research communications
A second solvatomorph of poly[[μ4-N,N′-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]nickel(II)dipotassium]: Hirshfeld surface analysis and semi-empirical geometry optimization
aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska, Street 64, 01601 Kyiv, Ukraine, bDepartment of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland, cPBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine, and dThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, 734025 Dushanbe, Tajikistan
*Correspondence e-mail: plutenkom@gmail.com
The title compound, poly[triaquabis[μ4-N,N′-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]dinickel(II)tetrapotassium], [K4Ni2(C7H6N4O7)2(H2O)3]n, is a second solvatomorph of poly[(μ4-N,N′-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)nickel(II)dipotassium] reported previously [Plutenko et al. (2021). Acta Cryst. E77, 298–304]. The of the title compound includes two structurally independent complex anions [Ni(C7H6N4O7)]2−, which exhibit an L-shaped geometry and consist of two almost flat fragments perpendicular to one another: the 1,3,5-oxadiazinane fragment and the fragment including other atoms of the anion. The central Ni atom is in a square-planar N2O2 coordination arrangement formed by two amide N and two carboxylate O atoms. In the crystal, the title compound forms a layered structure in which layers of negatively charged complex anions and positively charged potassium cations are stacked along the a-axis direction. The polymeric framework is stabilized by a system of hydrogen-bonding interactions in which the water molecules act as donors and the carboxylic, amide and water O atoms act as acceptors.
Keywords: nickel(II) complex; template reaction; pseudomacrocyclic ligand; hydrazide-based ligand; SHAPE analysis; Hirshfeld surface analysis; semi-empirical geometry optimization; crystal structure.
CCDC reference: 2120378
1. Chemical context
In 1976, the products of the metal-templated reaction of hydrazide and aldehyde were separated and structurally described (Clark et al., 1976). It was further shown that such a synthetic strategy makes it possible to obtain complexes with 3d metals in high oxidation states. In particular, there are several works devoted to copper(III) complexes obtained by this method (Oliver & Waters, 1982; Fritsky et al., 1998, 2006). Moreover, the preparation of an unprecedentedly stable iron(IV) clathrochelate complex was reported (Tomyn et al., 2017). Some such compounds are promising redox catalysts, as has been shown by Pap et al. (2011) and Shylin et al. (2019). Thus, the study of the conditions and peculiarities of hydrazide-aldehyde template interactions, as well as the isolation and characterization of their products, is an important task in modern coordination chemistry.
This work is a continuation of our investigation of the interaction of oxalohydrazidehydroxamic acid with formaldehyde and nickel(II) salts. Here we report the μ4-N,N′-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]dinickel(II)tetrapotassium] [(2K2[Ni(L-2H)]·3H2O)n, 2], which is the solvatomorph of the earlier published (Plutenko et al., 2021) complex poly[pentaaquabis[μn-N,N′-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]nickel(II)tetrapotassium], [(2K2[Ni(L-2H)]·4.8H2O)n, 1, H2L = N,N′-(1,3,5-oxadiazinane-3,5-diyl)bis(aminooxoacetic acid)]. Both compounds can be obtained in a similar fashion as the result of a one-pot template reaction (see Fig. 1).
of the title compound poly[triaquabis[2. Structural commentary
The title compound, 2, (2K2[Ni(L-2H)]·3H2O)n, crystallizes in P21/c, while the previously reported compound 1, (2K2[Ni(L-2H)]·4.8H2O)n, crystallizes in Pbca. Similarly to 1, the of 2 (Fig. 2) includes two structurally independent complex anions [Ni(L-2H)]2– (namely A and B, which contain Ni1 and Ni1B, respectively). In addition, the of 2 also contains four potassium cations and three solvent water molecules.
Similarly to 1, the complex anion [Ni(L-2H)]2− has an L-shaped geometry and consists of two almost flat fragments perpendicular to one another: the 1,3,5-oxadiazinane fragment and the fragment including other atoms of the anion. The dihedral angles between the mean planes formed by the non-hydrogen atoms of these fragments are 95.06 (8) and 94.06 (8)° for Ni1 and Ni1B, respectively. The ligand molecule is coordinated in a tetradentate {Ocarboxyl,Namide,Namide,Ocarboxyl}-mode. The central atom of the complex anion exhibits a square-planar coordination arrangement with the N2O2 chromophore. The deviation of the NiII atom from the mean plane defined by the donor atoms is 0.0073 (13) and 0.0330 (12) Å for Ni1 and Ni1B, respectively.
The Ni—N bond distances are in the range 1.836 (3)–1.849 (3) Å and Ni–O bond lengths are 1.877 (2)–1.897 (2) Å, which is typical for square-planar nickel complexes with similar ligands (Fritsky et al., 1998) and close to the Ni—N and Ni–O bond distances of 1. The O—M—O′, O—M—N and N—M—N′ bond angles have typical values for a square-planar arrangement. The bite angles O1—Ni1—N4, N1—Ni1—O2 and N1—Ni1—N4 deviate from 90°, which is the result of the formation of the five-membered chelate rings. The N—N′, N—C and C—O bond lengths of the ligand have typical values for coordinated deprotonated hydrazide and carboxyl groups.
3. Supramolecular features
In the crystal, the nickel(II) complex anions [Ni(L-2H)]2− form layers parallel to the bc plane (Fig. 3a). Neighbouring complex anion layers are sandwiched by layers of potassium counter-cations (Fig. 4). Thus, negatively charged complex anion layers and positively charged potassium cationic layers are stacked along the a-axis direction. It is useful to note that a similar layered structure motif was observed in the crystal of the previously published compound 1. However, in the crystal of 1 the NiN2O2 plane is almost perpendicular to the complex anion layer plane (Fig. 3b): the angle between NiN2O2 and the ab plane is 84.43 (4) and 85.03 (5)° for Ni1 and Ni1B, respectively. In contrast, in the crystal of 2 the angle between NiN2O2 and the bc plane is 78.30 (8) and 86.29 (7)° for Ni1 and Ni1B, respectively.
The demarcation of bonded and non-bonded K—X interactions (X = N or O) is still an unclear and debatable problem (Alvarez, 2013). Therefore, the criteria of such demarcation used in this paper need to be detailed. Based on the aforementioned publication (Alvarez, 2013), we propose 3.7 Å as the maximal distance for K—N bonds. Recently, it was shown (Gagné & Hawthorne, 2016) that K—O main and maximal bond distances depend on the of K. The results of this work permits 3.4, 3.5 and 3.6 Å to be proposed as the maximal distances for K—O bonds in the case of potassium coordination numbers 7, 8 and 9, respectively. In addition, K⋯Namide interactions were determined as non-bonding because the existence of such bonds would lead to the presence of unstable three-membered KNamideNoxadiazinane rings with extremely small N—K—N′ angles.
The potassium cations are bound to the nickel(II) complex anions through the carboxylic O atoms (K4) the carboxylic and the amide O atoms (K1, K2) or through the amide O and the oxadiazinane N atoms (K3). In addition, the potassium cations have contacts with the O atoms of water molecules, with the amide and the carboxylic O atoms, and with the oxadiazinane O and N atoms of neighbouring complex anions. The K1 and K2 cations exhibit an O6N coordination, while the K3 and K4 cations exhibit O8N and O7N coordinations, respectively.
For an evaluation of the coordination geometry of each potassium cation, SHAPE 2.1 software (Llunell et al., 2013) was used. A SHAPE analysis of the potassium coordination sphere (Table 1, Fig. 5) yields the lowest continuous shape measure (CShM) value for a distorted pentagonal bipyramid (5.142 for K1 and 3.122 for K2), a distorted muffin (3.691 for K3) and a distorted triangular dodecahedron (5.187 for K4). For K4, comparable CShM values were obtained for a square antiprism (5.463).
|
The polyhedra around the neighbouring potassium cations are connected with each other through common vertices (K1 with K3, K1 with K4, K2 with K4), edges (K3 with K4) and faces (K1 with K2, K1 with K3, K2 with K3). The K—O bond lengths are in the range 2.628 (2)–3.271 (3) Å, K—N 2.887 (3)–3.025 (3) Å, which is close to those reported for the structures of related carboxylate and amide complexes (Fritsky et al., 1998; Mokhir et al., 2002).
The polymeric framework of 2 is stabilized by an extensive system of hydrogen-bonding interactions in which the water molecules act as donors and the carboxylic, the amide and the water O atoms act as acceptors (Table 2). Similarly to 1, the hydrogen bonds are localized mainly at the potassium cation layers (Fig. 6). Moreover, in comparison to 1, the of 2 contains a smaller number of water molecules, which causes a smaller number of hydrogen-bond interactions in the crystal structure.
4. Hirshfeld analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces of the complex anions are colour-mapped with the normalized contact distance (dnorm) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).
The Hirshfeld surface of the title compound is mapped over dnorm, in the colour ranges −0.6388 to 0.9164 a.u. and −0.6768 to 0.7286 a.u. for Ni1 and Ni1B complex anions, respectively (Fig. 7). Similarly to 1, the complex anions of 2 are connected to the other elements of the crystal packing mainly via the amide and the carboxylic O atoms. However, in contrast to 1, one of the oxadiazinane O atoms of 2 is also involved in intermolecular bond formation.
A fingerprint plot delineated into specific interatomic contacts contains information related to specific intermolecular interactions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in gray. Fig. 8a and 9a show the two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode for the Ni1 and Ni1B complex anions, respectively.
The most significant contribution to the Hirshfeld surface is from O⋯H/H⋯O contacts (36.9% and 38.7% for the Ni1 and Ni1B complex anions, respectively; Fig. 8b and 9b). In addition, O⋯K/K⋯O (20.9% and 18.2% for the Ni1 and Ni1B complex anions; Fig. 8c and 9c) and H⋯H (10.4% and 13.1% for the Ni1 and Ni1B complex anions, respectively; Fig. 8d and 9d) make very significant contributions to the total Hirshfeld surface. This indicates that there are more K⋯O contacts and fewer O⋯H contacts compared to the crystal of 1.
5. Geometry optimization
The searching of computationally `cheap' but still sufficiently accurate methods of transition-metal complex geometry optimization is an important task of modern computational chemistry. The geometry optimization calculations were carried out with three semi-empirical methods: PM7, DFTB and GFN2-xTB. The PM7 (Stewart, 2013) calculations were performed with MOPAC2016 software (Stewart, 2016). The DFTB calculations were carried out with the DFTB+ software package (Hourahine et al., 2020) using the `mio-1-1' (Elstner et al., 1998) and the `trans3d-0-1' (Zheng et al., 2007) Slater–Koster parameterization sets. The GFN2-xTB (Bannwarth et al., 2019) calculations were applied with xtb 6.4 package (Grimme, 2019). The geometry of the Ni1 complex anion obtained from the was used as the starting geometry for the calculations.
In general, for all described semi-empirical methods, the calculated geometric parameters of the oxadiazinane ring are in reasonable agreement with experimental values (see Table 3). On the other hand, the accuracy of the non-oxadiazinane fragment geometry prediction varies greatly depending on the method. The worst agreement with experiments is from the PM7 method, mainly because of the pyramidalization of the amide nitrogen atom (Table 3). Such non-planarity of the amide fragment is a well-known problem of the PMx methods (Feigel & Strassner, 1993). In contrast, the DFTB method predicts the amide geometric parameters with high accuracy but demonstrates longer than experimental carboxylate C—O bonds and a slight tetragonal distortion of the nickel(II) coordination polyhedra (Table 3). The best results were obtained with the GFN2-xTB method for which the calculated geometric parameters correlate nicely with experimental values (Table 3). The maximal difference between the calculated and the experimental bond lengths concerns the C—O lengths (shorter than the experimental values within 0.024–0.033 Å). A superimposed analysis of the Ni1 complex anion with its optimized structure gives an RMSD of 0.131 Å (Fig. 10). Thus, the GFN2-xTB method is a promising geometry prediction method for transition-metal complexes based on hydrazide and carboxylate ligands.
|
6. Database survey
A search in the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom et al., 2016) resulted in 11 hits dealing with 3d-metal complexes with macrocyclic or pseudo-macrocyclic ligands formed by template binding of several hydrazide groups by formaldehyde molecules. These complexes contain the following 3d metals: NiII (Fritsky et al., 1998), CuII (Clark et al., 1976; Fritsky et al., 2006), CuIII (Oliver & Waters, 1982; Fritsky et al., 1998, Fritsky et al., 2006) and FeIV (Tomyn et al., 2017). Thus, such macrocyclic and pseudo-macrocyclic ligand systems exhibit a tendency to stabilize the high oxidation states of 3d metals.
7. Synthesis and crystallization
A solution of Ni(ClO4)2·6H2O (0.091 g, 0.25 mmol) in 5 ml of water was added to a warm solution of oxalohydrazidehydroxamic acid (0.06 g, 0.5 mmol) in 5 ml of water. The resulting light-green mixture was stirred with heating (320–330 K) for 20 min and then 1 ml of 4M KOH solution was added. As a result, the colour of the solution changed to pink. After 5 min of stirring, 0.03 g of the paraformaldehyde (1 mmol) was added and stirring with heating (323–333 K) was continued for 30 min. The resulting orange solution was left for crystallization by slow evaporation in air. After one week, orange crystals of 2 suitable for X-ray diffraction studies were obtained. The crystals were filtered off, washed with diethyl ether and dried in the air. Yield 0.044 g (42%). Elemental analysis for C14H18N8O17K4Ni2 (mol. mass 844.12), calculated, %: C 19.92; H 2.15; N 13.27; Found, %: C 19.69; H 2.16; N 13.11. UV–vis (H2O), λmax (ɛ, mol−1 dm3 cm−1): 520 nm (1380). IR (KBr, cm−1): 3420 br ν(O–H) stretch, 2981, 2910, 2860 ν(C—H) stretch, 1643 (vs) ν(C=O) amide I, 1590 νas(COO−), 1435 νs(COO−).
8. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (O—H = 0.85–0.88, C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2 Ueq(O, C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 2120378
https://doi.org/10.1107/S2056989021011774/tx2044sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011774/tx2044Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021011774/tx2044Isup3.cdx
Data collection: COLLECT (Bruker, 2008); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[K4Ni2(C7H6N4O7)2(H2O)3] | F(000) = 1704 |
Mr = 844.18 | Dx = 2.085 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.3825 (5) Å | Cell parameters from 12179 reflections |
b = 7.7039 (3) Å | θ = 1.0–30.0° |
c = 17.3078 (6) Å | µ = 2.12 mm−1 |
β = 98.240 (2)° | T = 100 K |
V = 2689.69 (16) Å3 | Orange, block |
Z = 4 | 0.15 × 0.09 × 0.08 mm |
Bruker Kappa APEXII CCD diffractometer | 6148 independent reflections |
Radiation source: fine-focus sealed tube | 5118 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.043 |
Detector resolution: 16 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
φ scans and ω scans with κ offset | h = −26→26 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | k = −10→10 |
Tmin = 0.746, Tmax = 0.842 | l = −22→22 |
25068 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + 8.0539P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
6148 reflections | Δρmax = 0.63 e Å−3 |
406 parameters | Δρmin = −0.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.47434 (2) | 0.39867 (5) | 0.07544 (2) | 0.01087 (9) | |
K1 | 0.17619 (4) | 0.53183 (9) | 0.11705 (4) | 0.01892 (16) | |
K2 | 0.19572 (3) | 0.36084 (9) | −0.07023 (4) | 0.01670 (15) | |
K3 | 0.27474 (3) | 0.87045 (9) | 0.01255 (4) | 0.01761 (15) | |
K4 | 0.37676 (4) | 0.05611 (9) | −0.14504 (4) | 0.02025 (16) | |
O1 | 0.41934 (10) | 0.2347 (3) | 0.01663 (13) | 0.0155 (5) | |
O2 | 0.55123 (10) | 0.2576 (3) | 0.08187 (12) | 0.0138 (4) | |
O3 | 0.66101 (11) | 0.2786 (3) | 0.11647 (14) | 0.0178 (5) | |
O4 | 0.63860 (11) | 0.6017 (3) | 0.18521 (13) | 0.0175 (5) | |
O5 | 0.43257 (10) | 0.6088 (3) | 0.23723 (12) | 0.0144 (4) | |
O6 | 0.28491 (10) | 0.5095 (3) | 0.04127 (13) | 0.0144 (5) | |
O7 | 0.31296 (10) | 0.1927 (3) | −0.03135 (13) | 0.0145 (4) | |
O8 | 0.23728 (13) | 0.4224 (4) | 0.26454 (15) | 0.0296 (6) | |
H8O | 0.234956 | 0.311841 | 0.266821 | 0.044* | |
H8P | 0.220280 | 0.460928 | 0.303719 | 0.044* | |
O9 | 0.22781 (12) | 0.4456 (3) | −0.21414 (15) | 0.0260 (6) | |
H9P | 0.270092 | 0.459040 | −0.210682 | 0.039* | |
H9O | 0.209842 | 0.522979 | −0.245902 | 0.039* | |
O10 | 0.32908 (13) | 1.1134 (4) | 0.14694 (15) | 0.0306 (6) | |
H10O | 0.287037 | 1.137097 | 0.135669 | 0.046* | |
H10P | 0.338827 | 1.126557 | 0.197749 | 0.046* | |
N1 | 0.52942 (12) | 0.5586 (3) | 0.13120 (14) | 0.0113 (5) | |
N2 | 0.51068 (13) | 0.7242 (3) | 0.15852 (15) | 0.0124 (5) | |
N3 | 0.39268 (13) | 0.6979 (3) | 0.10530 (15) | 0.0131 (5) | |
N4 | 0.39871 (13) | 0.5297 (3) | 0.07165 (15) | 0.0122 (5) | |
C1 | 0.60452 (15) | 0.3371 (4) | 0.11225 (18) | 0.0137 (6) | |
C2 | 0.59253 (16) | 0.5163 (4) | 0.14705 (18) | 0.0146 (6) | |
C3 | 0.45459 (15) | 0.7945 (4) | 0.10429 (19) | 0.0140 (6) | |
H3A | 0.447429 | 0.917052 | 0.118117 | 0.017* | |
H3B | 0.466161 | 0.792495 | 0.050662 | 0.017* | |
C4 | 0.49161 (15) | 0.7092 (4) | 0.23624 (18) | 0.0140 (6) | |
H4A | 0.528350 | 0.654533 | 0.271547 | 0.017* | |
H4B | 0.484584 | 0.826836 | 0.256513 | 0.017* | |
C5 | 0.37883 (16) | 0.6825 (4) | 0.18499 (18) | 0.0155 (6) | |
H5A | 0.368739 | 0.799144 | 0.204239 | 0.019* | |
H5B | 0.338951 | 0.609318 | 0.185349 | 0.019* | |
C6 | 0.34231 (15) | 0.4539 (4) | 0.04236 (17) | 0.0117 (6) | |
C7 | 0.35790 (15) | 0.2774 (4) | 0.00678 (17) | 0.0122 (6) | |
Ni1B | 0.01223 (2) | 0.08795 (5) | 0.09162 (2) | 0.01243 (9) | |
O1B | 0.08679 (11) | 0.2257 (3) | 0.07813 (13) | 0.0166 (5) | |
O2B | −0.04769 (11) | 0.2677 (3) | 0.05952 (13) | 0.0156 (5) | |
O3B | −0.15683 (11) | 0.3148 (3) | 0.03336 (14) | 0.0184 (5) | |
O4B | −0.17542 (11) | −0.0118 (3) | 0.10065 (13) | 0.0164 (5) | |
O5B | 0.00334 (11) | −0.1490 (3) | 0.25474 (13) | 0.0170 (5) | |
O6B | 0.18685 (11) | −0.1330 (3) | 0.14427 (14) | 0.0185 (5) | |
O7B | 0.19555 (11) | 0.1959 (3) | 0.07804 (14) | 0.0200 (5) | |
N1B | −0.06184 (13) | −0.0419 (3) | 0.10402 (15) | 0.0133 (5) | |
N2B | −0.06258 (13) | −0.2169 (3) | 0.13205 (15) | 0.0134 (5) | |
N3B | 0.05905 (13) | −0.2534 (3) | 0.14984 (15) | 0.0135 (5) | |
N4B | 0.07292 (13) | −0.0845 (3) | 0.12181 (15) | 0.0140 (5) | |
C1B | −0.10848 (16) | 0.2241 (4) | 0.05852 (18) | 0.0144 (6) | |
C2B | −0.11930 (16) | 0.0406 (4) | 0.09058 (17) | 0.0137 (6) | |
C3B | −0.00599 (15) | −0.3127 (4) | 0.10940 (19) | 0.0146 (6) | |
H3B1 | −0.006462 | −0.300402 | 0.052383 | 0.017* | |
H3B2 | −0.011318 | −0.437434 | 0.120686 | 0.017* | |
C4B | −0.05815 (16) | −0.2189 (4) | 0.21681 (18) | 0.0152 (6) | |
H4B1 | −0.095254 | −0.150425 | 0.232299 | 0.018* | |
H4B2 | −0.062785 | −0.339827 | 0.234578 | 0.018* | |
C5B | 0.05751 (16) | −0.2475 (4) | 0.23366 (19) | 0.0158 (6) | |
H5B1 | 0.054706 | −0.367518 | 0.253325 | 0.019* | |
H5B2 | 0.099552 | −0.196407 | 0.259598 | 0.019* | |
C6B | 0.13592 (16) | −0.0447 (4) | 0.12181 (18) | 0.0154 (6) | |
C7B | 0.14124 (15) | 0.1389 (4) | 0.08983 (18) | 0.0143 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0117 (2) | 0.00866 (18) | 0.01215 (19) | 0.00042 (14) | 0.00137 (14) | −0.00210 (15) |
K1 | 0.0225 (4) | 0.0128 (3) | 0.0229 (4) | 0.0021 (3) | 0.0082 (3) | 0.0018 (3) |
K2 | 0.0181 (4) | 0.0124 (3) | 0.0182 (3) | 0.0002 (3) | −0.0022 (3) | −0.0009 (3) |
K3 | 0.0162 (3) | 0.0130 (3) | 0.0229 (4) | −0.0001 (3) | 0.0006 (3) | 0.0043 (3) |
K4 | 0.0253 (4) | 0.0118 (3) | 0.0265 (4) | −0.0019 (3) | 0.0134 (3) | −0.0026 (3) |
O1 | 0.0140 (11) | 0.0129 (11) | 0.0195 (12) | −0.0001 (9) | 0.0021 (9) | −0.0028 (9) |
O2 | 0.0149 (11) | 0.0116 (10) | 0.0149 (11) | 0.0018 (8) | 0.0020 (8) | −0.0011 (9) |
O3 | 0.0124 (11) | 0.0158 (11) | 0.0253 (13) | 0.0022 (9) | 0.0030 (9) | −0.0007 (10) |
O4 | 0.0151 (11) | 0.0154 (11) | 0.0207 (12) | −0.0003 (9) | −0.0016 (9) | −0.0013 (9) |
O5 | 0.0159 (11) | 0.0146 (11) | 0.0135 (11) | −0.0009 (9) | 0.0044 (8) | 0.0014 (9) |
O6 | 0.0135 (11) | 0.0127 (11) | 0.0168 (11) | 0.0013 (9) | 0.0016 (9) | −0.0016 (9) |
O7 | 0.0144 (11) | 0.0138 (11) | 0.0148 (11) | −0.0021 (9) | 0.0005 (8) | −0.0015 (9) |
O8 | 0.0368 (16) | 0.0286 (14) | 0.0253 (14) | 0.0059 (12) | 0.0103 (11) | 0.0025 (11) |
O9 | 0.0159 (13) | 0.0345 (15) | 0.0268 (14) | −0.0018 (11) | 0.0006 (10) | 0.0045 (11) |
O10 | 0.0259 (14) | 0.0390 (16) | 0.0269 (14) | 0.0052 (12) | 0.0038 (11) | 0.0047 (12) |
N1 | 0.0137 (13) | 0.0095 (12) | 0.0107 (12) | 0.0008 (10) | 0.0022 (10) | −0.0013 (10) |
N2 | 0.0151 (13) | 0.0104 (12) | 0.0118 (12) | 0.0006 (10) | 0.0018 (10) | −0.0017 (10) |
N3 | 0.0177 (14) | 0.0090 (12) | 0.0125 (13) | 0.0001 (10) | 0.0021 (10) | −0.0040 (10) |
N4 | 0.0176 (14) | 0.0075 (12) | 0.0116 (12) | 0.0018 (10) | 0.0024 (10) | −0.0028 (10) |
C1 | 0.0176 (16) | 0.0137 (15) | 0.0105 (14) | −0.0010 (12) | 0.0042 (12) | 0.0031 (12) |
C2 | 0.0179 (17) | 0.0124 (15) | 0.0141 (15) | −0.0020 (12) | 0.0039 (12) | 0.0019 (12) |
C3 | 0.0158 (16) | 0.0091 (14) | 0.0164 (15) | 0.0002 (12) | 0.0002 (12) | −0.0002 (12) |
C4 | 0.0174 (16) | 0.0141 (15) | 0.0106 (14) | 0.0009 (12) | 0.0022 (12) | −0.0019 (12) |
C5 | 0.0177 (16) | 0.0152 (15) | 0.0139 (15) | −0.0005 (12) | 0.0036 (12) | −0.0020 (12) |
C6 | 0.0149 (15) | 0.0110 (14) | 0.0092 (14) | −0.0001 (12) | 0.0023 (11) | 0.0008 (11) |
C7 | 0.0165 (16) | 0.0098 (14) | 0.0105 (14) | −0.0003 (11) | 0.0026 (11) | 0.0020 (11) |
Ni1B | 0.0128 (2) | 0.00920 (19) | 0.0149 (2) | −0.00029 (15) | 0.00073 (15) | 0.00233 (15) |
O1B | 0.0159 (12) | 0.0116 (11) | 0.0224 (12) | −0.0001 (9) | 0.0028 (9) | 0.0032 (9) |
O2B | 0.0159 (12) | 0.0122 (11) | 0.0179 (11) | −0.0007 (9) | −0.0001 (9) | 0.0019 (9) |
O3B | 0.0165 (12) | 0.0134 (11) | 0.0246 (13) | 0.0028 (9) | 0.0003 (9) | 0.0034 (10) |
O4B | 0.0149 (12) | 0.0140 (11) | 0.0203 (12) | 0.0005 (9) | 0.0021 (9) | 0.0004 (9) |
O5B | 0.0202 (12) | 0.0165 (12) | 0.0138 (11) | 0.0000 (9) | 0.0007 (9) | −0.0009 (9) |
O6B | 0.0139 (11) | 0.0157 (11) | 0.0251 (12) | 0.0009 (9) | 0.0004 (9) | −0.0003 (10) |
O7B | 0.0164 (12) | 0.0168 (12) | 0.0277 (13) | −0.0025 (9) | 0.0067 (10) | 0.0025 (10) |
N1B | 0.0168 (14) | 0.0075 (12) | 0.0152 (13) | −0.0003 (10) | 0.0009 (10) | 0.0000 (10) |
N2B | 0.0158 (13) | 0.0095 (12) | 0.0149 (13) | 0.0000 (10) | 0.0021 (10) | 0.0021 (10) |
N3B | 0.0154 (13) | 0.0094 (12) | 0.0154 (13) | −0.0013 (10) | 0.0014 (10) | 0.0048 (10) |
N4B | 0.0146 (13) | 0.0101 (12) | 0.0170 (13) | −0.0006 (10) | 0.0018 (10) | 0.0021 (10) |
C1B | 0.0197 (17) | 0.0128 (15) | 0.0109 (14) | −0.0019 (12) | 0.0023 (12) | −0.0021 (12) |
C2B | 0.0188 (17) | 0.0114 (14) | 0.0104 (14) | −0.0001 (12) | 0.0004 (12) | −0.0018 (11) |
C3B | 0.0133 (15) | 0.0122 (15) | 0.0176 (16) | −0.0013 (12) | 0.0002 (12) | −0.0008 (12) |
C4B | 0.0157 (16) | 0.0129 (15) | 0.0165 (15) | −0.0008 (12) | 0.0009 (12) | 0.0037 (12) |
C5B | 0.0177 (17) | 0.0127 (15) | 0.0168 (16) | 0.0014 (12) | 0.0014 (12) | 0.0041 (12) |
C6B | 0.0170 (16) | 0.0154 (16) | 0.0137 (15) | 0.0001 (12) | 0.0017 (12) | −0.0035 (12) |
C7B | 0.0163 (16) | 0.0144 (15) | 0.0122 (15) | −0.0005 (12) | 0.0017 (12) | −0.0007 (12) |
Ni1—N4 | 1.836 (3) | O5—C4 | 1.433 (4) |
Ni1—N1 | 1.844 (3) | O5—C5 | 1.434 (4) |
Ni1—O1 | 1.887 (2) | O6—C6 | 1.244 (4) |
Ni1—O2 | 1.897 (2) | O7—C7 | 1.236 (4) |
K1—O6Bi | 2.628 (2) | O8—H8O | 0.8546 |
K1—O7B | 2.717 (2) | O8—H8P | 0.8575 |
K1—O6 | 2.737 (2) | O9—H9P | 0.8615 |
K1—O8 | 2.805 (3) | O9—H9O | 0.8567 |
K1—O3Bii | 2.834 (2) | O10—H10O | 0.8704 |
K1—O1B | 2.998 (2) | O10—H10P | 0.8792 |
K1—N3Bi | 3.025 (3) | N1—C2 | 1.317 (4) |
K1—C7B | 3.130 (3) | N1—N2 | 1.431 (3) |
K1—C6Bi | 3.368 (3) | N2—C4 | 1.457 (4) |
K1—K2 | 3.5736 (10) | N2—C3 | 1.474 (4) |
K1—K3 | 3.8927 (10) | N3—N4 | 1.433 (3) |
K2—O6 | 2.708 (2) | N3—C5 | 1.452 (4) |
K2—O7 | 2.717 (2) | N3—C3 | 1.467 (4) |
K2—O3Bii | 2.725 (2) | N4—C6 | 1.324 (4) |
K2—O9 | 2.743 (3) | C1—C2 | 1.540 (4) |
K2—O4Biii | 2.760 (2) | C3—H3A | 0.9900 |
K2—O7B | 2.864 (2) | C3—H3B | 0.9900 |
K2—N2Biii | 2.984 (3) | C4—H4A | 0.9900 |
K2—C6 | 3.401 (3) | C4—H4B | 0.9900 |
K2—C7 | 3.443 (3) | C5—H5A | 0.9900 |
K2—C2Biii | 3.458 (3) | C5—H5B | 0.9900 |
K2—K3iv | 4.2728 (10) | C6—C7 | 1.544 (4) |
K3—O7i | 2.742 (2) | Ni1B—N4B | 1.839 (3) |
K3—O3Bii | 2.810 (2) | Ni1B—N1B | 1.849 (3) |
K3—O4Bii | 2.826 (2) | Ni1B—O2B | 1.877 (2) |
K3—O6 | 2.827 (2) | Ni1B—O1B | 1.895 (2) |
K3—O3v | 2.976 (2) | O1B—C7B | 1.287 (4) |
K3—N3 | 3.003 (3) | O2B—C1B | 1.281 (4) |
K3—O10 | 3.066 (3) | O3B—C1B | 1.235 (4) |
K3—O6Bi | 3.095 (2) | O4B—C2B | 1.249 (4) |
K3—O7Bi | 3.271 (2) | O5B—C5B | 1.430 (4) |
K3—C2Bii | 3.475 (3) | O5B—C4B | 1.434 (4) |
K3—C6 | 3.501 (3) | O6B—C6B | 1.255 (4) |
K3—C1Bii | 3.512 (3) | O7B—C7B | 1.235 (4) |
K3—H10O | 2.9446 | N1B—C2B | 1.323 (4) |
K4—O7 | 2.721 (2) | N1B—N2B | 1.434 (3) |
K4—O4v | 2.733 (2) | N2B—C4B | 1.457 (4) |
K4—O3vi | 2.756 (2) | N2B—C3B | 1.469 (4) |
K4—O5vii | 2.779 (2) | N3B—N4B | 1.431 (3) |
K4—N2v | 2.887 (3) | N3B—C5B | 1.456 (4) |
K4—O2vi | 2.955 (2) | N3B—C3B | 1.480 (4) |
K4—O8vii | 3.047 (3) | N4B—C6B | 1.320 (4) |
K4—C1vi | 3.095 (3) | C1B—C2B | 1.546 (4) |
K4—O1 | 3.127 (2) | C3B—H3B1 | 0.9900 |
K4—C7 | 3.201 (3) | C3B—H3B2 | 0.9900 |
K4—C2v | 3.354 (3) | C4B—H4B1 | 0.9900 |
K4—C5vii | 3.474 (3) | C4B—H4B2 | 0.9900 |
O1—C7 | 1.282 (4) | C5B—H5B1 | 0.9900 |
O2—C1 | 1.291 (4) | C5B—H5B2 | 0.9900 |
O3—C1 | 1.229 (4) | C6B—C7B | 1.528 (4) |
O4—C2 | 1.254 (4) | ||
N4—Ni1—N1 | 95.53 (11) | N2v—K4—O1 | 72.10 (7) |
N4—Ni1—O1 | 85.30 (10) | O2vi—K4—O1 | 88.24 (6) |
N1—Ni1—O1 | 178.66 (11) | O8vii—K4—O1 | 123.68 (7) |
N4—Ni1—O2 | 177.92 (11) | C1vi—K4—O1 | 104.79 (7) |
N1—Ni1—O2 | 85.18 (10) | O7—K4—C7 | 22.25 (7) |
O1—Ni1—O2 | 94.02 (9) | O4v—K4—C7 | 70.87 (7) |
O6Bi—K1—O7B | 165.68 (7) | O3vi—K4—C7 | 106.35 (7) |
O6Bi—K1—O6 | 95.50 (7) | O5vii—K4—C7 | 162.77 (8) |
O7B—K1—O6 | 70.41 (7) | N2v—K4—C7 | 86.82 (8) |
O6Bi—K1—O8 | 96.75 (8) | O2vi—K4—C7 | 104.10 (7) |
O7B—K1—O8 | 83.03 (8) | O8vii—K4—C7 | 100.36 (8) |
O6—K1—O8 | 97.64 (7) | C1vi—K4—C7 | 113.38 (8) |
O6Bi—K1—O3Bii | 75.65 (7) | O1—K4—C7 | 23.34 (7) |
O7B—K1—O3Bii | 100.07 (7) | O7—K4—C2v | 74.75 (7) |
O6—K1—O3Bii | 66.54 (7) | O4v—K4—C2v | 20.73 (7) |
O8—K1—O3Bii | 161.16 (8) | O3vi—K4—C2v | 167.98 (8) |
O6Bi—K1—O1B | 147.71 (7) | O5vii—K4—C2v | 110.16 (7) |
O7B—K1—O1B | 45.58 (6) | N2v—K4—C2v | 43.27 (7) |
O6—K1—O1B | 110.52 (7) | O2vi—K4—C2v | 136.36 (7) |
O8—K1—O1B | 98.30 (7) | O8vii—K4—C2v | 95.92 (8) |
O3Bii—K1—O1B | 96.98 (7) | C1vi—K4—C2v | 160.86 (8) |
O6Bi—K1—N3Bi | 58.41 (7) | O1—K4—C2v | 63.19 (7) |
O7B—K1—N3Bi | 135.57 (7) | C7—K4—C2v | 61.97 (8) |
O6—K1—N3Bi | 147.07 (7) | O7—K4—C5vii | 151.88 (7) |
O8—K1—N3Bi | 104.66 (8) | O4v—K4—C5vii | 108.05 (7) |
O3Bii—K1—N3Bi | 86.25 (7) | O3vi—K4—C5vii | 72.21 (7) |
O1B—K1—N3Bi | 90.10 (7) | O5vii—K4—C5vii | 23.29 (7) |
O6Bi—K1—C7B | 171.25 (8) | N2v—K4—C5vii | 97.79 (7) |
O7B—K1—C7B | 23.02 (7) | O2vi—K4—C5vii | 79.33 (7) |
O6—K1—C7B | 92.84 (8) | O8vii—K4—C5vii | 73.58 (7) |
O8—K1—C7B | 84.73 (8) | C1vi—K4—C5vii | 67.75 (8) |
O3Bii—K1—C7B | 105.44 (8) | O1—K4—C5vii | 162.73 (7) |
O1B—K1—C7B | 24.11 (7) | C7—K4—C5vii | 173.84 (8) |
N3Bi—K1—C7B | 112.86 (8) | C2v—K4—C5vii | 119.08 (8) |
O6Bi—K1—C6Bi | 19.63 (7) | C7—O1—Ni1 | 113.14 (19) |
O7B—K1—C6Bi | 166.68 (8) | C7—O1—K4 | 81.58 (17) |
O6—K1—C6Bi | 106.83 (7) | Ni1—O1—K4 | 147.60 (10) |
O8—K1—C6Bi | 110.29 (8) | C1—O2—Ni1 | 113.09 (19) |
O3Bii—K1—C6Bi | 67.44 (7) | C1—O2—K4vi | 83.85 (17) |
O1B—K1—C6Bi | 128.70 (7) | Ni1—O2—K4vi | 148.49 (10) |
N3Bi—K1—C6Bi | 42.60 (7) | C1—O3—K4vi | 94.03 (19) |
C7B—K1—C6Bi | 152.81 (8) | C1—O3—K3v | 127.3 (2) |
O6Bi—K1—K2 | 120.51 (6) | K4vi—O3—K3v | 86.44 (6) |
O7B—K1—K2 | 52.02 (5) | C2—O4—K4v | 108.80 (19) |
O6—K1—K2 | 48.63 (5) | C4—O5—C5 | 110.2 (2) |
O8—K1—K2 | 128.47 (6) | C4—O5—K4viii | 133.50 (17) |
O3Bii—K1—K2 | 48.67 (5) | C5—O5—K4viii | 106.70 (16) |
O1B—K1—K2 | 69.47 (5) | C6—O6—K2 | 113.52 (19) |
N3Bi—K1—K2 | 124.43 (6) | C6—O6—K1 | 147.0 (2) |
C7B—K1—K2 | 63.86 (6) | K2—O6—K1 | 82.02 (6) |
C6Bi—K1—K2 | 116.01 (6) | C6—O6—K3 | 112.75 (18) |
O6Bi—K1—K3 | 52.41 (5) | K2—O6—K3 | 105.41 (7) |
O7B—K1—K3 | 114.82 (5) | K1—O6—K3 | 88.76 (6) |
O6—K1—K3 | 46.56 (5) | C7—O7—K2 | 116.01 (19) |
O8—K1—K3 | 115.66 (6) | C7—O7—K4 | 101.30 (18) |
O3Bii—K1—K3 | 46.14 (5) | K2—O7—K4 | 119.99 (8) |
O1B—K1—K3 | 139.50 (5) | C7—O7—K3iv | 123.27 (19) |
N3Bi—K1—K3 | 101.21 (5) | K2—O7—K3iv | 103.04 (7) |
C7B—K1—K3 | 134.40 (6) | K4—O7—K3iv | 91.98 (7) |
C6Bi—K1—K3 | 60.40 (6) | K1—O8—K4viii | 135.32 (10) |
K2—K1—K3 | 72.16 (2) | K1—O8—H8O | 108.7 |
O6—K2—O7 | 63.15 (6) | K4viii—O8—H8O | 94.8 |
O6—K2—O3Bii | 68.50 (7) | K1—O8—H8P | 116.0 |
O7—K2—O3Bii | 130.88 (7) | K4viii—O8—H8P | 91.6 |
O6—K2—O9 | 108.86 (7) | H8O—O8—H8P | 106.1 |
O7—K2—O9 | 91.30 (7) | K2—O9—H9P | 109.4 |
O3Bii—K2—O9 | 96.29 (8) | K2—O9—H9O | 127.8 |
O6—K2—O4Biii | 127.95 (7) | H9P—O9—H9O | 107.0 |
O7—K2—O4Biii | 71.65 (7) | K3—O10—H10O | 73.8 |
O3Bii—K2—O4Biii | 153.83 (7) | K3—O10—H10P | 146.5 |
O9—K2—O4Biii | 96.17 (8) | H10O—O10—H10P | 105.9 |
O6—K2—O7B | 68.65 (7) | C2—N1—N2 | 116.8 (3) |
O7—K2—O7B | 71.37 (7) | C2—N1—Ni1 | 116.5 (2) |
O3Bii—K2—O7B | 99.16 (7) | N2—N1—Ni1 | 126.66 (19) |
O9—K2—O7B | 161.85 (8) | N1—N2—C4 | 110.7 (2) |
O4Biii—K2—O7B | 73.70 (7) | N1—N2—C3 | 109.7 (2) |
O6—K2—N2Biii | 153.59 (7) | C4—N2—C3 | 109.4 (2) |
O7—K2—N2Biii | 129.35 (7) | N1—N2—K4v | 104.06 (16) |
O3Bii—K2—N2Biii | 98.31 (7) | C4—N2—K4v | 116.19 (18) |
O9—K2—N2Biii | 94.92 (7) | C3—N2—K4v | 106.62 (17) |
O4Biii—K2—N2Biii | 57.71 (7) | N4—N3—C5 | 110.6 (2) |
O7B—K2—N2Biii | 92.22 (7) | N4—N3—C3 | 109.3 (2) |
O6—K2—C6 | 19.59 (7) | C5—N3—C3 | 109.7 (2) |
O7—K2—C6 | 44.71 (7) | N4—N3—K3 | 106.96 (16) |
O3Bii—K2—C6 | 86.20 (7) | C5—N3—K3 | 107.10 (18) |
O9—K2—C6 | 99.55 (7) | C3—N3—K3 | 113.13 (18) |
O4Biii—K2—C6 | 114.21 (7) | C6—N4—N3 | 115.7 (2) |
O7B—K2—C6 | 72.17 (7) | C6—N4—Ni1 | 116.7 (2) |
N2Biii—K2—C6 | 164.29 (7) | N3—N4—Ni1 | 127.1 (2) |
O6—K2—C7 | 45.08 (7) | O3—C1—O2 | 125.2 (3) |
O7—K2—C7 | 18.82 (7) | O3—C1—C2 | 120.4 (3) |
O3Bii—K2—C7 | 112.08 (7) | O2—C1—C2 | 114.4 (3) |
O9—K2—C7 | 93.17 (7) | O3—C1—K4vi | 62.64 (17) |
O4Biii—K2—C7 | 90.08 (7) | O2—C1—K4vi | 71.65 (16) |
O7B—K2—C7 | 72.22 (7) | C2—C1—K4vi | 145.90 (19) |
N2Biii—K2—C7 | 147.43 (7) | O4—C2—N1 | 127.9 (3) |
C6—K2—C7 | 26.07 (7) | O4—C2—C1 | 121.8 (3) |
O6—K2—C2Biii | 134.22 (7) | N1—C2—C1 | 110.2 (3) |
O7—K2—C2Biii | 88.06 (7) | O4—C2—K4v | 50.47 (16) |
O3Bii—K2—C2Biii | 134.59 (7) | N1—C2—K4v | 86.15 (18) |
O9—K2—C2Biii | 106.44 (8) | C1—C2—K4v | 146.74 (19) |
O4Biii—K2—C2Biii | 19.29 (7) | N3—C3—N2 | 113.3 (2) |
O7B—K2—C2Biii | 68.67 (7) | N3—C3—H3A | 108.9 |
N2Biii—K2—C2Biii | 42.10 (7) | N2—C3—H3A | 108.9 |
C6—K2—C2Biii | 126.35 (7) | N3—C3—H3B | 108.9 |
C7—K2—C2Biii | 105.43 (7) | N2—C3—H3B | 108.9 |
O6—K2—K1 | 49.34 (5) | H3A—C3—H3B | 107.7 |
O7—K2—K1 | 99.18 (5) | O5—C4—N2 | 112.9 (2) |
O3Bii—K2—K1 | 51.36 (5) | O5—C4—H4A | 109.0 |
O9—K2—K1 | 143.89 (6) | N2—C4—H4A | 109.0 |
O4Biii—K2—K1 | 119.94 (5) | O5—C4—H4B | 109.0 |
O7B—K2—K1 | 48.41 (5) | N2—C4—H4B | 109.0 |
N2Biii—K2—K1 | 104.38 (6) | H4A—C4—H4B | 107.8 |
C6—K2—K1 | 66.77 (5) | O5—C5—N3 | 113.3 (2) |
C7—K2—K1 | 86.75 (5) | O5—C5—K4viii | 50.01 (13) |
C2Biii—K2—K1 | 108.36 (5) | N3—C5—K4viii | 151.1 (2) |
O6—K2—K3iv | 87.29 (5) | O5—C5—H5A | 108.9 |
O7—K2—K3iv | 38.69 (5) | N3—C5—H5A | 108.9 |
O3Bii—K2—K3iv | 147.21 (6) | K4viii—C5—H5A | 99.6 |
O9—K2—K3iv | 112.80 (6) | O5—C5—H5B | 108.9 |
O4Biii—K2—K3iv | 40.67 (5) | N3—C5—H5B | 108.9 |
O7B—K2—K3iv | 49.92 (5) | K4viii—C5—H5B | 65.4 |
N2Biii—K2—K3iv | 94.10 (5) | H5A—C5—H5B | 107.7 |
C6—K2—K3iv | 74.71 (5) | O6—C6—N4 | 128.1 (3) |
C7—K2—K3iv | 53.87 (5) | O6—C6—C7 | 123.0 (3) |
C2Biii—K2—K3iv | 52.13 (5) | N4—C6—C7 | 108.9 (3) |
K1—K2—K3iv | 96.17 (2) | O6—C6—K2 | 46.89 (15) |
O7i—K3—O3Bii | 130.32 (7) | N4—C6—K2 | 162.9 (2) |
O7i—K3—O4Bii | 70.29 (6) | C7—C6—K2 | 78.47 (16) |
O3Bii—K3—O4Bii | 60.07 (7) | O6—C6—K3 | 48.13 (15) |
O7i—K3—O6 | 157.32 (7) | N4—C6—K3 | 87.33 (18) |
O3Bii—K3—O6 | 65.69 (6) | C7—C6—K3 | 147.92 (19) |
O4Bii—K3—O6 | 121.88 (7) | K2—C6—K3 | 79.28 (7) |
O7i—K3—O3v | 88.18 (7) | O7—C7—O1 | 124.8 (3) |
O3Bii—K3—O3v | 92.43 (7) | O7—C7—C6 | 119.9 (3) |
O4Bii—K3—O3v | 88.69 (7) | O1—C7—C6 | 115.2 (3) |
O6—K3—O3v | 73.94 (6) | O7—C7—K4 | 56.45 (16) |
O7i—K3—N3 | 108.15 (7) | O1—C7—K4 | 75.08 (16) |
O3Bii—K3—N3 | 120.86 (7) | C6—C7—K4 | 148.43 (19) |
O4Bii—K3—N3 | 168.61 (7) | O7—C7—K2 | 45.16 (15) |
O6—K3—N3 | 55.78 (7) | O1—C7—K2 | 164.7 (2) |
O3v—K3—N3 | 79.96 (7) | C6—C7—K2 | 75.46 (16) |
O7i—K3—O10 | 64.62 (7) | K4—C7—K2 | 90.18 (8) |
O3Bii—K3—O10 | 136.54 (7) | N4B—Ni1B—N1B | 95.93 (11) |
O4Bii—K3—O10 | 115.82 (7) | N4B—Ni1B—O2B | 178.25 (11) |
O6—K3—O10 | 117.23 (7) | N1B—Ni1B—O2B | 85.75 (10) |
O3v—K3—O10 | 130.90 (7) | N4B—Ni1B—O1B | 85.46 (10) |
N3—K3—O10 | 71.96 (7) | N1B—Ni1B—O1B | 178.61 (11) |
O7i—K3—O6Bi | 115.43 (7) | O2B—Ni1B—O1B | 92.86 (9) |
O3Bii—K3—O6Bi | 69.03 (7) | C7B—O1B—Ni1B | 112.2 (2) |
O4Bii—K3—O6Bi | 94.66 (6) | C7B—O1B—K1 | 83.73 (17) |
O6—K3—O6Bi | 84.13 (6) | Ni1B—O1B—K1 | 152.27 (11) |
O3v—K3—O6Bi | 155.90 (7) | C1B—O2B—Ni1B | 113.4 (2) |
N3—K3—O6Bi | 96.08 (7) | C1B—O3B—K2ii | 132.9 (2) |
O10—K3—O6Bi | 68.32 (7) | C1B—O3B—K3ii | 114.8 (2) |
O7i—K3—O7Bi | 64.91 (6) | K2ii—O3B—K3ii | 105.44 (8) |
O3Bii—K3—O7Bi | 92.46 (6) | C1B—O3B—K1ii | 124.0 (2) |
O4Bii—K3—O7Bi | 66.72 (6) | K2ii—O3B—K1ii | 79.97 (6) |
O6—K3—O7Bi | 136.08 (6) | K3ii—O3B—K1ii | 87.20 (7) |
O3v—K3—O7Bi | 147.96 (7) | C2B—O4B—K2iii | 113.82 (19) |
N3—K3—O7Bi | 123.44 (7) | C2B—O4B—K3ii | 110.98 (19) |
O10—K3—O7Bi | 53.97 (6) | K2iii—O4B—K3ii | 99.81 (7) |
O6Bi—K3—O7Bi | 52.04 (6) | C5B—O5B—C4B | 109.9 (2) |
O7i—K3—C2Bii | 87.34 (7) | C6B—O6B—K1iv | 115.7 (2) |
O3Bii—K3—C2Bii | 43.53 (7) | C6B—O6B—K3iv | 107.9 (2) |
O4Bii—K3—C2Bii | 19.60 (7) | K1iv—O6B—K3iv | 85.30 (7) |
O6—K3—C2Bii | 108.83 (7) | C7B—O7B—K1 | 97.60 (19) |
O3v—K3—C2Bii | 99.07 (7) | C7B—O7B—K2 | 115.0 (2) |
N3—K3—C2Bii | 164.39 (7) | K1—O7B—K2 | 79.58 (6) |
O10—K3—C2Bii | 118.22 (7) | C7B—O7B—K3iv | 106.4 (2) |
O6Bi—K3—C2Bii | 78.38 (7) | K1—O7B—K3iv | 155.85 (9) |
O7Bi—K3—C2Bii | 64.41 (7) | K2—O7B—K3iv | 88.02 (6) |
O7i—K3—C6 | 138.54 (7) | C2B—N1B—N2B | 117.3 (3) |
O3Bii—K3—C6 | 83.02 (7) | C2B—N1B—Ni1B | 115.9 (2) |
O4Bii—K3—C6 | 133.08 (7) | N2B—N1B—Ni1B | 126.6 (2) |
O6—K3—C6 | 19.12 (6) | N1B—N2B—C4B | 110.4 (2) |
O3v—K3—C6 | 63.31 (7) | N1B—N2B—C3B | 109.6 (2) |
N3—K3—C6 | 41.19 (7) | C4B—N2B—C3B | 109.0 (2) |
O10—K3—C6 | 110.86 (7) | N1B—N2B—K2iii | 106.33 (17) |
O6Bi—K3—C6 | 98.09 (7) | C4B—N2B—K2iii | 106.21 (18) |
O7Bi—K3—C6 | 148.73 (7) | C3B—N2B—K2iii | 115.23 (18) |
C2Bii—K3—C6 | 124.54 (7) | N4B—N3B—C5B | 110.0 (2) |
O7i—K3—C1Bii | 112.89 (7) | N4B—N3B—C3B | 109.1 (2) |
O3Bii—K3—C1Bii | 18.63 (7) | C5B—N3B—C3B | 109.6 (2) |
O4Bii—K3—C1Bii | 43.75 (7) | N4B—N3B—K1iv | 103.54 (16) |
O6—K3—C1Bii | 84.28 (7) | C5B—N3B—K1iv | 109.54 (18) |
O3v—K3—C1Bii | 99.41 (7) | C3B—N3B—K1iv | 114.86 (18) |
N3—K3—C1Bii | 138.92 (7) | C6B—N4B—N3B | 116.8 (3) |
O10—K3—C1Bii | 128.16 (7) | C6B—N4B—Ni1B | 116.5 (2) |
O6Bi—K3—C1Bii | 67.97 (7) | N3B—N4B—Ni1B | 126.6 (2) |
O7Bi—K3—C1Bii | 77.36 (7) | O3B—C1B—O2B | 125.3 (3) |
C2Bii—K3—C1Bii | 25.56 (7) | O3B—C1B—C2B | 119.7 (3) |
C6—K3—C1Bii | 101.59 (7) | O2B—C1B—C2B | 115.0 (3) |
O7i—K3—H10O | 64.6 | O3B—C1B—K3ii | 46.60 (16) |
O3Bii—K3—H10O | 122.7 | O2B—C1B—K3ii | 160.3 (2) |
O4Bii—K3—H10O | 102.2 | C2B—C1B—K3ii | 75.88 (17) |
O6—K3—H10O | 124.2 | O4B—C2B—N1B | 128.7 (3) |
O3v—K3—H10O | 144.2 | O4B—C2B—C1B | 121.8 (3) |
N3—K3—H10O | 86.8 | N1B—C2B—C1B | 109.5 (3) |
O10—K3—H10O | 16.5 | O4B—C2B—K2iii | 46.89 (15) |
O6Bi—K3—H10O | 58.1 | N1B—C2B—K2iii | 87.87 (18) |
O7Bi—K3—H10O | 37.8 | C1B—C2B—K2iii | 150.1 (2) |
C2Bii—K3—H10O | 102.2 | O4B—C2B—K3ii | 49.41 (15) |
C6—K3—H10O | 122.8 | N1B—C2B—K3ii | 154.7 (2) |
C1Bii—K3—H10O | 112.1 | C1B—C2B—K3ii | 78.56 (17) |
O7—K4—O4v | 76.22 (7) | K2iii—C2B—K3ii | 76.10 (7) |
O7—K4—O3vi | 93.28 (7) | N2B—C3B—N3B | 113.8 (3) |
O4v—K4—O3vi | 157.43 (7) | N2B—C3B—H3B1 | 108.8 |
O7—K4—O5vii | 174.39 (7) | N3B—C3B—H3B1 | 108.8 |
O4v—K4—O5vii | 107.36 (7) | N2B—C3B—H3B2 | 108.8 |
O3vi—K4—O5vii | 81.84 (7) | N3B—C3B—H3B2 | 108.8 |
O7—K4—N2v | 107.43 (7) | H3B1—C3B—H3B2 | 107.7 |
O4v—K4—N2v | 58.50 (7) | O5B—C4B—N2B | 112.4 (3) |
O3vi—K4—N2v | 143.96 (7) | O5B—C4B—H4B1 | 109.1 |
O5vii—K4—N2v | 78.18 (7) | N2B—C4B—H4B1 | 109.1 |
O7—K4—O2vi | 108.20 (7) | O5B—C4B—H4B2 | 109.1 |
O4v—K4—O2vi | 156.33 (7) | N2B—C4B—H4B2 | 109.1 |
O3vi—K4—O2vi | 45.97 (6) | H4B1—C4B—H4B2 | 107.9 |
O5vii—K4—O2vi | 70.34 (6) | O5B—C5B—N3B | 113.5 (2) |
N2v—K4—O2vi | 98.69 (7) | O5B—C5B—H5B1 | 108.9 |
O7—K4—O8vii | 80.97 (7) | N3B—C5B—H5B1 | 108.9 |
O4v—K4—O8vii | 75.67 (7) | O5B—C5B—H5B2 | 108.9 |
O3vi—K4—O8vii | 83.04 (7) | N3B—C5B—H5B2 | 108.9 |
O5vii—K4—O8vii | 95.62 (7) | H5B1—C5B—H5B2 | 107.7 |
N2v—K4—O8vii | 128.35 (8) | O6B—C6B—N4B | 129.5 (3) |
O2vi—K4—O8vii | 127.72 (7) | O6B—C6B—C7B | 121.0 (3) |
O7—K4—C1vi | 107.76 (8) | N4B—C6B—C7B | 109.5 (3) |
O4v—K4—C1vi | 175.75 (8) | O6B—C6B—K1iv | 44.70 (15) |
O3vi—K4—C1vi | 23.33 (7) | N4B—C6B—K1iv | 90.89 (19) |
O5vii—K4—C1vi | 68.56 (7) | C7B—C6B—K1iv | 149.0 (2) |
N2v—K4—C1vi | 120.66 (8) | O7B—C7B—O1B | 124.2 (3) |
O2vi—K4—C1vi | 24.50 (7) | O7B—C7B—C6B | 120.1 (3) |
O8vii—K4—C1vi | 103.22 (8) | O1B—C7B—C6B | 115.7 (3) |
O7—K4—O1 | 44.19 (6) | O7B—C7B—K1 | 59.38 (17) |
O4v—K4—O1 | 79.06 (6) | O1B—C7B—K1 | 72.16 (17) |
O3vi—K4—O1 | 107.45 (7) | C6B—C7B—K1 | 150.1 (2) |
O5vii—K4—O1 | 140.07 (6) | ||
N4—Ni1—O1—C7 | −5.2 (2) | K3—C6—C7—O1 | 121.4 (3) |
O2—Ni1—O1—C7 | 172.8 (2) | O6—C6—C7—K4 | 80.9 (5) |
N4—Ni1—O1—K4 | 106.9 (2) | N4—C6—C7—K4 | −98.5 (4) |
O2—Ni1—O1—K4 | −75.08 (19) | K2—C6—C7—K4 | 65.4 (3) |
N1—Ni1—O2—C1 | −6.6 (2) | K3—C6—C7—K4 | 18.5 (7) |
O1—Ni1—O2—C1 | 172.3 (2) | O6—C6—C7—K2 | 15.5 (3) |
N1—Ni1—O2—K4vi | 111.6 (2) | N4—C6—C7—K2 | −163.9 (2) |
O1—Ni1—O2—K4vi | −69.5 (2) | K3—C6—C7—K2 | −46.9 (3) |
N4—Ni1—N1—C2 | −179.1 (2) | N4B—Ni1B—O1B—C7B | 4.4 (2) |
O2—Ni1—N1—C2 | 2.9 (2) | O2B—Ni1B—O1B—C7B | −175.1 (2) |
N4—Ni1—N1—N2 | 0.5 (2) | N4B—Ni1B—O1B—K1 | −117.2 (2) |
O2—Ni1—N1—N2 | −177.6 (2) | O2B—Ni1B—O1B—K1 | 63.2 (2) |
C2—N1—N2—C4 | −90.7 (3) | N1B—Ni1B—O2B—C1B | −1.5 (2) |
Ni1—N1—N2—C4 | 89.7 (3) | O1B—Ni1B—O2B—C1B | 178.5 (2) |
C2—N1—N2—C3 | 148.5 (3) | N4B—Ni1B—N1B—C2B | 177.3 (2) |
Ni1—N1—N2—C3 | −31.1 (3) | O2B—Ni1B—N1B—C2B | −3.2 (2) |
C2—N1—N2—K4v | 34.8 (3) | N4B—Ni1B—N1B—N2B | 2.3 (3) |
Ni1—N1—N2—K4v | −144.78 (16) | O2B—Ni1B—N1B—N2B | −178.2 (2) |
C5—N3—N4—C6 | 83.1 (3) | C2B—N1B—N2B—C4B | −86.4 (3) |
C3—N3—N4—C6 | −156.0 (3) | Ni1B—N1B—N2B—C4B | 88.5 (3) |
K3—N3—N4—C6 | −33.3 (3) | C2B—N1B—N2B—C3B | 153.5 (3) |
C5—N3—N4—Ni1 | −88.9 (3) | Ni1B—N1B—N2B—C3B | −31.5 (3) |
C3—N3—N4—Ni1 | 32.0 (3) | C2B—N1B—N2B—K2iii | 28.4 (3) |
K3—N3—N4—Ni1 | 154.80 (16) | Ni1B—N1B—N2B—K2iii | −156.67 (16) |
N1—Ni1—N4—C6 | −172.8 (2) | C5B—N3B—N4B—C6B | 89.9 (3) |
O1—Ni1—N4—C6 | 8.2 (2) | C3B—N3B—N4B—C6B | −149.9 (3) |
N1—Ni1—N4—N3 | −1.0 (2) | K1iv—N3B—N4B—C6B | −27.1 (3) |
O1—Ni1—N4—N3 | −179.9 (2) | C5B—N3B—N4B—Ni1B | −85.9 (3) |
K4vi—O3—C1—O2 | −36.9 (3) | C3B—N3B—N4B—Ni1B | 34.3 (3) |
K3v—O3—C1—O2 | 51.7 (4) | K1iv—N3B—N4B—Ni1B | 157.07 (16) |
K4vi—O3—C1—C2 | 141.0 (2) | N1B—Ni1B—N4B—C6B | −179.7 (2) |
K3v—O3—C1—C2 | −130.4 (2) | O1B—Ni1B—N4B—C6B | 0.3 (2) |
K3v—O3—C1—K4vi | 88.59 (18) | N1B—Ni1B—N4B—N3B | −3.9 (3) |
Ni1—O2—C1—O3 | −173.4 (2) | O1B—Ni1B—N4B—N3B | 176.1 (2) |
K4vi—O2—C1—O3 | 34.2 (3) | K2ii—O3B—C1B—O2B | −57.3 (4) |
Ni1—O2—C1—C2 | 8.5 (3) | K3ii—O3B—C1B—O2B | 156.7 (2) |
K4vi—O2—C1—C2 | −143.9 (2) | K1ii—O3B—C1B—O2B | 52.5 (4) |
Ni1—O2—C1—K4vi | 152.39 (15) | K2ii—O3B—C1B—C2B | 124.0 (3) |
K4v—O4—C2—N1 | −41.1 (4) | K3ii—O3B—C1B—C2B | −22.0 (3) |
K4v—O4—C2—C1 | 139.8 (2) | K1ii—O3B—C1B—C2B | −126.2 (2) |
N2—N1—C2—O4 | 2.0 (5) | K2ii—O3B—C1B—K3ii | 146.0 (3) |
Ni1—N1—C2—O4 | −178.4 (3) | K1ii—O3B—C1B—K3ii | −104.2 (2) |
N2—N1—C2—C1 | −178.8 (2) | Ni1B—O2B—C1B—O3B | −173.6 (3) |
Ni1—N1—C2—C1 | 0.8 (3) | Ni1B—O2B—C1B—C2B | 5.2 (3) |
N2—N1—C2—K4v | −28.5 (2) | Ni1B—O2B—C1B—K3ii | −115.0 (6) |
Ni1—N1—C2—K4v | 151.09 (15) | K2iii—O4B—C2B—N1B | −35.3 (4) |
O3—C1—C2—O4 | −5.2 (5) | K3ii—O4B—C2B—N1B | −147.0 (3) |
O2—C1—C2—O4 | 173.0 (3) | K2iii—O4B—C2B—C1B | 144.7 (2) |
K4vi—C1—C2—O4 | 79.9 (4) | K3ii—O4B—C2B—C1B | 33.1 (3) |
O3—C1—C2—N1 | 175.5 (3) | K3ii—O4B—C2B—K2iii | −111.64 (18) |
O2—C1—C2—N1 | −6.3 (4) | K2iii—O4B—C2B—K3ii | 111.64 (18) |
K4vi—C1—C2—N1 | −99.3 (4) | N2B—N1B—C2B—O4B | 1.8 (5) |
O3—C1—C2—K4v | 60.0 (5) | Ni1B—N1B—C2B—O4B | −173.7 (3) |
O2—C1—C2—K4v | −121.8 (3) | N2B—N1B—C2B—C1B | −178.3 (2) |
K4vi—C1—C2—K4v | 145.1 (2) | Ni1B—N1B—C2B—C1B | 6.2 (3) |
N4—N3—C3—N2 | −69.2 (3) | N2B—N1B—C2B—K2iii | −23.2 (2) |
C5—N3—C3—N2 | 52.2 (3) | Ni1B—N1B—C2B—K2iii | 161.31 (15) |
K3—N3—C3—N2 | 171.75 (18) | N2B—N1B—C2B—K3ii | −73.4 (6) |
N1—N2—C3—N3 | 69.0 (3) | Ni1B—N1B—C2B—K3ii | 111.1 (5) |
C4—N2—C3—N3 | −52.6 (3) | O3B—C1B—C2B—O4B | −8.7 (4) |
K4v—N2—C3—N3 | −178.98 (19) | O2B—C1B—C2B—O4B | 172.4 (3) |
C5—O5—C4—N2 | −57.2 (3) | K3ii—C1B—C2B—O4B | −25.0 (3) |
K4viii—O5—C4—N2 | 162.24 (18) | O3B—C1B—C2B—N1B | 171.3 (3) |
N1—N2—C4—O5 | −66.0 (3) | O2B—C1B—C2B—N1B | −7.5 (4) |
C3—N2—C4—O5 | 54.9 (3) | K3ii—C1B—C2B—N1B | 155.0 (2) |
K4v—N2—C4—O5 | 175.62 (17) | O3B—C1B—C2B—K2iii | 48.9 (5) |
C4—O5—C5—N3 | 56.9 (3) | O2B—C1B—C2B—K2iii | −129.9 (3) |
K4viii—O5—C5—N3 | −151.9 (2) | K3ii—C1B—C2B—K2iii | 32.6 (4) |
C4—O5—C5—K4viii | −151.2 (2) | O3B—C1B—C2B—K3ii | 16.3 (3) |
N4—N3—C5—O5 | 66.4 (3) | O2B—C1B—C2B—K3ii | −162.6 (3) |
C3—N3—C5—O5 | −54.2 (3) | N1B—N2B—C3B—N3B | 68.4 (3) |
K3—N3—C5—O5 | −177.35 (19) | C4B—N2B—C3B—N3B | −52.5 (3) |
N4—N3—C5—K4viii | 18.2 (5) | K2iii—N2B—C3B—N3B | −171.76 (18) |
C3—N3—C5—K4viii | −102.4 (4) | N4B—N3B—C3B—N2B | −69.9 (3) |
K3—N3—C5—K4viii | 134.4 (3) | C5B—N3B—C3B—N2B | 50.6 (3) |
K2—O6—C6—N4 | 158.3 (3) | K1iv—N3B—C3B—N2B | 174.42 (18) |
K1—O6—C6—N4 | −88.6 (5) | C5B—O5B—C4B—N2B | −59.4 (3) |
K3—O6—C6—N4 | 38.5 (4) | N1B—N2B—C4B—O5B | −63.8 (3) |
K2—O6—C6—C7 | −21.0 (3) | C3B—N2B—C4B—O5B | 56.6 (3) |
K1—O6—C6—C7 | 92.1 (4) | K2iii—N2B—C4B—O5B | −178.71 (19) |
K3—O6—C6—C7 | −140.8 (2) | C4B—O5B—C5B—N3B | 57.7 (3) |
K1—O6—C6—K2 | 113.1 (4) | N4B—N3B—C5B—O5B | 67.1 (3) |
K3—O6—C6—K2 | −119.79 (19) | C3B—N3B—C5B—O5B | −52.9 (3) |
K2—O6—C6—K3 | 119.79 (19) | K1iv—N3B—C5B—O5B | −179.72 (19) |
K1—O6—C6—K3 | −127.1 (4) | K1iv—O6B—C6B—N4B | 36.6 (4) |
N3—N4—C6—O6 | −0.9 (5) | K3iv—O6B—C6B—N4B | 130.0 (3) |
Ni1—N4—C6—O6 | 171.9 (2) | K1iv—O6B—C6B—C7B | −144.6 (2) |
N3—N4—C6—C7 | 178.5 (2) | K3iv—O6B—C6B—C7B | −51.1 (3) |
Ni1—N4—C6—C7 | −8.7 (3) | K3iv—O6B—C6B—K1iv | 93.42 (17) |
N3—N4—C6—K2 | 65.3 (8) | N3B—N4B—C6B—O6B | −1.3 (5) |
Ni1—N4—C6—K2 | −121.9 (6) | Ni1B—N4B—C6B—O6B | 174.9 (3) |
N3—N4—C6—K3 | 26.8 (2) | N3B—N4B—C6B—C7B | 179.7 (2) |
Ni1—N4—C6—K3 | −160.42 (15) | Ni1B—N4B—C6B—C7B | −4.0 (3) |
K2—O7—C7—O1 | −164.9 (2) | N3B—N4B—C6B—K1iv | 23.5 (2) |
K4—O7—C7—O1 | −33.2 (3) | Ni1B—N4B—C6B—K1iv | −160.30 (15) |
K3iv—O7—C7—O1 | 66.7 (4) | K1—O7B—C7B—O1B | 33.6 (3) |
K2—O7—C7—C6 | 11.3 (3) | K2—O7B—C7B—O1B | −48.4 (4) |
K4—O7—C7—C6 | 142.9 (2) | K3iv—O7B—C7B—O1B | −144.0 (3) |
K3iv—O7—C7—C6 | −117.1 (2) | K1—O7B—C7B—C6B | −145.2 (2) |
K2—O7—C7—K4 | −131.67 (18) | K2—O7B—C7B—C6B | 132.8 (2) |
K3iv—O7—C7—K4 | 99.98 (18) | K3iv—O7B—C7B—C6B | 37.2 (3) |
K4—O7—C7—K2 | 131.67 (18) | K2—O7B—C7B—K1 | −82.00 (13) |
K3iv—O7—C7—K2 | −128.3 (2) | K3iv—O7B—C7B—K1 | −177.60 (16) |
Ni1—O1—C7—O7 | 178.1 (2) | Ni1B—O1B—C7B—O7B | 173.5 (3) |
K4—O1—C7—O7 | 28.2 (3) | K1—O1B—C7B—O7B | −30.0 (3) |
Ni1—O1—C7—C6 | 1.8 (3) | Ni1B—O1B—C7B—C6B | −7.7 (3) |
K4—O1—C7—C6 | −148.1 (2) | K1—O1B—C7B—C6B | 148.9 (2) |
Ni1—O1—C7—K4 | 149.87 (15) | Ni1B—O1B—C7B—K1 | −156.51 (16) |
Ni1—O1—C7—K2 | 133.7 (7) | O6B—C6B—C7B—O7B | 7.6 (5) |
K4—O1—C7—K2 | −16.1 (8) | N4B—C6B—C7B—O7B | −173.3 (3) |
O6—C6—C7—O7 | 7.3 (4) | K1iv—C6B—C7B—O7B | −44.8 (5) |
N4—C6—C7—O7 | −172.2 (3) | O6B—C6B—C7B—O1B | −171.3 (3) |
K2—C6—C7—O7 | −8.2 (2) | N4B—C6B—C7B—O1B | 7.8 (4) |
K3—C6—C7—O7 | −55.2 (5) | K1iv—C6B—C7B—O1B | 136.3 (3) |
O6—C6—C7—O1 | −176.2 (3) | O6B—C6B—C7B—K1 | −72.3 (5) |
N4—C6—C7—O1 | 4.4 (4) | N4B—C6B—C7B—K1 | 106.7 (4) |
K2—C6—C7—O1 | 168.3 (2) | K1iv—C6B—C7B—K1 | −124.7 (4) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) −x, −y, −z; (iv) x, y−1, z; (v) −x+1, −y+1, −z; (vi) −x+1, −y, −z; (vii) x, −y+1/2, z−1/2; (viii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8O···O9viii | 0.85 | 2.02 | 2.869 (4) | 173 |
O8—H8P···O4Bix | 0.85 | 2.01 | 2.858 (3) | 166 |
O9—H9P···O4v | 0.86 | 1.91 | 2.722 (3) | 157 |
O9—H9O···O6Bvii | 0.86 | 2.07 | 2.864 (3) | 153 |
O10—H10P···O4x | 0.88 | 2.02 | 2.887 (3) | 168 |
O10—H10O···O7Bi | 0.87 | 2.04 | 2.882 (3) | 164 |
Symmetry codes: (i) x, y+1, z; (v) −x+1, −y+1, −z; (vii) x, −y+1/2, z−1/2; (viii) x, −y+1/2, z+1/2; (ix) −x, y+1/2, −z+1/2; (x) −x+1, y+1/2, −z+1/2. |
Shape | CShM | |
K1 | K2 | |
Heptagon (D7h) | 28.515 | 29.484 |
Hexagonal pyramid (C6v) | 17.225 | 20.349 |
Pentagonal bipyramid (D5h) | 5.142 | 3.122 |
Capped octahedron (C3v) | 7.539 | 7.840 |
Capped trigonal prism (C2v) | 6.374 | 5.639 |
Johnson pentagonal bipyramid J13 (D5h) | 8.789 | 6.943 |
Johnson elongated triangular pyramid J7 (C3v) | 16.352 | 20.453 |
K3 | ||
Enneagon (D9h) | 32.593 | |
Octagonal pyramid (C8v) | 23.087 | |
Heptagonal bipyramid (D7h) | 14.962 | |
Johnson triangular cupola J3 (C3v) | 12.759 | |
Capped cube J8 (C4v) | 9.046 | |
Spherical-relaxed capped cube (C4v) | 7.600 | |
Capped square antiprism J10 (C4v) | 6.360 | |
Spherical capped square antiprism (C4v) | 5.020 | |
Tricapped trigonal prism J51 (D3h) | 6.694 | |
Spherical tricapped trigonal prism (D3h) | 5.698 | |
Tridiminished icosahedron J63 (C3v) | 11.379 | |
Hula-hoop (C2v) | 6.577 | |
Muffin (Cs) | 3.691 | |
K4 | ||
Octagon (D8h) | 33.086 | |
Heptagonal pyramid (C7v) | 18.988 | |
Hexagonal bipyramid (D6h) | 14.426 | |
Cube (Oh) | 10.884 | |
Square antiprism (D4d) | 5.463 | |
Triangular dodecahedron (D2d) | 5.187 | |
Johnson gyrobifastigium J26 (D2d) | 11.775 | |
Johnson elongated triangular bipyramid J14 (D3h) | 26.080 | |
Biaugmented trigonal prism J50 (C2v) | 6.413 | |
Biaugmented trigonal prism (C2v) | 6.587 | |
Snub diphenoid J84 (D2d) | 7.862 | |
Triakis tetrahedron (Td) | 11.175 | |
Elongated trigonal bipyramid (D3h) | 20.295 |
Geometric parameter | X-ray | PM7 | DFTB | GFN2-xTB |
Oxadiazinane ring | ||||
C—O | 1.434 | 1.413 | 1.467 | 1.410 |
C—N | 1.463 | 1.489 | 1.463 | 1.452 |
Carboxylate moiety | ||||
C—O | 1.287 | 1.276 | 1.451 | 1.260 |
C═O | 1.233 | 1.224 | 1.196 | 1.208 |
Hydrazide moiety | ||||
C—O | 1.249 | 1.232 | 1.227 | 1.216 |
C—N | 1.321 | 1.357 | 1.393 | 1.332 |
N—N | 1.432 | 1.413 | 1.413 | 1.415 |
C—Namide—Ni—Noxadiazine | 175.74 | 133.89 | 169.00 | 162.81 |
Ni coordination arrangement | ||||
Ni—O | 1.892 | 1.776 | 1.780 | 1.871 |
Ni—N | 1.840 | 1.955 | 1.974 | 1.871 |
O—Ni—N chelate | 85.24 | 93.35 | 81.32 | 82.94 |
O—Ni—N non-chelate | 178.29 | 173.19 | 162.52 | 176.77 |
N—Ni—N | 85.53 | 88.09 | 90.73 | 94.40 |
Funding information
This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.
References
Alvarez, S. (2013). Dalton Trans. 42, 8617–8636. Web of Science CrossRef CAS PubMed Google Scholar
Bannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652–1671. Web of Science CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, G. R., Skelton, B. W. & Waters, T. N. (1976). J. Chem. Soc. Dalton Trans. pp. 1528–1536. CSD CrossRef Web of Science Google Scholar
Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S. & Seifert, G. (1998). Phys. Rev. B, 58, 7260–7268. Web of Science CrossRef CAS Google Scholar
Feigel, M. & Strassner, T. (1993). J. Mol. Struct. Theochem, 283, 33–48. CrossRef Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Grimme, S. (2019). xtb 6.4. Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M. Y., Dumitrică, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J. J., Köhler, C., Kowalczyk, T., Kubař, T., Lee, I. S., Lutsker, V., Maurer, R. J., Min, S. K., Mitchell, I., Negre, C., Niehaus, T. A., Niklasson, A. M. N., Page, A. J., Pecchia, A., Penazzi, G., Persson, M. P., Řezáč, J., Sánchez, C. G., Sternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V. W. & Frauenheim, T. (2020). J. Chem. Phys. 152, 124101. Web of Science CrossRef PubMed Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J. J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Oliver, K. J. & Waters, T. N. (1982). J. Chem. Soc. Chem. Commun. pp. 1111–1112. CSD CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. CrossRef CAS PubMed Web of Science Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pap, J. S., Szywriel, Ł., Rowińska-Żyrek, M., Nikitin, K., Fritsky, I. O. & Kozłowski, H. J. (2011). J. Mol. Catal. A Chem. 334, 77–82. Web of Science CrossRef CAS Google Scholar
Plutenko, M. O., Haukka, M., Husak, A. O., Iskenderov, T. S. & Mulloev, N. U. (2021). Acta Cryst. E77, 298–304. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shylin, S. I., Pavliuk, M. V., D'Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019). Chem. Commun. 55, 3335–3338. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stewart, J. J. P. (2013). J. Mol. Model. 19, 1–32. Web of Science CrossRef CAS PubMed Google Scholar
Stewart, J. J. P. (2016). MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA. Google Scholar
Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099. Web of Science CSD CrossRef PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Zheng, G., Witek, H. A., Bobadova-Parvanova, P., Irle, S., Musaev, D. G., Prabhakar, R., Morokuma, K., Lundberg, M., Elstner, M., Köhler, C. & Frauenheim, T. (2007). J. Chem. Theory Comput. 3, 1349–1367. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.