research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second solvatomorph of poly[[μ4-N,N′-(1,3,5-oxadiazinane-3,5-di­yl)bis­­(carbamoyl­methano­ato)]nickel(II)dipotassium]: crystal structure, Hirshfeld surface analysis and semi-empirical geometry optimization

crossmark logo

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska, Street 64, 01601 Kyiv, Ukraine, bDepartment of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland, cPBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine, and dThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, 734025 Dushanbe, Tajikistan
*Correspondence e-mail: plutenkom@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 13 October 2021; accepted 5 November 2021; online 12 November 2021)

The title compound, poly[tri­aqua­bis­[μ4-N,N′-(1,3,5-oxadiazinane-3,5-di­yl)bis(carbamoyl­methano­ato)]dinickel(II)tetra­potassium], [K4Ni2(C7H6N4O7)2(H2O)3]n, is a second solvatomorph of poly[(μ4-N,N′-(1,3,5-oxadiazinane-3,5-di­yl)bis­(carbamoyl­methano­ato)nickel(II)dipotassium] reported previously [Plutenko et al. (2021[Plutenko, M. O., Haukka, M., Husak, A. O., Iskenderov, T. S. & Mulloev, N. U. (2021). Acta Cryst. E77, 298-304.]). Acta Cryst. E77, 298–304]. The asymmetric unit of the title compound includes two structurally independent complex anions [Ni(C7H6N4O7)]2−, which exhibit an L-shaped geometry and consist of two almost flat fragments perpendicular to one another: the 1,3,5-oxadiazinane fragment and the fragment including other atoms of the anion. The central Ni atom is in a square-planar N2O2 coordination arrangement formed by two amide N and two carboxyl­ate O atoms. In the crystal, the title compound forms a layered structure in which layers of negatively charged complex anions and positively charged potassium cations are stacked along the a-axis direction. The polymeric framework is stabilized by a system of hydrogen-bonding inter­actions in which the water mol­ecules act as donors and the carb­oxy­lic, amide and water O atoms act as acceptors.

1. Chemical context

In 1976, the products of the metal-templated reaction of hydrazide and aldehyde were separated and structurally described (Clark et al., 1976[Clark, G. R., Skelton, B. W. & Waters, T. N. (1976). J. Chem. Soc. Dalton Trans. pp. 1528-1536.]). It was further shown that such a synthetic strategy makes it possible to obtain complexes with 3d metals in high oxidation states. In particular, there are several works devoted to copper(III) complexes obtained by this method (Oliver & Waters, 1982[Oliver, K. J. & Waters, T. N. (1982). J. Chem. Soc. Chem. Commun. pp. 1111-1112.]; Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]). Moreover, the preparation of an unprecedentedly stable iron(IV) clathrochelate complex was reported (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]). Some such compounds are promising redox catalysts, as has been shown by Pap et al. (2011[Pap, J. S., Szywriel, Ł., Rowińska-Żyrek, M., Nikitin, K., Fritsky, I. O. & Kozłowski, H. J. (2011). J. Mol. Catal. A Chem. 334, 77-82.]) and Shylin et al. (2019[Shylin, S. I., Pavliuk, M. V., D'Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019). Chem. Commun. 55, 3335-3338.]). Thus, the study of the conditions and peculiarities of hydrazide-aldehyde template inter­actions, as well as the isolation and characterization of their products, is an important task in modern coordination chemistry.

This work is a continuation of our investigation of the inter­action of oxalohydrazide­hydroxamic acid with formaldehyde and nickel(II) salts. Here we report the crystal structure of the title compound poly[tri­aqua­bis­[μ4-N,N′-(1,3,5-oxadiazinane-3,5-di­yl)bis­(carbamoyl­methano­ato)]dinick­el(II)tetra­potassium] [(2K2[Ni(L-2H)]·3H2O)n, 2], which is the solvatomorph of the earlier published (Plutenko et al., 2021[Plutenko, M. O., Haukka, M., Husak, A. O., Iskenderov, T. S. & Mulloev, N. U. (2021). Acta Cryst. E77, 298-304.]) complex poly[penta­aqua­bis­[μn-N,N′-(1,3,5-oxadiaz­inane-3,5-di­yl)bis­(carbamoyl­methano­ato)]nickel(II)tetra­pot­assium], [(2K2[Ni(L-2H)]·4.8H2O)n, 1, H2L = N,N′-(1,3,5-oxadiazinane-3,5-di­yl)bis­(amino­oxo­acetic acid)]. Both compounds can be obtained in a similar fashion as the result of a one-pot template reaction (see Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
A plausible mechanism for the formation of the [Ni(L-2H)]2– complex anion.

2. Structural commentary

The title compound, 2, (2K2[Ni(L-2H)]·3H2O)n, crystallizes in space group P21/c, while the previously reported compound 1, (2K2[Ni(L-2H)]·4.8H2O)n, crystallizes in Pbca. Similarly to 1, the asymmetric unit of 2 (Fig. 2[link]) includes two structurally independent complex anions [Ni(L-2H)]2– (namely A and B, which contain Ni1 and Ni1B, respectively). In addition, the unit cell of 2 also contains four potassium cations and three solvent water mol­ecules.

[Figure 2]
Figure 2
The asymmetric unit of 2 with displacement ellipsoids shown at the 50% probability level.

Similarly to 1, the complex anion [Ni(L-2H)]2− has an L-shaped geometry and consists of two almost flat fragments perpendicular to one another: the 1,3,5-oxadiazinane fragment and the fragment including other atoms of the anion. The dihedral angles between the mean planes formed by the non-hydrogen atoms of these fragments are 95.06 (8) and 94.06 (8)° for Ni1 and Ni1B, respectively. The ligand mol­ecule is coordinated in a tetra­dentate {Ocarbox­yl,Namide,Namide,Ocarbox­yl}-mode. The central atom of the complex anion exhib­its a square-planar coordination arrangement with the N2O2 chromophore. The deviation of the NiII atom from the mean plane defined by the donor atoms is 0.0073 (13) and 0.0330 (12) Å for Ni1 and Ni1B, respectively.

The Ni—N bond distances are in the range 1.836 (3)–1.849 (3) Å and Ni–O bond lengths are 1.877 (2)–1.897 (2) Å, which is typical for square-planar nickel complexes with similar ligands (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]) and close to the Ni—N and Ni–O bond distances of 1. The O—M—O′, O—M—N and N—M—N′ bond angles have typical values for a square-planar arrangement. The bite angles O1—Ni1—N4, N1—Ni1—O2 and N1—Ni1—N4 deviate from 90°, which is the result of the formation of the five-membered chelate rings. The N—N′, N—C and C—O bond lengths of the ligand have typical values for coordinated deprotonated hydrazide and carboxyl groups.

3. Supra­molecular features

In the crystal, the nickel(II) complex anions [Ni(L-2H)]2− form layers parallel to the bc plane (Fig. 3[link]a). Neighbouring complex anion layers are sandwiched by layers of potassium counter-cations (Fig. 4[link]). Thus, negatively charged complex anion layers and positively charged potassium cationic layers are stacked along the a-axis direction. It is useful to note that a similar layered structure motif was observed in the crystal of the previously published compound 1. However, in the crystal of 1 the NiN2O2 plane is almost perpendicular to the complex anion layer plane (Fig. 3[link]b): the angle between NiN2O2 and the ab plane is 84.43 (4) and 85.03 (5)° for Ni1 and Ni1B, respectively. In contrast, in the crystal of 2 the angle between NiN2O2 and the bc plane is 78.30 (8) and 86.29 (7)° for Ni1 and Ni1B, respectively.

[Figure 3]
Figure 3
Layers formed by the nickel(II) complex anions [Ni(L-2H)]2– in the crystals of (a) compound 2 and (b) compound 1.
[Figure 4]
Figure 4
Crystal packing of the title compound in a stick model, showing the coordination polyhedra of the potassium cations. H atoms are omitted for clarity.

The demarcation of bonded and non-bonded K—X inter­actions (X = N or O) is still an unclear and debatable problem (Alvarez, 2013[Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.]). Therefore, the criteria of such demarcation used in this paper need to be detailed. Based on the aforementioned publication (Alvarez, 2013[Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.]), we propose 3.7 Å as the maximal distance for K—N bonds. Recently, it was shown (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]) that K—O main and maximal bond distances depend on the coordination number of K. The results of this work permits 3.4, 3.5 and 3.6 Å to be proposed as the maximal distances for K—O bonds in the case of potassium coordination numbers 7, 8 and 9, respectively. In addition, K⋯Namide inter­actions were determined as non-bonding because the existence of such bonds would lead to the presence of unstable three-membered KNamideNoxadiazinane rings with extremely small N—K—N′ angles.

The potassium cations are bound to the nickel(II) complex anions through the carb­oxy­lic O atoms (K4) the carb­oxy­lic and the amide O atoms (K1, K2) or through the amide O and the oxadiazinane N atoms (K3). In addition, the potassium cations have contacts with the O atoms of water mol­ecules, with the amide and the carb­oxy­lic O atoms, and with the oxadiazinane O and N atoms of neighbouring complex anions. The K1 and K2 cations exhibit an O6N coordination, while the K3 and K4 cations exhibit O8N and O7N coordinations, respectively.

For an evaluation of the coordination geometry of each potassium cation, SHAPE 2.1 software (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain.]) was used. A SHAPE analysis of the potassium coordination sphere (Table 1[link], Fig. 5[link]) yields the lowest continuous shape measure (CShM) value for a distorted penta­gonal bipyramid (5.142 for K1 and 3.122 for K2), a distorted muffin (3.691 for K3) and a distorted triangular dodeca­hedron (5.187 for K4). For K4, comparable CShM values were obtained for a square anti­prism (5.463).

Table 1
Values for continuous shapes measures (CShM) of the polyhedra centred by the potassium cations

Shape CShM
  K1 K2
Heptagon (D7h) 28.515 29.484
Hexagonal pyramid (C6v) 17.225 20.349
Penta­gonal bipyramid (D5h) 5.142 3.122
Capped octa­hedron (C3v) 7.539 7.840
Capped trigonal prism (C2v) 6.374 5.639
Johnson penta­gonal bipyramid J13 (D5h) 8.789 6.943
Johnson elongated triangular pyramid J7 (C3v) 16.352 20.453
  K3  
Enneagon (D9h) 32.593  
Octa­gonal pyramid (C8v) 23.087  
Heptagonal bipyramid (D7h) 14.962  
Johnson triangular cupola J3 (C3v) 12.759  
Capped cube J8 (C4v) 9.046  
Spherical-relaxed capped cube (C4v) 7.600  
Capped square anti­prism J10 (C4v) 6.360  
Spherical capped square anti­prism (C4v) 5.020  
Tricapped trigonal prism J51 (D3h) 6.694  
Spherical tricapped trigonal prism (D3h) 5.698  
Tridiminished icosa­hedron J63 (C3v) 11.379  
Hula-hoop (C2v) 6.577  
Muffin (Cs) 3.691  
  K4  
Octa­gon (D8h) 33.086  
Heptagonal pyramid (C7v) 18.988  
Hexagonal bipyramid (D6h) 14.426  
Cube (Oh) 10.884  
Square anti­prism (D4d) 5.463  
Triangular dodeca­hedron (D2d) 5.187  
Johnson gyrobifastigium J26 (D2d) 11.775  
Johnson elongated triangular bipyramid J14 (D3h) 26.080  
Biaugmented trigonal prism J50 (C2v) 6.413  
Biaugmented trigonal prism (C2v) 6.587  
Snub diphenoid J84 (D2d) 7.862  
Triakis tetra­hedron (Td) 11.175  
Elongated trigonal bipyramid (D3h) 20.295  
[Figure 5]
Figure 5
Polyhedral views of the coordination environments for the potassium cations.

The polyhedra around the neighbouring potassium cations are connected with each other through common vertices (K1 with K3, K1 with K4, K2 with K4), edges (K3 with K4) and faces (K1 with K2, K1 with K3, K2 with K3). The K—O bond lengths are in the range 2.628 (2)–3.271 (3) Å, K—N 2.887 (3)–3.025 (3) Å, which is close to those reported for the structures of related carboxyl­ate and amide complexes (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]; Mokhir et al., 2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J. J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]).

The polymeric framework of 2 is stabilized by an extensive system of hydrogen-bonding inter­actions in which the water mol­ecules act as donors and the carb­oxy­lic, the amide and the water O atoms act as acceptors (Table 2[link]). Similarly to 1, the hydrogen bonds are localized mainly at the potassium cation layers (Fig. 6[link]). Moreover, in comparison to 1, the unit cell of 2 contains a smaller number of water mol­ecules, which causes a smaller number of hydrogen-bond inter­actions in the crystal structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8O⋯O9i 0.85 2.02 2.869 (4) 173
O8—H8P⋯O4Bii 0.85 2.01 2.858 (3) 166
O9—H9P⋯O4iii 0.86 1.91 2.722 (3) 157
O9—H9O⋯O6Biv 0.86 2.07 2.864 (3) 153
O10—H10P⋯O4v 0.88 2.02 2.887 (3) 168
O10—H10O⋯O7Bvi 0.87 2.04 2.882 (3) 164
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x, y+1, z.
[Figure 6]
Figure 6
Crystal packing of the title compound. C—H hydrogen atoms are omitted for clarity. Hydrogen bonds are indicated by dashed lines.

4. Hirshfeld analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The Hirshfeld surfaces of the complex anions are colour-mapped with the normalized contact distance (dnorm) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

The Hirshfeld surface of the title compound is mapped over dnorm, in the colour ranges −0.6388 to 0.9164 a.u. and −0.6768 to 0.7286 a.u. for Ni1 and Ni1B complex anions, respectively (Fig. 7[link]). Similarly to 1, the complex anions of 2 are connected to the other elements of the crystal packing mainly via the amide and the carb­oxy­lic O atoms. However, in contrast to 1, one of the oxadiazinane O atoms of 2 is also involved in inter­molecular bond formation.

[Figure 7]
Figure 7
The Hirshfeld surfaces of the Ni1 (A) and Ni1B (B) complex anions mapped over dnorm.

A fingerprint plot delineated into specific inter­atomic contacts contains information related to specific inter­molecular inter­actions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in gray. Fig. 8[link]a and 9[link]a show the two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode for the Ni1 and Ni1B complex anions, respectively.

[Figure 8]
Figure 8
(a) Full two-dimensional fingerprint plot of the Ni1 complex anion and those delineated into (b) O⋯H/H⋯O (36.9%) (c) O⋯K/K⋯O (20.9%) and (d) H⋯H (10.4%) contacts.
[Figure 9]
Figure 9
(a) Full two-dimensional fingerprint plot of the Ni1B complex anion and those delineated into (b) O⋯H/H⋯O (38.7%) (c) O⋯K/K⋯O (18.2%) and (d) H⋯H (13.1%) contacts.

The most significant contribution to the Hirshfeld surface is from O⋯H/H⋯O contacts (36.9% and 38.7% for the Ni1 and Ni1B complex anions, respectively; Fig. 8[link]b and 9[link]b). In addition, O⋯K/K⋯O (20.9% and 18.2% for the Ni1 and Ni1B complex anions; Fig. 8[link]c and 9[link]c) and H⋯H (10.4% and 13.1% for the Ni1 and Ni1B complex anions, respectively; Fig. 8[link]d and 9d) make very significant contributions to the total Hirshfeld surface. This indicates that there are more K⋯O contacts and fewer O⋯H contacts compared to the crystal of 1.

5. Geometry optimization

The searching of computationally `cheap' but still sufficiently accurate methods of transition-metal complex geometry optimization is an important task of modern computational chemistry. The geometry optimization calculations were carried out with three semi-empirical methods: PM7, DFTB and GFN2-xTB. The PM7 (Stewart, 2013[Stewart, J. J. P. (2013). J. Mol. Model. 19, 1-32.]) calculations were performed with MOPAC2016 software (Stewart, 2016[Stewart, J. J. P. (2016). MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA.]). The DFTB calculations were carried out with the DFTB+ software package (Hourahine et al., 2020[Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M. Y., Dumitrică, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J. J., Köhler, C., Kowalczyk, T., Kubař, T., Lee, I. S., Lutsker, V., Maurer, R. J., Min, S. K., Mitchell, I., Negre, C., Niehaus, T. A., Niklasson, A. M. N., Page, A. J., Pecchia, A., Penazzi, G., Persson, M. P., Řezáč, J., Sánchez, C. G., Sternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V. W. & Frauenheim, T. (2020). J. Chem. Phys. 152, 124101.]) using the `mio-1-1' (Elstner et al., 1998[Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S. & Seifert, G. (1998). Phys. Rev. B, 58, 7260-7268.]) and the `trans3d-0-1' (Zheng et al., 2007[Zheng, G., Witek, H. A., Bobadova-Parvanova, P., Irle, S., Musaev, D. G., Prabhakar, R., Morokuma, K., Lundberg, M., Elstner, M., Köhler, C. & Frauenheim, T. (2007). J. Chem. Theory Comput. 3, 1349-1367.]) Slater–Koster parameterization sets. The GFN2-xTB (Bannwarth et al., 2019[Bannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652-1671.]) calculations were applied with xtb 6.4 package (Grimme, 2019[Grimme, S. (2019). xtb 6.4. Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany.]). The geometry of the Ni1 complex anion obtained from the crystal structure was used as the starting geometry for the calculations.

In general, for all described semi-empirical methods, the calculated geometric parameters of the oxadiazinane ring are in reasonable agreement with experimental values (see Table 3[link]). On the other hand, the accuracy of the non-oxadiazinane fragment geometry prediction varies greatly depending on the method. The worst agreement with experiments is from the PM7 method, mainly because of the pyramidalization of the amide nitro­gen atom (Table 3[link]). Such non-planarity of the amide fragment is a well-known problem of the PMx methods (Feigel & Strassner, 1993[Feigel, M. & Strassner, T. (1993). J. Mol. Struct. Theochem, 283, 33-48.]). In contrast, the DFTB method predicts the amide geometric parameters with high accuracy but demonstrates longer than experimental carboxyl­ate C—O bonds and a slight tetra­gonal distortion of the nickel(II) coordination polyhedra (Table 3[link]). The best results were obtained with the GFN2-xTB method for which the calculated geometric parameters correlate nicely with experimental values (Table 3[link]). The maximal difference between the calculated and the experimental bond lengths concerns the C—O lengths (shorter than the experimental values within 0.024–0.033 Å). A superimposed analysis of the Ni1 complex anion with its optimized structure gives an RMSD of 0.131 Å (Fig. 10[link]). Thus, the GFN2-xTB method is a promising geometry prediction method for transition-metal complexes based on hydrazide and carboxyl­ate ligands.

