research communications
Fluorenonophane chlorobenzene solvate: molecular and crystal structures
aSSI `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61001, Ukraine, bV. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61112, Ukraine, cA. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, Odesa, Ukraine, dEnamine Ltd., Chervonotkatska Street 78, Kyiv, 02094 , Ukraine, and eTaras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
*Correspondence e-mail: vika@xray.isc.kharkov.com
The title compound, 19H,79H-3,5,9,11-tetraoxa-1,7(2,7)-difluorena-4,10(1,3)-dibenzenacyclododecaphane-19,79-dione (fluorenonophane), exists as a solvate with chlorobenzene, C42H28O6·C6H5Cl. The fluorenonophane contains two fluorenone fragments linked by two m-substituted benzene fragments. Some decrease in its macrocyclic cavity leads to a stacking interaction between the tricyclic fluorenone fragments. In the crystal, the fluorenonophane and chlorobenzene molecules are linked by weak C—H⋯π(ring) interactions and C—H⋯Cl hydrogen bonds. The Cl atom of chlorobenzene does not form a halogen bond. A Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular contacts found in the crystal structure.
Keywords: crystal structure; fluorenonophane; hydrogen bonds.
CCDC reference: 2121128
1. Chemical context
Discovered at the end of the last century, the ability of cyclophanes to form inclusion complexes makes them the central class of synthetic receptors in molecular recognition processes (Diederich, 1991). Particular attention has been paid to the possibility of cationic cyclophanes with box geometries being involved in strong donor–acceptor interactions leading to the formation of `guest–host' complexes with different guests (Dale et al., 2016; Barnes et al., 2013; Gong et al., 2010). Previously we have obtained fluorenonophane 1 with two fluorenone fragments linked by rigid xylyl groups (Lukyanenko et al., 2003; Simonov et al., 2006). X-ray of this cyclophane revealed the box geometry with an open intramolecular cavity and the formation of inclusion complexes with DMF and nitrobenzene (Simonov et al., 2006). The other fluorenonophane obtained by our group, 2, differs from the previous one in the position of the methylene groups, which are located directly at the benzene fragment in 1 or fluorenone in 2. Fluorenonophane 2 forms inclusion complexes with chloroform and bromoform with a 1:2 stoichiometry. Moreover, C—Cl⋯π and C—Br⋯π halogen bonds (Shishkina et al., 2021) are present in the complexes. In contrast to cationic cyclophanes, there are no charged fragments in fluorenonophanes. Continuing our research in this area, we have obtained fluorenonophane 3 with a different position of attachment of the benzene rings compared to 2 (m- and p-isomers, respectively) and studied its complexation with chlorobenzene.
2. Structural commentary
Fluorenonophane 3 was crystallized from chlorobenzene and exists in the crystal as a solvate in a 1:1 ratio rather than as an Fluorenonophane 3 contains two fluorenone fragments linked by two m-substituted benzene fragments (Fig. 1). The macrocycle 3 has a boat conformation similar to structure 1 [the torsion angles C41—O6—C1—C2, C37—O5—C36—C33, C20—O3—C22—C23, and C16—O2—C15—C13 are −90.6 (4), 78.4 (4), −80.0 (4) and 91.6 (4)°, respectively]. In structure 3, the fluorenone fragments are oriented in the same directions (cis-orientation) while the orientation of these fragments is trans in structures 1 and 2. meta-Substitution of the two benzene fragments results in a smaller macrocycle cavity as compared to fluorenonophanes 1 and 2 with para-substituted benzene fragments. As a result, the two fluorenones are slightly bowed inwards [the dihedral angle between C2–C7 and C8-C14 benzene rings is 12.51 (18)° in one fluorenone while the dihedral angle between the C31–C35 and C23–C28 benzene rings is 9.64 (18)° in the other fluorenone). This can be explained by a π-stacking interaction between the C10=O1 carbonyl group and the C25/C26/C31/C30/C29 fluorenone ring [centroid Cg2, with O1⋯Cg2 = 3.469 (3) Å, C10⋯Cg2 = 3.492 (4) Å, C10=O1⋯Cg2 = 81.1 (2)°]. In contrast to structures 1 and 2, the macrocycle in structure 3 does not contain any molecules inside its cavity. Therefore, the structure under study is a chlorobenzene solvate of fluorenonophane.
3. Supramolecular features
In the crystal, the fluorenonophane and chlorobenzene molecules are linked to each other by weak C46—H46⋯O6 and C18—H18⋯Cl1 hydrogen bonds while the fluorenophanes are linked by weak C35—H35⋯O1 hydrogen bonds (Table 1), forming stepped ribbons. The ribbons are connected by C1—H1A⋯Cg2 and C22—H22A⋯Cg1 interactions (Table 1) to give the final three-dimensional structure. The halogen atom does not form a halogen bond in the structure of 3, in contrast to the supramolecular complexes studied earlier (Shishkina et al., 2021). The electrostatic potential for chlorobenzene was calculated using the B3LYP/6–311 G(d,p) method. An area with a positive charge (σ-hole) was not found in the electrostatic potential map around the halogen atom (Fig. 2). The highest electrostatic potential at the chlorine atom is −0.08 eV. This fact can explain the absence of halogen bonds in the structure of 3.
4. Hirshfeld surface analysis
Crystal Explorer 17.5 (Turner et al., 2017) was used to analyze interactions in the crystal. Molecular Hirshfeld surfaces mapped over dnorm with a standard (high) surface resolution and a fixed colour scale of −0.134 (red) to 1.206 (blue) were generated separately (Fig. 3) for the fluorenonophane and chlorobenzene molecules. The areas in red correspond to contacts that are shorter than the sum of the van der Waals radii of the closest atoms. Thus, the red spots at some hydrogen atoms and at the carbonyl oxygen atom as well as in the area of the five-membered ring indicate the existence of short C—H⋯O and C—H⋯π(ring) contacts.
To evaluate the contribution of the short contacts of different types to the total Hirshfeld surface, two-dimensional fingerprint plots for the fluorenonophane and chlorobenzene molecules were generated (Fig. 4). The contribution from the C⋯H/H⋯C contacts corresponding to the C—H⋯π(ring) interactions are represented by a pair of sharp spikes (27.7% and 25.9% for fluorenonophane and chlorobenzene, respectively). Analysis of the fingerprint plots also showed a significant contribution from O⋯H/H⋯O contacts (19.7%) associated with the C—H⋯O hydrogen bonds.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016) for cyclophanes containing fluorenone and benzene fragments yielded two hits: two structures with fluorenone fragments linked by rigid xylyl groups (CCDC 263272 and CCDC 263273; Simonov et al., 2006). Recently, two more structures with fluorenonophanes linked by para-substituted benzene fragments were published (CCDC 647971 and CCDC 2098245; Shishkina et al., 2021). The structures found are characterized by a larger macrocyclic cavity compared to that in fluorenonophane 3.
6. Synthesis and crystallization
A solution of 1.75 g (4.78 mmol) of 2,7-bis(bromomethyl)-9H-fluoren-9-one (Haenel et al., 1985) in 200 mL of anhydrous DMF was added to a mixture of 0.526 g (4.78 mmol) of resorcinol and 3.96 g (28.7 mmol) of K2CO3 in 270 mL of anhydrous DMF with stirring under nitrogen for 10 h at 353–358 K. The reaction mixture was stirred at the same temperature for a further 35 h, cooled and filtered (Fig. 5). The precipitate was washed with DMF and the filtrate was evaporated under reduced pressure. The residue was dissolved in CHCl3 and washed with an aqueous sodium carbonate solution (50 mL), then with water (3 × 50 mL) to a neutral pH. After drying over MgSO4, the CHCl3 was evaporated under reduced pressure. The product was purified by on silica gel (Acros 0.060 ÷ 1/5), CHCl3–EtOH, 500:1. The yield of cyclophane 3 was 0.11 g (7.2%), m.p. >573 K, dec. 1H NMR (DMSO-d6), δ, p.p.m.: 5.25 s (CH2, 8H), 6.46–6.56 m (H2, H4, 6H), 7.04 t (H5, 2H, J = 8.1 Hz), 7.18 s (Ha, 4H), 7.57 m (Hb, HH, 8H). MS: FAB, m/z 628 [M + H+]. Analysis calculated for C42H28O6: C, 80.24; H, 4.49. Found: C, 80.44; H, 4.76%. Crystals were obtained by crystallization of fluorenonophane 3 from chlorobenzene.
7. Refinement
Crystal data, data collection, and structure . Carbon-bound H atoms were added in calculated positions with C—H bond lengths of 0.95 Å for C—H, 0.92 Å for CH2 and refined as riding atoms with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2121128
https://doi.org/10.1107/S2056989021011865/mw2179sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011865/mw2179Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C42H28O6·C6H5Cl | Z = 1 |
Mr = 741.19 | F(000) = 386 |
Triclinic, P1 | Dx = 1.440 Mg m−3 |
a = 6.2278 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6965 (8) Å | Cell parameters from 1987 reflections |
c = 14.9822 (13) Å | θ = 3.9–33.0° |
α = 105.288 (8)° | µ = 0.17 mm−1 |
β = 97.126 (7)° | T = 100 K |
γ = 96.919 (7)° | Block, colourless |
V = 854.83 (13) Å3 | 0.6 × 0.4 × 0.2 mm |
Xcalibur, Sapphire3 diffractometer | 7191 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 5307 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 35.0°, θmin = 3.0° |
ω scans | h = −9→8 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −7→15 |
Tmin = 0.846, Tmax = 1.000 | l = −24→20 |
8226 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.064 | w = 1/[σ2(Fo2) + (0.0825P)2 + 0.017P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.171 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.79 e Å−3 |
7191 reflections | Δρmin = −0.42 e Å−3 |
496 parameters | Absolute structure: Flack x determined using 564 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al.,2013) |
3 restraints | Absolute structure parameter: 0.19 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3386 (4) | 0.2409 (3) | 0.30318 (19) | 0.0294 (6) | |
O2 | 0.3907 (5) | 0.5919 (3) | 0.66155 (19) | 0.0298 (6) | |
O3 | 0.3627 (5) | 0.9250 (3) | 0.47327 (18) | 0.0265 (5) | |
O4 | 0.3771 (4) | 0.5007 (3) | 0.14591 (18) | 0.0265 (5) | |
O5 | 0.0097 (4) | −0.0028 (3) | −0.12980 (18) | 0.0264 (5) | |
O6 | 0.0323 (4) | −0.3103 (3) | 0.07559 (18) | 0.0259 (5) | |
C1 | −0.1767 (6) | −0.2869 (4) | 0.0994 (3) | 0.0245 (7) | |
H1A | −0.238920 | −0.369009 | 0.120950 | 0.029* | |
H1B | −0.275117 | −0.286764 | 0.042198 | 0.029* | |
C2 | −0.1747 (6) | −0.1482 (4) | 0.1741 (2) | 0.0239 (7) | |
C3 | −0.3613 (6) | −0.1340 (4) | 0.2162 (3) | 0.0266 (7) | |
H3 | −0.485939 | −0.207766 | 0.193390 | 0.032* | |
C4 | −0.3703 (6) | −0.0156 (4) | 0.2902 (3) | 0.0267 (7) | |
H4 | −0.498316 | −0.007812 | 0.318459 | 0.032* | |
C5 | −0.1889 (6) | 0.0909 (4) | 0.3217 (2) | 0.0222 (6) | |
C6 | −0.0046 (6) | 0.0796 (4) | 0.2766 (2) | 0.0220 (6) | |
C7 | 0.0060 (6) | −0.0388 (4) | 0.2035 (2) | 0.0224 (6) | |
H7 | 0.132576 | −0.045426 | 0.174069 | 0.027* | |
C8 | −0.1381 (6) | 0.2194 (4) | 0.4039 (2) | 0.0225 (6) | |
C9 | 0.0774 (6) | 0.2848 (4) | 0.4097 (2) | 0.0244 (7) | |
C10 | 0.1658 (6) | 0.2076 (4) | 0.3267 (2) | 0.0231 (7) | |
C11 | −0.2608 (6) | 0.2752 (4) | 0.4711 (3) | 0.0261 (7) | |
H11 | −0.410474 | 0.235645 | 0.465987 | 0.031* | |
C12 | −0.1588 (7) | 0.3914 (4) | 0.5467 (3) | 0.0278 (7) | |
H12 | −0.242323 | 0.432694 | 0.592837 | 0.033* | |
C13 | 0.0608 (6) | 0.4491 (4) | 0.5571 (2) | 0.0250 (7) | |
C14 | 0.1794 (6) | 0.3979 (4) | 0.4864 (3) | 0.0244 (7) | |
H14 | 0.327603 | 0.439670 | 0.490436 | 0.029* | |
C15 | 0.1603 (7) | 0.5576 (4) | 0.6484 (3) | 0.0290 (8) | |
H15A | 0.097362 | 0.647655 | 0.652418 | 0.035* | |
H15B | 0.118770 | 0.519599 | 0.700067 | 0.035* | |
C16 | 0.4764 (6) | 0.7076 (4) | 0.6331 (2) | 0.0251 (7) | |
C17 | 0.6890 (7) | 0.7711 (4) | 0.6749 (3) | 0.0298 (8) | |
H17 | 0.766706 | 0.736390 | 0.720920 | 0.036* | |
C18 | 0.7850 (7) | 0.8861 (5) | 0.6479 (3) | 0.0316 (8) | |
H18 | 0.930083 | 0.931503 | 0.676396 | 0.038* | |
C19 | 0.6746 (6) | 0.9367 (4) | 0.5802 (3) | 0.0297 (8) | |
H19 | 0.743820 | 1.015419 | 0.561995 | 0.036* | |
C20 | 0.4627 (6) | 0.8717 (4) | 0.5394 (2) | 0.0245 (7) | |
C21 | 0.3627 (6) | 0.7559 (4) | 0.5661 (2) | 0.0256 (7) | |
H21 | 0.217055 | 0.710835 | 0.538118 | 0.031* | |
C22 | 0.1320 (6) | 0.8832 (4) | 0.4482 (3) | 0.0260 (7) | |
H22A | 0.071510 | 0.954612 | 0.419840 | 0.031* | |
H22B | 0.068110 | 0.886179 | 0.505817 | 0.031* | |
C23 | 0.0619 (6) | 0.7348 (4) | 0.3806 (2) | 0.0231 (7) | |
C24 | 0.1890 (6) | 0.6774 (4) | 0.3150 (2) | 0.0242 (7) | |
H24 | 0.329679 | 0.727598 | 0.314978 | 0.029* | |
C25 | 0.1081 (6) | 0.5461 (4) | 0.2498 (2) | 0.0220 (6) | |
C26 | −0.0988 (6) | 0.4699 (4) | 0.2487 (2) | 0.0222 (6) | |
C27 | −0.2240 (6) | 0.5237 (4) | 0.3154 (3) | 0.0260 (7) | |
H27 | −0.362640 | 0.471796 | 0.316539 | 0.031* | |
C28 | −0.1408 (6) | 0.6572 (4) | 0.3816 (2) | 0.0250 (7) | |
H28 | −0.224639 | 0.695843 | 0.428392 | 0.030* | |
C29 | 0.2013 (6) | 0.4666 (4) | 0.1678 (2) | 0.0230 (6) | |
C30 | 0.0310 (6) | 0.3407 (4) | 0.1173 (2) | 0.0236 (7) | |
C31 | −0.1468 (6) | 0.3419 (4) | 0.1661 (2) | 0.0222 (6) | |
C32 | 0.0253 (6) | 0.2392 (4) | 0.0333 (2) | 0.0232 (6) | |
H32 | 0.148081 | 0.238534 | 0.001502 | 0.028* | |
C33 | −0.1620 (6) | 0.1380 (4) | −0.0043 (3) | 0.0243 (7) | |
C34 | −0.3346 (6) | 0.1355 (4) | 0.0463 (3) | 0.0260 (7) | |
H34 | −0.459675 | 0.062432 | 0.021745 | 0.031* | |
C35 | −0.3285 (6) | 0.2373 (4) | 0.1318 (3) | 0.0258 (7) | |
H35 | −0.447445 | 0.234509 | 0.165682 | 0.031* | |
C36 | −0.1881 (6) | 0.0386 (4) | −0.1026 (2) | 0.0261 (7) | |
H36A | −0.292015 | −0.049858 | −0.107536 | 0.031* | |
H36B | −0.253593 | 0.087410 | −0.147047 | 0.031* | |
C37 | 0.0872 (6) | −0.1085 (4) | −0.0968 (2) | 0.0243 (7) | |
C38 | 0.2524 (6) | −0.1682 (4) | −0.1384 (3) | 0.0294 (8) | |
H38 | 0.305188 | −0.136765 | −0.187734 | 0.035* | |
C39 | 0.3404 (6) | −0.2748 (4) | −0.1071 (3) | 0.0296 (8) | |
H39 | 0.454620 | −0.316585 | −0.135380 | 0.036* | |
C40 | 0.2643 (6) | −0.3216 (4) | −0.0352 (3) | 0.0292 (8) | |
H40 | 0.325432 | −0.394801 | −0.014078 | 0.035* | |
C41 | 0.0986 (6) | −0.2601 (4) | 0.0050 (2) | 0.0250 (7) | |
C42 | 0.0074 (6) | −0.1549 (4) | −0.0254 (3) | 0.0246 (7) | |
H42 | −0.108662 | −0.114593 | 0.002177 | 0.030* | |
Cl1 | 0.2053 (2) | 0.17453 (13) | 0.65929 (9) | 0.0542 (4) | |
C43 | 0.4128 (7) | 0.2615 (4) | 0.7525 (3) | 0.0306 (8) | |
C44 | 0.3680 (7) | 0.2937 (5) | 0.8418 (3) | 0.0320 (8) | |
H44 | 0.224785 | 0.265769 | 0.853168 | 0.038* | |
C45 | 0.5314 (8) | 0.3668 (5) | 0.9151 (3) | 0.0348 (9) | |
H45 | 0.502082 | 0.389116 | 0.977568 | 0.042* | |
C46 | 0.7375 (8) | 0.4077 (5) | 0.8978 (3) | 0.0406 (10) | |
H46 | 0.850033 | 0.460205 | 0.948342 | 0.049* | |
C47 | 0.7812 (9) | 0.3732 (6) | 0.8083 (4) | 0.0484 (12) | |
H47 | 0.924417 | 0.401211 | 0.796899 | 0.058* | |
C48 | 0.6189 (9) | 0.2979 (5) | 0.7341 (3) | 0.0418 (11) | |
H48 | 0.649317 | 0.271929 | 0.671735 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0216 (13) | 0.0295 (14) | 0.0336 (14) | −0.0023 (10) | 0.0080 (10) | 0.0040 (11) |
O2 | 0.0340 (15) | 0.0216 (12) | 0.0304 (13) | −0.0017 (10) | 0.0013 (11) | 0.0058 (10) |
O3 | 0.0278 (14) | 0.0216 (12) | 0.0279 (13) | 0.0000 (10) | 0.0036 (10) | 0.0051 (9) |
O4 | 0.0219 (13) | 0.0244 (13) | 0.0315 (13) | 0.0004 (10) | 0.0054 (10) | 0.0058 (10) |
O5 | 0.0267 (14) | 0.0236 (12) | 0.0270 (12) | −0.0006 (10) | 0.0049 (10) | 0.0057 (10) |
O6 | 0.0241 (13) | 0.0235 (12) | 0.0300 (13) | 0.0042 (10) | 0.0055 (10) | 0.0069 (10) |
C1 | 0.0231 (17) | 0.0225 (16) | 0.0256 (16) | −0.0001 (12) | 0.0047 (12) | 0.0043 (12) |
C2 | 0.0216 (17) | 0.0219 (16) | 0.0274 (17) | 0.0009 (12) | 0.0033 (13) | 0.0072 (12) |
C3 | 0.0193 (16) | 0.0246 (17) | 0.0348 (18) | −0.0007 (13) | 0.0064 (13) | 0.0077 (14) |
C4 | 0.0204 (16) | 0.0256 (17) | 0.0326 (18) | −0.0005 (13) | 0.0067 (13) | 0.0064 (14) |
C5 | 0.0227 (17) | 0.0215 (16) | 0.0219 (15) | 0.0037 (12) | 0.0035 (12) | 0.0052 (12) |
C6 | 0.0202 (16) | 0.0233 (16) | 0.0227 (15) | 0.0016 (12) | 0.0042 (12) | 0.0074 (12) |
C7 | 0.0210 (16) | 0.0221 (16) | 0.0232 (15) | 0.0006 (12) | 0.0052 (12) | 0.0053 (12) |
C8 | 0.0222 (16) | 0.0214 (16) | 0.0233 (15) | 0.0009 (12) | 0.0072 (12) | 0.0048 (12) |
C9 | 0.0242 (17) | 0.0220 (16) | 0.0262 (17) | 0.0018 (13) | 0.0055 (13) | 0.0056 (13) |
C10 | 0.0206 (16) | 0.0224 (16) | 0.0245 (16) | 0.0021 (12) | 0.0032 (12) | 0.0044 (12) |
C11 | 0.0225 (17) | 0.0262 (18) | 0.0282 (17) | 0.0003 (13) | 0.0065 (13) | 0.0058 (13) |
C12 | 0.0289 (19) | 0.0269 (18) | 0.0275 (17) | 0.0025 (14) | 0.0083 (14) | 0.0067 (14) |
C13 | 0.0271 (18) | 0.0231 (17) | 0.0237 (16) | −0.0005 (13) | 0.0044 (13) | 0.0064 (13) |
C14 | 0.0258 (18) | 0.0199 (16) | 0.0263 (16) | 0.0007 (13) | 0.0040 (13) | 0.0061 (12) |
C15 | 0.032 (2) | 0.0248 (17) | 0.0268 (18) | −0.0030 (14) | 0.0045 (14) | 0.0051 (14) |
C16 | 0.0253 (17) | 0.0234 (16) | 0.0229 (16) | 0.0005 (13) | 0.0049 (13) | 0.0009 (12) |
C17 | 0.0252 (18) | 0.032 (2) | 0.0271 (17) | 0.0011 (14) | 0.0012 (13) | 0.0030 (14) |
C18 | 0.0242 (18) | 0.035 (2) | 0.0291 (18) | −0.0017 (14) | 0.0027 (14) | 0.0006 (15) |
C19 | 0.0227 (18) | 0.0254 (18) | 0.0348 (19) | −0.0057 (13) | 0.0051 (14) | 0.0019 (14) |
C20 | 0.0242 (17) | 0.0224 (16) | 0.0252 (16) | 0.0018 (12) | 0.0055 (12) | 0.0041 (12) |
C21 | 0.0254 (17) | 0.0224 (16) | 0.0243 (16) | −0.0028 (13) | 0.0027 (12) | 0.0022 (12) |
C22 | 0.0239 (17) | 0.0257 (17) | 0.0255 (16) | 0.0027 (13) | 0.0027 (13) | 0.0031 (13) |
C23 | 0.0229 (17) | 0.0220 (16) | 0.0240 (16) | 0.0032 (13) | 0.0021 (12) | 0.0067 (12) |
C24 | 0.0222 (17) | 0.0242 (16) | 0.0235 (16) | −0.0005 (13) | 0.0045 (12) | 0.0036 (12) |
C25 | 0.0189 (16) | 0.0238 (16) | 0.0227 (15) | 0.0011 (12) | 0.0039 (12) | 0.0062 (12) |
C26 | 0.0189 (15) | 0.0236 (16) | 0.0207 (15) | 0.0000 (12) | 0.0018 (11) | 0.0024 (12) |
C27 | 0.0202 (17) | 0.0284 (18) | 0.0286 (17) | 0.0017 (13) | 0.0048 (13) | 0.0071 (14) |
C28 | 0.0225 (17) | 0.0271 (17) | 0.0232 (16) | 0.0021 (13) | 0.0036 (13) | 0.0041 (13) |
C29 | 0.0207 (16) | 0.0219 (15) | 0.0249 (16) | 0.0014 (12) | 0.0039 (12) | 0.0051 (12) |
C30 | 0.0193 (16) | 0.0245 (17) | 0.0259 (16) | 0.0006 (13) | 0.0027 (12) | 0.0069 (13) |
C31 | 0.0214 (16) | 0.0218 (15) | 0.0238 (15) | 0.0027 (12) | 0.0039 (12) | 0.0073 (12) |
C32 | 0.0212 (16) | 0.0238 (16) | 0.0245 (16) | 0.0021 (12) | 0.0043 (12) | 0.0069 (13) |
C33 | 0.0228 (17) | 0.0223 (16) | 0.0273 (16) | 0.0005 (12) | 0.0025 (13) | 0.0083 (13) |
C34 | 0.0194 (16) | 0.0245 (17) | 0.0326 (18) | −0.0022 (12) | 0.0013 (13) | 0.0092 (14) |
C35 | 0.0196 (16) | 0.0274 (17) | 0.0302 (17) | −0.0004 (13) | 0.0043 (13) | 0.0095 (13) |
C36 | 0.0274 (18) | 0.0229 (16) | 0.0246 (16) | 0.0010 (13) | 0.0028 (13) | 0.0031 (12) |
C37 | 0.0223 (17) | 0.0241 (16) | 0.0221 (16) | −0.0011 (13) | 0.0009 (12) | 0.0024 (12) |
C38 | 0.0209 (17) | 0.0311 (19) | 0.0293 (18) | −0.0044 (14) | 0.0036 (13) | 0.0008 (14) |
C39 | 0.0199 (17) | 0.035 (2) | 0.0293 (18) | 0.0029 (14) | 0.0072 (13) | 0.0002 (14) |
C40 | 0.0198 (17) | 0.0303 (19) | 0.0333 (19) | 0.0033 (14) | 0.0017 (14) | 0.0032 (15) |
C41 | 0.0210 (16) | 0.0232 (16) | 0.0261 (16) | −0.0021 (12) | 0.0025 (12) | 0.0024 (13) |
C42 | 0.0220 (17) | 0.0218 (16) | 0.0278 (16) | 0.0012 (12) | 0.0051 (12) | 0.0036 (12) |
Cl1 | 0.0703 (9) | 0.0375 (6) | 0.0415 (6) | −0.0101 (5) | −0.0137 (5) | 0.0074 (5) |
C43 | 0.035 (2) | 0.0242 (18) | 0.0315 (19) | 0.0030 (15) | 0.0041 (15) | 0.0075 (14) |
C44 | 0.028 (2) | 0.036 (2) | 0.0318 (19) | 0.0023 (15) | 0.0064 (15) | 0.0088 (15) |
C45 | 0.040 (2) | 0.034 (2) | 0.033 (2) | 0.0101 (17) | 0.0089 (17) | 0.0093 (16) |
C46 | 0.037 (2) | 0.0231 (19) | 0.056 (3) | 0.0001 (16) | −0.005 (2) | 0.0093 (18) |
C47 | 0.036 (3) | 0.042 (3) | 0.074 (4) | −0.001 (2) | 0.014 (2) | 0.028 (3) |
C48 | 0.053 (3) | 0.038 (2) | 0.042 (2) | 0.004 (2) | 0.024 (2) | 0.0173 (19) |
O1—C10 | 1.207 (4) | C22—H22B | 0.9900 |
O2—C15 | 1.410 (5) | C22—C23 | 1.502 (5) |
O2—C16 | 1.374 (5) | C23—C24 | 1.383 (5) |
O3—C20 | 1.353 (5) | C23—C28 | 1.393 (5) |
O3—C22 | 1.420 (5) | C24—H24 | 0.9500 |
O4—C29 | 1.214 (4) | C24—C25 | 1.377 (5) |
O5—C36 | 1.415 (5) | C25—C26 | 1.402 (5) |
O5—C37 | 1.362 (4) | C25—C29 | 1.492 (5) |
O6—C1 | 1.420 (4) | C26—C27 | 1.377 (5) |
O6—C41 | 1.363 (4) | C26—C31 | 1.473 (5) |
C1—H1A | 0.9900 | C27—H27 | 0.9500 |
C1—H1B | 0.9900 | C27—C28 | 1.401 (5) |
C1—C2 | 1.504 (5) | C28—H28 | 0.9500 |
C2—C3 | 1.393 (5) | C29—C30 | 1.479 (5) |
C2—C7 | 1.389 (5) | C30—C31 | 1.400 (5) |
C3—H3 | 0.9500 | C30—C32 | 1.371 (5) |
C3—C4 | 1.382 (5) | C31—C35 | 1.370 (5) |
C4—H4 | 0.9500 | C32—H32 | 0.9500 |
C4—C5 | 1.376 (5) | C32—C33 | 1.382 (5) |
C5—C6 | 1.404 (5) | C33—C34 | 1.392 (5) |
C5—C8 | 1.472 (5) | C33—C36 | 1.509 (5) |
C6—C7 | 1.377 (5) | C34—H34 | 0.9500 |
C6—C10 | 1.491 (5) | C34—C35 | 1.389 (5) |
C7—H7 | 0.9500 | C35—H35 | 0.9500 |
C8—C9 | 1.396 (5) | C36—H36A | 0.9900 |
C8—C11 | 1.376 (5) | C36—H36B | 0.9900 |
C9—C10 | 1.479 (5) | C37—C38 | 1.377 (5) |
C9—C14 | 1.383 (5) | C37—C42 | 1.388 (5) |
C11—H11 | 0.9500 | C38—H38 | 0.9500 |
C11—C12 | 1.390 (5) | C38—C39 | 1.384 (6) |
C12—H12 | 0.9500 | C39—H39 | 0.9500 |
C12—C13 | 1.387 (5) | C39—C40 | 1.387 (6) |
C13—C14 | 1.386 (5) | C40—H40 | 0.9500 |
C13—C15 | 1.495 (5) | C40—C41 | 1.377 (5) |
C14—H14 | 0.9500 | C41—C42 | 1.375 (5) |
C15—H15A | 0.9900 | C42—H42 | 0.9500 |
C15—H15B | 0.9900 | Cl1—C43 | 1.732 (4) |
C16—C17 | 1.385 (5) | C43—C44 | 1.362 (5) |
C16—C21 | 1.372 (5) | C43—C48 | 1.371 (6) |
C17—H17 | 0.9500 | C44—H44 | 0.9500 |
C17—C18 | 1.378 (6) | C44—C45 | 1.372 (6) |
C18—H18 | 0.9500 | C45—H45 | 0.9500 |
C18—C19 | 1.383 (6) | C45—C46 | 1.373 (7) |
C19—H19 | 0.9500 | C46—H46 | 0.9500 |
C19—C20 | 1.382 (5) | C46—C47 | 1.364 (7) |
C20—C21 | 1.392 (5) | C47—H47 | 0.9500 |
C21—H21 | 0.9500 | C47—C48 | 1.381 (7) |
C22—H22A | 0.9900 | C48—H48 | 0.9500 |
C16—O2—C15 | 117.1 (3) | C24—C23—C28 | 119.8 (3) |
C20—O3—C22 | 116.5 (3) | C28—C23—C22 | 118.7 (3) |
C37—O5—C36 | 116.8 (3) | C23—C24—H24 | 120.6 |
C41—O6—C1 | 118.1 (3) | C25—C24—C23 | 118.8 (3) |
O6—C1—H1A | 108.6 | C25—C24—H24 | 120.6 |
O6—C1—H1B | 108.6 | C24—C25—C26 | 121.5 (3) |
O6—C1—C2 | 114.5 (3) | C24—C25—C29 | 129.7 (3) |
H1A—C1—H1B | 107.6 | C26—C25—C29 | 108.5 (3) |
C2—C1—H1A | 108.6 | C25—C26—C31 | 108.6 (3) |
C2—C1—H1B | 108.6 | C27—C26—C25 | 120.2 (3) |
C3—C2—C1 | 117.3 (3) | C27—C26—C31 | 131.1 (3) |
C7—C2—C1 | 122.5 (3) | C26—C27—H27 | 121.0 |
C7—C2—C3 | 120.2 (3) | C26—C27—C28 | 118.0 (3) |
C2—C3—H3 | 119.1 | C28—C27—H27 | 121.0 |
C4—C3—C2 | 121.9 (3) | C23—C28—C27 | 121.6 (3) |
C4—C3—H3 | 119.1 | C23—C28—H28 | 119.2 |
C3—C4—H4 | 120.9 | C27—C28—H28 | 119.2 |
C5—C4—C3 | 118.3 (3) | O4—C29—C25 | 127.1 (3) |
C5—C4—H4 | 120.9 | O4—C29—C30 | 127.5 (3) |
C4—C5—C6 | 119.9 (3) | C30—C29—C25 | 105.3 (3) |
C4—C5—C8 | 131.2 (3) | C31—C30—C29 | 109.1 (3) |
C6—C5—C8 | 108.7 (3) | C32—C30—C29 | 129.5 (3) |
C5—C6—C10 | 107.9 (3) | C32—C30—C31 | 121.3 (3) |
C7—C6—C5 | 122.1 (3) | C30—C31—C26 | 108.4 (3) |
C7—C6—C10 | 129.9 (3) | C35—C31—C26 | 131.4 (3) |
C2—C7—H7 | 121.2 | C35—C31—C30 | 120.1 (3) |
C6—C7—C2 | 117.7 (3) | C30—C32—H32 | 120.5 |
C6—C7—H7 | 121.2 | C30—C32—C33 | 119.0 (3) |
C9—C8—C5 | 108.5 (3) | C33—C32—H32 | 120.5 |
C11—C8—C5 | 131.3 (3) | C32—C33—C34 | 119.5 (3) |
C11—C8—C9 | 120.1 (3) | C32—C33—C36 | 120.7 (3) |
C8—C9—C10 | 108.7 (3) | C34—C33—C36 | 119.7 (3) |
C14—C9—C8 | 121.4 (3) | C33—C34—H34 | 119.2 |
C14—C9—C10 | 129.8 (3) | C35—C34—C33 | 121.6 (3) |
O1—C10—C6 | 126.6 (3) | C35—C34—H34 | 119.2 |
O1—C10—C9 | 127.7 (3) | C31—C35—C34 | 118.4 (3) |
C9—C10—C6 | 105.7 (3) | C31—C35—H35 | 120.8 |
C8—C11—H11 | 121.1 | C34—C35—H35 | 120.8 |
C8—C11—C12 | 117.9 (3) | O5—C36—C33 | 114.3 (3) |
C12—C11—H11 | 121.1 | O5—C36—H36A | 108.7 |
C11—C12—H12 | 118.9 | O5—C36—H36B | 108.7 |
C13—C12—C11 | 122.3 (4) | C33—C36—H36A | 108.7 |
C13—C12—H12 | 118.9 | C33—C36—H36B | 108.7 |
C12—C13—C15 | 117.1 (3) | H36A—C36—H36B | 107.6 |
C14—C13—C12 | 119.3 (3) | O5—C37—C38 | 116.1 (3) |
C14—C13—C15 | 123.4 (3) | O5—C37—C42 | 123.0 (3) |
C9—C14—C13 | 118.6 (3) | C38—C37—C42 | 120.9 (4) |
C9—C14—H14 | 120.7 | C37—C38—H38 | 120.5 |
C13—C14—H14 | 120.7 | C37—C38—C39 | 118.9 (3) |
O2—C15—C13 | 114.4 (3) | C39—C38—H38 | 120.5 |
O2—C15—H15A | 108.7 | C38—C39—H39 | 119.5 |
O2—C15—H15B | 108.7 | C38—C39—C40 | 121.0 (4) |
C13—C15—H15A | 108.7 | C40—C39—H39 | 119.5 |
C13—C15—H15B | 108.7 | C39—C40—H40 | 120.6 |
H15A—C15—H15B | 107.6 | C41—C40—C39 | 118.8 (4) |
O2—C16—C17 | 115.7 (3) | C41—C40—H40 | 120.6 |
C21—C16—O2 | 122.8 (3) | O6—C41—C40 | 115.9 (3) |
C21—C16—C17 | 121.5 (3) | O6—C41—C42 | 122.9 (3) |
C16—C17—H17 | 120.9 | C42—C41—C40 | 121.2 (3) |
C18—C17—C16 | 118.3 (4) | C37—C42—H42 | 120.5 |
C18—C17—H17 | 120.9 | C41—C42—C37 | 119.1 (3) |
C17—C18—H18 | 119.3 | C41—C42—H42 | 120.5 |
C17—C18—C19 | 121.5 (4) | C44—C43—Cl1 | 119.8 (3) |
C19—C18—H18 | 119.3 | C44—C43—C48 | 121.6 (4) |
C18—C19—H19 | 120.3 | C48—C43—Cl1 | 118.6 (3) |
C20—C19—C18 | 119.3 (3) | C43—C44—H44 | 120.3 |
C20—C19—H19 | 120.3 | C43—C44—C45 | 119.5 (4) |
O3—C20—C19 | 116.9 (3) | C45—C44—H44 | 120.3 |
O3—C20—C21 | 123.1 (3) | C44—C45—H45 | 120.1 |
C19—C20—C21 | 120.0 (4) | C44—C45—C46 | 119.8 (4) |
C16—C21—C20 | 119.4 (3) | C46—C45—H45 | 120.1 |
C16—C21—H21 | 120.3 | C45—C46—H46 | 119.9 |
C20—C21—H21 | 120.3 | C47—C46—C45 | 120.2 (4) |
O3—C22—H22A | 108.7 | C47—C46—H46 | 119.9 |
O3—C22—H22B | 108.7 | C46—C47—H47 | 119.7 |
O3—C22—C23 | 114.1 (3) | C46—C47—C48 | 120.6 (4) |
H22A—C22—H22B | 107.6 | C48—C47—H47 | 119.7 |
C23—C22—H22A | 108.7 | C43—C48—C47 | 118.3 (4) |
C23—C22—H22B | 108.7 | C43—C48—H48 | 120.8 |
C24—C23—C22 | 121.4 (3) | C47—C48—H48 | 120.8 |
O2—C16—C17—C18 | 178.9 (3) | C19—C20—C21—C16 | 0.1 (5) |
O2—C16—C21—C20 | −178.5 (3) | C20—O3—C22—C23 | −80.0 (4) |
O3—C20—C21—C16 | 179.4 (3) | C21—C16—C17—C18 | 0.5 (6) |
O3—C22—C23—C24 | −30.7 (5) | C22—O3—C20—C19 | −165.2 (3) |
O3—C22—C23—C28 | 152.4 (3) | C22—O3—C20—C21 | 15.4 (5) |
O4—C29—C30—C31 | −179.6 (4) | C22—C23—C24—C25 | −174.6 (3) |
O4—C29—C30—C32 | −3.9 (7) | C22—C23—C28—C27 | 174.6 (3) |
O5—C37—C38—C39 | 179.1 (3) | C23—C24—C25—C26 | −0.1 (5) |
O5—C37—C42—C41 | −178.6 (3) | C23—C24—C25—C29 | 174.4 (3) |
O6—C1—C2—C3 | −165.4 (3) | C24—C23—C28—C27 | −2.3 (5) |
O6—C1—C2—C7 | 12.6 (5) | C24—C25—C26—C27 | −1.9 (5) |
O6—C41—C42—C37 | 179.0 (3) | C24—C25—C26—C31 | 174.7 (3) |
C1—O6—C41—C40 | −160.6 (3) | C24—C25—C29—O4 | 4.5 (6) |
C1—O6—C41—C42 | 19.3 (5) | C24—C25—C29—C30 | −173.6 (4) |
C1—C2—C3—C4 | 175.2 (4) | C25—C26—C27—C28 | 1.8 (5) |
C1—C2—C7—C6 | −175.9 (3) | C25—C26—C31—C30 | 0.0 (4) |
C2—C3—C4—C5 | 0.5 (6) | C25—C26—C31—C35 | −177.1 (4) |
C3—C2—C7—C6 | 2.1 (5) | C25—C29—C30—C31 | −1.5 (4) |
C3—C4—C5—C6 | 2.3 (5) | C25—C29—C30—C32 | 174.2 (4) |
C3—C4—C5—C8 | −172.2 (4) | C26—C25—C29—O4 | 179.6 (4) |
C4—C5—C6—C7 | −3.1 (5) | C26—C25—C29—C30 | 1.5 (4) |
C4—C5—C6—C10 | −179.0 (3) | C26—C27—C28—C23 | 0.3 (6) |
C4—C5—C8—C9 | 174.1 (4) | C26—C31—C35—C34 | 174.0 (4) |
C4—C5—C8—C11 | −3.6 (7) | C27—C26—C31—C30 | 176.1 (4) |
C5—C6—C7—C2 | 0.8 (5) | C27—C26—C31—C35 | −1.0 (7) |
C5—C6—C10—O1 | −173.4 (4) | C28—C23—C24—C25 | 2.2 (5) |
C5—C6—C10—C9 | 6.1 (4) | C29—C25—C26—C27 | −177.5 (3) |
C5—C8—C9—C10 | 4.8 (4) | C29—C25—C26—C31 | −0.9 (4) |
C5—C8—C9—C14 | −172.1 (3) | C29—C30—C31—C26 | 1.0 (4) |
C5—C8—C11—C12 | 173.4 (4) | C29—C30—C31—C35 | 178.4 (3) |
C6—C5—C8—C9 | −0.9 (4) | C29—C30—C32—C33 | −174.1 (4) |
C6—C5—C8—C11 | −178.6 (4) | C30—C31—C35—C34 | −2.8 (5) |
C7—C2—C3—C4 | −2.9 (5) | C30—C32—C33—C34 | −4.0 (5) |
C7—C6—C10—O1 | 11.1 (6) | C30—C32—C33—C36 | 171.1 (3) |
C7—C6—C10—C9 | −169.4 (4) | C31—C26—C27—C28 | −173.9 (4) |
C8—C5—C6—C7 | 172.6 (3) | C31—C30—C32—C33 | 1.2 (5) |
C8—C5—C6—C10 | −3.3 (4) | C32—C30—C31—C26 | −175.2 (3) |
C8—C9—C10—O1 | 172.7 (4) | C32—C30—C31—C35 | 2.3 (5) |
C8—C9—C10—C6 | −6.7 (4) | C32—C33—C34—C35 | 3.5 (5) |
C8—C9—C14—C13 | −2.0 (5) | C32—C33—C36—O5 | 33.9 (5) |
