research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the anionic tetra­kis-complex of lanthanum(III) NMe4LaL4 with the CAPh-ligand dimeth­yl (2,2,2-tri­chloro­acet­yl)phospho­ramidate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine, and bSSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by J. T. Mague, Tulane University, USA (Received 13 October 2021; accepted 5 November 2021; online 16 November 2021)

The anionic tetra­kis-complex of lanthanum(III) NMe4LaL4 with the CAPh-ligand dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate (HL), namely, tetra­methyl­ammonium tetra­kis­{2,2,2-tri­chloro-1-[(di­meth­oxy­phosphor­yl)imino]­ethano­lato}lanthanum(III), (C4H12N)[La(C4H6Cl3NO4P)4], has been synthesized, crystallized and structurally characterized by X-ray diffraction. The lanthanide ion is surrounded by four anionic, bis-chelating CAPh ligands forming the complex anion with a coordination number of eight for La3+ and NMe4+ as the counter-ion. The coordination polyhedron of the La3+ ion was inter­preted as a triangular dodeca­hedron.

1. Chemical context

Considerable inter­est in the luminescence properties of lanthanide coordination compounds results from their potential applications in modern technologies and medicine (Eliseeva et al., 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]; Kido et al., 2002[Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357-2368.]; Tsukube et al., 2002[Tsukube, H., Shinoda, S. & Tamiaki, H. (2002). Coord. Chem. Rev. 226, 227-234.]). In particular, use of P,N-substituted analogues of β-diketone such as carbacyl­amido­phopsphates (CAPh) (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199-248. New York: Nova Science Publishers.]) with the C(O)NHP(O) structural fragment as ligands is promising because of their powerful chelating properties (Skopenko et al., 2004[Skopenko, V., Amirkhanov, V., Silva, T., Vasilchenko, I., Anpilova, E. & Garnovskii, A. (2004). Usp. Khim. 73, 797-814]; Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199-248. New York: Nova Science Publishers.]) and ability to sensitize the luminescence of lanthanides (Kariaka et al., 2016[Kariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123-134.]; Pham et al., 2017[Pham, Y. H., Trush, V. A., Amirkhanov, V. M. & Gawryszewska, P. (2017). Opt. Mater. 74, 197-200.]; Kariaka et al., 2018[Kariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108-115.]). In this work, the synthesis and crystal structure of the anionic tetra­kis-complex of lanthanum(III) containing the CAPh-ligand dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate and a tetra­methyl­ammonium cation (formula NMe4LaL4) is reported.

[Scheme 1]

2. Structural commentary

The title compound (C4H12N)[La(C4H6Cl3NO4P)4] crystallizes in the monoclinic crystal system with two mol­ecules in the unit cell. Both the cation and the anion have crystallographically-imposed C2 symmetry with atoms La1 and N3 located on the twofold axis. The mol­ecular structure of the complex is shown in Fig. 1[link]. In the complex, the La3+ ion has a triangular dodeca­hedral coordination environment formed by the eight O atoms of the bidentate CAPh ligands and the N(CH3)4+ unit acts as the counter-ion (Fig. 1[link]). The average La—O bond length is 2.494 Å while the La—O(C) bond lengths [2.534 (3)–2.566 (3) Å] are all longer than the La—O(P) bonds [2.432 (3)–2.445 (3) Å]. Deprotonation of the ligands leads to increasing π-conjugation in the chelating fragment and results in the bond-length changes. The C—O and P—O bond lengths are in the ranges 1.225 (5)–1.240 (6) Å and 1.475 (3)–1.476 (4) Å, respectively, with corresponding average values of 1.233 and 1.476 Å. The corresponding bond lengths in the neutral ligand HL are 1.202 (2) and 1.459 (2) Å (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199-248. New York: Nova Science Publishers.]). The C—O and P—O bonds of the ligand in the complex are longer than those in the neutral ligand (HL), indicating greater C=O and P=O double-bond character in HL than in NMe4LaL4. The C—N and P—N bonds, with lengths in the ranges 1.291 (6)–1.292 (6) and 1.598 (4)–1.602 (5) Å, respectively, in NMe4LaL4 are shorter compared to those in the free ligand, in which the reported C—N bond length is 1.347 (2) Å and P—N is 1.676 (1) Å (Amirkhanov et al., 1995[Amirkhanov, V. M. & Trush, V. A. (1995). Zh. Obshch. Khim. 65, 1120-1124.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 25% probability level. Hydrogen atoms are omitted for clarity [Symmetry code: (i) −x + [{1\over 2}], y, −z + [{1\over 2}]).

