research communications
4LaL4 with the CAPh-ligand dimethyl (2,2,2-trichloroacetyl)phosphoramidate
and Hirshfeld surface analysis of the anionic tetrakis-complex of lanthanum(III) NMeaDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine, and bSSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com
The anionic tetrakis-complex of lanthanum(III) NMe4LaL4 with the CAPh-ligand dimethyl (2,2,2-trichloroacetyl)phosphoramidate (HL), namely, tetramethylammonium tetrakis{2,2,2-trichloro-1-[(dimethoxyphosphoryl)imino]ethanolato}lanthanum(III), (C4H12N)[La(C4H6Cl3NO4P)4], has been synthesized, crystallized and structurally characterized by X-ray diffraction. The lanthanide ion is surrounded by four anionic, bis-chelating CAPh ligands forming the complex anion with a of eight for La3+ and NMe4+ as the counter-ion. The of the La3+ ion was interpreted as a triangular dodecahedron.
Keywords: crystal structure; lanthanum(III) complex; β-diketone derivatives; carbacylamidophopsphates; rare earth metals; coordination compound; Hirshfeld analysis.
CCDC reference: 2120335
1. Chemical context
Considerable interest in the luminescence properties of lanthanide coordination compounds results from their potential applications in modern technologies and medicine (Eliseeva et al., 2010; Kido et al., 2002; Tsukube et al., 2002). In particular, use of P,N-substituted analogues of β-diketone such as carbacylamidophopsphates (CAPh) (Amirkhanov et al., 2014) with the C(O)NHP(O) structural fragment as ligands is promising because of their powerful chelating properties (Skopenko et al., 2004; Amirkhanov et al., 2014) and ability to sensitize the luminescence of lanthanides (Kariaka et al., 2016; Pham et al., 2017; Kariaka et al., 2018). In this work, the synthesis and of the anionic tetrakis-complex of lanthanum(III) containing the CAPh-ligand dimethyl (2,2,2-trichloroacetyl)phosphoramidate and a tetramethylammonium cation (formula NMe4LaL4) is reported.
2. Structural commentary
The title compound (C4H12N)[La(C4H6Cl3NO4P)4] crystallizes in the monoclinic with two molecules in the Both the cation and the anion have crystallographically-imposed C2 symmetry with atoms La1 and N3 located on the twofold axis. The molecular structure of the complex is shown in Fig. 1. In the complex, the La3+ ion has a triangular dodecahedral coordination environment formed by the eight O atoms of the bidentate CAPh ligands and the N(CH3)4+ unit acts as the counter-ion (Fig. 1). The average La—O bond length is 2.494 Å while the La—O(C) bond lengths [2.534 (3)–2.566 (3) Å] are all longer than the La—O(P) bonds [2.432 (3)–2.445 (3) Å]. Deprotonation of the ligands leads to increasing π-conjugation in the chelating fragment and results in the bond-length changes. The C—O and P—O bond lengths are in the ranges 1.225 (5)–1.240 (6) Å and 1.475 (3)–1.476 (4) Å, respectively, with corresponding average values of 1.233 and 1.476 Å. The corresponding bond lengths in the neutral ligand HL are 1.202 (2) and 1.459 (2) Å (Amirkhanov et al., 2014). The C—O and P—O bonds of the ligand in the complex are longer than those in the neutral ligand (HL), indicating greater C=O and P=O double-bond character in HL than in NMe4LaL4. The C—N and P—N bonds, with lengths in the ranges 1.291 (6)–1.292 (6) and 1.598 (4)–1.602 (5) Å, respectively, in NMe4LaL4 are shorter compared to those in the free ligand, in which the reported C—N bond length is 1.347 (2) Å and P—N is 1.676 (1) Å (Amirkhanov et al., 1995).
3. Supramolecular features
There are no classical hydrogen bonds in the via numerous weak C—H⋯O and Cl⋯Cl intermolecular interactions (Table 1). In particular, the PO and OCH3 groups of the ligands are involved in the formation of interactions with the hydrogen atoms of the tetramethylammonium cation, linking the complex anion and the counter-ion in a chain along the b-axis direction. The Cl12A⋯Cl12Aii [symmetry code (ii): −x, −y + 1, −z + 1] interactions, at 3.475 (12) Å, are only 0.03 Å less than the sum of the van der Waals radii but definitely below the maximum separation (4.0 Å) considered to represent at least weak, attractive Cl⋯Cl interactions (Capdevila-Cortada et al., 2016). These serve to connect neighbouring chains. The crystal packing of the title compound is shown in Fig. 2.
of the title compound, although the complexes are linked4. Hirshfeld surface analysis and fingerprint plots
To visualize the intermolecular interactions in the title compound, the Hirshfeld surface and its corresponding two-dimensional fingerprint plots (Spackman et al., 2009) were calculated using CrystalExplorer17 (Turner et al., 2017). There are several light-red spots on the dnorm surface (Fig. 3), which correspond to O⋯H/H⋯O contacts. They are located near the oxygen atoms of the ligand PO groups and the hydrogen atoms of the tetramethylammonium cation. Thus, the strongest contacts in the crystal of the title compound exist between the NMe4+ cation and the complex anion.
The two-dimensional fingerprint plots show distances from the Hirshfeld surface to the nearest exterior atom (de plots) and from an interior atom to the surface (di plots), specify atom⋯atom contacts in a crystal and provide a quantitative idea of the types of intermolecular contacts experienced by molecules. An analysis of the fingerprint plots (Fig. 3) shows that the Cl⋯H/H⋯Cl contacts make the major contribution to the Hirshfeld surface at 50.7%. The closest Cl⋯H/H⋯Cl contact occurs at di = de = 2.9 Å. The next largest contributions come from H⋯H contacts (20.8%), O⋯H/H⋯O contacts (13.6%) and Cl⋯Cl contacts (11.6%). The closest O⋯H/H⋯O contact occurs at di = de= 1.35 Å. The smallest percentage contributions to the Hirshfeld surface come from the N⋯H/H⋯N (3,1%), Cl⋯O/O⋯Cl (0.1%) and O⋯O (0.1%) interatomic contacts.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of March 2020; Groom et al., 2016) for lanthanide complexes containing bidentate-coordinated CAPh ligands yielded 48 hits. Eight of them are tetrakis complexes Cat[Ln(CAPh)4] of which five crystallize with two tetrakis complexes in the Using SHAPE analysis (SHAPE2.1; Llunell et al., 2013), the nine coordination polyhedra have been interpreted as square antiprismatic (D4d) and, for the other polyhedra, as triangular dodecahedral (D2d).
No CAPh-based lanthanum tetrakis complexes have been reported to date. However, seven lanthanum complexes containing CAPhs coordinated in a bidentate manner are known. The average La—O(C) bond length is 2.411 Å while the average La—O(P) bond length is 2.351 Å. Only one tetrakis complex based on dimethyl (2,2,2-trichloroacetyl)phosphoramidate (NaErL4) has been reported to date. The lengths of the CO, PO, PN and CN bonds in this complex are in the ranges 1.206–1.335, 1.422–1.489, 1.565–1.608 and 1.250–1.334 Å, respectively.
6. Synthesis and crystallization
The 1H NMR spectrum of a solution of the title compound in DMSO-d6 was recorded on a Varian 400 NMR spectrometer at room temperature. The infrared (IR) spectrum was recorded on a Perkin–Elmer BX-II Bruker spectrometer using a KBr pellet.
Preparation of NMe4LaL4. LaCl3·7H2O (0.0371 g, 0.1 mmol) in the presence of HC(OC2H5)3 (0.14 ml, 0.7 mmol) as dehydrating agent was dissolved in 2-propanol under heating. In a separate flask, NaL (0.1122 g, 0.4 mmol) was dissolved in acetone and NMe4Cl (0.0121 g, 0.11 mmol) was added under stirring and heating. The two mixtures were combined and boiled for a minute, then cooled to room temperature. A white precipitate of NaCl was formed and was filtered off and the filtrate left in a flask in a desiccator over CaCl2. After two days, colourless crystals suitable for X-ray diffraction studies were obtained. The crystals were filtered off, washed with 2-propanol and dried in air.
IR (KBr pellet, cm−1): 2954 [w, ν(C—Haliph)], 1614 [s, ν(C=O)],1487 (w), 1367 [s, ν(C—N)], 1187 [m, ρ(CH3)], 1158 [s, ν(P=O)], 1042 [s, δ(POC)], 1011 (m), 880 (s), 846 (m), 822 (m), 781 (w), 722 (m), 677 [m, ν(CCl)], 548 [m, δ(PNC)], 502 (m).
1H NMR (400 MHz, DMSO-d6, 293 K): 3.61, 3.59 (d, 24H, CH3 [L]−), 3.18 (s, 12H, CH3 [NMe4]+).
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions and refined with a riding model: C—H = 0.96 Å with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 2The structure exhibits disorder of the Cl atoms of one CCl3 substituent. All Cl—C bond distances were restrained to be similar to each other (within a standard deviation of 0.005 Å) with a target value of 1.745 Å. Uij values of the disordered chlorine atoms were restrained to be similar to each other (within a standard deviation of 0.02 Å2). The disorder ratio is 50 to 50.
Supporting information
CCDC reference: 2120335
https://doi.org/10.1107/S2056989021011750/mw2180sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011750/mw2180Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021011750/mw2180Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989021011750/mw2180Isup4.cdx
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C4H12N)[La(C4H6Cl3NO4P)4] | F(000) = 1280 |
Mr = 1290.73 | Dx = 1.631 Mg m−3 |
Monoclinic, P2/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1452 (4) Å | Cell parameters from 3067 reflections |
b = 10.2003 (4) Å | θ = 3.2–23.6° |
c = 21.2846 (7) Å | µ = 1.60 mm−1 |
β = 94.521 (3)° | T = 294 K |
V = 2628.64 (15) Å3 | Block, colourless |
Z = 2 | 0.6 × 0.4 × 0.2 mm |
Agilent Technologies Xcalibur, Sapphire3 diffractometer | 6050 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4597 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | k = −13→12 |
Tmin = 0.694, Tmax = 1.000 | l = −25→27 |
22447 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.057P)2 + 0.0726P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
6050 reflections | Δρmax = 0.92 e Å−3 |
296 parameters | Δρmin = −0.91 e Å−3 |
73 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.250000 | 0.21428 (4) | 0.750000 | 0.03981 (13) | |
Cl1A | 0.3621 (6) | 0.4311 (8) | 0.5516 (5) | 0.161 (4) | 0.5 |
Cl1B | 0.3145 (7) | 0.4844 (6) | 0.5495 (4) | 0.144 (3) | 0.5 |
Cl2A | 0.1378 (7) | 0.4598 (8) | 0.5184 (4) | 0.192 (4) | 0.5 |
Cl2B | 0.1311 (6) | 0.3878 (10) | 0.4787 (4) | 0.198 (4) | 0.5 |
Cl3A | 0.2545 (8) | 0.2694 (7) | 0.4592 (2) | 0.173 (4) | 0.5 |
Cl3B | 0.3288 (8) | 0.2511 (8) | 0.4835 (4) | 0.189 (4) | 0.5 |
Cl4 | 0.45286 (16) | −0.0370 (2) | 0.58761 (10) | 0.1269 (9) | |
Cl5 | 0.63096 (17) | −0.0478 (2) | 0.68243 (11) | 0.1275 (8) | |
Cl6 | 0.63761 (15) | 0.1310 (2) | 0.57995 (9) | 0.1166 (7) | |
P1 | 0.12224 (10) | 0.04178 (13) | 0.61305 (6) | 0.0523 (3) | |
P2 | 0.51080 (11) | 0.38211 (15) | 0.72817 (7) | 0.0647 (4) | |
O1 | 0.2329 (3) | 0.3040 (3) | 0.63703 (15) | 0.0652 (10) | |
O2 | 0.1564 (3) | 0.0524 (3) | 0.68093 (14) | 0.0552 (8) | |
O3 | −0.0061 (3) | 0.0420 (4) | 0.60037 (19) | 0.0790 (11) | |
O4 | 0.1617 (3) | −0.0966 (3) | 0.59196 (15) | 0.0657 (9) | |
O5 | 0.4069 (3) | 0.1198 (3) | 0.69257 (18) | 0.0656 (10) | |
O6 | 0.4008 (3) | 0.3734 (3) | 0.75292 (16) | 0.0596 (9) | |
O7 | 0.5136 (4) | 0.5137 (4) | 0.6907 (2) | 0.0980 (14) | |
O8 | 0.6052 (4) | 0.4070 (6) | 0.7800 (2) | 0.1051 (15) | |
N1 | 0.1613 (4) | 0.1495 (4) | 0.56501 (18) | 0.0629 (11) | |
N2 | 0.5497 (3) | 0.2658 (5) | 0.6845 (2) | 0.0689 (13) | |
C1 | 0.2094 (4) | 0.2568 (5) | 0.5840 (2) | 0.0564 (13) | |
C2 | 0.2429 (3) | 0.3432 (4) | 0.52989 (18) | 0.0770 (17) | |
C3 | −0.0712 (5) | −0.0440 (9) | 0.6346 (4) | 0.134 (3) | |
H3A | −0.056390 | −0.133010 | 0.623339 | 0.201* | |
H3B | −0.148061 | −0.025051 | 0.624583 | 0.201* | |
H3C | −0.053309 | −0.031932 | 0.678933 | 0.201* | |
C4 | 0.1430 (7) | −0.1401 (7) | 0.5277 (3) | 0.106 (2) | |
H4A | 0.176063 | −0.079196 | 0.500412 | 0.159* | |
H4B | 0.064984 | −0.144940 | 0.516385 | 0.159* | |
H4C | 0.175366 | −0.225158 | 0.523438 | 0.159* | |
C5 | 0.4942 (4) | 0.1588 (5) | 0.6742 (2) | 0.0566 (12) | |
C6 | 0.5510 (4) | 0.0575 (6) | 0.6321 (3) | 0.0686 (15) | |
C7 | 0.6023 (7) | 0.5480 (8) | 0.6526 (5) | 0.153 (4) | |
H7A | 0.611203 | 0.480202 | 0.622176 | 0.230* | |
H7B | 0.669571 | 0.557443 | 0.679135 | 0.230* | |
H7C | 0.585323 | 0.629264 | 0.631261 | 0.230* | |
C8 | 0.6282 (9) | 0.3183 (11) | 0.8254 (6) | 0.193 (5) | |
H8A | 0.607447 | 0.232728 | 0.809925 | 0.289* | |
H8B | 0.587835 | 0.338915 | 0.861107 | 0.289* | |
H8C | 0.705986 | 0.319673 | 0.837739 | 0.289* | |
N3 | 0.250000 | 0.7094 (6) | 0.750000 | 0.0726 (18) | |
C9 | 0.2854 (6) | 0.6266 (6) | 0.8055 (3) | 0.103 (2) | |
H9A | 0.346838 | 0.573073 | 0.795873 | 0.154* | |
H9B | 0.225194 | 0.571408 | 0.815623 | 0.154* | |
H9C | 0.306877 | 0.681805 | 0.840903 | 0.154* | |
C10 | 0.3433 (5) | 0.7929 (6) | 0.7331 (4) | 0.098 (2) | |
H10A | 0.322433 | 0.839259 | 0.694795 | 0.148* | |
H10B | 0.406334 | 0.738757 | 0.727330 | 0.148* | |
H10C | 0.361400 | 0.854619 | 0.766399 | 0.148* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0393 (2) | 0.0445 (2) | 0.0364 (2) | 0.000 | 0.00772 (15) | 0.000 |
Cl1A | 0.155 (5) | 0.215 (8) | 0.110 (4) | −0.118 (6) | −0.006 (4) | 0.053 (6) |
Cl1B | 0.275 (9) | 0.089 (3) | 0.070 (3) | −0.080 (5) | 0.027 (5) | 0.002 (3) |
Cl2A | 0.251 (8) | 0.159 (6) | 0.163 (6) | 0.071 (6) | 0.005 (5) | 0.103 (5) |
Cl2B | 0.185 (6) | 0.237 (9) | 0.158 (6) | −0.055 (6) | −0.075 (5) | 0.138 (6) |
Cl3A | 0.343 (11) | 0.137 (5) | 0.049 (2) | −0.122 (6) | 0.069 (4) | −0.026 (3) |
Cl3B | 0.271 (9) | 0.138 (5) | 0.183 (7) | 0.040 (6) | 0.173 (7) | 0.041 (5) |
Cl4 | 0.0931 (12) | 0.178 (2) | 0.1139 (15) | −0.0351 (13) | 0.0339 (12) | −0.0808 (15) |
Cl5 | 0.1168 (15) | 0.1399 (18) | 0.1283 (17) | 0.0669 (14) | 0.0249 (13) | 0.0000 (14) |
Cl6 | 0.1028 (13) | 0.1584 (19) | 0.0973 (13) | −0.0220 (12) | 0.0623 (11) | −0.0242 (13) |
P1 | 0.0515 (7) | 0.0621 (8) | 0.0423 (7) | −0.0098 (6) | −0.0031 (6) | 0.0026 (6) |
P2 | 0.0508 (7) | 0.0657 (9) | 0.0790 (10) | −0.0134 (6) | 0.0141 (7) | −0.0072 (8) |
O1 | 0.099 (3) | 0.061 (2) | 0.0360 (18) | −0.0053 (19) | 0.0088 (19) | −0.0010 (16) |
O2 | 0.067 (2) | 0.058 (2) | 0.0399 (17) | −0.0198 (16) | −0.0003 (16) | 0.0034 (15) |
O3 | 0.052 (2) | 0.099 (3) | 0.084 (3) | −0.005 (2) | −0.007 (2) | 0.010 (2) |
O4 | 0.081 (2) | 0.067 (2) | 0.0484 (19) | 0.0014 (19) | 0.0001 (18) | −0.0004 (17) |
O5 | 0.059 (2) | 0.062 (2) | 0.082 (3) | −0.0047 (17) | 0.0393 (19) | −0.0126 (19) |
O6 | 0.0552 (19) | 0.056 (2) | 0.069 (2) | −0.0110 (16) | 0.0149 (17) | −0.0134 (17) |
O7 | 0.105 (3) | 0.070 (3) | 0.126 (4) | −0.009 (2) | 0.050 (3) | 0.010 (3) |
O8 | 0.072 (3) | 0.131 (4) | 0.111 (4) | −0.033 (3) | −0.003 (3) | −0.023 (3) |
N1 | 0.077 (3) | 0.069 (3) | 0.042 (2) | −0.019 (2) | −0.005 (2) | 0.007 (2) |
N2 | 0.049 (2) | 0.078 (3) | 0.082 (3) | −0.010 (2) | 0.022 (2) | −0.014 (3) |
C1 | 0.064 (3) | 0.062 (3) | 0.043 (3) | 0.007 (3) | 0.010 (2) | 0.013 (2) |
C2 | 0.109 (5) | 0.073 (4) | 0.048 (3) | −0.009 (4) | 0.004 (3) | 0.012 (3) |
C3 | 0.063 (4) | 0.194 (9) | 0.143 (7) | −0.033 (5) | 0.006 (5) | 0.043 (7) |
C4 | 0.154 (7) | 0.105 (6) | 0.057 (4) | 0.012 (5) | 0.005 (4) | −0.018 (4) |
C5 | 0.049 (3) | 0.076 (4) | 0.047 (3) | 0.003 (3) | 0.016 (2) | −0.004 (3) |
C6 | 0.053 (3) | 0.094 (4) | 0.062 (3) | 0.000 (3) | 0.019 (3) | −0.012 (3) |
C7 | 0.148 (8) | 0.114 (7) | 0.212 (11) | −0.012 (6) | 0.101 (8) | 0.048 (7) |
C8 | 0.168 (9) | 0.215 (11) | 0.183 (10) | −0.071 (8) | −0.057 (8) | 0.081 (9) |
N3 | 0.095 (5) | 0.044 (3) | 0.078 (4) | 0.000 | 0.004 (4) | 0.000 |
C9 | 0.162 (7) | 0.071 (4) | 0.071 (4) | 0.034 (5) | −0.016 (4) | −0.008 (3) |
C10 | 0.100 (5) | 0.073 (4) | 0.127 (6) | −0.009 (4) | 0.035 (5) | −0.027 (4) |
La1—O1 | 2.566 (3) | O7—C7 | 1.442 (7) |
La1—O1i | 2.566 (3) | O8—C8 | 1.337 (9) |
La1—O2 | 2.432 (3) | N1—C1 | 1.291 (6) |
La1—O2i | 2.432 (3) | N2—C5 | 1.292 (6) |
La1—O5i | 2.534 (3) | C1—C2 | 1.531 (6) |
La1—O5 | 2.534 (3) | C3—H3A | 0.9600 |
La1—O6 | 2.445 (3) | C3—H3B | 0.9600 |
La1—O6i | 2.445 (3) | C3—H3C | 0.9600 |
Cl1A—C2 | 1.735 (5) | C4—H4A | 0.9600 |
Cl1B—C2 | 1.716 (5) | C4—H4B | 0.9600 |
Cl2A—C2 | 1.747 (4) | C4—H4C | 0.9600 |
Cl2B—C2 | 1.733 (4) | C5—C6 | 1.564 (7) |
Cl3A—C2 | 1.698 (4) | C7—H7A | 0.9600 |
Cl3B—C2 | 1.764 (4) | C7—H7B | 0.9600 |
Cl4—C6 | 1.751 (6) | C7—H7C | 0.9600 |
Cl5—C6 | 1.756 (6) | C8—H8A | 0.9600 |
Cl6—C6 | 1.756 (5) | C8—H8B | 0.9600 |
P1—O2 | 1.475 (3) | C8—H8C | 0.9600 |
P1—O3 | 1.561 (4) | N3—C9 | 1.488 (6) |
P1—O4 | 1.568 (4) | N3—C9i | 1.488 (6) |
P1—N1 | 1.598 (4) | N3—C10i | 1.484 (6) |
P2—O6 | 1.476 (3) | N3—C10 | 1.484 (7) |
P2—O7 | 1.563 (4) | C9—H9A | 0.9600 |
P2—O8 | 1.548 (5) | C9—H9B | 0.9600 |
P2—N2 | 1.602 (5) | C9—H9C | 0.9600 |
O1—C1 | 1.240 (6) | C10—H10A | 0.9600 |
O3—C3 | 1.419 (7) | C10—H10B | 0.9600 |
O4—C4 | 1.439 (6) | C10—H10C | 0.9600 |
O5—C5 | 1.225 (5) | ||
O1i—La1—O1 | 138.20 (15) | Cl3A—C2—Cl2A | 106.8 (5) |
O2i—La1—O1i | 71.11 (10) | C1—C2—Cl1A | 111.3 (4) |
O2i—La1—O1 | 143.90 (11) | C1—C2—Cl1B | 117.3 (4) |
O2—La1—O1i | 143.90 (11) | C1—C2—Cl2A | 105.2 (4) |
O2—La1—O1 | 71.11 (10) | C1—C2—Cl2B | 112.5 (4) |
O2i—La1—O2 | 94.48 (15) | C1—C2—Cl3A | 117.2 (4) |
O2i—La1—O5 | 72.55 (11) | C1—C2—Cl3B | 108.6 (4) |
O2i—La1—O5i | 77.50 (11) | O3—C3—H3A | 109.5 |
O2—La1—O5i | 72.55 (11) | O3—C3—H3B | 109.5 |
O2—La1—O5 | 77.50 (11) | O3—C3—H3C | 109.5 |
O2—La1—O6 | 141.22 (11) | H3A—C3—H3B | 109.5 |
O2—La1—O6i | 97.00 (12) | H3A—C3—H3C | 109.5 |
O2i—La1—O6 | 97.00 (12) | H3B—C3—H3C | 109.5 |
O2i—La1—O6i | 141.22 (11) | O4—C4—H4A | 109.5 |
O5—La1—O1i | 125.40 (12) | O4—C4—H4B | 109.5 |
O5—La1—O1 | 72.06 (12) | O4—C4—H4C | 109.5 |
O5i—La1—O1i | 72.06 (12) | H4A—C4—H4B | 109.5 |
O5i—La1—O1 | 125.40 (12) | H4A—C4—H4C | 109.5 |
O5i—La1—O5 | 135.31 (15) | H4B—C4—H4C | 109.5 |
O6i—La1—O1i | 78.01 (12) | O5—C5—N2 | 132.3 (5) |
O6—La1—O1i | 74.58 (12) | O5—C5—C6 | 113.6 (5) |
O6i—La1—O1 | 74.58 (12) | N2—C5—C6 | 114.0 (4) |
O6—La1—O1 | 78.01 (12) | Cl4—C6—Cl5 | 108.3 (3) |
O6—La1—O5i | 146.17 (12) | Cl4—C6—Cl6 | 108.0 (3) |
O6i—La1—O5 | 146.17 (12) | Cl5—C6—Cl6 | 108.5 (3) |
O6—La1—O5 | 70.98 (11) | C5—C6—Cl4 | 111.2 (3) |
O6i—La1—O5i | 70.98 (11) | C5—C6—Cl5 | 107.6 (4) |
O6—La1—O6i | 96.81 (16) | C5—C6—Cl6 | 113.2 (4) |
O2—P1—O3 | 111.7 (2) | O7—C7—H7A | 109.5 |
O2—P1—O4 | 106.12 (19) | O7—C7—H7B | 109.5 |
O2—P1—N1 | 120.1 (2) | O7—C7—H7C | 109.5 |
O3—P1—O4 | 106.0 (2) | H7A—C7—H7B | 109.5 |
O3—P1—N1 | 103.4 (2) | H7A—C7—H7C | 109.5 |
O4—P1—N1 | 108.8 (2) | H7B—C7—H7C | 109.5 |
O6—P2—O7 | 106.9 (2) | O8—C8—H8A | 109.5 |
O6—P2—O8 | 113.3 (2) | O8—C8—H8B | 109.5 |
O6—P2—N2 | 118.6 (2) | O8—C8—H8C | 109.5 |
O7—P2—N2 | 108.7 (3) | H8A—C8—H8B | 109.5 |
O8—P2—O7 | 100.2 (3) | H8A—C8—H8C | 109.5 |
O8—P2—N2 | 107.4 (3) | H8B—C8—H8C | 109.5 |
C1—O1—La1 | 135.3 (3) | C9i—N3—C9 | 110.8 (6) |
P1—O2—La1 | 136.36 (18) | C10—N3—C9i | 108.2 (4) |
C3—O3—P1 | 120.0 (4) | C10—N3—C9 | 109.9 (4) |
C4—O4—P1 | 121.4 (4) | C10i—N3—C9i | 109.9 (4) |
C5—O5—La1 | 137.2 (3) | C10i—N3—C9 | 108.2 (4) |
P2—O6—La1 | 136.72 (19) | C10i—N3—C10 | 110.0 (6) |
C7—O7—P2 | 122.8 (4) | N3—C9—H9A | 109.5 |
C8—O8—P2 | 120.3 (6) | N3—C9—H9B | 109.5 |
C1—N1—P1 | 122.2 (3) | N3—C9—H9C | 109.5 |
C5—N2—P2 | 123.4 (4) | H9A—C9—H9B | 109.5 |
O1—C1—N1 | 132.9 (5) | H9A—C9—H9C | 109.5 |
O1—C1—C2 | 113.9 (4) | H9B—C9—H9C | 109.5 |
N1—C1—C2 | 113.2 (4) | N3—C10—H10A | 109.5 |
Cl1A—C2—Cl2A | 105.7 (5) | N3—C10—H10B | 109.5 |
Cl1B—C2—Cl2B | 106.9 (5) | N3—C10—H10C | 109.5 |
Cl1B—C2—Cl3B | 105.8 (5) | H10A—C10—H10B | 109.5 |
Cl2B—C2—Cl3B | 104.9 (5) | H10A—C10—H10C | 109.5 |
Cl3A—C2—Cl1A | 109.8 (5) | H10B—C10—H10C | 109.5 |
La1—O1—C1—N1 | 17.5 (10) | O5—C5—C6—Cl6 | 154.3 (4) |
La1—O1—C1—C2 | −163.2 (3) | O6—P2—O7—C7 | −171.5 (6) |
La1—O5—C5—N2 | 10.5 (10) | O6—P2—O8—C8 | 63.4 (8) |
La1—O5—C5—C6 | −171.8 (3) | O6—P2—N2—C5 | −6.4 (6) |
P1—N1—C1—O1 | −2.6 (9) | O7—P2—O6—La1 | 126.7 (3) |
P1—N1—C1—C2 | 178.1 (3) | O7—P2—O8—C8 | 176.9 (8) |
P2—N2—C5—O5 | −0.1 (9) | O7—P2—N2—C5 | −128.7 (5) |
P2—N2—C5—C6 | −177.8 (4) | O8—P2—O6—La1 | −123.8 (3) |
O1—C1—C2—Cl1A | 32.5 (6) | O8—P2—O7—C7 | 70.2 (7) |
O1—C1—C2—Cl1B | 4.1 (7) | O8—P2—N2—C5 | 123.6 (5) |
O1—C1—C2—Cl2A | −81.5 (6) | N1—P1—O2—La1 | 8.3 (4) |
O1—C1—C2—Cl2B | −120.5 (6) | N1—P1—O3—C3 | 179.4 (5) |
O1—C1—C2—Cl3A | 160.0 (5) | N1—P1—O4—C4 | −48.8 (5) |
O1—C1—C2—Cl3B | 123.9 (6) | N1—C1—C2—Cl1A | −148.0 (5) |
O2—P1—O3—C3 | −50.1 (6) | N1—C1—C2—Cl1B | −176.4 (5) |
O2—P1—O4—C4 | −179.4 (5) | N1—C1—C2—Cl2A | 98.0 (6) |
O2—P1—N1—C1 | −10.0 (6) | N1—C1—C2—Cl2B | 59.0 (7) |
O3—P1—O2—La1 | −112.9 (3) | N1—C1—C2—Cl3A | −20.5 (7) |
O3—P1—O4—C4 | 61.8 (5) | N1—C1—C2—Cl3B | −56.6 (6) |
O3—P1—N1—C1 | 115.2 (5) | N2—P2—O6—La1 | 3.5 (4) |
O4—P1—O2—La1 | 132.1 (3) | N2—P2—O7—C7 | −42.3 (7) |
O4—P1—O3—C3 | 65.0 (6) | N2—P2—O8—C8 | −69.6 (8) |
O4—P1—N1—C1 | −132.4 (4) | N2—C5—C6—Cl4 | −149.4 (4) |
O5—C5—C6—Cl4 | 32.5 (6) | N2—C5—C6—Cl5 | 92.3 (5) |
O5—C5—C6—Cl5 | −85.9 (5) | N2—C5—C6—Cl6 | −27.5 (6) |
Symmetry code: (i) −x+1/2, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O6 | 0.96 | 2.35 | 3.184 (7) | 145 |
C10—H10C···O2ii | 0.96 | 2.33 | 3.218 (8) | 154 |
Symmetry code: (ii) −x+1/2, y+1, −z+3/2. |
Acknowledgements
The authors acknowledge Svitlana V. Shishkina, Head of the Department of X-ray Diffraction Study and Quantum Chemistry, SSI "Institute for Single Crystals" of the National Academy of Sciences of Ukraine for the data collection.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers. Google Scholar
Amirkhanov, V. M. & Trush, V. A. (1995). Zh. Obshch. Khim. 65, 1120-1124. CAS Google Scholar
Capdevila-Cortada, M., Castello, J. & Novoa, J. J. (2016). CrystEngComm, 16, 8232–8242. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123–134. Web of Science CSD CrossRef CAS Google Scholar
Kariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108–115. Web of Science CSD CrossRef CAS Google Scholar
Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368. Web of Science CrossRef PubMed CAS Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain. Google Scholar
Pham, Y. H., Trush, V. A., Amirkhanov, V. M. & Gawryszewska, P. (2017). Opt. Mater. 74, 197–200. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skopenko, V., Amirkhanov, V., Silva, T., Vasilchenko, I., Anpilova, E. & Garnovskii, A. (2004). Usp. Khim. 73, 797–814 Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tsukube, H., Shinoda, S. & Tamiaki, H. (2002). Coord. Chem. Rev. 226, 227–234. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.