C8—C11—C12—C13 | −1.6 (6) | C33—C34—C35—C31 | 0.0 (6) |
C9—C8—C11—C12 | −4.0 (5) | C34—C33—C36—O5 | −151.0 (3) |
C10—C6—C7—C2 | 175.7 (3) | C36—O5—C37—C38 | 167.2 (3) |
C10—C9—C14—C13 | −178.2 (4) | C36—O5—C37—C42 | −13.0 (5) |
C11—C8—C9—C10 | −177.2 (3) | C36—C33—C34—C35 | −171.7 (3) |
C11—C8—C9—C14 | 5.9 (6) | C37—O5—C36—C33 | 78.4 (4) |
C11—C12—C13—C14 | 5.5 (6) | C37—C38—C39—C40 | 0.1 (6) |
C11—C12—C13—C15 | −170.5 (4) | C38—C37—C42—C41 | 1.3 (5) |
C12—C13—C14—C9 | −3.6 (5) | C38—C39—C40—C41 | 0.0 (6) |
C12—C13—C15—O2 | 168.8 (3) | C39—C40—C41—O6 | −179.6 (3) |
C14—C9—C10—O1 | −10.7 (7) | C39—C40—C41—C42 | 0.5 (5) |
C14—C9—C10—C6 | 169.9 (4) | C40—C41—C42—C37 | −1.2 (5) |
C14—C13—C15—O2 | −7.0 (5) | C41—O6—C1—C2 | −90.6 (4) |
C15—O2—C16—C17 | 158.0 (3) | C42—C37—C38—C39 | −0.7 (5) |
C15—O2—C16—C21 | −23.6 (5) | Cl1—C43—C44—C45 | −177.9 (3) |
C15—C13—C14—C9 | 172.1 (3) | Cl1—C43—C48—C47 | 177.0 (4) |
C16—O2—C15—C13 | 91.6 (4) | C43—C44—C45—C46 | 0.5 (6) |
C16—C17—C18—C19 | −0.7 (6) | C44—C43—C48—C47 | −2.2 (7) |
C17—C16—C21—C20 | −0.2 (6) | C44—C45—C46—C47 | −1.4 (7) |
C17—C18—C19—C20 | 0.7 (6) | C45—C46—C47—C48 | 0.5 (7) |
C18—C19—C20—O3 | −179.7 (3) | C46—C47—C48—C43 | 1.3 (7) |
C18—C19—C20—C21 | −0.3 (6) | C48—C43—C44—C45 | 1.3 (7) |
Cg1, Cg2 and Cg15 are the centroids of the C5/C6/C10/C9/C8, C25/C29/C30/C31/C26 and C43–C48 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cl1i | 0.95 | 2.83 | 3.547 (4) | 133 |
C35—H35···O1ii | 0.95 | 2.58 | 3.491 (5) | 161 |
C46—H46···O6iii | 0.95 | 2.55 | 3.418 (5) | 152 |
C1—H1A···Cg2iv | 0.99 | 2.95 | 3.610 (4) | 125 |
C22—H22A···Cg1v | 0.99 | 2.73 | 3.711 (4) | 170 |
C36—H36B···Cg15vi | 0.99 | 2.84 | 3.713 (4) | 148 |
Symmetry codes: (i) x+1, y+1, z; (ii) x−1, y, z; (iii) x+1, y+1, z+1; (iv) x, y−1, z; (v) x, y+1, z; (vi) x−1, y, z−1. |
Funding information
The authors thank the National Academy of Sciences of Ukraine for financial support in the framework of the projects `New supramolecular systems based on
with fluorenone and benzimidazole fragments. Design, synthesis, structure, perspectives' (0120U100122) and `Functional materials for biomedical purposes based on halogen-containing organic compounds' (0120U102660).References
Barnes, J. C., Juríček, M., Strutt, N. L., Frasconi, M., Sampath, S., Giesener, M. A., McGrier, P. L., Bruns, C. J., Stern, C. L., Sarjeant, A. A. & Stoddart, J. F. (2013). J. Am. Chem. Soc. 135, 183–192. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dale, E. J., Vermeulen, N. A., Juríček, M., Barnes, J. C., Young, R. M., Wasielewski, M. R. & Stoddart, J. F. (2016). Acc. Chem. Res. 49, 262–273. Web of Science CrossRef CAS PubMed Google Scholar
Diederich, F. (1991). Cyclophanes. Cambridge: The Royal Society of Chemistry. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. (2010). Nat. Chem. 2, 406–409. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haenel, M. W., Irngartinger, H. & Krieger, C. (1985). Chem. Ber. 118, 144–162. CSD CrossRef CAS Web of Science Google Scholar
Lukyanenko, N. G., Kirichenko, T. I., Lyapunov, A. Yu., Bogaschenko, T. Yu., Pastushok, V. N., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2003). Tetrahedron Lett. 44, 7373–7376. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V., Semynozhenko, V. P., Bogashchenko, T. Yu., Lyapunov, A. Yu. & Kirichenko, T. I. (2021). Struct. Chem. https://doi.org/10.21203/rs.3.rs-747526/v1 Google Scholar
Simonov, Yu. A., Bogashchenko, N. Yu., Pastushok, V. N., Botoshanskii, M. M., Fonar', M. S., Lyapunov, A. Yu. & Luk'yanenko, N. G. (2006). Russ. J. Org. Chem. 42, 1075–1082. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.