O. V., Komykhov, S. A., Orlov, V. D., Lakin, E. E., Kuznetsov, V. P. & Meier, H. (1999). J. Heterocycl. Chem. 36, 205–208. CSD CrossRef CAS Google Scholar
Desenko, S. M., Shishkin, O. V., Orlov, V. D., Lipson, V. V., Linderman, S. V. & Struchkov, Yu. T. (1994). Khim. Get. Soedin., SSSR, 7, 981–986. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gorobets, N. Yu., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Shishkina, S. V. & Desenko, S. M. (2017b). Tetrahedron Lett. 58, 3446–3448. Google Scholar
Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017a). Chem. Heterocycl. Compd, 53, 1261–1267. Google Scholar
Huang, S. (2009). Acta Cryst. E65, o2671. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lipson, V. V., Karnozhitskaya, T. M., Shishkina, S. V., Shishkin, O. V. & Turov, A. V. (2009). Izv. Akad. Nauk SSSR, Ser. Khim. 58, 1400–1404. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rudenko, R. V., Komykhov, S. A., Musatov, V. I., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2011). J. Heterocycl. Chem. 48, 888–895. CSD CrossRef CAS Google Scholar
Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoyev, D. O., Groth, U., Kappe, C. O. & Chebanov, V. A. (2008). Tetrahedron, 64, 11041–11049. Web of Science CSD CrossRef CAS Google Scholar
Sedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719–6728. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
Yu, W., Goddard, C., Clearfield, E., Mills, C., Xiao, T., Guo, H., Morrey, J. D., Motter, N. E., Zhao, K., Block, T. M., Cuconati, A. & Xu, X. (2011). J. Med. Chem. 54, 5660–5670. CSD CrossRef CAS PubMed Google Scholar
Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158. CrossRef CAS Web of Science Google Scholar
Zemlyanaya, N. I., Karnozhitskaya, T. M., Musatov, V. I., Konovalova, I. S., Shishkina, S. V. & Lipson, V. V. (2018). Zh. Org. Khim. 54, 1241–1249. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.