Table 3
Comparison of selected geometric data (A,°; mean values) for the Ni1 complex anion from calculated and X-ray data

Geometric parameter X-ray PM7 DFTB GFN2-xTB
Oxadiazinane ring        
C—O 1.434 1.413 1.467 1.410
C—N 1.463 1.489 1.463 1.452
Carboxyl­ate moiety        
C—O 1.287 1.276 1.451 1.260
C=O 1.233 1.224 1.196 1.208
Hydrazide moiety        
C—O 1.249 1.232 1.227 1.216
C—N 1.321 1.357 1.393 1.332
N—N 1.432 1.413 1.413 1.415
C—Namide—Ni—Noxadiazine 175.74 133.89 169.00 162.81
Ni coordination arrangement        
Ni—O 1.892 1.776 1.780 1.871
Ni—N 1.840 1.955 1.974 1.871
O—Ni—N chelate 85.24 93.35 81.32 82.94
O—Ni—N non-chelate 178.29 173.19 162.52 176.77
N—Ni—N 85.53 88.09 90.73 94.40
[Figure 10]
Figure 10
Structural overlay between the experimental (blue) and optimized (orange) structures.

6. Database survey

A search in the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 11 hits dealing with 3d-metal complexes with macrocyclic or pseudo-macrocyclic ligands formed by template binding of several hydrazide groups by formaldehyde mol­ecules. These complexes contain the following 3d metals: NiII (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]), CuII (Clark et al., 1976[Clark, G. R., Skelton, B. W. & Waters, T. N. (1976). J. Chem. Soc. Dalton Trans. pp. 1528-1536.]; Fritsky et al., 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]), CuIII (Oliver & Waters, 1982[Oliver, K. J. & Waters, T. N. (1982). J. Chem. Soc. Chem. Commun. pp. 1111-1112.]; Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], Fritsky et al., 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]) and FeIV (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]). Thus, such macrocyclic and pseudo-macrocyclic ligand systems exhibit a tendency to stabilize the high oxidation states of 3d metals.

7. Synthesis and crystallization

A solution of Ni(ClO4)2·6H2O (0.091 g, 0.25 mmol) in 5 ml of water was added to a warm solution of oxalohydrazide­hydroxamic acid (0.06 g, 0.5 mmol) in 5 ml of water. The resulting light-green mixture was stirred with heating (320–330 K) for 20 min and then 1 ml of 4M KOH solution was added. As a result, the colour of the solution changed to pink. After 5 min of stirring, 0.03 g of the paraformaldehyde (1 mmol) was added and stirring with heating (323–333 K) was continued for 30 min. The resulting orange solution was left for crystallization by slow evaporation in air. After one week, orange crystals of 2 suitable for X-ray diffraction studies were obtained. The crystals were filtered off, washed with diethyl ether and dried in the air. Yield 0.044 g (42%). Elemental analysis for C14H18N8O17K4Ni2 (mol. mass 844.12), calculated, %: C 19.92; H 2.15; N 13.27; Found, %: C 19.69; H 2.16; N 13.11. UV–vis (H2O), λmax (ɛ, mol−1 dm3 cm−1): 520 nm (1380). IR (KBr, cm−1): 3420 br ν(O–H) stretch, 2981, 2910, 2860 ν(C—H) stretch, 1643 (vs) ν(C=O) amide I, 1590 νas(COO), 1435 νs(COO).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geom­etrically (O—H = 0.85–0.88, C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2 Ueq(O, C).

Table 4
Experimental details

Crystal data
Chemical formula [K4Ni2(C7H6N4O7)2(H2O)3]
Mr 844.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 20.3825 (5), 7.7039 (3), 17.3078 (6)
β (°) 98.240 (2)
V3) 2689.69 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.12
Crystal size (mm) 0.15 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.746, 0.842
No. of measured, independent and observed [I > 2σ(I)] reflections 25068, 6148, 5118
Rint 0.043
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.082, 1.14
No. of reflections 6148
No. of parameters 406
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.45
Computer programs: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Poly[triaquabis[µ4-N,N'-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]dinickel(II)tetrapotassium] top
Crystal data top
[K4Ni2(C7H6N4O7)2(H2O)3]F(000) = 1704
Mr = 844.18Dx = 2.085 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.3825 (5) ÅCell parameters from 12179 reflections
b = 7.7039 (3) Åθ = 1.0–30.0°
c = 17.3078 (6) ŵ = 2.12 mm1
β = 98.240 (2)°T = 100 K
V = 2689.69 (16) Å3Orange, block
Z = 40.15 × 0.09 × 0.08 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6148 independent reflections
Radiation source: fine-focus sealed tube5118 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.043
Detector resolution: 16 pixels mm-1θmax = 27.5°, θmin = 2.5°
φ scans and ω scans with κ offseth = 2626
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1010
Tmin = 0.746, Tmax = 0.842l = 2222
25068 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + 8.0539P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
6148 reflectionsΔρmax = 0.63 e Å3
406 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.47434 (2)0.39867 (5)0.07544 (2)0.01087 (9)
K10.17619 (4)0.53183 (9)0.11705 (4)0.01892 (16)
K20.19572 (3)0.36084 (9)0.07023 (4)0.01670 (15)
K30.27474 (3)0.87045 (9)0.01255 (4)0.01761 (15)
K40.37676 (4)0.05611 (9)0.14504 (4)0.02025 (16)
O10.41934 (10)0.2347 (3)0.01663 (13)0.0155 (5)
O20.55123 (10)0.2576 (3)0.08187 (12)0.0138 (4)
O30.66101 (11)0.2786 (3)0.11647 (14)0.0178 (5)
O40.63860 (11)0.6017 (3)0.18521 (13)0.0175 (5)
O50.43257 (10)0.6088 (3)0.23723 (12)0.0144 (4)
O60.28491 (10)0.5095 (3)0.04127 (13)0.0144 (5)
O70.31296 (10)0.1927 (3)0.03135 (13)0.0145 (4)
O80.23728 (13)0.4224 (4)0.26454 (15)0.0296 (6)
H8O0.2349560.3118410.2668210.044*
H8P0.2202800.4609280.3037190.044*
O90.22781 (12)0.4456 (3)0.21414 (15)0.0260 (6)
H9P0.2700920.4590400.2106820.039*
H9O0.2098420.5229790.2459020.039*
O100.32908 (13)1.1134 (4)0.14694 (15)0.0306 (6)
H10O0.2870371.1370970.1356690.046*
H10P0.3388271.1265570.1977490.046*
N10.52942 (12)0.5586 (3)0.13120 (14)0.0113 (5)
N20.51068 (13)0.7242 (3)0.15852 (15)0.0124 (5)
N30.39268 (13)0.6979 (3)0.10530 (15)0.0131 (5)
N40.39871 (13)0.5297 (3)0.07165 (15)0.0122 (5)
C10.60452 (15)0.3371 (4)0.11225 (18)0.0137 (6)
C20.59253 (16)0.5163 (4)0.14705 (18)0.0146 (6)
C30.45459 (15)0.7945 (4)0.10429 (19)0.0140 (6)
H3A0.4474290.9170520.1181170.017*
H3B0.4661610.7924950.0506620.017*
C40.49161 (15)0.7092 (4)0.23624 (18)0.0140 (6)
H4A0.5283500.6545330.2715470.017*
H4B0.4845840.8268360.2565130.017*
C50.37883 (16)0.6825 (4)0.18499 (18)0.0155 (6)
H5A0.3687390.7991440.2042390.019*
H5B0.3389510.6093180.1853490.019*
C60.34231 (15)0.4539 (4)0.04236 (17)0.0117 (6)
C70.35790 (15)0.2774 (4)0.00678 (17)0.0122 (6)
Ni1B0.01223 (2)0.08795 (5)0.09162 (2)0.01243 (9)
O1B0.08679 (11)0.2257 (3)0.07813 (13)0.0166 (5)
O2B0.04769 (11)0.2677 (3)0.05952 (13)0.0156 (5)
O3B0.15683 (11)0.3148 (3)0.03336 (14)0.0184 (5)
O4B0.17542 (11)0.0118 (3)0.10065 (13)0.0164 (5)
O5B0.00334 (11)0.1490 (3)0.25474 (13)0.0170 (5)
O6B0.18685 (11)0.1330 (3)0.14427 (14)0.0185 (5)
O7B0.19555 (11)0.1959 (3)0.07804 (14)0.0200 (5)
N1B0.06184 (13)0.0419 (3)0.10402 (15)0.0133 (5)
N2B0.06258 (13)0.2169 (3)0.13205 (15)0.0134 (5)
N3B0.05905 (13)0.2534 (3)0.14984 (15)0.0135 (5)
N4B0.07292 (13)0.0845 (3)0.12181 (15)0.0140 (5)
C1B0.10848 (16)0.2241 (4)0.05852 (18)0.0144 (6)
C2B0.11930 (16)0.0406 (4)0.09058 (17)0.0137 (6)
C3B0.00599 (15)0.3127 (4)0.10940 (19)0.0146 (6)
H3B10.0064620.3004020.0523830.017*
H3B20.0113180.4374340.1206860.017*
C4B0.05815 (16)0.2189 (4)0.21681 (18)0.0152 (6)
H4B10.0952540.1504250.2322990.018*
H4B20.0627850.3398270.2345780.018*
C5B0.05751 (16)0.2475 (4)0.23366 (19)0.0158 (6)
H5B10.0547060.3675180.2533250.019*
H5B20.0995520.1964070.2595980.019*
C6B0.13592 (16)0.0447 (4)0.12181 (18)0.0154 (6)
C7B0.14124 (15)0.1389 (4)0.08983 (18)0.0143 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0117 (2)0.00866 (18)0.01215 (19)0.00042 (14)0.00137 (14)0.00210 (15)
K10.0225 (4)0.0128 (3)0.0229 (4)0.0021 (3)0.0082 (3)0.0018 (3)
K20.0181 (4)0.0124 (3)0.0182 (3)0.0002 (3)0.0022 (3)0.0009 (3)
K30.0162 (3)0.0130 (3)0.0229 (4)0.0001 (3)0.0006 (3)0.0043 (3)
K40.0253 (4)0.0118 (3)0.0265 (4)0.0019 (3)0.0134 (3)0.0026 (3)
O10.0140 (11)0.0129 (11)0.0195 (12)0.0001 (9)0.0021 (9)0.0028 (9)
O20.0149 (11)0.0116 (10)0.0149 (11)0.0018 (8)0.0020 (8)0.0011 (9)
O30.0124 (11)0.0158 (11)0.0253 (13)0.0022 (9)0.0030 (9)0.0007 (10)
O40.0151 (11)0.0154 (11)0.0207 (12)0.0003 (9)0.0016 (9)0.0013 (9)
O50.0159 (11)0.0146 (11)0.0135 (11)0.0009 (9)0.0044 (8)0.0014 (9)
O60.0135 (11)0.0127 (11)0.0168 (11)0.0013 (9)0.0016 (9)0.0016 (9)
O70.0144 (11)0.0138 (11)0.0148 (11)0.0021 (9)0.0005 (8)0.0015 (9)
O80.0368 (16)0.0286 (14)0.0253 (14)0.0059 (12)0.0103 (11)0.0025 (11)
O90.0159 (13)0.0345 (15)0.0268 (14)0.0018 (11)0.0006 (10)0.0045 (11)
O100.0259 (14)0.0390 (16)0.0269 (14)0.0052 (12)0.0038 (11)0.0047 (12)
N10.0137 (13)0.0095 (12)0.0107 (12)0.0008 (10)0.0022 (10)0.0013 (10)
N20.0151 (13)0.0104 (12)0.0118 (12)0.0006 (10)0.0018 (10)0.0017 (10)
N30.0177 (14)0.0090 (12)0.0125 (13)0.0001 (10)0.0021 (10)0.0040 (10)
N40.0176 (14)0.0075 (12)0.0116 (12)0.0018 (10)0.0024 (10)0.0028 (10)
C10.0176 (16)0.0137 (15)0.0105 (14)0.0010 (12)0.0042 (12)0.0031 (12)
C20.0179 (17)0.0124 (15)0.0141 (15)0.0020 (12)0.0039 (12)0.0019 (12)
C30.0158 (16)0.0091 (14)0.0164 (15)0.0002 (12)0.0002 (12)0.0002 (12)
C40.0174 (16)0.0141 (15)0.0106 (14)0.0009 (12)0.0022 (12)0.0019 (12)
C50.0177 (16)0.0152 (15)0.0139 (15)0.0005 (12)0.0036 (12)0.0020 (12)
C60.0149 (15)0.0110 (14)0.0092 (14)0.0001 (12)0.0023 (11)0.0008 (11)
C70.0165 (16)0.0098 (14)0.0105 (14)0.0003 (11)0.0026 (11)0.0020 (11)
Ni1B0.0128 (2)0.00920 (19)0.0149 (2)0.00029 (15)0.00073 (15)0.00233 (15)
O1B0.0159 (12)0.0116 (11)0.0224 (12)0.0001 (9)0.0028 (9)0.0032 (9)
O2B0.0159 (12)0.0122 (11)0.0179 (11)0.0007 (9)0.0001 (9)0.0019 (9)
O3B0.0165 (12)0.0134 (11)0.0246 (13)0.0028 (9)0.0003 (9)0.0034 (10)
O4B0.0149 (12)0.0140 (11)0.0203 (12)0.0005 (9)0.0021 (9)0.0004 (9)
O5B0.0202 (12)0.0165 (12)0.0138 (11)0.0000 (9)0.0007 (9)0.0009 (9)
O6B0.0139 (11)0.0157 (11)0.0251 (12)0.0009 (9)0.0004 (9)0.0003 (10)
O7B0.0164 (12)0.0168 (12)0.0277 (13)0.0025 (9)0.0067 (10)0.0025 (10)
N1B0.0168 (14)0.0075 (12)0.0152 (13)0.0003 (10)0.0009 (10)0.0000 (10)
N2B0.0158 (13)0.0095 (12)0.0149 (13)0.0000 (10)0.0021 (10)0.0021 (10)
N3B0.0154 (13)0.0094 (12)0.0154 (13)0.0013 (10)0.0014 (10)0.0048 (10)
N4B0.0146 (13)0.0101 (12)0.0170 (13)0.0006 (10)0.0018 (10)0.0021 (10)
C1B0.0197 (17)0.0128 (15)0.0109 (14)0.0019 (12)0.0023 (12)0.0021 (12)
C2B0.0188 (17)0.0114 (14)0.0104 (14)0.0001 (12)0.0004 (12)0.0018 (11)
C3B0.0133 (15)0.0122 (15)0.0176 (16)0.0013 (12)0.0002 (12)0.0008 (12)
C4B0.0157 (16)0.0129 (15)0.0165 (15)0.0008 (12)0.0009 (12)0.0037 (12)
C5B0.0177 (17)0.0127 (15)0.0168 (16)0.0014 (12)0.0014 (12)0.0041 (12)
C6B0.0170 (16)0.0154 (16)0.0137 (15)0.0001 (12)0.0017 (12)0.0035 (12)
C7B0.0163 (16)0.0144 (15)0.0122 (15)0.0005 (12)0.0017 (12)0.0007 (12)
Geometric parameters (Å, º) top
Ni1—N41.836 (3)O5—C41.433 (4)
Ni1—N11.844 (3)O5—C51.434 (4)
Ni1—O11.887 (2)O6—C61.244 (4)
Ni1—O21.897 (2)O7—C71.236 (4)
K1—O6Bi2.628 (2)O8—H8O0.8546
K1—O7B2.717 (2)O8—H8P0.8575
K1—O62.737 (2)O9—H9P0.8615
K1—O82.805 (3)O9—H9O0.8567
K1—O3Bii2.834 (2)O10—H10O0.8704
K1—O1B2.998 (2)O10—H10P0.8792
K1—N3Bi3.025 (3)N1—C21.317 (4)
K1—C7B3.130 (3)N1—N21.431 (3)
K1—C6Bi3.368 (3)N2—C41.457 (4)
K1—K23.5736 (10)N2—C31.474 (4)
K1—K33.8927 (10)N3—N41.433 (3)
K2—O62.708 (2)N3—C51.452 (4)
K2—O72.717 (2)N3—C31.467 (4)
K2—O3Bii2.725 (2)N4—C61.324 (4)
K2—O92.743 (3)C1—C21.540 (4)
K2—O4Biii2.760 (2)C3—H3A0.9900
K2—O7B2.864 (2)C3—H3B0.9900
K2—N2Biii2.984 (3)C4—H4A0.9900
K2—C63.401 (3)C4—H4B0.9900
K2—C73.443 (3)C5—H5A0.9900
K2—C2Biii3.458 (3)C5—H5B0.9900
K2—K3iv4.2728 (10)C6—C71.544 (4)
K3—O7i2.742 (2)Ni1B—N4B1.839 (3)
K3—O3Bii2.810 (2)Ni1B—N1B1.849 (3)
K3—O4Bii2.826 (2)Ni1B—O2B1.877 (2)
K3—O62.827 (2)Ni1B—O1B1.895 (2)
K3—O3v2.976 (2)O1B—C7B1.287 (4)
K3—N33.003 (3)O2B—C1B1.281 (4)
K3—O103.066 (3)O3B—C1B1.235 (4)
K3—O6Bi3.095 (2)O4B—C2B1.249 (4)
K3—O7Bi3.271 (2)O5B—C5B1.430 (4)
K3—C2Bii3.475 (3)O5B—C4B1.434 (4)
K3—C63.501 (3)O6B—C6B1.255 (4)
K3—C1Bii3.512 (3)O7B—C7B1.235 (4)
K3—H10O2.9446N1B—C2B1.323 (4)
K4—O72.721 (2)N1B—N2B1.434 (3)
K4—O4v2.733 (2)N2B—C4B1.457 (4)
K4—O3vi2.756 (2)N2B—C3B1.469 (4)
K4—O5vii2.779 (2)N3B—N4B1.431 (3)
K4—N2v2.887 (3)N3B—C5B1.456 (4)
K4—O2vi2.955 (2)N3B—C3B1.480 (4)
K4—O8vii3.047 (3)N4B—C6B1.320 (4)
K4—C1vi3.095 (3)C1B—C2B1.546 (4)
K4—O13.127 (2)C3B—H3B10.9900
K4—C73.201 (3)C3B—H3B20.9900
K4—C2v3.354 (3)C4B—H4B10.9900
K4—C5vii3.474 (3)C4B—H4B20.9900
O1—C71.282 (4)C5B—H5B10.9900
O2—C11.291 (4)C5B—H5B20.9900
O3—C11.229 (4)C6B—C7B1.528 (4)
O4—C21.254 (4)
N4—Ni1—N195.53 (11)N2v—K4—O172.10 (7)
N4—Ni1—O185.30 (10)O2vi—K4—O188.24 (6)
N1—Ni1—O1178.66 (11)O8vii—K4—O1123.68 (7)
N4—Ni1—O2177.92 (11)C1vi—K4—O1104.79 (7)
N1—Ni1—O285.18 (10)O7—K4—C722.25 (7)
O1—Ni1—O294.02 (9)O4v—K4—C770.87 (7)
O6Bi—K1—O7B165.68 (7)O3vi—K4—C7106.35 (7)
O6Bi—K1—O695.50 (7)O5vii—K4—C7162.77 (8)
O7B—K1—O670.41 (7)N2v—K4—C786.82 (8)
O6Bi—K1—O896.75 (8)O2vi—K4—C7104.10 (7)
O7B—K1—O883.03 (8)O8vii—K4—C7100.36 (8)
O6—K1—O897.64 (7)C1vi—K4—C7113.38 (8)
O6Bi—K1—O3Bii75.65 (7)O1—K4—C723.34 (7)
O7B—K1—O3Bii100.07 (7)O7—K4—C2v74.75 (7)
O6—K1—O3Bii66.54 (7)O4v—K4—C2v20.73 (7)
O8—K1—O3Bii161.16 (8)O3vi—K4—C2v167.98 (8)
O6Bi—K1—O1B147.71 (7)O5vii—K4—C2v110.16 (7)
O7B—K1—O1B45.58 (6)N2v—K4—C2v43.27 (7)
O6—K1—O1B110.52 (7)O2vi—K4—C2v136.36 (7)
O8—K1—O1B98.30 (7)O8vii—K4—C2v95.92 (8)
O3Bii—K1—O1B96.98 (7)C1vi—K4—C2v160.86 (8)
O6Bi—K1—N3Bi58.41 (7)O1—K4—C2v63.19 (7)
O7B—K1—N3Bi135.57 (7)C7—K4—C2v61.97 (8)
O6—K1—N3Bi147.07 (7)O7—K4—C5vii151.88 (7)
O8—K1—N3Bi104.66 (8)O4v—K4—C5vii108.05 (7)
O3Bii—K1—N3Bi86.25 (7)O3vi—K4—C5vii72.21 (7)
O1B—K1—N3Bi90.10 (7)O5vii—K4—C5vii23.29 (7)
O6Bi—K1—C7B171.25 (8)N2v—K4—C5vii97.79 (7)
O7B—K1—C7B23.02 (7)O2vi—K4—C5vii79.33 (7)
O6—K1—C7B92.84 (8)O8vii—K4—C5vii73.58 (7)
O8—K1—C7B84.73 (8)C1vi—K4—C5vii67.75 (8)
O3Bii—K1—C7B105.44 (8)O1—K4—C5vii162.73 (7)
O1B—K1—C7B24.11 (7)C7—K4—C5vii173.84 (8)
N3Bi—K1—C7B112.86 (8)C2v—K4—C5vii119.08 (8)
O6Bi—K1—C6Bi19.63 (7)C7—O1—Ni1113.14 (19)
O7B—K1—C6Bi166.68 (8)C7—O1—K481.58 (17)
O6—K1—C6Bi106.83 (7)Ni1—O1—K4147.60 (10)
O8—K1—C6Bi110.29 (8)C1—O2—Ni1113.09 (19)
O3Bii—K1—C6Bi67.44 (7)C1—O2—K4vi83.85 (17)
O1B—K1—C6Bi128.70 (7)Ni1—O2—K4vi148.49 (10)
N3Bi—K1—C6Bi42.60 (7)C1—O3—K4vi94.03 (19)
C7B—K1—C6Bi152.81 (8)C1—O3—K3v127.3 (2)
O6Bi—K1—K2120.51 (6)K4vi—O3—K3v86.44 (6)
O7B—K1—K252.02 (5)C2—O4—K4v108.80 (19)
O6—K1—K248.63 (5)C4—O5—C5110.2 (2)
O8—K1—K2128.47 (6)C4—O5—K4viii133.50 (17)
O3Bii—K1—K248.67 (5)C5—O5—K4viii106.70 (16)
O1B—K1—K269.47 (5)C6—O6—K2113.52 (19)
N3Bi—K1—K2124.43 (6)C6—O6—K1147.0 (2)
C7B—K1—K263.86 (6)K2—O6—K182.02 (6)
C6Bi—K1—K2116.01 (6)C6—O6—K3112.75 (18)
O6Bi—K1—K352.41 (5)K2—O6—K3105.41 (7)
O7B—K1—K3114.82 (5)K1—O6—K388.76 (6)
O6—K1—K346.56 (5)C7—O7—K2116.01 (19)
O8—K1—K3115.66 (6)C7—O7—K4101.30 (18)
O3Bii—K1—K346.14 (5)K2—O7—K4119.99 (8)
O1B—K1—K3139.50 (5)C7—O7—K3iv123.27 (19)
N3Bi—K1—K3101.21 (5)K2—O7—K3iv103.04 (7)
C7B—K1—K3134.40 (6)K4—O7—K3iv91.98 (7)
C6Bi—K1—K360.40 (6)K1—O8—K4viii135.32 (10)
K2—K1—K372.16 (2)K1—O8—H8O108.7
O6—K2—O763.15 (6)K4viii—O8—H8O94.8
O6—K2—O3Bii68.50 (7)K1—O8—H8P116.0
O7—K2—O3Bii130.88 (7)K4viii—O8—H8P91.6
O6—K2—O9108.86 (7)H8O—O8—H8P106.1
O7—K2—O991.30 (7)K2—O9—H9P109.4
O3Bii—K2—O996.29 (8)K2—O9—H9O127.8
O6—K2—O4Biii127.95 (7)H9P—O9—H9O107.0
O7—K2—O4Biii71.65 (7)K3—O10—H10O73.8
O3Bii—K2—O4Biii153.83 (7)K3—O10—H10P146.5
O9—K2—O4Biii96.17 (8)H10O—O10—H10P105.9
O6—K2—O7B68.65 (7)C2—N1—N2116.8 (3)
O7—K2—O7B71.37 (7)C2—N1—Ni1116.5 (2)
O3Bii—K2—O7B99.16 (7)N2—N1—Ni1126.66 (19)
O9—K2—O7B161.85 (8)N1—N2—C4110.7 (2)
O4Biii—K2—O7B73.70 (7)N1—N2—C3109.7 (2)
O6—K2—N2Biii153.59 (7)C4—N2—C3109.4 (2)
O7—K2—N2Biii129.35 (7)N1—N2—K4v104.06 (16)
O3Bii—K2—N2Biii98.31 (7)C4—N2—K4v116.19 (18)
O9—K2—N2Biii94.92 (7)C3—N2—K4v106.62 (17)
O4Biii—K2—N2Biii57.71 (7)N4—N3—C5110.6 (2)
O7B—K2—N2Biii92.22 (7)N4—N3—C3109.3 (2)
O6—K2—C619.59 (7)C5—N3—C3109.7 (2)
O7—K2—C644.71 (7)N4—N3—K3106.96 (16)
O3Bii—K2—C686.20 (7)C5—N3—K3107.10 (18)
O9—K2—C699.55 (7)C3—N3—K3113.13 (18)
O4Biii—K2—C6114.21 (7)C6—N4—N3115.7 (2)
O7B—K2—C672.17 (7)C6—N4—Ni1116.7 (2)
N2Biii—K2—C6164.29 (7)N3—N4—Ni1127.1 (2)
O6—K2—C745.08 (7)O3—C1—O2125.2 (3)
O7—K2—C718.82 (7)O3—C1—C2120.4 (3)
O3Bii—K2—C7112.08 (7)O2—C1—C2114.4 (3)
O9—K2—C793.17 (7)O3—C1—K4vi62.64 (17)
O4Biii—K2—C790.08 (7)O2—C1—K4vi71.65 (16)
O7B—K2—C772.22 (7)C2—C1—K4vi145.90 (19)
N2Biii—K2—C7147.43 (7)O4—C2—N1127.9 (3)
C6—K2—C726.07 (7)O4—C2—C1121.8 (3)
O6—K2—C2Biii134.22 (7)N1—C2—C1110.2 (3)
O7—K2—C2Biii88.06 (7)O4—C2—K4v50.47 (16)
O3Bii—K2—C2Biii134.59 (7)N1—C2—K4v86.15 (18)
O9—K2—C2Biii106.44 (8)C1—C2—K4v146.74 (19)
O4Biii—K2—C2Biii19.29 (7)N3—C3—N2113.3 (2)
O7B—K2—C2Biii68.67 (7)N3—C3—H3A108.9
N2Biii—K2—C2Biii42.10 (7)N2—C3—H3A108.9
C6—K2—C2Biii126.35 (7)N3—C3—H3B108.9
C7—K2—C2Biii105.43 (7)N2—C3—H3B108.9
O6—K2—K149.34 (5)H3A—C3—H3B107.7
O7—K2—K199.18 (5)O5—C4—N2112.9 (2)
O3Bii—K2—K151.36 (5)O5—C4—H4A109.0
O9—K2—K1143.89 (6)N2—C4—H4A109.0
O4Biii—K2—K1119.94 (5)O5—C4—H4B109.0
O7B—K2—K148.41 (5)N2—C4—H4B109.0
N2Biii—K2—K1104.38 (6)H4A—C4—H4B107.8
C6—K2—K166.77 (5)O5—C5—N3113.3 (2)
C7—K2—K186.75 (5)O5—C5—K4viii50.01 (13)
C2Biii—K2—K1108.36 (5)N3—C5—K4viii151.1 (2)
O6—K2—K3iv87.29 (5)O5—C5—H5A108.9
O7—K2—K3iv38.69 (5)N3—C5—H5A108.9
O3Bii—K2—K3iv147.21 (6)K4viii—C5—H5A99.6
O9—K2—K3iv112.80 (6)O5—C5—H5B108.9
O4Biii—K2—K3iv40.67 (5)N3—C5—H5B108.9
O7B—K2—K3iv49.92 (5)K4viii—C5—H5B65.4
N2Biii—K2—K3iv94.10 (5)H5A—C5—H5B107.7
C6—K2—K3iv74.71 (5)O6—C6—N4128.1 (3)
C7—K2—K3iv53.87 (5)O6—C6—C7123.0 (3)
C2Biii—K2—K3iv52.13 (5)N4—C6—C7108.9 (3)
K1—K2—K3iv96.17 (2)O6—C6—K246.89 (15)
O7i—K3—O3Bii130.32 (7)N4—C6—K2162.9 (2)
O7i—K3—O4Bii70.29 (6)C7—C6—K278.47 (16)
O3Bii—K3—O4Bii60.07 (7)O6—C6—K348.13 (15)
O7i—K3—O6157.32 (7)N4—C6—K387.33 (18)
O3Bii—K3—O665.69 (6)C7—C6—K3147.92 (19)
O4Bii—K3—O6121.88 (7)K2—C6—K379.28 (7)
O7i—K3—O3v88.18 (7)O7—C7—O1124.8 (3)
O3Bii—K3—O3v92.43 (7)O7—C7—C6119.9 (3)
O4Bii—K3—O3v88.69 (7)O1—C7—C6115.2 (3)
O6—K3—O3v73.94 (6)O7—C7—K456.45 (16)
O7i—K3—N3108.15 (7)O1—C7—K475.08 (16)
O3Bii—K3—N3120.86 (7)C6—C7—K4148.43 (19)
O4Bii—K3—N3168.61 (7)O7—C7—K245.16 (15)
O6—K3—N355.78 (7)O1—C7—K2164.7 (2)
O3v—K3—N379.96 (7)C6—C7—K275.46 (16)
O7i—K3—O1064.62 (7)K4—C7—K290.18 (8)
O3Bii—K3—O10136.54 (7)N4B—Ni1B—N1B95.93 (11)
O4Bii—K3—O10115.82 (7)N4B—Ni1B—O2B178.25 (11)
O6—K3—O10117.23 (7)N1B—Ni1B—O2B85.75 (10)
O3v—K3—O10130.90 (7)N4B—Ni1B—O1B85.46 (10)
N3—K3—O1071.96 (7)N1B—Ni1B—O1B178.61 (11)
O7i—K3—O6Bi115.43 (7)O2B—Ni1B—O1B92.86 (9)
O3Bii—K3—O6Bi69.03 (7)C7B—O1B—Ni1B112.2 (2)
O4Bii—K3—O6Bi94.66 (6)C7B—O1B—K183.73 (17)
O6—K3—O6Bi84.13 (6)Ni1B—O1B—K1152.27 (11)
O3v—K3—O6Bi155.90 (7)C1B—O2B—Ni1B113.4 (2)
N3—K3—O6Bi96.08 (7)C1B—O3B—K2ii132.9 (2)
O10—K3—O6Bi68.32 (7)C1B—O3B—K3ii114.8 (2)
O7i—K3—O7Bi64.91 (6)K2ii—O3B—K3ii105.44 (8)
O3Bii—K3—O7Bi92.46 (6)C1B—O3B—K1ii124.0 (2)
O4Bii—K3—O7Bi66.72 (6)K2ii—O3B—K1ii79.97 (6)
O6—K3—O7Bi136.08 (6)K3ii—O3B—K1ii87.20 (7)
O3v—K3—O7Bi147.96 (7)C2B—O4B—K2iii113.82 (19)
N3—K3—O7Bi123.44 (7)C2B—O4B—K3ii110.98 (19)
O10—K3—O7Bi53.97 (6)K2iii—O4B—K3ii99.81 (7)
O6Bi—K3—O7Bi52.04 (6)C5B—O5B—C4B109.9 (2)
O7i—K3—C2Bii87.34 (7)C6B—O6B—K1iv115.7 (2)
O3Bii—K3—C2Bii43.53 (7)C6B—O6B—K3iv107.9 (2)
O4Bii—K3—C2Bii19.60 (7)K1iv—O6B—K3iv85.30 (7)
O6—K3—C2Bii108.83 (7)C7B—O7B—K197.60 (19)
O3v—K3—C2Bii99.07 (7)C7B—O7B—K2115.0 (2)
N3—K3—C2Bii164.39 (7)K1—O7B—K279.58 (6)
O10—K3—C2Bii118.22 (7)C7B—O7B—K3iv106.4 (2)
O6Bi—K3—C2Bii78.38 (7)K1—O7B—K3iv155.85 (9)
O7Bi—K3—C2Bii64.41 (7)K2—O7B—K3iv88.02 (6)
O7i—K3—C6138.54 (7)C2B—N1B—N2B117.3 (3)
O3Bii—K3—C683.02 (7)C2B—N1B—Ni1B115.9 (2)
O4Bii—K3—C6133.08 (7)N2B—N1B—Ni1B126.6 (2)
O6—K3—C619.12 (6)N1B—N2B—C4B110.4 (2)
O3v—K3—C663.31 (7)N1B—N2B—C3B109.6 (2)
N3—K3—C641.19 (7)C4B—N2B—C3B109.0 (2)
O10—K3—C6110.86 (7)N1B—N2B—K2iii106.33 (17)
O6Bi—K3—C698.09 (7)C4B—N2B—K2iii106.21 (18)
O7Bi—K3—C6148.73 (7)C3B—N2B—K2iii115.23 (18)
C2Bii—K3—C6124.54 (7)N4B—N3B—C5B110.0 (2)
O7i—K3—C1Bii112.89 (7)N4B—N3B—C3B109.1 (2)
O3Bii—K3—C1Bii18.63 (7)C5B—N3B—C3B109.6 (2)
O4Bii—K3—C1Bii43.75 (7)N4B—N3B—K1iv103.54 (16)
O6—K3—C1Bii84.28 (7)C5B—N3B—K1iv109.54 (18)
O3v—K3—C1Bii99.41 (7)C3B—N3B—K1iv114.86 (18)
N3—K3—C1Bii138.92 (7)C6B—N4B—N3B116.8 (3)
O10—K3—C1Bii128.16 (7)C6B—N4B—Ni1B116.5 (2)
O6Bi—K3—C1Bii67.97 (7)N3B—N4B—Ni1B126.6 (2)
O7Bi—K3—C1Bii77.36 (7)O3B—C1B—O2B125.3 (3)
C2Bii—K3—C1Bii25.56 (7)O3B—C1B—C2B119.7 (3)
C6—K3—C1Bii101.59 (7)O2B—C1B—C2B115.0 (3)
O7i—K3—H10O64.6O3B—C1B—K3ii46.60 (16)
O3Bii—K3—H10O122.7O2B—C1B—K3ii160.3 (2)
O4Bii—K3—H10O102.2C2B—C1B—K3ii75.88 (17)
O6—K3—H10O124.2O4B—C2B—N1B128.7 (3)
O3v—K3—H10O144.2O4B—C2B—C1B121.8 (3)
N3—K3—H10O86.8N1B—C2B—C1B109.5 (3)
O10—K3—H10O16.5O4B—C2B—K2iii46.89 (15)
O6Bi—K3—H10O58.1N1B—C2B—K2iii87.87 (18)
O7Bi—K3—H10O37.8C1B—C2B—K2iii150.1 (2)
C2Bii—K3—H10O102.2O4B—C2B—K3ii49.41 (15)
C6—K3—H10O122.8N1B—C2B—K3ii154.7 (2)
C1Bii—K3—H10O112.1C1B—C2B—K3ii78.56 (17)
O7—K4—O4v76.22 (7)K2iii—C2B—K3ii76.10 (7)
O7—K4—O3vi93.28 (7)N2B—C3B—N3B113.8 (3)
O4v—K4—O3vi157.43 (7)N2B—C3B—H3B1108.8
O7—K4—O5vii174.39 (7)N3B—C3B—H3B1108.8
O4v—K4—O5vii107.36 (7)N2B—C3B—H3B2108.8
O3vi—K4—O5vii81.84 (7)N3B—C3B—H3B2108.8
O7—K4—N2v107.43 (7)H3B1—C3B—H3B2107.7
O4v—K4—N2v58.50 (7)O5B—C4B—N2B112.4 (3)
O3vi—K4—N2v143.96 (7)O5B—C4B—H4B1109.1
O5vii—K4—N2v78.18 (7)N2B—C4B—H4B1109.1
O7—K4—O2vi108.20 (7)O5B—C4B—H4B2109.1
O4v—K4—O2vi156.33 (7)N2B—C4B—H4B2109.1
O3vi—K4—O2vi45.97 (6)H4B1—C4B—H4B2107.9
O5vii—K4—O2vi70.34 (6)O5B—C5B—N3B113.5 (2)
N2v—K4—O2vi98.69 (7)O5B—C5B—H5B1108.9
O7—K4—O8vii80.97 (7)N3B—C5B—H5B1108.9
O4v—K4—O8vii75.67 (7)O5B—C5B—H5B2108.9
O3vi—K4—O8vii83.04 (7)N3B—C5B—H5B2108.9
O5vii—K4—O8vii95.62 (7)H5B1—C5B—H5B2107.7
N2v—K4—O8vii128.35 (8)O6B—C6B—N4B129.5 (3)
O2vi—K4—O8vii127.72 (7)O6B—C6B—C7B121.0 (3)
O7—K4—C1vi107.76 (8)N4B—C6B—C7B109.5 (3)
O4v—K4—C1vi175.75 (8)O6B—C6B—K1iv44.70 (15)
O3vi—K4—C1vi23.33 (7)N4B—C6B—K1iv90.89 (19)
O5vii—K4—C1vi68.56 (7)C7B—C6B—K1iv149.0 (2)
N2v—K4—C1vi120.66 (8)O7B—C7B—O1B124.2 (3)
O2vi—K4—C1vi24.50 (7)O7B—C7B—C6B120.1 (3)
O8vii—K4—C1vi103.22 (8)O1B—C7B—C6B115.7 (3)
O7—K4—O144.19 (6)O7B—C7B—K159.38 (17)
O4v—K4—O179.06 (6)O1B—C7B—K172.16 (17)
O3vi—K4—O1107.45 (7)C6B—C7B—K1150.1 (2)
O5vii—K4—O1140.07 (6)
N4—Ni1—O1—C75.2 (2)K3—C6—C7—O1121.4 (3)
O2—Ni1—O1—C7172.8 (2)O6—C6—C7—K480.9 (5)
N4—Ni1—O1—K4106.9 (2)N4—C6—C7—K498.5 (4)
O2—Ni1—O1—K475.08 (19)K2—C6—C7—K465.4 (3)
N1—Ni1—O2—C16.6 (2)K3—C6—C7—K418.5 (7)
O1—Ni1—O2—C1172.3 (2)O6—C6—C7—K215.5 (3)
N1—Ni1—O2—K4vi111.6 (2)N4—C6—C7—K2163.9 (2)
O1—Ni1—O2—K4vi69.5 (2)K3—C6—C7—K246.9 (3)
N4—Ni1—N1—C2179.1 (2)N4B—Ni1B—O1B—C7B4.4 (2)
O2—Ni1—N1—C22.9 (2)O2B—Ni1B—O1B—C7B175.1 (2)
N4—Ni1—N1—N20.5 (2)N4B—Ni1B—O1B—K1117.2 (2)
O2—Ni1—N1—N2177.6 (2)O2B—Ni1B—O1B—K163.2 (2)
C2—N1—N2—C490.7 (3)N1B—Ni1B—O2B—C1B1.5 (2)
Ni1—N1—N2—C489.7 (3)O1B—Ni1B—O2B—C1B178.5 (2)
C2—N1—N2—C3148.5 (3)N4B—Ni1B—N1B—C2B177.3 (2)
Ni1—N1—N2—C331.1 (3)O2B—Ni1B—N1B—C2B3.2 (2)
C2—N1—N2—K4v34.8 (3)N4B—Ni1B—N1B—N2B2.3 (3)
Ni1—N1—N2—K4v144.78 (16)O2B—Ni1B—N1B—N2B178.2 (2)
C5—N3—N4—C683.1 (3)C2B—N1B—N2B—C4B86.4 (3)
C3—N3—N4—C6156.0 (3)Ni1B—N1B—N2B—C4B88.5 (3)
K3—N3—N4—C633.3 (3)C2B—N1B—N2B—C3B153.5 (3)
C5—N3—N4—Ni188.9 (3)Ni1B—N1B—N2B—C3B31.5 (3)
C3—N3—N4—Ni132.0 (3)C2B—N1B—N2B—K2iii28.4 (3)
K3—N3—N4—Ni1154.80 (16)Ni1B—N1B—N2B—K2iii156.67 (16)
N1—Ni1—N4—C6172.8 (2)C5B—N3B—N4B—C6B89.9 (3)
O1—Ni1—N4—C68.2 (2)C3B—N3B—N4B—C6B149.9 (3)
N1—Ni1—N4—N31.0 (2)K1iv—N3B—N4B—C6B27.1 (3)
O1—Ni1—N4—N3179.9 (2)C5B—N3B—N4B—Ni1B85.9 (3)
K4vi—O3—C1—O236.9 (3)C3B—N3B—N4B—Ni1B34.3 (3)
K3v—O3—C1—O251.7 (4)K1iv—N3B—N4B—Ni1B157.07 (16)
K4vi—O3—C1—C2141.0 (2)N1B—Ni1B—N4B—C6B179.7 (2)
K3v—O3—C1—C2130.4 (2)O1B—Ni1B—N4B—C6B0.3 (2)
K3v—O3—C1—K4vi88.59 (18)N1B—Ni1B—N4B—N3B3.9 (3)
Ni1—O2—C1—O3173.4 (2)O1B—Ni1B—N4B—N3B176.1 (2)
K4vi—O2—C1—O334.2 (3)K2ii—O3B—C1B—O2B57.3 (4)
Ni1—O2—C1—C28.5 (3)K3ii—O3B—C1B—O2B156.7 (2)
K4vi—O2—C1—C2143.9 (2)K1ii—O3B—C1B—O2B52.5 (4)
Ni1—O2—C1—K4vi152.39 (15)K2ii—O3B—C1B—C2B124.0 (3)
K4v—O4—C2—N141.1 (4)K3ii—O3B—C1B—C2B22.0 (3)
K4v—O4—C2—C1139.8 (2)K1ii—O3B—C1B—C2B126.2 (2)
N2—N1—C2—O42.0 (5)K2ii—O3B—C1B—K3ii146.0 (3)
Ni1—N1—C2—O4178.4 (3)K1ii—O3B—C1B—K3ii104.2 (2)
N2—N1—C2—C1178.8 (2)Ni1B—O2B—C1B—O3B173.6 (3)
Ni1—N1—C2—C10.8 (3)Ni1B—O2B—C1B—C2B5.2 (3)
N2—N1—C2—K4v28.5 (2)Ni1B—O2B—C1B—K3ii115.0 (6)
Ni1—N1—C2—K4v151.09 (15)K2iii—O4B—C2B—N1B35.3 (4)
O3—C1—C2—O45.2 (5)K3ii—O4B—C2B—N1B147.0 (3)
O2—C1—C2—O4173.0 (3)K2iii—O4B—C2B—C1B144.7 (2)
K4vi—C1—C2—O479.9 (4)K3ii—O4B—C2B—C1B33.1 (3)
O3—C1—C2—N1175.5 (3)K3ii—O4B—C2B—K2iii111.64 (18)
O2—C1—C2—N16.3 (4)K2iii—O4B—C2B—K3ii111.64 (18)
K4vi—C1—C2—N199.3 (4)N2B—N1B—C2B—O4B1.8 (5)
O3—C1—C2—K4v60.0 (5)Ni1B—N1B—C2B—O4B173.7 (3)
O2—C1—C2—K4v121.8 (3)N2B—N1B—C2B—C1B178.3 (2)
K4vi—C1—C2—K4v145.1 (2)Ni1B—N1B—C2B—C1B6.2 (3)
N4—N3—C3—N269.2 (3)N2B—N1B—C2B—K2iii23.2 (2)
C5—N3—C3—N252.2 (3)Ni1B—N1B—C2B—K2iii161.31 (15)
K3—N3—C3—N2171.75 (18)N2B—N1B—C2B—K3ii73.4 (6)
N1—N2—C3—N369.0 (3)Ni1B—N1B—C2B—K3ii111.1 (5)
C4—N2—C3—N352.6 (3)O3B—C1B—C2B—O4B8.7 (4)
K4v—N2—C3—N3178.98 (19)O2B—C1B—C2B—O4B172.4 (3)
C5—O5—C4—N257.2 (3)K3ii—C1B—C2B—O4B25.0 (3)
K4viii—O5—C4—N2162.24 (18)O3B—C1B—C2B—N1B171.3 (3)
N1—N2—C4—O566.0 (3)O2B—C1B—C2B—N1B7.5 (4)
C3—N2—C4—O554.9 (3)K3ii—C1B—C2B—N1B155.0 (2)
K4v—N2—C4—O5175.62 (17)O3B—C1B—C2B—K2iii48.9 (5)
C4—O5—C5—N356.9 (3)O2B—C1B—C2B—K2iii129.9 (3)
K4viii—O5—C5—N3151.9 (2)K3ii—C1B—C2B—K2iii32.6 (4)
C4—O5—C5—K4viii151.2 (2)O3B—C1B—C2B—K3ii16.3 (3)
N4—N3—C5—O566.4 (3)O2B—C1B—C2B—K3ii162.6 (3)
C3—N3—C5—O554.2 (3)N1B—N2B—C3B—N3B68.4 (3)
K3—N3—C5—O5177.35 (19)C4B—N2B—C3B—N3B52.5 (3)
N4—N3—C5—K4viii18.2 (5)K2iii—N2B—C3B—N3B171.76 (18)
C3—N3—C5—K4viii102.4 (4)N4B—N3B—C3B—N2B69.9 (3)
K3—N3—C5—K4viii134.4 (3)C5B—N3B—C3B—N2B50.6 (3)
K2—O6—C6—N4158.3 (3)K1iv—N3B—C3B—N2B174.42 (18)
K1—O6—C6—N488.6 (5)C5B—O5B—C4B—N2B59.4 (3)
K3—O6—C6—N438.5 (4)N1B—N2B—C4B—O5B63.8 (3)
K2—O6—C6—C721.0 (3)C3B—N2B—C4B—O5B56.6 (3)
K1—O6—C6—C792.1 (4)K2iii—N2B—C4B—O5B178.71 (19)
K3—O6—C6—C7140.8 (2)C4B—O5B—C5B—N3B57.7 (3)
K1—O6—C6—K2113.1 (4)N4B—N3B—C5B—O5B67.1 (3)
K3—O6—C6—K2119.79 (19)C3B—N3B—C5B—O5B52.9 (3)
K2—O6—C6—K3119.79 (19)K1iv—N3B—C5B—O5B179.72 (19)
K1—O6—C6—K3127.1 (4)K1iv—O6B—C6B—N4B36.6 (4)
N3—N4—C6—O60.9 (5)K3iv—O6B—C6B—N4B130.0 (3)
Ni1—N4—C6—O6171.9 (2)K1iv—O6B—C6B—C7B144.6 (2)
N3—N4—C6—C7178.5 (2)K3iv—O6B—C6B—C7B51.1 (3)
Ni1—N4—C6—C78.7 (3)K3iv—O6B—C6B—K1iv93.42 (17)
N3—N4—C6—K265.3 (8)N3B—N4B—C6B—O6B1.3 (5)
Ni1—N4—C6—K2121.9 (6)Ni1B—N4B—C6B—O6B174.9 (3)
N3—N4—C6—K326.8 (2)N3B—N4B—C6B—C7B179.7 (2)
Ni1—N4—C6—K3160.42 (15)Ni1B—N4B—C6B—C7B4.0 (3)
K2—O7—C7—O1164.9 (2)N3B—N4B—C6B—K1iv23.5 (2)
K4—O7—C7—O133.2 (3)Ni1B—N4B—C6B—K1iv160.30 (15)
K3iv—O7—C7—O166.7 (4)K1—O7B—C7B—O1B33.6 (3)
K2—O7—C7—C611.3 (3)K2—O7B—C7B—O1B48.4 (4)
K4—O7—C7—C6142.9 (2)K3iv—O7B—C7B—O1B144.0 (3)
K3iv—O7—C7—C6117.1 (2)K1—O7B—C7B—C6B145.2 (2)
K2—O7—C7—K4131.67 (18)K2—O7B—C7B—C6B132.8 (2)
K3iv—O7—C7—K499.98 (18)K3iv—O7B—C7B—C6B37.2 (3)
K4—O7—C7—K2131.67 (18)K2—O7B—C7B—K182.00 (13)
K3iv—O7—C7—K2128.3 (2)K3iv—O7B—C7B—K1177.60 (16)
Ni1—O1—C7—O7178.1 (2)Ni1B—O1B—C7B—O7B173.5 (3)
K4—O1—C7—O728.2 (3)K1—O1B—C7B—O7B30.0 (3)
Ni1—O1—C7—C61.8 (3)Ni1B—O1B—C7B—C6B7.7 (3)
K4—O1—C7—C6148.1 (2)K1—O1B—C7B—C6B148.9 (2)
Ni1—O1—C7—K4149.87 (15)Ni1B—O1B—C7B—K1156.51 (16)
Ni1—O1—C7—K2133.7 (7)O6B—C6B—C7B—O7B7.6 (5)
K4—O1—C7—K216.1 (8)N4B—C6B—C7B—O7B173.3 (3)
O6—C6—C7—O77.3 (4)K1iv—C6B—C7B—O7B44.8 (5)
N4—C6—C7—O7172.2 (3)O6B—C6B—C7B—O1B171.3 (3)
K2—C6—C7—O78.2 (2)N4B—C6B—C7B—O1B7.8 (4)
K3—C6—C7—O755.2 (5)K1iv—C6B—C7B—O1B136.3 (3)
O6—C6—C7—O1176.2 (3)O6B—C6B—C7B—K172.3 (5)
N4—C6—C7—O14.4 (4)N4B—C6B—C7B—K1106.7 (4)
K2—C6—C7—O1168.3 (2)K1iv—C6B—C7B—K1124.7 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y, z; (iv) x, y1, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8O···O9viii0.852.022.869 (4)173
O8—H8P···O4Bix0.852.012.858 (3)166
O9—H9P···O4v0.861.912.722 (3)157
O9—H9O···O6Bvii0.862.072.864 (3)153
O10—H10P···O4x0.882.022.887 (3)168
O10—H10O···O7Bi0.872.042.882 (3)164
Symmetry codes: (i) x, y+1, z; (v) x+1, y+1, z; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x+1, y+1/2, z+1/2.
Values for continuous shapes measures (CShM) of the polyhedra centred by the potassium cations top
ShapeCShM
K1K2
Heptagon (D7h)28.51529.484
Hexagonal pyramid (C6v)17.22520.349
Pentagonal bipyramid (D5h)5.1423.122
Capped octahedron (C3v)7.5397.840
Capped trigonal prism (C2v)6.3745.639
Johnson pentagonal bipyramid J13 (D5h)8.7896.943
Johnson elongated triangular pyramid J7 (C3v)16.35220.453
K3
Enneagon (D9h)32.593
Octagonal pyramid (C8v)23.087
Heptagonal bipyramid (D7h)14.962
Johnson triangular cupola J3 (C3v)12.759
Capped cube J8 (C4v)9.046
Spherical-relaxed capped cube (C4v)7.600
Capped square antiprism J10 (C4v)6.360
Spherical capped square antiprism (C4v)5.020
Tricapped trigonal prism J51 (D3h)6.694
Spherical tricapped trigonal prism (D3h)5.698
Tridiminished icosahedron J63 (C3v)11.379
Hula-hoop (C2v)6.577
Muffin (Cs)3.691
K4
Octagon (D8h)33.086
Heptagonal pyramid (C7v)18.988
Hexagonal bipyramid (D6h)14.426
Cube (Oh)10.884
Square antiprism (D4d)5.463
Triangular dodecahedron (D2d)5.187
Johnson gyrobifastigium J26 (D2d)11.775
Johnson elongated triangular bipyramid J14 (D3h)26.080
Biaugmented trigonal prism J50 (C2v)6.413
Biaugmented trigonal prism (C2v)6.587
Snub diphenoid J84 (D2d)7.862
Triakis tetrahedron (Td)11.175
Elongated trigonal bipyramid (D3h)20.295
Comparison of selected geometric data (A,°; mean values) for the Ni1 complex anion from calculated and X-ray data top
Geometric parameterX-rayPM7DFTBGFN2-xTB
Oxadiazinane ring
C—O1.4341.4131.4671.410
C—N1.4631.4891.4631.452
Carboxylate moiety
C—O1.2871.2761.4511.260
CO1.2331.2241.1961.208
Hydrazide moiety
C—O1.2491.2321.2271.216
C—N1.3211.3571.3931.332
N—N1.4321.4131.4131.415
C—Namide—Ni—Noxadiazine175.74133.89169.00162.81
Ni coordination arrangement
Ni—O1.8921.7761.7801.871
Ni—N1.8401.9551.9741.871
O—Ni—N chelate85.2493.3581.3282.94
O—Ni—N non-chelate178.29173.19162.52176.77
N—Ni—N85.5388.0990.7394.40
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv.

References

First citationAlvarez, S. (2013). Dalton Trans. 42, 8617–8636.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652–1671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Skelton, B. W. & Waters, T. N. (1976). J. Chem. Soc. Dalton Trans. pp. 1528–1536.  CSD CrossRef Web of Science Google Scholar
First citationElstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S. & Seifert, G. (1998). Phys. Rev. B, 58, 7260–7268.  Web of Science CrossRef CAS Google Scholar
First citationFeigel, M. & Strassner, T. (1993). J. Mol. Struct. Theochem, 283, 33–48.  CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrimme, S. (2019). xtb 6.4. Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M. Y., Dumitrică, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J. J., Köhler, C., Kowalczyk, T., Kubař, T., Lee, I. S., Lutsker, V., Maurer, R. J., Min, S. K., Mitchell, I., Negre, C., Niehaus, T. A., Niklasson, A. M. N., Page, A. J., Pecchia, A., Penazzi, G., Persson, M. P., Řezáč, J., Sánchez, C. G., Sternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V. W. & Frauenheim, T. (2020). J. Chem. Phys. 152, 124101.  Web of Science CrossRef PubMed Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J. J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationOliver, K. J. & Waters, T. N. (1982). J. Chem. Soc. Chem. Commun. pp. 1111–1112.  CSD CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPap, J. S., Szywriel, Ł., Rowińska-Żyrek, M., Nikitin, K., Fritsky, I. O. & Kozłowski, H. J. (2011). J. Mol. Catal. A Chem. 334, 77–82.  Web of Science CrossRef CAS Google Scholar
First citationPlutenko, M. O., Haukka, M., Husak, A. O., Iskenderov, T. S. & Mulloev, N. U. (2021). Acta Cryst. E77, 298–304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShylin, S. I., Pavliuk, M. V., D'Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019). Chem. Commun. 55, 3335–3338.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStewart, J. J. P. (2013). J. Mol. Model. 19, 1–32.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStewart, J. J. P. (2016). MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA.  Google Scholar
First citationTomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.  Web of Science CSD CrossRef PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationZheng, G., Witek, H. A., Bobadova-Parvanova, P., Irle, S., Musaev, D. G., Prabhakar, R., Morokuma, K., Lundberg, M., Elstner, M., Köhler, C. & Frauenheim, T. (2007). J. Chem. Theory Comput. 3, 1349–1367.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds