research communications
N-(pyridin-2-ylmethyl)methanaminium] dichloride dihydrate
of 1,1′-(pyridine-2,6-diyl)bis[aLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France, bLaboratory of Chemistry, Molecular Engineering and Nanostructures, Department of Chemistry, Faculty of Sciences, University of Ferhat Abbas-Sétif -1, 19000 Sétif, Algeria, and cInstitut de Chimie de Toulouse UAR-CNRS 2599, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
*Correspondence e-mail: sonia.ladeira@lcc-toulouse.fr
In the title compound, C19H23N52+·2Cl−·2H2O, the two pyridine side arms are not coplanar, with the terminal pyridine rings subtending a dihedral angle of 26.45 (6)°. In the crystal, hydrogen bonds, intermolecular C—H⋯Cl contacts and a weak C—H⋯O interaction connect the molecule with neighbouring chloride counter-anions and lattice water molecules. The crystal packing also features by π–π interactions with centroid-centroid distances of 3.4864 (12) and 3.5129 (13) Å.
Keywords: crystal structure; hydrogen bonding; π–π interactions.
CCDC reference: 2120892
1. Chemical context
In recent years, ruthenium nitrosyl complexes have attracted considerable attention, essentially because of their interesting photoreactivity properties such as et al., 2007) and nitric oxide photorelease (Rose & Mascharak, 2008a). Ruthenium nitrosyl complexes could have desirable photoreactivity properties relying on the nature of the ligands. The utilization of polydentate ligands in coordination chemistry gives a few benefits over monodentate ligands, in particular because of the chelate effect (Martell, 1967). Multidentate pyridylamine derivative ligands can better control the stability (Afshar et al., 2004; Eroy-Reveles et al., 2007), solubility (Harrop et al., 2005) and structural characteristics of the resulting complex. More particularly, ruthenium complexes derived from pentadentate ligands are generally stable in physiological media (Halpenny et al., 2007; Rose & Mascharak, 2008b). This stability is necessary for (i) maintaining pharmacological activity, (ii) reducing the toxicity of free metal ions, and (iii) avoiding non-specific binding of partially connected metal ions with other biomolecules (Fry & Mascharak, 2011; Hoffman-Luca et al., 2009; Patra & Mascharak, 2003; Heilman et al., 2012). In the search for new systems, we report here the synthesis and of 1,1′-(pyridine-2,6-diyl)bis[N-(pyridin-2-ylmethyl)methanaminium] dichloride dihydrate, which contains multiple coordination sites, and is thus an excellent candidate for forming stable ruthenium nitrosyl complexes.
(Schaniel2. Structural commentary
The title compound crystallizes in the triclinic P with one cationic molecule, two chloride anions, and two water molecules per In the organic molecule, one terminal pyridine ring is almost co-planar with the central pyridine ring, making a dihedral angle of 4.56 (8)°, while the second terminal pyridine ring is out of the plane with a dihedral angle between the two terminal pyridine rings of 26.45 (6)° (Fig. 1). Bond lengths are within normal ranges and comparable with values found for a similar compound, N,N′-dialkyl-2,6-pyridinedimethanaminium (Kobayashi et al., 2006).
3. Supramolecular features
In the crystal, there are intermolecular hydrogen bonds (Table 1) and C—H⋯Cl and C—H⋯O interactions between the molecules, the chloride anions and the lattice water molecules. The molecular structure of the compound is illustrated in Fig. 1 with hydrogen bonding indicated.
The crystal packing shows π–π interactions between two parallel neighbouring molecules along the a-axis direction with a Cg1⋯Cg2 (x, y − 1, z) centroid–centroid distance of 3.4864 (12) Å, a perpendicular distance from the centroid Cg1 to the plane of the other ring of 3.2472 (8) Å and a slippage between the centroids of 1.100 Å. Similarly, the second π–π stacking interaction has a Cg3⋯Cg3(−x, −y + 2, −z + 1) centroid-centroid distance of 3.5129 (13) Å, a perpendicular distance from the centroid Cg3 to the plane of the other ring of 3.2177 (8) Å and a slippage between the centroids of 1.410 Å. Cg1, Cg2 and Cg3 are the centroids of N1/C8–C12, N3/C1–C5 and N5/C15–C19 pyridine rings, respectively (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, last updated May 2021; Groom et al., 2016) for similar compounds gave three hits. They include N,N'-bis(2-pyridylmethyl)pyridine-2,6-dicarboxamide (CSD refcode AVURAK; Jain et al., 2004), N,N′-bis[2-(2-pyridyl)methyl]pyridine-2,6-dicarboxamide hemihydrate (HULKUU; Jian Ying Qi et al., 2002) and 2,6-bis[(2-pyridiniomethyl)ammoniomethyl]pyridine tetrachloride monohydrate (IRODAV; Kobayashi et al., 2006). In those compounds, the two terminal pyridine rings are rotated out of the plane of the central pyridine ring with dihedral angles ranging from 63 to 89°.
5. Synthesis and crystallization
1,1′-(Pyridine-2,6-diyl)bis[N-(pyridin-2-ylmethyl)methanaminium] dichloride dihydrate compound was obtained following the procedure previously reported in the literature (Gruenwedel, 1968; Newkome et al., 1984; Darbre et al., 2002; Kobayashi et al., 2006). The procedure used for the synthesis has three steps. Firstly, the synthesis of 2-[(tosylamino)methyl]pyridine was carried out by treatment of 2-(aminomethyl) pyridine with NaOH and tosyl chloride in a two-phase system (water/diethyl ether) (Newkome et al., 1984). In the second step, the coupling of 2-[(tosylamino)methyl] pyridine with 2,6-bis(bromomethyl) pyridine, also in an two-phase system (dichloromethane/water) and nBu4NBr as phase-transfer catalyst gave 2,6-bis{[(pyrid-2-ylmethyl)(tosyl)amino]methyl}pyridine, which could be isolated after (Darbre et al., 2002). Finally, the tosylate group of 2,6-bis{[(pyrid-2-ylmethyl)(tosyl)amino]methyl}pyridine was removed using concentrated sulfuric acid for deprotection with heating at 393 K for 3 h to give an unstable brownish oil (Newkome et al., 1984).
Slow diffusion between toluene and a wet dichloromethane solution of the brown oil set aside at room temperature gave colourless needles of the title compound suitable for X-ray diffraction within five days.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms of the water molecules and those bonded to nitrogen atoms were located in difference-Fourier maps and refined freely with isotropic displacement parameters. All C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 (aromatic) or 0.99 Å (methylene) and with Uiso(H) = 1.2Ueq(C). For two similar N—H distances, a restraint was applied to make them approximately equal with an effective standard deviation of 0.02 Å.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2120892
https://doi.org/10.1107/S205698902101183X/tx2045sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902101183X/tx2045Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902101183X/tx2045Isup3.cml
Data collection: APEX3 (Bruker, 2012); cell
APEX3 and SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C19H23N52+·2Cl−·2H2O | Z = 2 |
Mr = 428.36 | F(000) = 452 |
Triclinic, P1 | Dx = 1.416 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1579 (6) Å | Cell parameters from 4444 reflections |
b = 8.8119 (7) Å | θ = 3.2–31.4° |
c = 17.4150 (13) Å | µ = 0.35 mm−1 |
α = 80.357 (3)° | T = 110 K |
β = 80.805 (3)° | Needle, colourless |
γ = 68.919 (3)° | 0.2 × 0.08 × 0.04 mm |
V = 1004.52 (14) Å3 |
Bruker Kappa APEXII Quazar diffractometer | 6970 independent reflections |
Radiation source: microfocus sealed tube | 4632 reflections with I > 2σ(I) |
Multilayer optics monochromator | Rint = 0.097 |
phi and ω scans | θmax = 32.0°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.660, Tmax = 0.746 | k = −13→13 |
29584 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.05 | Hydrogen site location: mixed |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3 |
6970 reflections | (Δ/σ)max = 0.002 |
283 parameters | Δρmax = 0.45 e Å−3 |
1 restraint | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0133 (3) | 1.1436 (2) | 0.77592 (11) | 0.0187 (4) | |
H1 | −0.057178 | 1.157686 | 0.725689 | 0.022* | |
C2 | −0.0514 (3) | 1.2816 (2) | 0.81173 (12) | 0.0209 (4) | |
H2 | −0.118646 | 1.387618 | 0.786614 | 0.025* | |
C3 | 0.0110 (3) | 1.2617 (2) | 0.88529 (12) | 0.0209 (4) | |
H3 | −0.013857 | 1.353959 | 0.91186 | 0.025* | |
C4 | 0.1098 (3) | 1.1057 (2) | 0.91921 (11) | 0.0177 (4) | |
H4 | 0.15363 | 1.089007 | 0.969628 | 0.021* | |
C5 | 0.1446 (3) | 0.9729 (2) | 0.87872 (10) | 0.0141 (3) | |
C6 | 0.2661 (3) | 0.8058 (2) | 0.91424 (10) | 0.0154 (3) | |
H6A | 0.405015 | 0.802589 | 0.916169 | 0.018* | |
H6B | 0.20699 | 0.78592 | 0.968744 | 0.018* | |
C7 | 0.3958 (3) | 0.5088 (2) | 0.90648 (10) | 0.0152 (3) | |
H7A | 0.32656 | 0.482715 | 0.958206 | 0.018* | |
H7B | 0.528732 | 0.510415 | 0.914788 | 0.018* | |
C8 | 0.4252 (3) | 0.3788 (2) | 0.85503 (10) | 0.0123 (3) | |
C9 | 0.5158 (3) | 0.2141 (2) | 0.88081 (10) | 0.0159 (4) | |
H9 | 0.555649 | 0.180246 | 0.93221 | 0.019* | |
C10 | 0.5467 (3) | 0.1000 (2) | 0.82986 (11) | 0.0169 (4) | |
H10 | 0.610739 | −0.013533 | 0.84539 | 0.02* | |
C11 | 0.4830 (3) | 0.1539 (2) | 0.75619 (10) | 0.0153 (3) | |
H11 | 0.502104 | 0.078354 | 0.720177 | 0.018* | |
C12 | 0.3904 (3) | 0.3211 (2) | 0.73580 (10) | 0.0126 (3) | |
C13 | 0.3100 (3) | 0.3899 (2) | 0.65770 (10) | 0.0143 (3) | |
H13A | 0.397572 | 0.323319 | 0.616689 | 0.017* | |
H13B | 0.172891 | 0.385542 | 0.659994 | 0.017* | |
C14 | 0.2369 (3) | 0.6343 (2) | 0.55940 (10) | 0.0155 (3) | |
H14A | 0.096005 | 0.640498 | 0.55942 | 0.019* | |
H14B | 0.321889 | 0.562201 | 0.519947 | 0.019* | |
C15 | 0.2502 (3) | 0.8035 (2) | 0.53686 (10) | 0.0134 (3) | |
C16 | 0.2354 (3) | 0.8748 (2) | 0.45938 (10) | 0.0161 (4) | |
H16 | 0.225967 | 0.815293 | 0.420322 | 0.019* | |
C17 | 0.2348 (3) | 1.0342 (2) | 0.44024 (11) | 0.0186 (4) | |
H17 | 0.225559 | 1.085635 | 0.387808 | 0.022* | |
C18 | 0.2479 (3) | 1.1176 (2) | 0.49930 (11) | 0.0197 (4) | |
H18 | 0.245914 | 1.227408 | 0.488339 | 0.024* | |
C19 | 0.2640 (3) | 1.0358 (2) | 0.57442 (11) | 0.0169 (4) | |
H19 | 0.273735 | 1.092671 | 0.614568 | 0.02* | |
N1 | 0.3620 (2) | 0.43202 (17) | 0.78433 (8) | 0.0120 (3) | |
N2 | 0.2743 (2) | 0.67297 (17) | 0.87003 (9) | 0.0127 (3) | |
N3 | 0.0822 (2) | 0.99031 (18) | 0.80798 (9) | 0.0160 (3) | |
N4 | 0.3036 (2) | 0.56233 (17) | 0.63771 (8) | 0.0129 (3) | |
N5 | 0.2668 (2) | 0.88122 (17) | 0.59397 (8) | 0.0146 (3) | |
Cl1 | 0.82559 (7) | 0.68542 (5) | 0.91223 (3) | 0.01828 (11) | |
Cl2 | 0.76725 (7) | 0.49614 (5) | 0.62355 (3) | 0.01743 (11) | |
O1 | 0.9786 (2) | 0.76904 (17) | 0.72866 (8) | 0.0210 (3) | |
O2 | 0.4905 (2) | 0.76661 (17) | 0.73277 (8) | 0.0205 (3) | |
H201 | 0.592 (4) | 0.689 (3) | 0.7158 (14) | 0.038* | |
H202 | 0.389 (4) | 0.807 (3) | 0.7017 (16) | 0.05* | |
H21 | 0.345 (3) | 0.689 (2) | 0.8209 (11) | 0.018 (5)* | |
H22 | 0.152 (3) | 0.676 (2) | 0.8706 (11) | 0.013 (5)* | |
H41 | 0.431 (4) | 0.562 (3) | 0.6375 (13) | 0.026 (6)* | |
H42 | 0.216 (4) | 0.622 (3) | 0.6789 (12) | 0.037 (7)* | |
H101 | 0.917 (4) | 0.721 (3) | 0.7716 (15) | 0.040 (7)* | |
H102 | 1.026 (5) | 0.841 (4) | 0.7531 (19) | 0.084 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0158 (9) | 0.0187 (9) | 0.0217 (9) | −0.0080 (7) | −0.0011 (7) | 0.0014 (7) |
C2 | 0.0147 (9) | 0.0153 (8) | 0.0302 (10) | −0.0057 (7) | 0.0053 (8) | −0.0016 (7) |
C3 | 0.0187 (10) | 0.0150 (8) | 0.0291 (10) | −0.0080 (7) | 0.0087 (8) | −0.0084 (7) |
C4 | 0.0159 (9) | 0.0194 (9) | 0.0187 (9) | −0.0077 (7) | 0.0042 (7) | −0.0068 (7) |
C5 | 0.0121 (9) | 0.0145 (8) | 0.0164 (8) | −0.0062 (7) | 0.0024 (7) | −0.0031 (6) |
C6 | 0.0184 (9) | 0.0148 (8) | 0.0142 (8) | −0.0053 (7) | −0.0028 (7) | −0.0047 (6) |
C7 | 0.0179 (9) | 0.0132 (8) | 0.0133 (8) | −0.0039 (7) | −0.0046 (7) | 0.0012 (6) |
C8 | 0.0109 (8) | 0.0136 (7) | 0.0136 (8) | −0.0062 (6) | −0.0010 (6) | −0.0002 (6) |
C9 | 0.0164 (9) | 0.0144 (8) | 0.0173 (8) | −0.0061 (7) | −0.0060 (7) | 0.0032 (6) |
C10 | 0.0135 (9) | 0.0112 (8) | 0.0240 (9) | −0.0035 (7) | −0.0021 (7) | 0.0016 (7) |
C11 | 0.0147 (9) | 0.0122 (8) | 0.0202 (9) | −0.0061 (7) | 0.0005 (7) | −0.0038 (6) |
C12 | 0.0099 (8) | 0.0121 (7) | 0.0160 (8) | −0.0043 (6) | −0.0005 (6) | −0.0015 (6) |
C13 | 0.0180 (9) | 0.0109 (7) | 0.0156 (8) | −0.0059 (7) | −0.0022 (7) | −0.0030 (6) |
C14 | 0.0199 (9) | 0.0153 (8) | 0.0120 (8) | −0.0060 (7) | −0.0053 (7) | −0.0003 (6) |
C15 | 0.0100 (8) | 0.0148 (8) | 0.0138 (8) | −0.0028 (6) | −0.0017 (6) | −0.0007 (6) |
C16 | 0.0129 (9) | 0.0186 (8) | 0.0145 (8) | −0.0030 (7) | −0.0016 (7) | −0.0012 (7) |
C17 | 0.0116 (9) | 0.0227 (9) | 0.0174 (9) | −0.0045 (7) | −0.0013 (7) | 0.0052 (7) |
C18 | 0.0141 (9) | 0.0163 (8) | 0.0270 (10) | −0.0057 (7) | −0.0035 (8) | 0.0038 (7) |
C19 | 0.0147 (9) | 0.0151 (8) | 0.0219 (9) | −0.0062 (7) | −0.0029 (7) | −0.0014 (7) |
N1 | 0.0113 (7) | 0.0118 (6) | 0.0129 (7) | −0.0042 (5) | −0.0020 (5) | −0.0004 (5) |
N2 | 0.0147 (8) | 0.0116 (7) | 0.0125 (7) | −0.0044 (6) | −0.0030 (6) | −0.0018 (5) |
N3 | 0.0153 (8) | 0.0146 (7) | 0.0187 (7) | −0.0069 (6) | 0.0005 (6) | −0.0023 (6) |
N4 | 0.0155 (8) | 0.0111 (6) | 0.0124 (7) | −0.0049 (6) | −0.0030 (6) | −0.0001 (5) |
N5 | 0.0146 (8) | 0.0142 (7) | 0.0160 (7) | −0.0065 (6) | −0.0029 (6) | 0.0004 (5) |
Cl1 | 0.0158 (2) | 0.01449 (19) | 0.0216 (2) | −0.00422 (16) | −0.00132 (17) | 0.00282 (16) |
Cl2 | 0.0160 (2) | 0.0182 (2) | 0.0178 (2) | −0.00561 (17) | −0.00165 (16) | −0.00182 (16) |
O1 | 0.0217 (8) | 0.0225 (7) | 0.0175 (7) | −0.0062 (6) | −0.0017 (6) | −0.0028 (5) |
O2 | 0.0234 (8) | 0.0193 (7) | 0.0194 (7) | −0.0083 (6) | −0.0002 (6) | −0.0040 (5) |
C1—N3 | 1.345 (2) | C12—C13 | 1.507 (2) |
C1—C2 | 1.380 (3) | C13—N4 | 1.487 (2) |
C1—H1 | 0.95 | C13—H13A | 0.99 |
C2—C3 | 1.387 (3) | C13—H13B | 0.99 |
C2—H2 | 0.95 | C14—N4 | 1.480 (2) |
C3—C4 | 1.379 (3) | C14—C15 | 1.511 (2) |
C3—H3 | 0.95 | C14—H14A | 0.99 |
C4—C5 | 1.393 (2) | C14—H14B | 0.99 |
C4—H4 | 0.95 | C15—N5 | 1.340 (2) |
C5—N3 | 1.343 (2) | C15—C16 | 1.393 (2) |
C5—C6 | 1.501 (2) | C16—C17 | 1.387 (3) |
C6—N2 | 1.485 (2) | C16—H16 | 0.95 |
C6—H6A | 0.99 | C17—C18 | 1.393 (3) |
C6—H6B | 0.99 | C17—H17 | 0.95 |
C7—N2 | 1.488 (2) | C18—C19 | 1.384 (2) |
C7—C8 | 1.507 (2) | C18—H18 | 0.95 |
C7—H7A | 0.99 | C19—N5 | 1.342 (2) |
C7—H7B | 0.99 | C19—H19 | 0.95 |
C8—N1 | 1.331 (2) | N2—H21 | 0.937 (18) |
C8—C9 | 1.388 (2) | N2—H22 | 0.86 (2) |
C9—C10 | 1.387 (2) | N4—H41 | 0.91 (2) |
C9—H9 | 0.95 | N4—H42 | 0.967 (19) |
C10—C11 | 1.381 (2) | O1—H101 | 0.93 (3) |
C10—H10 | 0.95 | O1—H102 | 1.00 (4) |
C11—C12 | 1.390 (2) | O2—H201 | 0.85 (3) |
C11—H11 | 0.95 | O2—H202 | 0.91 (3) |
C12—N1 | 1.338 (2) | ||
N3—C1—C2 | 123.83 (18) | N4—C13—H13A | 109.7 |
N3—C1—H1 | 118.1 | C12—C13—H13A | 109.7 |
C2—C1—H1 | 118.1 | N4—C13—H13B | 109.7 |
C1—C2—C3 | 118.32 (17) | C12—C13—H13B | 109.7 |
C1—C2—H2 | 120.8 | H13A—C13—H13B | 108.2 |
C3—C2—H2 | 120.8 | N4—C14—C15 | 111.73 (14) |
C4—C3—C2 | 118.88 (17) | N4—C14—H14A | 109.3 |
C4—C3—H3 | 120.6 | C15—C14—H14A | 109.3 |
C2—C3—H3 | 120.6 | N4—C14—H14B | 109.3 |
C3—C4—C5 | 119.23 (17) | C15—C14—H14B | 109.3 |
C3—C4—H4 | 120.4 | H14A—C14—H14B | 107.9 |
C5—C4—H4 | 120.4 | N5—C15—C16 | 122.97 (16) |
N3—C5—C4 | 122.47 (16) | N5—C15—C14 | 117.68 (14) |
N3—C5—C6 | 119.35 (15) | C16—C15—C14 | 119.28 (15) |
C4—C5—C6 | 118.09 (16) | C17—C16—C15 | 118.87 (16) |
N2—C6—C5 | 112.92 (14) | C17—C16—H16 | 120.6 |
N2—C6—H6A | 109 | C15—C16—H16 | 120.6 |
C5—C6—H6A | 109 | C16—C17—C18 | 118.78 (17) |
N2—C6—H6B | 109 | C16—C17—H17 | 120.6 |
C5—C6—H6B | 109 | C18—C17—H17 | 120.6 |
H6A—C6—H6B | 107.8 | C19—C18—C17 | 118.13 (17) |
N2—C7—C8 | 110.77 (13) | C19—C18—H18 | 120.9 |
N2—C7—H7A | 109.5 | C17—C18—H18 | 120.9 |
C8—C7—H7A | 109.5 | N5—C19—C18 | 123.98 (17) |
N2—C7—H7B | 109.5 | N5—C19—H19 | 118 |
C8—C7—H7B | 109.5 | C18—C19—H19 | 118 |
H7A—C7—H7B | 108.1 | C8—N1—C12 | 118.13 (14) |
N1—C8—C9 | 123.01 (15) | C6—N2—C7 | 111.76 (13) |
N1—C8—C7 | 116.08 (14) | C6—N2—H21 | 106.6 (12) |
C9—C8—C7 | 120.90 (15) | C7—N2—H21 | 105.3 (13) |
C10—C9—C8 | 118.50 (16) | C6—N2—H22 | 107.3 (13) |
C10—C9—H9 | 120.7 | C7—N2—H22 | 108.9 (13) |
C8—C9—H9 | 120.7 | H21—N2—H22 | 117.1 (18) |
C11—C10—C9 | 118.94 (16) | C5—N3—C1 | 117.25 (15) |
C11—C10—H10 | 120.5 | C14—N4—C13 | 112.47 (13) |
C9—C10—H10 | 120.5 | C14—N4—H41 | 108.2 (14) |
C10—C11—C12 | 118.65 (16) | C13—N4—H41 | 107.4 (14) |
C10—C11—H11 | 120.7 | C14—N4—H42 | 112.1 (14) |
C12—C11—H11 | 120.7 | C13—N4—H42 | 106.6 (15) |
N1—C12—C11 | 122.75 (16) | H41—N4—H42 | 110 (2) |
N1—C12—C13 | 115.14 (14) | C15—N5—C19 | 117.26 (15) |
C11—C12—C13 | 122.10 (15) | H101—O1—H102 | 102 (2) |
N4—C13—C12 | 109.75 (13) | H201—O2—H202 | 115 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H201···Cl2 | 0.85 (3) | 2.41 (3) | 3.1844 (15) | 152 (2) |
O2—H202···N5 | 0.91 (3) | 2.10 (3) | 2.947 (2) | 155 (2) |
N2—H21···O2 | 0.94 (2) | 1.89 (2) | 2.804 (2) | 165 (2) |
N2—H22···Cl1i | 0.86 (2) | 2.31 (2) | 3.1446 (17) | 162.5 (17) |
N4—H41···Cl2 | 0.91 (2) | 2.25 (2) | 3.1319 (17) | 164.1 (19) |
N4—H42···O1i | 0.97 (2) | 1.90 (2) | 2.825 (2) | 158 (2) |
O1—H101···Cl1 | 0.93 (3) | 2.43 (3) | 3.2611 (15) | 149 (2) |
O1—H102···N3ii | 1.00 (4) | 1.93 (4) | 2.920 (2) | 172 (3) |
C3—H3···Cl1iii | 0.95 | 2.73 | 3.5702 (19) | 148 |
C6—H6A···Cl1 | 0.99 | 2.8 | 3.751 (2) | 161 |
C7—H7A···Cl1iv | 0.99 | 2.78 | 3.7351 (18) | 162 |
C10—H10···Cl1v | 0.95 | 2.71 | 3.6469 (18) | 168 |
C17—H17···O1vi | 0.95 | 2.57 | 3.437 (2) | 151 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x−1, y+1, z; (iv) −x+1, −y+1, −z+2; (v) x, y−1, z; (vi) −x+1, −y+2, −z+1. |
References
Afshar, R. K., Patra, A. K., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem. 43, 5736–5743. CSD CrossRef PubMed CAS Google Scholar
Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Darbre, T., Dubs, C., Rusanov, E. & Stoeckli-Evans, H. (2002). Eur. J. Inorg. Chem. pp. 3284–3291. CrossRef Google Scholar
Eroy-Reveles, A. A., Hoffman-Luca, C. G. & Mascharak, P. K. (2007). Dalton Trans. pp. 5268–5274. Google Scholar
Fry, N. L. & Mascharak, P. K. (2011). Acc. Chem. Res. 44, 289–298. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gruenwedel, D. W. (1968). Inorg. Chem. 7, 495–501. CrossRef CAS Web of Science Google Scholar
Halpenny, G. M., Olmstead, M. M. & Mascharak, P. K. (2007). Inorg. Chem. 46, 6601–6606. CSD CrossRef PubMed CAS Google Scholar
Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2005). Inorg. Chem. 44, 6918–6920. CSD CrossRef PubMed CAS Google Scholar
Heilman, B. J., St John, J., Oliver, S. R. J. & Mascharak, P. K. (2012). J. Am. Chem. Soc. 134, 11573–11582. CrossRef CAS PubMed Google Scholar
Hoffman-Luca, C. G., Eroy-Reveles, A. A., Alvarenga, J. & Mascharak, P. K. (2009). Inorg. Chem. 48, 9104–9111. Web of Science PubMed CAS Google Scholar
Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871. Web of Science CSD CrossRef PubMed Google Scholar
Kobayashi, T., Yaita, T., Sugo, Y., Suda, H., Suzuki, S., Fujii, Y. & Nakano, Y. (2006). J. Heterocycl. Chem. 43, 549–557. CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martell, A. E. (1967). Editor. Advances in Chemistry, pp. 272–294. Washington: American Chemical Society. Google Scholar
Newkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400–2408. CSD CrossRef CAS Web of Science Google Scholar
Patra, A. K. & Mascharak, P. K. (2003). Inorg. Chem. 42, 7363–7365. CSD CrossRef PubMed CAS Google Scholar
Qi, J. Y., Chen, J., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2002). Acta Cryst. E58, o1232–o1233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rose, M. J. & Mascharak, P. K. (2008a). Coord. Chem. Rev. 252, 2093–2114. CrossRef CAS PubMed Google Scholar
Rose, M. J. & Mascharak, P. K. (2008b). Curr. Opin. Chem. Biol. 12, 238–244. CrossRef PubMed CAS Google Scholar
Schaniel, D., Imlau, M., Weisemoeller, T., Woike, T., Krämer, K. W. & Güdel, H. U. (2007). Adv. Mater. 19, 723–726. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.