3. Supra­molecular features

There are no classical hydrogen bonds in the crystal structure of the title compound, although the complexes are linked via numerous weak C—H⋯O and Cl⋯Cl inter­molecular inter­actions (Table 1[link]). In particular, the PO and OCH3 groups of the ligands are involved in the formation of inter­actions with the hydrogen atoms of the tetra­methyl­ammonium cation, linking the complex anion and the counter-ion in a chain along the b-axis direction. The Cl12A⋯Cl12Aii [symmetry code (ii): −x, −y + 1, −z + 1] inter­actions, at 3.475 (12) Å, are only 0.03 Å less than the sum of the van der Waals radii but definitely below the maximum separation (4.0 Å) considered to represent at least weak, attractive Cl⋯Cl inter­actions (Capdevila-Cortada et al., 2016[Capdevila-Cortada, M., Castello, J. & Novoa, J. J. (2016). CrystEngComm, 16, 8232-8242.]). These serve to connect neighbouring chains. The crystal packing of the title compound is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O6 0.96 2.35 3.184 (7) 145
C10—H10C⋯O2i 0.96 2.33 3.218 (8) 154
Symmetry code: (i) [-x+{\script{1\over 2}}, y+1, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b-axis direction.

4. Hirshfeld surface analysis and fingerprint plots

To visualize the inter­molecular inter­actions in the title compound, the Hirshfeld surface and its corresponding two-dimensional fingerprint plots (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). There are several light-red spots on the dnorm surface (Fig. 3[link]), which correspond to O⋯H/H⋯O contacts. They are located near the oxygen atoms of the ligand PO groups and the hydrogen atoms of the tetra­methyl­ammonium cation. Thus, the strongest contacts in the crystal of the title compound exist between the NMe4+ cation and the complex anion.

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm and two-dimensional fingerprint plots for the Cl⋯H/H⋯Cl (50.7%), H⋯H (20.8%), O⋯H/H⋯O (13.6%), Cl⋯Cl (11.6%) and N⋯H/H⋯N (3.1%) inter­actions in NMe4[LaL4].

The two-dimensional fingerprint plots show distances from the Hirshfeld surface to the nearest exterior atom (de plots) and from an inter­ior atom to the surface (di plots), specify atom⋯atom contacts in a crystal and provide a qu­anti­tative idea of the types of inter­molecular contacts experienced by mol­ecules. An analysis of the fingerprint plots (Fig. 3[link]) shows that the Cl⋯H/H⋯Cl contacts make the major contribution to the Hirshfeld surface at 50.7%. The closest Cl⋯H/H⋯Cl contact occurs at di = de = 2.9 Å. The next largest contributions come from H⋯H contacts (20.8%), O⋯H/H⋯O contacts (13.6%) and Cl⋯Cl contacts (11.6%). The closest O⋯H/H⋯O contact occurs at di = de= 1.35 Å. The smallest percentage contributions to the Hirshfeld surface come from the N⋯H/H⋯N (3,1%), Cl⋯O/O⋯Cl (0.1%) and O⋯O (0.1%) inter­atomic contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for lanthanide complexes containing bidentate-coordinated CAPh ligands yielded 48 hits. Eight of them are tetra­kis complexes Cat[Ln(CAPh)4] of which five crystallize with two tetra­kis complexes in the asymmetric unit. Using SHAPE analysis (SHAPE2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain.]), the nine coordination polyhedra have been inter­preted as square anti­prismatic (D4d) and, for the other polyhedra, as triangular dodeca­hedral (D2d).

No CAPh-based lanthanum tetra­kis complexes have been reported to date. However, seven lanthanum complexes containing CAPhs coordinated in a bidentate manner are known. The average La—O(C) bond length is 2.411 Å while the average La—O(P) bond length is 2.351 Å. Only one tetra­kis complex based on dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate (NaErL4) has been reported to date. The lengths of the CO, PO, PN and CN bonds in this complex are in the ranges 1.206–1.335, 1.422–1.489, 1.565–1.608 and 1.250–1.334 Å, respectively.

6. Synthesis and crystallization

The 1H NMR spectrum of a solution of the title compound in DMSO-d6 was recorded on a Varian 400 NMR spectrometer at room temperature. The infrared (IR) spectrum was recorded on a Perkin–Elmer BX-II Bruker spectrometer using a KBr pellet.

Preparation of NMe4LaL4. LaCl3·7H2O (0.0371 g, 0.1 mmol) in the presence of HC(OC2H5)3 (0.14 ml, 0.7 mmol) as dehydrating agent was dissolved in 2-propanol under heating. In a separate flask, NaL (0.1122 g, 0.4 mmol) was dissolved in acetone and NMe4Cl (0.0121 g, 0.11 mmol) was added under stirring and heating. The two mixtures were combined and boiled for a minute, then cooled to room temperature. A white precipitate of NaCl was formed and was filtered off and the filtrate left in a flask in a desiccator over CaCl2. After two days, colourless crystals suitable for X-ray diffraction studies were obtained. The crystals were filtered off, washed with 2-propanol and dried in air.

IR (KBr pellet, cm−1): 2954 [w, ν(C—Haliph)], 1614 [s, ν(C=O)],1487 (w), 1367 [s, ν(C—N)], 1187 [m, ρ(CH3)], 1158 [s, ν(P=O)], 1042 [s, δ(POC)], 1011 (m), 880 (s), 846 (m), 822 (m), 781 (w), 722 (m), 677 [m, ν(CCl)], 548 [m, δ(PNC)], 502 (m).

1H NMR (400 MHz, DMSO-d6, 293 K): 3.61, 3.59 (d, 24H, CH3 [L]), 3.18 (s, 12H, CH3 [NMe4]+).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions and refined with a riding model: C—H = 0.96 Å with Uiso(H) = 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula (C4H12N)[La(C4H6Cl3NO4P)4]
Mr 1290.73
Crystal system, space group Monoclinic, P2/n
Temperature (K) 294
a, b, c (Å) 12.1452 (4), 10.2003 (4), 21.2846 (7)
β (°) 94.521 (3)
V3) 2628.64 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.60
Crystal size (mm) 0.6 × 0.4 × 0.2
 
Data collection
Diffractometer Agilent Technologies Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.694, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22447, 6050, 4597
Rint 0.070
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.134, 1.01
No. of reflections 6050
No. of parameters 296
No. of restraints 73
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.92, −0.91
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The structure exhibits disorder of the Cl atoms of one CCl3 substituent. All Cl—C bond distances were restrained to be similar to each other (within a standard deviation of 0.005 Å) with a target value of 1.745 Å. Uij values of the disordered chlorine atoms were restrained to be similar to each other (within a standard deviation of 0.02 Å2). The disorder ratio is 50 to 50.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetramethylammonium tetrakis{2,2,2-trichloro-1-[(dimethoxyphosphoryl)imino]ethanolato}lanthanum(III) top
Crystal data top
(C4H12N)[La(C4H6Cl3NO4P)4]F(000) = 1280
Mr = 1290.73Dx = 1.631 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 12.1452 (4) ÅCell parameters from 3067 reflections
b = 10.2003 (4) Åθ = 3.2–23.6°
c = 21.2846 (7) ŵ = 1.60 mm1
β = 94.521 (3)°T = 294 K
V = 2628.64 (15) Å3Block, colourless
Z = 20.6 × 0.4 × 0.2 mm
Data collection top
Agilent Technologies Xcalibur, Sapphire3
diffractometer
6050 independent reflections
Radiation source: Enhance (Mo) X-ray Source4597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 1312
Tmin = 0.694, Tmax = 1.000l = 2527
22447 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.057P)2 + 0.0726P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6050 reflectionsΔρmax = 0.92 e Å3
296 parametersΔρmin = 0.91 e Å3
73 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.2500000.21428 (4)0.7500000.03981 (13)
Cl1A0.3621 (6)0.4311 (8)0.5516 (5)0.161 (4)0.5
Cl1B0.3145 (7)0.4844 (6)0.5495 (4)0.144 (3)0.5
Cl2A0.1378 (7)0.4598 (8)0.5184 (4)0.192 (4)0.5
Cl2B0.1311 (6)0.3878 (10)0.4787 (4)0.198 (4)0.5
Cl3A0.2545 (8)0.2694 (7)0.4592 (2)0.173 (4)0.5
Cl3B0.3288 (8)0.2511 (8)0.4835 (4)0.189 (4)0.5
Cl40.45286 (16)0.0370 (2)0.58761 (10)0.1269 (9)
Cl50.63096 (17)0.0478 (2)0.68243 (11)0.1275 (8)
Cl60.63761 (15)0.1310 (2)0.57995 (9)0.1166 (7)
P10.12224 (10)0.04178 (13)0.61305 (6)0.0523 (3)
P20.51080 (11)0.38211 (15)0.72817 (7)0.0647 (4)
O10.2329 (3)0.3040 (3)0.63703 (15)0.0652 (10)
O20.1564 (3)0.0524 (3)0.68093 (14)0.0552 (8)
O30.0061 (3)0.0420 (4)0.60037 (19)0.0790 (11)
O40.1617 (3)0.0966 (3)0.59196 (15)0.0657 (9)
O50.4069 (3)0.1198 (3)0.69257 (18)0.0656 (10)
O60.4008 (3)0.3734 (3)0.75292 (16)0.0596 (9)
O70.5136 (4)0.5137 (4)0.6907 (2)0.0980 (14)
O80.6052 (4)0.4070 (6)0.7800 (2)0.1051 (15)
N10.1613 (4)0.1495 (4)0.56501 (18)0.0629 (11)
N20.5497 (3)0.2658 (5)0.6845 (2)0.0689 (13)
C10.2094 (4)0.2568 (5)0.5840 (2)0.0564 (13)
C20.2429 (3)0.3432 (4)0.52989 (18)0.0770 (17)
C30.0712 (5)0.0440 (9)0.6346 (4)0.134 (3)
H3A0.0563900.1330100.6233390.201*
H3B0.1480610.0250510.6245830.201*
H3C0.0533090.0319320.6789330.201*
C40.1430 (7)0.1401 (7)0.5277 (3)0.106 (2)
H4A0.1760630.0791960.5004120.159*
H4B0.0649840.1449400.5163850.159*
H4C0.1753660.2251580.5234380.159*
C50.4942 (4)0.1588 (5)0.6742 (2)0.0566 (12)
C60.5510 (4)0.0575 (6)0.6321 (3)0.0686 (15)
C70.6023 (7)0.5480 (8)0.6526 (5)0.153 (4)
H7A0.6112030.4802020.6221760.230*
H7B0.6695710.5574430.6791350.230*
H7C0.5853230.6292640.6312610.230*
C80.6282 (9)0.3183 (11)0.8254 (6)0.193 (5)
H8A0.6074470.2327280.8099250.289*
H8B0.5878350.3389150.8611070.289*
H8C0.7059860.3196730.8377390.289*
N30.2500000.7094 (6)0.7500000.0726 (18)
C90.2854 (6)0.6266 (6)0.8055 (3)0.103 (2)
H9A0.3468380.5730730.7958730.154*
H9B0.2251940.5714080.8156230.154*
H9C0.3068770.6818050.8409030.154*
C100.3433 (5)0.7929 (6)0.7331 (4)0.098 (2)
H10A0.3224330.8392590.6947950.148*
H10B0.4063340.7387570.7273300.148*
H10C0.3614000.8546190.7663990.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0393 (2)0.0445 (2)0.0364 (2)0.0000.00772 (15)0.000
Cl1A0.155 (5)0.215 (8)0.110 (4)0.118 (6)0.006 (4)0.053 (6)
Cl1B0.275 (9)0.089 (3)0.070 (3)0.080 (5)0.027 (5)0.002 (3)
Cl2A0.251 (8)0.159 (6)0.163 (6)0.071 (6)0.005 (5)0.103 (5)
Cl2B0.185 (6)0.237 (9)0.158 (6)0.055 (6)0.075 (5)0.138 (6)
Cl3A0.343 (11)0.137 (5)0.049 (2)0.122 (6)0.069 (4)0.026 (3)
Cl3B0.271 (9)0.138 (5)0.183 (7)0.040 (6)0.173 (7)0.041 (5)
Cl40.0931 (12)0.178 (2)0.1139 (15)0.0351 (13)0.0339 (12)0.0808 (15)
Cl50.1168 (15)0.1399 (18)0.1283 (17)0.0669 (14)0.0249 (13)0.0000 (14)
Cl60.1028 (13)0.1584 (19)0.0973 (13)0.0220 (12)0.0623 (11)0.0242 (13)
P10.0515 (7)0.0621 (8)0.0423 (7)0.0098 (6)0.0031 (6)0.0026 (6)
P20.0508 (7)0.0657 (9)0.0790 (10)0.0134 (6)0.0141 (7)0.0072 (8)
O10.099 (3)0.061 (2)0.0360 (18)0.0053 (19)0.0088 (19)0.0010 (16)
O20.067 (2)0.058 (2)0.0399 (17)0.0198 (16)0.0003 (16)0.0034 (15)
O30.052 (2)0.099 (3)0.084 (3)0.005 (2)0.007 (2)0.010 (2)
O40.081 (2)0.067 (2)0.0484 (19)0.0014 (19)0.0001 (18)0.0004 (17)
O50.059 (2)0.062 (2)0.082 (3)0.0047 (17)0.0393 (19)0.0126 (19)
O60.0552 (19)0.056 (2)0.069 (2)0.0110 (16)0.0149 (17)0.0134 (17)
O70.105 (3)0.070 (3)0.126 (4)0.009 (2)0.050 (3)0.010 (3)
O80.072 (3)0.131 (4)0.111 (4)0.033 (3)0.003 (3)0.023 (3)
N10.077 (3)0.069 (3)0.042 (2)0.019 (2)0.005 (2)0.007 (2)
N20.049 (2)0.078 (3)0.082 (3)0.010 (2)0.022 (2)0.014 (3)
C10.064 (3)0.062 (3)0.043 (3)0.007 (3)0.010 (2)0.013 (2)
C20.109 (5)0.073 (4)0.048 (3)0.009 (4)0.004 (3)0.012 (3)
C30.063 (4)0.194 (9)0.143 (7)0.033 (5)0.006 (5)0.043 (7)
C40.154 (7)0.105 (6)0.057 (4)0.012 (5)0.005 (4)0.018 (4)
C50.049 (3)0.076 (4)0.047 (3)0.003 (3)0.016 (2)0.004 (3)
C60.053 (3)0.094 (4)0.062 (3)0.000 (3)0.019 (3)0.012 (3)
C70.148 (8)0.114 (7)0.212 (11)0.012 (6)0.101 (8)0.048 (7)
C80.168 (9)0.215 (11)0.183 (10)0.071 (8)0.057 (8)0.081 (9)
N30.095 (5)0.044 (3)0.078 (4)0.0000.004 (4)0.000
C90.162 (7)0.071 (4)0.071 (4)0.034 (5)0.016 (4)0.008 (3)
C100.100 (5)0.073 (4)0.127 (6)0.009 (4)0.035 (5)0.027 (4)
Geometric parameters (Å, º) top
La1—O12.566 (3)O7—C71.442 (7)
La1—O1i2.566 (3)O8—C81.337 (9)
La1—O22.432 (3)N1—C11.291 (6)
La1—O2i2.432 (3)N2—C51.292 (6)
La1—O5i2.534 (3)C1—C21.531 (6)
La1—O52.534 (3)C3—H3A0.9600
La1—O62.445 (3)C3—H3B0.9600
La1—O6i2.445 (3)C3—H3C0.9600
Cl1A—C21.735 (5)C4—H4A0.9600
Cl1B—C21.716 (5)C4—H4B0.9600
Cl2A—C21.747 (4)C4—H4C0.9600
Cl2B—C21.733 (4)C5—C61.564 (7)
Cl3A—C21.698 (4)C7—H7A0.9600
Cl3B—C21.764 (4)C7—H7B0.9600
Cl4—C61.751 (6)C7—H7C0.9600
Cl5—C61.756 (6)C8—H8A0.9600
Cl6—C61.756 (5)C8—H8B0.9600
P1—O21.475 (3)C8—H8C0.9600
P1—O31.561 (4)N3—C91.488 (6)
P1—O41.568 (4)N3—C9i1.488 (6)
P1—N11.598 (4)N3—C10i1.484 (6)
P2—O61.476 (3)N3—C101.484 (7)
P2—O71.563 (4)C9—H9A0.9600
P2—O81.548 (5)C9—H9B0.9600
P2—N21.602 (5)C9—H9C0.9600
O1—C11.240 (6)C10—H10A0.9600
O3—C31.419 (7)C10—H10B0.9600
O4—C41.439 (6)C10—H10C0.9600
O5—C51.225 (5)
O1i—La1—O1138.20 (15)Cl3A—C2—Cl2A106.8 (5)
O2i—La1—O1i71.11 (10)C1—C2—Cl1A111.3 (4)
O2i—La1—O1143.90 (11)C1—C2—Cl1B117.3 (4)
O2—La1—O1i143.90 (11)C1—C2—Cl2A105.2 (4)
O2—La1—O171.11 (10)C1—C2—Cl2B112.5 (4)
O2i—La1—O294.48 (15)C1—C2—Cl3A117.2 (4)
O2i—La1—O572.55 (11)C1—C2—Cl3B108.6 (4)
O2i—La1—O5i77.50 (11)O3—C3—H3A109.5
O2—La1—O5i72.55 (11)O3—C3—H3B109.5
O2—La1—O577.50 (11)O3—C3—H3C109.5
O2—La1—O6141.22 (11)H3A—C3—H3B109.5
O2—La1—O6i97.00 (12)H3A—C3—H3C109.5
O2i—La1—O697.00 (12)H3B—C3—H3C109.5
O2i—La1—O6i141.22 (11)O4—C4—H4A109.5
O5—La1—O1i125.40 (12)O4—C4—H4B109.5
O5—La1—O172.06 (12)O4—C4—H4C109.5
O5i—La1—O1i72.06 (12)H4A—C4—H4B109.5
O5i—La1—O1125.40 (12)H4A—C4—H4C109.5
O5i—La1—O5135.31 (15)H4B—C4—H4C109.5
O6i—La1—O1i78.01 (12)O5—C5—N2132.3 (5)
O6—La1—O1i74.58 (12)O5—C5—C6113.6 (5)
O6i—La1—O174.58 (12)N2—C5—C6114.0 (4)
O6—La1—O178.01 (12)Cl4—C6—Cl5108.3 (3)
O6—La1—O5i146.17 (12)Cl4—C6—Cl6108.0 (3)
O6i—La1—O5146.17 (12)Cl5—C6—Cl6108.5 (3)
O6—La1—O570.98 (11)C5—C6—Cl4111.2 (3)
O6i—La1—O5i70.98 (11)C5—C6—Cl5107.6 (4)
O6—La1—O6i96.81 (16)C5—C6—Cl6113.2 (4)
O2—P1—O3111.7 (2)O7—C7—H7A109.5
O2—P1—O4106.12 (19)O7—C7—H7B109.5
O2—P1—N1120.1 (2)O7—C7—H7C109.5
O3—P1—O4106.0 (2)H7A—C7—H7B109.5
O3—P1—N1103.4 (2)H7A—C7—H7C109.5
O4—P1—N1108.8 (2)H7B—C7—H7C109.5
O6—P2—O7106.9 (2)O8—C8—H8A109.5
O6—P2—O8113.3 (2)O8—C8—H8B109.5
O6—P2—N2118.6 (2)O8—C8—H8C109.5
O7—P2—N2108.7 (3)H8A—C8—H8B109.5
O8—P2—O7100.2 (3)H8A—C8—H8C109.5
O8—P2—N2107.4 (3)H8B—C8—H8C109.5
C1—O1—La1135.3 (3)C9i—N3—C9110.8 (6)
P1—O2—La1136.36 (18)C10—N3—C9i108.2 (4)
C3—O3—P1120.0 (4)C10—N3—C9109.9 (4)
C4—O4—P1121.4 (4)C10i—N3—C9i109.9 (4)
C5—O5—La1137.2 (3)C10i—N3—C9108.2 (4)
P2—O6—La1136.72 (19)C10i—N3—C10110.0 (6)
C7—O7—P2122.8 (4)N3—C9—H9A109.5
C8—O8—P2120.3 (6)N3—C9—H9B109.5
C1—N1—P1122.2 (3)N3—C9—H9C109.5
C5—N2—P2123.4 (4)H9A—C9—H9B109.5
O1—C1—N1132.9 (5)H9A—C9—H9C109.5
O1—C1—C2113.9 (4)H9B—C9—H9C109.5
N1—C1—C2113.2 (4)N3—C10—H10A109.5
Cl1A—C2—Cl2A105.7 (5)N3—C10—H10B109.5
Cl1B—C2—Cl2B106.9 (5)N3—C10—H10C109.5
Cl1B—C2—Cl3B105.8 (5)H10A—C10—H10B109.5
Cl2B—C2—Cl3B104.9 (5)H10A—C10—H10C109.5
Cl3A—C2—Cl1A109.8 (5)H10B—C10—H10C109.5
La1—O1—C1—N117.5 (10)O5—C5—C6—Cl6154.3 (4)
La1—O1—C1—C2163.2 (3)O6—P2—O7—C7171.5 (6)
La1—O5—C5—N210.5 (10)O6—P2—O8—C863.4 (8)
La1—O5—C5—C6171.8 (3)O6—P2—N2—C56.4 (6)
P1—N1—C1—O12.6 (9)O7—P2—O6—La1126.7 (3)
P1—N1—C1—C2178.1 (3)O7—P2—O8—C8176.9 (8)
P2—N2—C5—O50.1 (9)O7—P2—N2—C5128.7 (5)
P2—N2—C5—C6177.8 (4)O8—P2—O6—La1123.8 (3)
O1—C1—C2—Cl1A32.5 (6)O8—P2—O7—C770.2 (7)
O1—C1—C2—Cl1B4.1 (7)O8—P2—N2—C5123.6 (5)
O1—C1—C2—Cl2A81.5 (6)N1—P1—O2—La18.3 (4)
O1—C1—C2—Cl2B120.5 (6)N1—P1—O3—C3179.4 (5)
O1—C1—C2—Cl3A160.0 (5)N1—P1—O4—C448.8 (5)
O1—C1—C2—Cl3B123.9 (6)N1—C1—C2—Cl1A148.0 (5)
O2—P1—O3—C350.1 (6)N1—C1—C2—Cl1B176.4 (5)
O2—P1—O4—C4179.4 (5)N1—C1—C2—Cl2A98.0 (6)
O2—P1—N1—C110.0 (6)N1—C1—C2—Cl2B59.0 (7)
O3—P1—O2—La1112.9 (3)N1—C1—C2—Cl3A20.5 (7)
O3—P1—O4—C461.8 (5)N1—C1—C2—Cl3B56.6 (6)
O3—P1—N1—C1115.2 (5)N2—P2—O6—La13.5 (4)
O4—P1—O2—La1132.1 (3)N2—P2—O7—C742.3 (7)
O4—P1—O3—C365.0 (6)N2—P2—O8—C869.6 (8)
O4—P1—N1—C1132.4 (4)N2—C5—C6—Cl4149.4 (4)
O5—C5—C6—Cl432.5 (6)N2—C5—C6—Cl592.3 (5)
O5—C5—C6—Cl585.9 (5)N2—C5—C6—Cl627.5 (6)
Symmetry code: (i) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O60.962.353.184 (7)145
C10—H10C···O2ii0.962.333.218 (8)154
Symmetry code: (ii) x+1/2, y+1, z+3/2.
 

Acknowledgements

The authors acknowledge Svitlana V. Shishkina, Head of the Department of X-ray Diffraction Study and Quantum Chemistry, SSI "Institute for Single Crystals" of the National Academy of Sciences of Ukraine for the data collection.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers.  Google Scholar
First citationAmirkhanov, V. M. & Trush, V. A. (1995). Zh. Obshch. Khim. 65, 1120-1124.  CAS Google Scholar
First citationCapdevila-Cortada, M., Castello, J. & Novoa, J. J. (2016). CrystEngComm, 16, 8232–8242.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationKido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain.  Google Scholar
First citationPham, Y. H., Trush, V. A., Amirkhanov, V. M. & Gawryszewska, P. (2017). Opt. Mater. 74, 197–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkopenko, V., Amirkhanov, V., Silva, T., Vasilchenko, I., Anpilova, E. & Garnovskii, A. (2004). Usp. Khim. 73, 797–814  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTsukube, H., Shinoda, S. & Tamiaki, H. (2002). Coord. Chem. Rev. 226, 227–234.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds