research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,1′-(pyridine-2,6-di­yl)bis­­[N-(pyridin-2-ylmeth­yl)methanaminium] dichloride dihydrate

crossmark logo

aLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France, bLaboratory of Chemistry, Molecular Engineering and Nanostructures, Department of Chemistry, Faculty of Sciences, University of Ferhat Abbas-Sétif -1, 19000 Sétif, Algeria, and cInstitut de Chimie de Toulouse UAR-CNRS 2599, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
*Correspondence e-mail: sonia.ladeira@lcc-toulouse.fr

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 22 October 2021; accepted 8 November 2021; online 16 November 2021)

In the title compound, C19H23N52+·2Cl·2H2O, the two pyridine side arms are not coplanar, with the terminal pyridine rings subtending a dihedral angle of 26.45 (6)°. In the crystal, hydrogen bonds, inter­molecular C—H⋯Cl contacts and a weak C—H⋯O inter­action connect the mol­ecule with neighbouring chloride counter-anions and lattice water mol­ecules. The crystal packing also features by ππ inter­actions with centroid-centroid distances of 3.4864 (12) and 3.5129 (13) Å.

1. Chemical context

In recent years, ruthenium nitrosyl complexes have attracted considerable attention, essentially because of their inter­esting photoreactivity properties such as photochromism (Schaniel et al., 2007[Schaniel, D., Imlau, M., Weisemoeller, T., Woike, T., Krämer, K. W. & Güdel, H. U. (2007). Adv. Mater. 19, 723-726.]) and nitric oxide photorelease (Rose & Mascharak, 2008a[Rose, M. J. & Mascharak, P. K. (2008a). Coord. Chem. Rev. 252, 2093-2114.]). Ruthenium nitrosyl complexes could have desirable photoreactivity properties relying on the nature of the ligands. The utilization of polydentate ligands in coordination chemistry gives a few benefits over monodentate ligands, in particular because of the chelate effect (Martell, 1967[Martell, A. E. (1967). Editor. Advances in Chemistry, pp. 272-294. Washington: American Chemical Society.]). Multidentate pyridyl­amine derivative ligands can better control the stability (Afshar et al., 2004[Afshar, R. K., Patra, A. K., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem. 43, 5736-5743.]; Eroy-Reveles et al., 2007[Eroy-Reveles, A. A., Hoffman-Luca, C. G. & Mascharak, P. K. (2007). Dalton Trans. pp. 5268-5274.]), solubility (Harrop et al., 2005[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2005). Inorg. Chem. 44, 6918-6920.]) and structural characteristics of the resulting complex. More particularly, ruthenium complexes derived from penta­dentate ligands are generally stable in physiological media (Halpenny et al., 2007[Halpenny, G. M., Olmstead, M. M. & Mascharak, P. K. (2007). Inorg. Chem. 46, 6601-6606.]; Rose & Mascharak, 2008b[Rose, M. J. & Mascharak, P. K. (2008b). Curr. Opin. Chem. Biol. 12, 238-244.]). This stability is necessary for (i) maintaining pharmacological activity, (ii) reducing the toxicity of free metal ions, and (iii) avoiding non-specific binding of partially connected metal ions with other biomolecules (Fry & Mascharak, 2011[Fry, N. L. & Mascharak, P. K. (2011). Acc. Chem. Res. 44, 289-298.]; Hoffman-Luca et al., 2009[Hoffman-Luca, C. G., Eroy-Reveles, A. A., Alvarenga, J. & Mascharak, P. K. (2009). Inorg. Chem. 48, 9104-9111.]; Patra & Mascharak, 2003[Patra, A. K. & Mascharak, P. K. (2003). Inorg. Chem. 42, 7363-7365.]; Heilman et al., 2012[Heilman, B. J., St John, J., Oliver, S. R. J. & Mascharak, P. K. (2012). J. Am. Chem. Soc. 134, 11573-11582.]). In the search for new systems, we report here the synthesis and crystal structure of 1,1′-(pyridine-2,6-di­yl)bis­[N-(pyridin-2-ylmeth­yl)methan­am­in­ium] dichloride dihydrate, which contains multiple coord­ination sites, and is thus an excellent candidate for forming stable ruthenium nitrosyl complexes.

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}] with one cationic mol­ecule, two chloride anions, and two water mol­ecules per asymmetric unit. In the organic mol­ecule, one terminal pyridine ring is almost co-planar with the central pyridine ring, making a dihedral angle of 4.56 (8)°, while the second terminal pyridine ring is out of the plane with a dihedral angle between the two terminal pyridine rings of 26.45 (6)° (Fig. 1[link]). Bond lengths are within normal ranges and comparable with values found for a similar compound, N,N′-dialkyl-2,6-pyridine­dimethanaminium (Kobayashi et al., 2006[Kobayashi, T., Yaita, T., Sugo, Y., Suda, H., Suzuki, S., Fujii, Y. & Nakano, Y. (2006). J. Heterocycl. Chem. 43, 549-557.]).

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of an arbitrary radius. The orange dashed lines represent hydrogen bonds, C—H⋯Cl inter­actions and the weak C—H⋯O inter­action. [Symmetry codes: (i) x − 1, y, z; (iii) x − 1, y + 1, z; (iv) −x + 1, −y + 1, −z + 2; (v) x, y − 1, z.]

3. Supra­molecular features

In the crystal, there are inter­molecular hydrogen bonds (Table 1[link]) and C—H⋯Cl and C—H⋯O inter­actions between the mol­ecules, the chloride anions and the lattice water mol­ecules. The mol­ecular structure of the compound is illustrated in Fig. 1[link] with hydrogen bonding indicated.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H201⋯Cl2 0.85 (3) 2.41 (3) 3.1844 (15) 152 (2)
O2—H202⋯N5 0.91 (3) 2.10 (3) 2.947 (2) 155 (2)
N2—H21⋯O2 0.94 (2) 1.89 (2) 2.804 (2) 165 (2)
N2—H22⋯Cl1i 0.86 (2) 2.31 (2) 3.1446 (17) 162.5 (17)
N4—H41⋯Cl2 0.91 (2) 2.25 (2) 3.1319 (17) 164.1 (19)
N4—H42⋯O1i 0.97 (2) 1.90 (2) 2.825 (2) 158 (2)
O1—H101⋯Cl1 0.93 (3) 2.43 (3) 3.2611 (15) 149 (2)
O1—H102⋯N3ii 1.00 (4) 1.93 (4) 2.920 (2) 172 (3)
C3—H3⋯Cl1iii 0.95 2.73 3.5702 (19) 148
C6—H6A⋯Cl1 0.99 2.8 3.751 (2) 161
C7—H7A⋯Cl1iv 0.99 2.78 3.7351 (18) 162
C10—H10⋯Cl1v 0.95 2.71 3.6469 (18) 168
C17—H17⋯O1vi 0.95 2.57 3.437 (2) 151
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z; (iii) [x-1, y+1, z]; (iv) [-x+1, -y+1, -z+2]; (v) [x, y-1, z]; (vi) [-x+1, -y+2, -z+1].

The crystal packing shows ππ inter­actions between two parallel neighbouring mol­ecules along the a-axis direction with a Cg1⋯Cg2 (x, y − 1, z) centroid–centroid distance of 3.4864 (12) Å, a perpendicular distance from the centroid Cg1 to the plane of the other ring of 3.2472 (8) Å and a slippage between the centroids of 1.100 Å. Similarly, the second ππ stacking inter­action has a Cg3⋯Cg3(−x, −y + 2, −z + 1) centroid-centroid distance of 3.5129 (13) Å, a perpendicular distance from the centroid Cg3 to the plane of the other ring of 3.2177 (8) Å and a slippage between the centroids of 1.410 Å. Cg1, Cg2 and Cg3 are the centroids of N1/C8–C12, N3/C1–C5 and N5/C15–C19 pyridine rings, respectively (Fig. 2[link]).

[Figure 2]
Figure 2
Views of the stacking along the a axis. Orange lines indicate ππ inter­actions. Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, last updated May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar compounds gave three hits. They include N,N'-bis­(2-pyridyl­meth­yl)pyridine-2,6-dicarboxamide (CSD refcode AVURAK; Jain et al., 2004[Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862-871.]), N,N′-bis­[2-(2-pyrid­yl)meth­yl]pyridine-2,6-dicarboxamide hemihydrate (HULKUU; Jian Ying Qi et al., 2002[Qi, J. Y., Chen, J., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2002). Acta Cryst. E58, o1232-o1233.]) and 2,6-bis­[(2-pyridiniometh­yl)ammonio­meth­yl]pyri­dine tetra­chloride monohydrate (IRODAV; Kobayashi et al., 2006[Kobayashi, T., Yaita, T., Sugo, Y., Suda, H., Suzuki, S., Fujii, Y. & Nakano, Y. (2006). J. Heterocycl. Chem. 43, 549-557.]). In those compounds, the two terminal pyridine rings are rotated out of the plane of the central pyridine ring with dihedral angles ranging from 63 to 89°.

5. Synthesis and crystallization

1,1′-(Pyridine-2,6-di­yl)bis­[N-(pyridin-2-ylmeth­yl)methan­am­inium] dichloride dihydrate compound was obtained following the procedure previously reported in the literature (Gruenwedel, 1968[Gruenwedel, D. W. (1968). Inorg. Chem. 7, 495-501.]; Newkome et al., 1984[Newkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400-2408.]; Darbre et al., 2002[Darbre, T., Dubs, C., Rusanov, E. & Stoeckli-Evans, H. (2002). Eur. J. Inorg. Chem. pp. 3284-3291.]; Kobayashi et al., 2006[Kobayashi, T., Yaita, T., Sugo, Y., Suda, H., Suzuki, S., Fujii, Y. & Nakano, Y. (2006). J. Heterocycl. Chem. 43, 549-557.]). The procedure used for the synthesis has three steps. Firstly, the synthesis of 2-[(tosyl­amino)­meth­yl]pyridine was carried out by treatment of 2-(amino­meth­yl) pyridine with NaOH and tosyl chloride in a two-phase system (water/diethyl ether) (Newkome et al., 1984[Newkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400-2408.]). In the second step, the coupling of 2-[(tosyl­amino)­meth­yl] pyridine with 2,6-bis­(bromo­meth­yl) pyridine, also in an two-phase system (di­chloro­methane/water) and nBu4NBr as phase-transfer catalyst gave 2,6-bis­{[(pyrid-2-ylmeth­yl)(tos­yl)amino]­meth­yl}pyridine, which could be isolated after chromatography (Darbre et al., 2002[Darbre, T., Dubs, C., Rusanov, E. & Stoeckli-Evans, H. (2002). Eur. J. Inorg. Chem. pp. 3284-3291.]). Finally, the tosyl­ate group of 2,6-bis­{[(pyrid-2-ylmeth­yl)(tos­yl)amino]­meth­yl}pyridine was removed using concentrated sulfuric acid for deprotection with heating at 393 K for 3 h to give an unstable brownish oil (Newkome et al., 1984[Newkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400-2408.]).

Slow diffusion between toluene and a wet di­chloro­methane solution of the brown oil set aside at room temperature gave colourless needles of the title compound suitable for X-ray diffraction within five days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms of the water mol­ecules and those bonded to nitro­gen atoms were located in difference-Fourier maps and refined freely with isotropic displacement parameters. All C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 (aromatic) or 0.99 Å (methyl­ene) and with Uiso(H) = 1.2Ueq(C). For two similar N—H distances, a restraint was applied to make them approximately equal with an effective standard deviation of 0.02 Å.

Table 2
Experimental details

Crystal data
Chemical formula C19H23N52+·2Cl·2H2O
Mr 428.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 110
a, b, c (Å) 7.1579 (6), 8.8119 (7), 17.4150 (13)
α, β, γ (°) 80.357 (3), 80.805 (3), 68.919 (3)
V3) 1004.52 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.2 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker Kappa APEXII Quazar
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.660, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29584, 6970, 4632
Rint 0.097
(sin θ/λ)max−1) 0.746
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.05, 0.123, 1.03
No. of reflections 6970
No. of parameters 283
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: APEX3 and SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1,1'-(Pyridine-2,6-diyl)bis[N-(pyridin-2-ylmethyl)methanaminium] dichloride dihydrate top
Crystal data top
C19H23N52+·2Cl·2H2OZ = 2
Mr = 428.36F(000) = 452
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1579 (6) ÅCell parameters from 4444 reflections
b = 8.8119 (7) Åθ = 3.2–31.4°
c = 17.4150 (13) ŵ = 0.35 mm1
α = 80.357 (3)°T = 110 K
β = 80.805 (3)°Needle, colourless
γ = 68.919 (3)°0.2 × 0.08 × 0.04 mm
V = 1004.52 (14) Å3
Data collection top
Bruker Kappa APEXII Quazar
diffractometer
6970 independent reflections
Radiation source: microfocus sealed tube4632 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.097
phi and ω scansθmax = 32.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.660, Tmax = 0.746k = 1313
29584 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.05Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
6970 reflections(Δ/σ)max = 0.002
283 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0133 (3)1.1436 (2)0.77592 (11)0.0187 (4)
H10.0571781.1576860.7256890.022*
C20.0514 (3)1.2816 (2)0.81173 (12)0.0209 (4)
H20.1186461.3876180.7866140.025*
C30.0110 (3)1.2617 (2)0.88529 (12)0.0209 (4)
H30.0138571.3539590.911860.025*
C40.1098 (3)1.1057 (2)0.91921 (11)0.0177 (4)
H40.153631.0890070.9696280.021*
C50.1446 (3)0.9729 (2)0.87872 (10)0.0141 (3)
C60.2661 (3)0.8058 (2)0.91424 (10)0.0154 (3)
H6A0.4050150.8025890.9161690.018*
H6B0.206990.785920.9687440.018*
C70.3958 (3)0.5088 (2)0.90648 (10)0.0152 (3)
H7A0.326560.4827150.9582060.018*
H7B0.5287320.5104150.9147880.018*
C80.4252 (3)0.3788 (2)0.85503 (10)0.0123 (3)
C90.5158 (3)0.2141 (2)0.88081 (10)0.0159 (4)
H90.5556490.1802460.932210.019*
C100.5467 (3)0.1000 (2)0.82986 (11)0.0169 (4)
H100.6107390.0135330.845390.02*
C110.4830 (3)0.1539 (2)0.75619 (10)0.0153 (3)
H110.5021040.0783540.7201770.018*
C120.3904 (3)0.3211 (2)0.73580 (10)0.0126 (3)
C130.3100 (3)0.3899 (2)0.65770 (10)0.0143 (3)
H13A0.3975720.3233190.6166890.017*
H13B0.1728910.3855420.6599940.017*
C140.2369 (3)0.6343 (2)0.55940 (10)0.0155 (3)
H14A0.0960050.6404980.559420.019*
H14B0.3218890.5622010.5199470.019*
C150.2502 (3)0.8035 (2)0.53686 (10)0.0134 (3)
C160.2354 (3)0.8748 (2)0.45938 (10)0.0161 (4)
H160.2259670.8152930.4203220.019*
C170.2348 (3)1.0342 (2)0.44024 (11)0.0186 (4)
H170.2255591.0856350.3878080.022*
C180.2479 (3)1.1176 (2)0.49930 (11)0.0197 (4)
H180.2459141.2274080.4883390.024*
C190.2640 (3)1.0358 (2)0.57442 (11)0.0169 (4)
H190.2737351.0926710.6145680.02*
N10.3620 (2)0.43202 (17)0.78433 (8)0.0120 (3)
N20.2743 (2)0.67297 (17)0.87003 (9)0.0127 (3)
N30.0822 (2)0.99031 (18)0.80798 (9)0.0160 (3)
N40.3036 (2)0.56233 (17)0.63771 (8)0.0129 (3)
N50.2668 (2)0.88122 (17)0.59397 (8)0.0146 (3)
Cl10.82559 (7)0.68542 (5)0.91223 (3)0.01828 (11)
Cl20.76725 (7)0.49614 (5)0.62355 (3)0.01743 (11)
O10.9786 (2)0.76904 (17)0.72866 (8)0.0210 (3)
O20.4905 (2)0.76661 (17)0.73277 (8)0.0205 (3)
H2010.592 (4)0.689 (3)0.7158 (14)0.038*
H2020.389 (4)0.807 (3)0.7017 (16)0.05*
H210.345 (3)0.689 (2)0.8209 (11)0.018 (5)*
H220.152 (3)0.676 (2)0.8706 (11)0.013 (5)*
H410.431 (4)0.562 (3)0.6375 (13)0.026 (6)*
H420.216 (4)0.622 (3)0.6789 (12)0.037 (7)*
H1010.917 (4)0.721 (3)0.7716 (15)0.040 (7)*
H1021.026 (5)0.841 (4)0.7531 (19)0.084 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0158 (9)0.0187 (9)0.0217 (9)0.0080 (7)0.0011 (7)0.0014 (7)
C20.0147 (9)0.0153 (8)0.0302 (10)0.0057 (7)0.0053 (8)0.0016 (7)
C30.0187 (10)0.0150 (8)0.0291 (10)0.0080 (7)0.0087 (8)0.0084 (7)
C40.0159 (9)0.0194 (9)0.0187 (9)0.0077 (7)0.0042 (7)0.0068 (7)
C50.0121 (9)0.0145 (8)0.0164 (8)0.0062 (7)0.0024 (7)0.0031 (6)
C60.0184 (9)0.0148 (8)0.0142 (8)0.0053 (7)0.0028 (7)0.0047 (6)
C70.0179 (9)0.0132 (8)0.0133 (8)0.0039 (7)0.0046 (7)0.0012 (6)
C80.0109 (8)0.0136 (7)0.0136 (8)0.0062 (6)0.0010 (6)0.0002 (6)
C90.0164 (9)0.0144 (8)0.0173 (8)0.0061 (7)0.0060 (7)0.0032 (6)
C100.0135 (9)0.0112 (8)0.0240 (9)0.0035 (7)0.0021 (7)0.0016 (7)
C110.0147 (9)0.0122 (8)0.0202 (9)0.0061 (7)0.0005 (7)0.0038 (6)
C120.0099 (8)0.0121 (7)0.0160 (8)0.0043 (6)0.0005 (6)0.0015 (6)
C130.0180 (9)0.0109 (7)0.0156 (8)0.0059 (7)0.0022 (7)0.0030 (6)
C140.0199 (9)0.0153 (8)0.0120 (8)0.0060 (7)0.0053 (7)0.0003 (6)
C150.0100 (8)0.0148 (8)0.0138 (8)0.0028 (6)0.0017 (6)0.0007 (6)
C160.0129 (9)0.0186 (8)0.0145 (8)0.0030 (7)0.0016 (7)0.0012 (7)
C170.0116 (9)0.0227 (9)0.0174 (9)0.0045 (7)0.0013 (7)0.0052 (7)
C180.0141 (9)0.0163 (8)0.0270 (10)0.0057 (7)0.0035 (8)0.0038 (7)
C190.0147 (9)0.0151 (8)0.0219 (9)0.0062 (7)0.0029 (7)0.0014 (7)
N10.0113 (7)0.0118 (6)0.0129 (7)0.0042 (5)0.0020 (5)0.0004 (5)
N20.0147 (8)0.0116 (7)0.0125 (7)0.0044 (6)0.0030 (6)0.0018 (5)
N30.0153 (8)0.0146 (7)0.0187 (7)0.0069 (6)0.0005 (6)0.0023 (6)
N40.0155 (8)0.0111 (6)0.0124 (7)0.0049 (6)0.0030 (6)0.0001 (5)
N50.0146 (8)0.0142 (7)0.0160 (7)0.0065 (6)0.0029 (6)0.0004 (5)
Cl10.0158 (2)0.01449 (19)0.0216 (2)0.00422 (16)0.00132 (17)0.00282 (16)
Cl20.0160 (2)0.0182 (2)0.0178 (2)0.00561 (17)0.00165 (16)0.00182 (16)
O10.0217 (8)0.0225 (7)0.0175 (7)0.0062 (6)0.0017 (6)0.0028 (5)
O20.0234 (8)0.0193 (7)0.0194 (7)0.0083 (6)0.0002 (6)0.0040 (5)
Geometric parameters (Å, º) top
C1—N31.345 (2)C12—C131.507 (2)
C1—C21.380 (3)C13—N41.487 (2)
C1—H10.95C13—H13A0.99
C2—C31.387 (3)C13—H13B0.99
C2—H20.95C14—N41.480 (2)
C3—C41.379 (3)C14—C151.511 (2)
C3—H30.95C14—H14A0.99
C4—C51.393 (2)C14—H14B0.99
C4—H40.95C15—N51.340 (2)
C5—N31.343 (2)C15—C161.393 (2)
C5—C61.501 (2)C16—C171.387 (3)
C6—N21.485 (2)C16—H160.95
C6—H6A0.99C17—C181.393 (3)
C6—H6B0.99C17—H170.95
C7—N21.488 (2)C18—C191.384 (2)
C7—C81.507 (2)C18—H180.95
C7—H7A0.99C19—N51.342 (2)
C7—H7B0.99C19—H190.95
C8—N11.331 (2)N2—H210.937 (18)
C8—C91.388 (2)N2—H220.86 (2)
C9—C101.387 (2)N4—H410.91 (2)
C9—H90.95N4—H420.967 (19)
C10—C111.381 (2)O1—H1010.93 (3)
C10—H100.95O1—H1021.00 (4)
C11—C121.390 (2)O2—H2010.85 (3)
C11—H110.95O2—H2020.91 (3)
C12—N11.338 (2)
N3—C1—C2123.83 (18)N4—C13—H13A109.7
N3—C1—H1118.1C12—C13—H13A109.7
C2—C1—H1118.1N4—C13—H13B109.7
C1—C2—C3118.32 (17)C12—C13—H13B109.7
C1—C2—H2120.8H13A—C13—H13B108.2
C3—C2—H2120.8N4—C14—C15111.73 (14)
C4—C3—C2118.88 (17)N4—C14—H14A109.3
C4—C3—H3120.6C15—C14—H14A109.3
C2—C3—H3120.6N4—C14—H14B109.3
C3—C4—C5119.23 (17)C15—C14—H14B109.3
C3—C4—H4120.4H14A—C14—H14B107.9
C5—C4—H4120.4N5—C15—C16122.97 (16)
N3—C5—C4122.47 (16)N5—C15—C14117.68 (14)
N3—C5—C6119.35 (15)C16—C15—C14119.28 (15)
C4—C5—C6118.09 (16)C17—C16—C15118.87 (16)
N2—C6—C5112.92 (14)C17—C16—H16120.6
N2—C6—H6A109C15—C16—H16120.6
C5—C6—H6A109C16—C17—C18118.78 (17)
N2—C6—H6B109C16—C17—H17120.6
C5—C6—H6B109C18—C17—H17120.6
H6A—C6—H6B107.8C19—C18—C17118.13 (17)
N2—C7—C8110.77 (13)C19—C18—H18120.9
N2—C7—H7A109.5C17—C18—H18120.9
C8—C7—H7A109.5N5—C19—C18123.98 (17)
N2—C7—H7B109.5N5—C19—H19118
C8—C7—H7B109.5C18—C19—H19118
H7A—C7—H7B108.1C8—N1—C12118.13 (14)
N1—C8—C9123.01 (15)C6—N2—C7111.76 (13)
N1—C8—C7116.08 (14)C6—N2—H21106.6 (12)
C9—C8—C7120.90 (15)C7—N2—H21105.3 (13)
C10—C9—C8118.50 (16)C6—N2—H22107.3 (13)
C10—C9—H9120.7C7—N2—H22108.9 (13)
C8—C9—H9120.7H21—N2—H22117.1 (18)
C11—C10—C9118.94 (16)C5—N3—C1117.25 (15)
C11—C10—H10120.5C14—N4—C13112.47 (13)
C9—C10—H10120.5C14—N4—H41108.2 (14)
C10—C11—C12118.65 (16)C13—N4—H41107.4 (14)
C10—C11—H11120.7C14—N4—H42112.1 (14)
C12—C11—H11120.7C13—N4—H42106.6 (15)
N1—C12—C11122.75 (16)H41—N4—H42110 (2)
N1—C12—C13115.14 (14)C15—N5—C19117.26 (15)
C11—C12—C13122.10 (15)H101—O1—H102102 (2)
N4—C13—C12109.75 (13)H201—O2—H202115 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H201···Cl20.85 (3)2.41 (3)3.1844 (15)152 (2)
O2—H202···N50.91 (3)2.10 (3)2.947 (2)155 (2)
N2—H21···O20.94 (2)1.89 (2)2.804 (2)165 (2)
N2—H22···Cl1i0.86 (2)2.31 (2)3.1446 (17)162.5 (17)
N4—H41···Cl20.91 (2)2.25 (2)3.1319 (17)164.1 (19)
N4—H42···O1i0.97 (2)1.90 (2)2.825 (2)158 (2)
O1—H101···Cl10.93 (3)2.43 (3)3.2611 (15)149 (2)
O1—H102···N3ii1.00 (4)1.93 (4)2.920 (2)172 (3)
C3—H3···Cl1iii0.952.733.5702 (19)148
C6—H6A···Cl10.992.83.751 (2)161
C7—H7A···Cl1iv0.992.783.7351 (18)162
C10—H10···Cl1v0.952.713.6469 (18)168
C17—H17···O1vi0.952.573.437 (2)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y+1, z; (iv) x+1, y+1, z+2; (v) x, y1, z; (vi) x+1, y+2, z+1.
 

References

First citationAfshar, R. K., Patra, A. K., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem. 43, 5736–5743.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarbre, T., Dubs, C., Rusanov, E. & Stoeckli-Evans, H. (2002). Eur. J. Inorg. Chem. pp. 3284–3291.  CrossRef Google Scholar
First citationEroy-Reveles, A. A., Hoffman-Luca, C. G. & Mascharak, P. K. (2007). Dalton Trans. pp. 5268–5274.  Google Scholar
First citationFry, N. L. & Mascharak, P. K. (2011). Acc. Chem. Res. 44, 289–298.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGruenwedel, D. W. (1968). Inorg. Chem. 7, 495–501.  CrossRef CAS Web of Science Google Scholar
First citationHalpenny, G. M., Olmstead, M. M. & Mascharak, P. K. (2007). Inorg. Chem. 46, 6601–6606.  CSD CrossRef PubMed CAS Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2005). Inorg. Chem. 44, 6918–6920.  CSD CrossRef PubMed CAS Google Scholar
First citationHeilman, B. J., St John, J., Oliver, S. R. J. & Mascharak, P. K. (2012). J. Am. Chem. Soc. 134, 11573–11582.  CrossRef CAS PubMed Google Scholar
First citationHoffman-Luca, C. G., Eroy-Reveles, A. A., Alvarenga, J. & Mascharak, P. K. (2009). Inorg. Chem. 48, 9104–9111.  Web of Science PubMed CAS Google Scholar
First citationJain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKobayashi, T., Yaita, T., Sugo, Y., Suda, H., Suzuki, S., Fujii, Y. & Nakano, Y. (2006). J. Heterocycl. Chem. 43, 549–557.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartell, A. E. (1967). Editor. Advances in Chemistry, pp. 272–294. Washington: American Chemical Society.  Google Scholar
First citationNewkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400–2408.  CSD CrossRef CAS Web of Science Google Scholar
First citationPatra, A. K. & Mascharak, P. K. (2003). Inorg. Chem. 42, 7363–7365.  CSD CrossRef PubMed CAS Google Scholar
First citationQi, J. Y., Chen, J., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2002). Acta Cryst. E58, o1232–o1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRose, M. J. & Mascharak, P. K. (2008a). Coord. Chem. Rev. 252, 2093–2114.  CrossRef CAS PubMed Google Scholar
First citationRose, M. J. & Mascharak, P. K. (2008b). Curr. Opin. Chem. Biol. 12, 238–244.  CrossRef PubMed CAS Google Scholar
First citationSchaniel, D., Imlau, M., Weisemoeller, T., Woike, T., Krämer, K. W. & Güdel, H. U. (2007). Adv. Mater. 19, 723–726.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds