research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of metallocene complexes with uranium–germanium bonds

crossmark logo

aDepartment of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
*Correspondence e-mail: walenskyj@missouri.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 11 October 2021; accepted 26 October 2021; online 9 November 2021)

The first structural examples of complexes with uranium–germanium bonds are presented, namely, bis­[3,5-bis­(tri­fluoro­meth­yl)phenyl-2κC1](hydrido-2κH)(iodido-1κI)bis­[1,1(η5)-penta­methyl­cyclo­penta­dien­yl]germaniumuranium(GeU), [GeU(C10H15)2(C8H3F6)2HI], and bis­[3,5-bis­(tri­fluoro­meth­yl)phenyl-2κC1](fluorido-1κI)(hydrido-2κH)bis­[1,1(η5)-penta­methyl­cyclo­penta­dien­yl]germaniumuranium(GeU), [GeU(C10H15)2(C8H3F6)2FH]. The two complexes both have a long U—Ge bond [distances of 3.0428 (7) and 3.0524 (7) Å].

1. Chemical context

While actinide complexes with heavier main-group elements have been studied with the chalcogen and pnictogen groups, the tetrel series has not been examined in nearly as much detail. Actinide–heavier main-group element bonds have been of inter­est to our group and others, for three primary reasons. First is the exploration of the energy-driven-covalency concept, which shows increased covalent-bonding character going down a group (Walensky et al., 2010[Walensky, J. R., Martin, R. L., Ziller, J. W. & Evans, W. J. (2010). Inorg. Chem. 49, 10007-10012.]; Neidig et al., 2013[Neidig, M. L., Clark, D. L. & Martin, R. L. (2013). Coord. Chem. Rev. 257, 394-406.]; Su et al., 2018[Su, J., Batista, E. R., Boland, K. S., Bone, S. E., Bradley, J. A., Cary, S. K., Clark, D. L., Conradson, S. D., Ditter, A. S., Kaltsoyannis, N., Keith, J. M., Kerridge, A., Kozimor, S. A., Löble, M. W., Martin, R. L., Minasian, S. G., Mocko, V., La Pierre, H. S., Seidler, G. T., Shuh, D. K., Wilkerson, M. P., Wolfsberg, L. E. & Yang, P. (2018). J. Am. Chem. Soc. 140, 17977-17984.]). Second, despite increased covalency, bond strength does not scale with covalency, hence the weaker, more polarized bonds with heavier main-group elements should afford greater reactivity (Kaltsoyannis, 2013[Kaltsoyannis, N. (2013). Inorg. Chem. 52, 3407-3413.]). Finally, the fundamental chemistry obtained by the structure, bonding, and reactivity of these understudied metals advances our knowledge of the periodic table and helps to elucidate new and exciting properties.

The coordination chemistry of f elements with heavier tetrel elements (Si, Ge, Sn, Pb) is quite rare (Réant et al., 2020b[Réant, B. L. L., Liddle, S. T. & Mills, D. P. (2020b). Chem. Sci. 11, 10871-10886.]), and their reactivity is virtually unknown. With respect to the actinides, there are two reports of actin­ide–silicon bonds without structural data (King & Marks, 1995[King, W. A. & Marks, T. J. (1995). Inorg. Chim. Acta, 229, 343-354.]; Radu et al., 1995[Radu, N. S., Engeler, M. P., Gerlach, C. P., Tilley, T. D. & Rheingold, A. L. (1995). J. Am. Chem. Soc. 117, 3621-3622.]), and two structurally characterized uranium–silicon bonds with anionic silyl ligands (Diaconescu et al., 2001[Diaconescu, P. L., Odom, A. L., Agapie, T. & Cummins, C. C. (2001). Organometallics, 20, 4993-4995.]; Réant et al., 2020a[Réant, B. L. L., Berryman, V. E. J., Seed, J. A., Basford, A. R., Formanuik, A., Wooles, A. J., Kaltsoyannis, N., Liddle, S. T. & Mills, D. P. (2020a). Chem. Commun. 56, 12620-12623.]) and two more with neutral silylene ligands (Brackbill et al., 2020[Brackbill, I. J., Douair, I., Lussier, D. J., Boreen, M. A., Maron, L. & Arnold, J. (2020). Chem. Eur. J. 26, 2360-2364.]). In the 1990s, the reaction of (C5H5)3UCl with KEPh3, E = Si, Ge, Sn, was conducted by Porchia and co-workers to form uranium–tetrel bonds, and their reactivity with isocyanides was described (Porchia et al., 1986[Porchia, M., Casellato, U., Ossola, F., Rossetto, G., Zanella, P. & Graziani, R. (1986). J. Chem. Soc. Chem. Commun. pp. 1034-1035.], 1987[Porchia, M., Ossola, F., Rossetto, G., Zanella, P. & Brianese, N. (1987). J. Chem. Soc. Chem. Commun. pp. 550-551.], 1989[Porchia, M., Brianese, N., Casellato, U., Ossola, F., Rossetto, G., Zanella, P. & Graziani, R. (1989). J. Chem. Soc. Dalton Trans. pp. 677-681.]). Finally, the Boncella group has more recently reported a second uranium–tin bond (Winston et al., 2016[Winston, M. S., Batista, E. R., Yang, P., Tondreau, A. M. & Boncella, J. M. (2016). Inorg. Chem. 55, 5534-5539.]). We have found that protonolysis reactions with primary pnictines have resulted in the formation of actinide–pnictido bonds (Behrle & Walensky, 2016[Behrle, A. C. & Walensky, J. R. (2016). Dalton Trans. 45, 10042-10049.]; Vilanova et al., 2017[Vilanova, S. P., Alayoglu, P., Heidarian, M., Huang, P. & Walensky, J. R. (2017). Chem. Eur. J. 23, 16748-16752.]; Tarlton et al., 2020[Tarlton, M. L., Del Rosal, I., Vilanova, S. P., Kelley, S. P., Maron, L. & Walensky, J. R. (2020). Organometallics, 39, 2152-2161.], 2021[Tarlton, M. L., Fajen, O. J., Kelley, S. P., Kerridge, A., Malcomson, T., Morrison, T. L., Shores, M. P., Xhani, X. & Walensky, J. R. (2021). Inorg. Chem. 60, 10614-10630.]), so we decided to utilize a secondary germane in the same strategy. However, the issue is the protonic versus hydridic nature of the E—H bonds, and hence we used 3,5-(CF3)2C6H3-substituted germane to obtain a more protonic hydrogen. Herein, we report the structural characterization of uranium–germanium bonds with a secondary germanido ligand. When attempting to form the germylene, a C—F bond-activated product is obtained, indicating the reactive nature of these weak uranium–germanium bonds.

[Scheme 1]

2. Structural commentary

The solid-state structure of each complex was definitively determined by X-ray crystallography to elucidate the first uranium–germanium bond (Fig. 1[link]). Both structures have similar geometries in which the U atom is coordinated to two η5-coordinating Cp* ligands, a halide ligand, and the germanido ligand, which coordinates only through the germanium atom in both cases. Geometric parameters involving the U—Ge distances and Ge-centered angles are given in Table 1[link]. Each U—Ge bond is within the sum of the covalent radii of 3.16 Å (Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]). Both complexes are distorted tetra­hedra with the Cp* ligands occupying single vertices. The angles between the Cp* mean planes are similar in both structures [133.4 (3)° for 1 and 137.8 (3)° for 2], which is significantly larger than the ideal tetra­hedral angle as expected for two adjacent, sterically bulky ligands. The uranium-centered angles between the halide and Ge atoms in both structures are consequently distorted to smaller angles [88.06 (2)° for 1 and 88.92 (14)° for 2]. The 3,5-(CF3)2C6H3 rings are oriented significantly differently in the two structures. In 1 the rings are roughly consistent with a mirror plane passing through the U, Ge, and I atoms, and their mean planes inter­sect at an angle of 72.8 (2)°. In 2 they have an unsymmetrical orientation, which appears to be the result of rotation of the germanido ligand to reduce repulsion between the Cp* and Ge—CH3 groups, and the mean planes of the rings inter­sect at an angle of 66.1 (1)°.

Table 1
Selected geometric parameters (Å, °) for 1 and 2

Parameter 1 2
U1—Ge1 3.0428 (7) 3.0524 (7)
U1—Ge1—C21 118.5 (2) 116.65 (17)
U1—Ge1—C29 116.73 (18) 117.87 (16)
[Figure 1]
Figure 1
50% probability ellipsoid plots of compounds 1 (left) and 2 (right). The Ge—H hydrogen atom in 1 is shown as a green circle, all other H atoms and minor disordered parts are omitted for clarity. Elements are color coded as follows: C = black, F = yellow–green, Ge = dark blue, I = purple, U = dark green.

3. Supra­molecular features

Compound 1 crystallizes in the space group C2/c with Z′ = 1. Each mol­ecule makes short (less than the sum of the van der Waals radii) contacts to six neighboring mol­ecules. Two of these neighbors inter­act through donating or receiving a weak Ge—H⋯I hydrogen bond (Table 2[link]), which forms the basis of an infinite chain parallel to c. The two 3,5-(CF3)2C6H3 rings bonded to the Ge atom form a cavity, which complements the shape of the two Cp* groups, resulting in two neighboring mol­ecules encapsulating or residing within this cavity and forming chains parallel to the b-axis direction (Fig. 2[link]). The layers formed by these two inter­actions stack along the c-axis direction with adjacent layers making contact through like–like inter­actions between –CF3 or Cp* groups, which are likely only weakly attractive or repulsive in nature. The phenyl rings are unsymmetrical in their inter­actions with one making a larger number of short contacts; the ring which makes fewer contacts has rotational disorder of both –CF3 groups, which could be modeled over two positions in one case [modeled at occupancies of 0.536 (8) and 0.464 (8)] and is indicated by the shape of the displacement ellipsoids in the other case.

Table 2
Selected geometric parameters (Å, °) for 1 and 2

Contact Distance (DA) Distance (D—H⋯A)
1    
Ge1—H⋯I1 4.5876 (9) 3.16 (8)
C7—H⋯F12 3.314 (9) 2.524
C16—H⋯C30 3.70 (1) 2.79
C20B—H⋯F7 3.44 (1) 2.65
2    
C7—H⋯F3 3.403 (8) 2.652
C7—H⋯C24 3.536 (9) 2.863
C7⋯C7 3.36 (1)  
C10—H⋯F3 3.216 (8) 2.617
C16—H⋯C19 3.84 (1) 2.87
C18—H⋯F10 3.446 (8) 2.543
C20—H⋯C11 3.57 (1) 2.80
C20—H⋯C12 3.654 (9) 2.752
H⋯A distances involving riding H atoms are rounded to the precision of the DA distance.
[Figure 2]
Figure 2
Packing plot viewed down c showing complementary inter­actions between 3,5-(CF3)2C6H3 and Cp* rings in 1. Dashed green lines indicate short (less than the sum of the van der Waals radii) contacts. Elements color coded as in Fig. 1[link]. Axes color coded as follows: a = red, b = green.

Compound 2 crystallizes in the monoclinic space group C2/c with Z′ = 1. Each mol­ecule makes short contacts to seven neighboring mol­ecules. One neighboring mol­ecule inter­acts to form a centrosymmetric dimer through ion–dipole inter­actions between Cp* –CH3 and aromatic C atoms. A second neighboring mol­ecule also inter­acts across an inversion center through similar inter­actions between the other Cp* ligand and one of the phenyl rings. The remaining mol­ecules only inter­act through C—H⋯F contacts (Table 2[link]). The inter­actions involving the Cp* ligands appear to be the strongest and organize the mol­ecules into tightly packed layers which are parallel to the (001) family of planes (Fig. 3[link]) , and these layers are bridged through the C—H⋯F inter­actions into a three-dimensional network. As with 1, one of the 3,5-(CF3)2C6H3 rings does not participate as strongly in inter­molecular inter­actions and has disordered –CF3 groups, one of which could be modeled over two positions (occupancies 0.75 and 0.25).

[Figure 3]
Figure 3
Packing plot showing formation of close-packed layers in 2. Dashed green lines indicate short contacts. Elements color coded as in Fig. 1[link]; unit-cell axes color coded as in Fig. 2[link].

4. Database survey

The uranium–germanium bond distance in 1 of 3.0427 (8) Å is similar to the 3.0688 (8) and 3.091 (3) Å uranium–silicon bonds in [(C5H4SiMe3)3U{Si(SiMe3)3}] (Réant et al., 2020a[Réant, B. L. L., Berryman, V. E. J., Seed, J. A., Basford, A. R., Formanuik, A., Wooles, A. J., Kaltsoyannis, N., Liddle, S. T. & Mills, D. P. (2020a). Chem. Commun. 56, 12620-12623.], CSD refcode: CUTZUP) and [U{N(tBu)C6H3-3,5-Me2}3{Si(SiMe3)3}] (Diaconescu et al., 2001[Diaconescu, P. L., Odom, A. L., Agapie, T. & Cummins, C. C. (2001). Organometallics, 20, 4993-4995.], CSD refcode: XOKQET), respectively. The 2.9512 (7) Å uranium–iodide bond length is nearly identical to the value of 2.9868 (9) in [(C5Me5)2UI2] (Graves et al., 2008[Graves, C. R., Schelter, E. J., Cantat, T., Scott, B. L. & Kiplinger, J. L. (2008). Organometallics, 27, 5371-5378.], CSD refcode: ROJNOU) and 2.953 (2) Å in [{C5H3(SiMe3)2}2UI2] (Blake et al., 1995[Blake, P. C., Lappert, M. F., Taylor, R. G., Atwood, J. L., Hunter, W. E. & Zhang, H. (1995). J. Chem. Soc. Dalton Trans. pp. 3335-3341.], CSD refcode: ZEYZIM). In 2, the U—Ge bond distance is 3.0523 (7) Å with a U—F distance of 2.242 (5) Å. The U—F bond distance is quite long compared to the 2.06 (1)-2.15 (1) Å previously observed in UIV metallocenes (Thomson et al., 2010[Thomson, R. K., Graves, C. R., Scott, B. L. & Kiplinger, J. L. (2010). Dalton Trans. 39, 6826-6831.], CSD refcode: TABJAJ; Kagan et al., 2018[Kagan, B. D., Lichtscheidl, A. G., Erickson, K. A., Monreal, M. J., Scott, B. L., Nelson, A. T. & Kiplinger, J. L. (2018). Eur. J. Inorg. Chem. pp. 1247-1253.], CSD refcodes: SEYKEP, SEYKIT, SEYKOZ, SEYKUF; Boreen et al., 2020[Boreen, M. A., McCabe, K. N., Lohrey, T. D., Watt, F. A., Maron, L., Hohloch, S. & Arnold, J. (2020). Inorg. Chem. 59, 8580-8588.], CSD refcodes: BUQMAE, BUQMEI), but shorter than the sterically crowded complex, (C5Me5)3UF, which has a U—F bond length of 2.43 (2) Å (Evans et al., 2000[Evans, W. J., Nyce, G. W., Johnston, M. A. & Ziller, J. W. (2000). J. Am. Chem. Soc. 122, 12019-12020.], CSD refcode: XENQUC).

5. Synthesis and crystallization

The reaction of (C5Me5)2U(I)(CH3) (Rungthanaphatsophon et al., 2018[Rungthanaphatsophon, P., Huang, P. & Walensky, J. R. (2018). Organometallics, 37, 1884-1891.]) with one equivalent of H2E[3,5-(CF3)2C6H3)2] (Bender IV et al., 1997[Bender, J. E. IV, Litz, K. E., Giarikos, D., Wells, N. J., Banaszak Holl, M. M. & Kampf, J. W. (1997). Chem. Eur. J. 3, 1793-1796.]) in toluene at room temperature produces a dark-red solution (Fig. 4[link]). The solution was allowed to stir for 4 h after which the solvent was removed, and the product recrystallized from a saturated toluene solution at 248 K.

[Figure 4]
Figure 4
Synthesis of compound 1.

The reaction of (C5Me5)2U(CH3)2 with one equivalent of H2E[3,5-(CF3)2C6H3)2] (Bender IV et al., 1997[Bender, J. E. IV, Litz, K. E., Giarikos, D., Wells, N. J., Banaszak Holl, M. M. & Kampf, J. W. (1997). Chem. Eur. J. 3, 1793-1796.]) in toluene at 333 K produces a dark-red solution (Fig. 5[link]). The solution was allowed to stir overnight after which the solvent was removed, and the product recrystallized from a saturated toluene solution at 248 K. No byproducts could be found that led us to a plausible mechanism of C—F bond activation.

[Figure 5]
Figure 5
Synthesis of compound 2.

6. Refinement

The crystal structure of 1 was solved by an iterative dual space approach as implemented in SHELXT. All full occupancy non-hydrogen atoms could be located from the difference map refined anisotropically. In one of the disordered –CF3 groups, two sets of fluorine atoms could be located from the difference map. The other –CF3 group on the same mol­ecule has prolate ellipsoids, which indicates disorder of this group as well, but attempts to model additional F-atom positions using chemically reasonable difference map peaks resulted in extremely poor geometries and displacement parameters. All C—F distances for this mol­ecule were restrained to 1.33 (1) Å, and the intra­molecular F⋯F distances were restrained to be equal within ± 0.01 Å. For the –CF3 group modeled over two positions, the three pairs of related F atoms each had their anisotropic displacement parameters constrained to be equal. The occupancies of the major and minor parts refined to 53.6 and 46.4% (± 0.8%) and were constrained to sum to 100%. The H atom bonded to Ge was located from the difference map, its coordinates were allowed to refine, and its isotropic displacement parameter was constrained to ride on the carrier atom. The structure also contained large residual difference map peaks in chemically non-reasonable positions. Some of these peaks occur at distances from the U atom very close to the U—I bond and have x or y coordinates equal to the I atom. Given the layer packing of this structure, these peaks most likely correspond to packing defects where layers are occasionally shifted relative to each other resulting in superposition of mol­ecules related by rotation or reflection. These peaks could not be modeled, but truncating the data to a resolution of 0.77 Å greatly reduced their intensity.

The crystal structure of 2 was solved by an iterative dual space method as implemented in SHELXT. All non-hydrogen atoms were located from the difference map and refined anisotropically. For the disordered –CF3 group both sets of F atoms were located from the difference map. The occupancies were manually adjusted until the isotropic thermal parameters were approximately equal, which occurred at 75% for the major part and 25% for the minor part. The major part could be refined anisotropically without restraints; the minor part failed to converge in an anisotropic refinement and was left isotropic.

All other refinement details and software are summarized in Table 3[link].

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [GeU(C10H15)2(C8H3F6)2HI] [GeU(C10H15)2(C8H3F6)2FH]
Mr 1135.17 1041.30
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 100 100
a, b, c (Å) 23.647 (2), 21.123 (2), 16.8132 (18) 34.160 (3), 13.5237 (11), 16.2986 (13)
β (°) 109.727 (3) 95.028 (2)
V3) 7905.1 (14) 7500.4 (10)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 5.71 5.21
Crystal size (mm) 0.64 × 0.63 × 0.53 0.10 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker VENTURE CMOS area detector Bruker APEXII CCD
Absorption correction Multi-scan (AXScale; Bruker, 2015[Bruker (2015). APEX3, SAINT, AXScale, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT, AXScale, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.136, 0.563 0.501, 0.562
No. of measured, independent and observed [I > 2σ(I)] reflections 103146, 9105, 7700 65643, 7720, 5563
Rint 0.076 0.081
(sin θ/λ)max−1) 0.651 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.04 0.041, 0.094, 1.05
No. of reflections 9105 7720
No. of parameters 483 492
No. of restraints 24 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.63, −2.00 1.68, −0.78
Computer programs: APEX3 and SAINT Bruker, 2015[Bruker (2015). APEX3, SAINT, AXScale, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 and SAINT Bruker, 2015); data reduction: APEX3 and SAINT (Bruker, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[3,5-bis(trifluoromethyl)phenyl-2κC1](hydrido-2κH)(iodido-1κI)bis[1,1(η5)-pentamethylcyclopentadienyl]germaniumuranium(GeU) (1) top
Crystal data top
[GeU(C10H15)2(C8H3F6)2HI]F(000) = 4304
Mr = 1135.17Dx = 1.908 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.647 (2) ÅCell parameters from 9630 reflections
b = 21.123 (2) Åθ = 2.3–27.5°
c = 16.8132 (18) ŵ = 5.71 mm1
β = 109.727 (3)°T = 100 K
V = 7905.1 (14) Å3Block, clear dark red
Z = 80.64 × 0.63 × 0.53 mm
Data collection top
Bruker VENTURE CMOS area detector
diffractometer
9105 independent reflections
Radiation source: Incoatec IMuS microfocus Mo tube7700 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.076
shutterless ω and phi scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(AXScale; Bruker, 2015
h = 3030
Tmin = 0.136, Tmax = 0.563k = 2727
103146 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0386P)2 + 173.3198P]
where P = (Fo2 + 2Fc2)/3
9105 reflections(Δ/σ)max = 0.001
483 parametersΔρmax = 2.63 e Å3
24 restraintsΔρmin = 2.00 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.18303 (2)0.40289 (2)0.22613 (2)0.02210 (7)
I10.19437 (2)0.46585 (3)0.07554 (3)0.04105 (13)
Ge10.23147 (3)0.52325 (3)0.32511 (4)0.02585 (15)
H10.246 (4)0.520 (4)0.426 (5)0.039*
F1A0.4365 (6)0.6046 (11)0.5595 (9)0.109 (4)0.464 (8)
F10.4744 (9)0.5657 (7)0.5371 (13)0.110 (7)0.536 (8)
F2A0.5027 (9)0.5735 (9)0.5113 (16)0.110 (7)0.464 (8)
F20.4384 (7)0.6600 (7)0.5192 (10)0.109 (5)0.536 (8)
F3A0.4751 (10)0.6698 (7)0.5007 (12)0.109 (5)0.464 (8)
F30.5061 (5)0.6352 (9)0.4725 (8)0.109 (4)0.536 (8)
F40.4282 (4)0.6384 (4)0.1750 (7)0.129 (4)
F50.3490 (4)0.5935 (8)0.1099 (6)0.190 (7)
F60.4288 (5)0.5425 (4)0.1679 (7)0.137 (4)
F70.1194 (3)0.7214 (5)0.4377 (4)0.117 (3)
F80.0405 (3)0.6758 (3)0.3649 (5)0.087 (2)
F90.0577 (3)0.7667 (3)0.3300 (4)0.0722 (17)
F100.1741 (2)0.6968 (3)0.0655 (3)0.0534 (12)
F110.1048 (3)0.7579 (3)0.0734 (3)0.0630 (14)
F120.0850 (3)0.6622 (3)0.0332 (3)0.0694 (17)
C10.0722 (3)0.3493 (3)0.1721 (4)0.0279 (13)
C20.0639 (3)0.4093 (3)0.1313 (4)0.0285 (13)
C30.0723 (2)0.4567 (3)0.1946 (4)0.0252 (13)
C40.0858 (3)0.4259 (3)0.2733 (4)0.0276 (13)
C50.0854 (3)0.3593 (3)0.2592 (4)0.0284 (13)
C60.0613 (3)0.2873 (3)0.1245 (5)0.0399 (17)
H6A0.0633160.2524250.1637980.060*
H6B0.0919820.2812640.0979910.060*
H6C0.0214380.2880260.0807870.060*
C70.0410 (3)0.4208 (4)0.0382 (5)0.0377 (16)
H7A0.0030040.4198260.0175830.056*
H7B0.0562380.3878920.0096660.056*
H7C0.0547620.4623830.0262300.056*
C80.0588 (3)0.5254 (3)0.1753 (5)0.0340 (15)
H8A0.0159180.5305560.1431540.051*
H8B0.0825870.5412030.1417800.051*
H8C0.0689110.5492830.2281800.051*
C90.0943 (3)0.4553 (4)0.3573 (5)0.0394 (17)
H9A0.0974780.5013940.3531270.059*
H9B0.1310850.4388360.3991390.059*
H9C0.0598060.4451180.3749150.059*
C100.0858 (3)0.3111 (4)0.3250 (5)0.0396 (17)
H10A0.0487290.3148080.3385480.059*
H10B0.1204890.3185170.3761430.059*
H10C0.0884140.2685620.3033150.059*
C110.2315 (3)0.2881 (3)0.2742 (5)0.0392 (17)
C120.2580 (3)0.3278 (3)0.3464 (5)0.0351 (15)
C130.2977 (3)0.3702 (3)0.3269 (5)0.0320 (15)
C140.2950 (3)0.3581 (4)0.2433 (5)0.0387 (17)
C150.2536 (3)0.3084 (4)0.2096 (5)0.0398 (17)
C160.1953 (3)0.2293 (4)0.2722 (7)0.053 (2)
H16A0.1639380.2254340.2167410.079*
H16B0.1766900.2319890.3161070.079*
H16C0.2216980.1922460.2825530.079*
C170.2496 (4)0.3238 (4)0.4304 (5)0.050 (2)
H17A0.2886410.3175330.4747170.075*
H17B0.2231260.2881270.4305020.075*
H17C0.2314640.3631860.4412320.075*
C180.3429 (3)0.4092 (4)0.3919 (6)0.049 (2)
H18A0.3225760.4345770.4230240.073*
H18B0.3634140.4373590.3641520.073*
H18C0.3723670.3813030.4313300.073*
C190.3359 (4)0.3871 (5)0.2017 (7)0.062 (3)
H19A0.3386640.4328280.2120150.093*
H19B0.3198380.3791290.1407290.093*
H19C0.3760000.3681820.2252040.093*
C200.2392 (4)0.2778 (5)0.1243 (6)0.060 (3)
H20A0.2587350.3014740.0905700.089*
H20B0.1956310.2779030.0953050.089*
H20C0.2539390.2340740.1312980.089*
C210.3109 (3)0.5558 (3)0.3272 (5)0.0298 (14)
C220.3540 (3)0.5740 (4)0.4035 (5)0.0409 (17)
H220.3449130.5719290.4543170.049*
C230.4105 (3)0.5953 (4)0.4056 (7)0.049 (2)
C240.4240 (3)0.6000 (4)0.3321 (7)0.056 (3)
H240.4624790.6145030.3338960.067*
C250.3812 (3)0.5835 (4)0.2557 (6)0.049 (2)
C260.3249 (3)0.5609 (3)0.2540 (5)0.0378 (16)
H260.2959720.5488020.2016130.045*
C270.4564 (4)0.6116 (4)0.4879 (7)0.075 (4)
C280.3955 (4)0.5882 (5)0.1769 (8)0.067 (3)
C290.1829 (3)0.6014 (3)0.2877 (4)0.0241 (12)
C300.1740 (3)0.6265 (3)0.2080 (4)0.0271 (13)
H300.1939210.6075240.1735060.033*
C310.1371 (3)0.6781 (3)0.1772 (4)0.0273 (13)
C320.1080 (3)0.7072 (3)0.2261 (4)0.0314 (14)
H320.0822810.7423760.2050700.038*
C330.1171 (3)0.6837 (3)0.3066 (5)0.0318 (14)
C340.1543 (3)0.6318 (3)0.3374 (4)0.0291 (13)
H340.1603440.6169200.3930010.035*
C350.1250 (3)0.6995 (3)0.0884 (5)0.0351 (15)
C360.0855 (4)0.7132 (4)0.3606 (5)0.048 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01205 (11)0.02461 (12)0.02617 (13)0.00298 (8)0.00192 (8)0.00320 (9)
I10.0379 (3)0.0551 (3)0.0289 (2)0.0017 (2)0.00962 (19)0.0068 (2)
Ge10.0192 (3)0.0290 (3)0.0281 (3)0.0005 (2)0.0064 (3)0.0019 (3)
F1A0.052 (5)0.174 (14)0.077 (7)0.054 (7)0.008 (5)0.034 (8)
F10.105 (16)0.094 (8)0.081 (13)0.008 (10)0.032 (10)0.004 (7)
F2A0.105 (16)0.094 (8)0.081 (13)0.008 (10)0.032 (10)0.004 (7)
F20.126 (15)0.090 (8)0.080 (9)0.032 (9)0.007 (10)0.034 (7)
F3A0.126 (15)0.090 (8)0.080 (9)0.032 (9)0.007 (10)0.034 (7)
F30.052 (5)0.174 (14)0.077 (7)0.054 (7)0.008 (5)0.034 (8)
F40.155 (8)0.091 (5)0.198 (10)0.015 (5)0.134 (8)0.022 (6)
F50.074 (6)0.43 (2)0.077 (6)0.021 (8)0.043 (5)0.056 (9)
F60.210 (11)0.092 (6)0.172 (9)0.036 (6)0.149 (9)0.006 (6)
F70.087 (5)0.207 (9)0.042 (3)0.078 (5)0.002 (3)0.042 (4)
F80.079 (4)0.100 (5)0.114 (5)0.016 (4)0.073 (4)0.013 (4)
F90.091 (4)0.065 (4)0.074 (4)0.043 (3)0.045 (3)0.008 (3)
F100.045 (3)0.079 (4)0.039 (3)0.005 (2)0.018 (2)0.013 (2)
F110.078 (4)0.053 (3)0.055 (3)0.016 (3)0.019 (3)0.024 (2)
F120.069 (4)0.084 (4)0.034 (3)0.047 (3)0.010 (2)0.002 (2)
C10.015 (3)0.024 (3)0.041 (4)0.002 (2)0.004 (3)0.000 (3)
C20.014 (3)0.034 (3)0.032 (3)0.001 (2)0.002 (2)0.001 (3)
C30.006 (2)0.028 (3)0.035 (3)0.001 (2)0.003 (2)0.001 (3)
C40.010 (3)0.037 (3)0.035 (3)0.007 (2)0.006 (2)0.000 (3)
C50.012 (3)0.036 (3)0.035 (4)0.004 (2)0.005 (2)0.006 (3)
C60.026 (3)0.033 (4)0.053 (5)0.002 (3)0.003 (3)0.005 (3)
C70.025 (3)0.044 (4)0.032 (4)0.002 (3)0.006 (3)0.002 (3)
C80.018 (3)0.026 (3)0.048 (4)0.001 (2)0.002 (3)0.000 (3)
C90.027 (3)0.055 (5)0.037 (4)0.000 (3)0.012 (3)0.011 (3)
C100.029 (4)0.045 (4)0.046 (4)0.000 (3)0.014 (3)0.012 (3)
C110.023 (3)0.027 (3)0.059 (5)0.002 (3)0.002 (3)0.002 (3)
C120.029 (3)0.025 (3)0.045 (4)0.006 (3)0.005 (3)0.009 (3)
C130.014 (3)0.027 (3)0.047 (4)0.009 (2)0.001 (3)0.008 (3)
C140.018 (3)0.042 (4)0.057 (5)0.011 (3)0.013 (3)0.009 (3)
C150.022 (3)0.042 (4)0.051 (4)0.016 (3)0.006 (3)0.005 (3)
C160.029 (4)0.028 (4)0.092 (7)0.008 (3)0.007 (4)0.008 (4)
C170.045 (5)0.056 (5)0.041 (4)0.013 (4)0.005 (4)0.016 (4)
C180.022 (3)0.037 (4)0.065 (6)0.005 (3)0.015 (3)0.006 (4)
C190.035 (4)0.072 (6)0.087 (7)0.018 (4)0.032 (5)0.023 (5)
C200.051 (5)0.063 (6)0.059 (6)0.022 (4)0.010 (4)0.018 (5)
C210.016 (3)0.025 (3)0.042 (4)0.002 (2)0.001 (3)0.000 (3)
C220.028 (4)0.034 (4)0.050 (5)0.003 (3)0.001 (3)0.003 (3)
C230.018 (3)0.035 (4)0.081 (7)0.000 (3)0.002 (4)0.007 (4)
C240.017 (3)0.044 (5)0.102 (8)0.001 (3)0.013 (4)0.001 (5)
C250.024 (4)0.046 (5)0.080 (6)0.007 (3)0.022 (4)0.011 (4)
C260.020 (3)0.032 (4)0.061 (5)0.004 (3)0.013 (3)0.002 (3)
C270.034 (5)0.054 (6)0.113 (10)0.010 (4)0.006 (5)0.024 (6)
C280.043 (5)0.071 (7)0.099 (9)0.001 (5)0.044 (6)0.009 (6)
C290.015 (3)0.025 (3)0.033 (3)0.002 (2)0.008 (2)0.003 (2)
C300.020 (3)0.030 (3)0.033 (3)0.008 (2)0.010 (3)0.003 (3)
C310.020 (3)0.031 (3)0.027 (3)0.010 (2)0.003 (2)0.001 (2)
C320.019 (3)0.033 (3)0.037 (4)0.002 (3)0.002 (3)0.001 (3)
C330.024 (3)0.031 (3)0.038 (4)0.002 (3)0.008 (3)0.003 (3)
C340.023 (3)0.034 (3)0.029 (3)0.003 (3)0.007 (3)0.002 (3)
C350.031 (4)0.035 (4)0.036 (4)0.008 (3)0.006 (3)0.009 (3)
C360.043 (4)0.064 (5)0.045 (5)0.012 (4)0.024 (4)0.003 (4)
Geometric parameters (Å, º) top
U1—I12.9511 (6)C9—H9C0.9800
U1—Ge13.0428 (7)C10—H10A0.9800
U1—C12.714 (6)C10—H10B0.9800
U1—C22.731 (6)C10—H10C0.9800
U1—C32.738 (6)C11—C121.434 (11)
U1—C42.718 (6)C11—C151.420 (12)
U1—C52.712 (6)C11—C161.502 (10)
U1—C112.686 (7)C12—C131.413 (10)
U1—C122.707 (7)C12—C171.494 (11)
U1—C132.756 (6)C13—C141.411 (11)
U1—C142.735 (6)C13—C181.492 (10)
U1—C152.674 (7)C14—C151.418 (11)
Ge1—H11.61 (8)C14—C191.501 (11)
Ge1—C211.990 (6)C15—C201.505 (12)
Ge1—C291.988 (6)C16—H16A0.9800
F1A—C271.440 (14)C16—H16B0.9800
F1—C271.252 (14)C16—H16C0.9800
F2A—C271.307 (15)C17—H17A0.9800
F2—C271.285 (13)C17—H17B0.9800
F3A—C271.298 (13)C17—H17C0.9800
F3—C271.379 (12)C18—H18A0.9800
F4—C281.318 (10)C18—H18B0.9800
F5—C281.287 (12)C18—H18C0.9800
F6—C281.287 (10)C19—H19A0.9800
F7—C361.285 (10)C19—H19B0.9800
F8—C361.348 (11)C19—H19C0.9800
F9—C361.321 (10)C20—H20A0.9800
F10—C351.341 (9)C20—H20B0.9800
F11—C351.315 (9)C20—H20C0.9800
F12—C351.336 (8)C21—C221.396 (10)
C1—C21.422 (9)C21—C261.382 (11)
C1—C51.406 (10)C22—H220.9500
C1—C61.511 (9)C22—C231.397 (11)
C2—C31.426 (9)C23—C241.382 (15)
C2—C71.494 (10)C23—C271.484 (13)
C3—C41.411 (9)C24—H240.9500
C3—C81.497 (9)C24—C251.386 (14)
C4—C51.425 (10)C25—C261.404 (10)
C4—C91.494 (10)C25—C281.477 (14)
C5—C101.502 (9)C26—H260.9500
C6—H6A0.9800C29—C301.389 (9)
C6—H6B0.9800C29—C341.397 (9)
C6—H6C0.9800C30—H300.9500
C7—H7A0.9800C30—C311.382 (9)
C7—H7B0.9800C31—C321.383 (9)
C7—H7C0.9800C31—C351.493 (9)
C8—H8A0.9800C32—H320.9500
C8—H8B0.9800C32—C331.388 (10)
C8—H8C0.9800C33—C341.391 (9)
C9—H9A0.9800C33—C361.492 (10)
C9—H9B0.9800C34—H340.9500
I1—U1—Ge188.063 (19)H10A—C10—H10B109.5
C1—U1—I1104.96 (15)H10A—C10—H10C109.5
C1—U1—Ge1132.39 (14)H10B—C10—H10C109.5
C1—U1—C230.28 (19)C12—C11—U175.4 (4)
C1—U1—C349.91 (18)C12—C11—C16125.8 (8)
C1—U1—C449.9 (2)C15—C11—U174.2 (4)
C1—U1—C13137.69 (19)C15—C11—C12107.6 (6)
C1—U1—C14133.0 (2)C15—C11—C16125.9 (8)
C2—U1—I181.46 (14)C16—C11—U1123.9 (5)
C2—U1—Ge1113.68 (14)C11—C12—U173.8 (4)
C2—U1—C330.23 (19)C11—C12—C17127.4 (7)
C2—U1—C13167.88 (19)C13—C12—U176.9 (4)
C2—U1—C14148.2 (2)C13—C12—C11108.0 (7)
C3—U1—I190.27 (14)C13—C12—C17124.5 (7)
C3—U1—Ge185.29 (13)C17—C12—U1118.5 (5)
C3—U1—C13154.3 (2)C12—C13—U173.1 (4)
C4—U1—I1120.04 (14)C12—C13—C18123.2 (7)
C4—U1—Ge183.71 (14)C14—C13—U174.3 (4)
C4—U1—C249.8 (2)C14—C13—C12107.9 (6)
C4—U1—C329.97 (19)C14—C13—C18127.6 (7)
C4—U1—C13128.2 (2)C18—C13—U1128.7 (4)
C4—U1—C14156.4 (2)C13—C14—U176.0 (4)
C5—U1—I1131.23 (14)C13—C14—C15108.9 (7)
C5—U1—Ge1111.14 (15)C13—C14—C19124.9 (8)
C5—U1—C130.0 (2)C15—C14—U172.5 (4)
C5—U1—C249.8 (2)C15—C14—C19125.7 (8)
C5—U1—C349.87 (19)C19—C14—U1124.3 (5)
C5—U1—C430.4 (2)C11—C15—U175.1 (4)
C5—U1—C13121.2 (2)C11—C15—C20125.2 (8)
C5—U1—C14136.3 (2)C14—C15—U177.2 (4)
C11—U1—I1120.78 (18)C14—C15—C11107.6 (7)
C11—U1—Ge1123.07 (16)C14—C15—C20127.0 (8)
C11—U1—C189.4 (2)C20—C15—U1118.2 (5)
C11—U1—C2118.1 (2)C11—C16—H16A109.5
C11—U1—C3135.7 (2)C11—C16—H16B109.5
C11—U1—C4113.0 (2)C11—C16—H16C109.5
C11—U1—C586.5 (2)H16A—C16—H16B109.5
C11—U1—C1230.8 (2)H16A—C16—H16C109.5
C11—U1—C1350.1 (2)H16B—C16—H16C109.5
C11—U1—C1450.0 (2)C12—C17—H17A109.5
C12—U1—I1132.74 (16)C12—C17—H17B109.5
C12—U1—Ge192.87 (16)C12—C17—H17C109.5
C12—U1—C1108.7 (2)H17A—C17—H17B109.5
C12—U1—C2138.7 (2)H17A—C17—H17C109.5
C12—U1—C3136.9 (2)H17B—C17—H17C109.5
C12—U1—C4107.0 (2)C13—C18—H18A109.5
C12—U1—C592.1 (2)C13—C18—H18B109.5
C12—U1—C1330.0 (2)C13—C18—H18C109.5
C12—U1—C1449.6 (2)H18A—C18—H18B109.5
C13—U1—I1106.56 (15)H18A—C18—H18C109.5
C13—U1—Ge176.24 (14)H18B—C18—H18C109.5
C14—U1—I183.15 (17)C14—C19—H19A109.5
C14—U1—Ge193.36 (17)C14—C19—H19B109.5
C14—U1—C3173.3 (2)C14—C19—H19C109.5
C14—U1—C1329.8 (2)H19A—C19—H19B109.5
C15—U1—I190.39 (18)H19A—C19—H19C109.5
C15—U1—Ge1123.18 (17)H19B—C19—H19C109.5
C15—U1—C1102.7 (2)C15—C20—H20A109.5
C15—U1—C2122.2 (2)C15—C20—H20B109.5
C15—U1—C3151.5 (2)C15—C20—H20C109.5
C15—U1—C4141.5 (2)H20A—C20—H20B109.5
C15—U1—C5111.9 (2)H20A—C20—H20C109.5
C15—U1—C1130.7 (3)H20B—C20—H20C109.5
C15—U1—C1250.7 (2)C22—C21—Ge1120.2 (6)
C15—U1—C1350.1 (2)C26—C21—Ge1121.3 (5)
C15—U1—C1430.4 (2)C26—C21—C22118.5 (7)
U1—Ge1—H1117 (3)C21—C22—H22119.8
C21—Ge1—U1118.5 (2)C21—C22—C23120.4 (8)
C21—Ge1—H197 (3)C23—C22—H22119.8
C29—Ge1—U1116.73 (18)C22—C23—C27119.4 (9)
C29—Ge1—H1105 (3)C24—C23—C22120.6 (8)
C29—Ge1—C2199.2 (2)C24—C23—C27120.0 (8)
C2—C1—U175.5 (3)C23—C24—H24120.2
C2—C1—C6123.0 (6)C23—C24—C25119.5 (7)
C5—C1—U174.9 (3)C25—C24—H24120.2
C5—C1—C2108.3 (6)C24—C25—C26119.7 (9)
C5—C1—C6128.4 (6)C24—C25—C28119.7 (8)
C6—C1—U1120.8 (4)C26—C25—C28120.5 (9)
C1—C2—U174.2 (3)C21—C26—C25121.2 (8)
C1—C2—C3107.7 (6)C21—C26—H26119.4
C1—C2—C7126.4 (6)C25—C26—H26119.4
C3—C2—U175.1 (3)F1A—C27—C23114.3 (9)
C3—C2—C7125.2 (6)F1—C27—F2115.5 (13)
C7—C2—U1123.9 (4)F1—C27—F3106.4 (11)
C2—C3—U174.6 (3)F1—C27—C23114.5 (12)
C2—C3—C8123.6 (6)F2A—C27—F1A99.3 (12)
C4—C3—U174.2 (3)F2A—C27—C23114.3 (14)
C4—C3—C2107.8 (6)F2—C27—F3102.2 (10)
C4—C3—C8127.9 (6)F2—C27—C23109.0 (10)
C8—C3—U1124.4 (4)F3A—C27—F1A98.6 (11)
C3—C4—U175.8 (3)F3A—C27—F2A109.2 (12)
C3—C4—C5108.2 (6)F3A—C27—C23118.4 (12)
C3—C4—C9127.7 (6)F3—C27—C23108.1 (10)
C5—C4—U174.6 (3)F4—C28—C25113.0 (10)
C5—C4—C9124.0 (6)F5—C28—F4104.1 (11)
C9—C4—U1119.6 (4)F5—C28—C25113.8 (7)
C1—C5—U175.1 (3)F6—C28—F4102.3 (8)
C1—C5—C4108.0 (6)F6—C28—F5109.8 (12)
C1—C5—C10127.5 (6)F6—C28—C25112.9 (9)
C4—C5—U175.0 (3)C30—C29—Ge1120.3 (5)
C4—C5—C10123.3 (6)C30—C29—C34117.1 (6)
C10—C5—U1126.0 (4)C34—C29—Ge1122.5 (5)
C1—C6—H6A109.5C29—C30—H30118.9
C1—C6—H6B109.5C31—C30—C29122.2 (6)
C1—C6—H6C109.5C31—C30—H30118.9
H6A—C6—H6B109.5C30—C31—C32120.4 (6)
H6A—C6—H6C109.5C30—C31—C35119.9 (6)
H6B—C6—H6C109.5C32—C31—C35119.6 (6)
C2—C7—H7A109.5C31—C32—H32120.8
C2—C7—H7B109.5C31—C32—C33118.5 (6)
C2—C7—H7C109.5C33—C32—H32120.8
H7A—C7—H7B109.5C32—C33—C34121.0 (6)
H7A—C7—H7C109.5C32—C33—C36120.0 (7)
H7B—C7—H7C109.5C34—C33—C36119.0 (7)
C3—C8—H8A109.5C29—C34—H34119.6
C3—C8—H8B109.5C33—C34—C29120.8 (6)
C3—C8—H8C109.5C33—C34—H34119.6
H8A—C8—H8B109.5F10—C35—C31112.4 (6)
H8A—C8—H8C109.5F11—C35—F10106.2 (6)
H8B—C8—H8C109.5F11—C35—F12107.1 (6)
C4—C9—H9A109.5F11—C35—C31114.3 (7)
C4—C9—H9B109.5F12—C35—F10104.7 (6)
C4—C9—H9C109.5F12—C35—C31111.5 (5)
H9A—C9—H9B109.5F7—C36—F8105.1 (8)
H9A—C9—H9C109.5F7—C36—F9109.7 (8)
H9B—C9—H9C109.5F7—C36—C33113.6 (7)
C5—C10—H10A109.5F8—C36—C33110.8 (7)
C5—C10—H10B109.5F9—C36—F8102.8 (7)
C5—C10—H10C109.5F9—C36—C33114.0 (7)
Bis[3,5-bis(trifluoromethyl)phenyl-2κC1](fluorido-1κI)(hydrido-2κH)bis[1,1(η5)-pentamethylcyclopentadienyl]germaniumuranium(GeU) (2) top
Crystal data top
[GeU(C10H15)2(C8H3F6)2FH]F(000) = 4016
Mr = 1041.30Dx = 1.844 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 34.160 (3) ÅCell parameters from 9918 reflections
b = 13.5237 (11) Åθ = 2.3–23.3°
c = 16.2986 (13) ŵ = 5.21 mm1
β = 95.028 (2)°T = 100 K
V = 7500.4 (10) Å3Prism, clear dark red
Z = 80.10 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5563 reflections with I > 2σ(I)
φ and ω scansRint = 0.081
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 26.5°, θmin = 1.6°
Tmin = 0.501, Tmax = 0.562h = 4242
65643 measured reflectionsk = 1616
7720 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0441P)2 + 21.6495P]
where P = (Fo2 + 2Fc2)/3
7720 reflections(Δ/σ)max = 0.001
492 parametersΔρmax = 1.68 e Å3
0 restraintsΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.37698 (2)0.91030 (2)0.40571 (2)0.03137 (8)
Ge10.34983 (2)0.70121 (4)0.35878 (4)0.02943 (15)
F10.38083 (14)0.9430 (4)0.2718 (3)0.0798 (14)
F1A0.4259 (6)0.6888 (19)0.0809 (14)0.059 (7)*0.25
F20.36774 (11)0.6810 (3)0.6963 (2)0.0528 (10)
F2A0.4111 (7)0.5508 (19)0.0457 (14)0.070 (6)*0.25
F30.30596 (11)0.7033 (3)0.6925 (2)0.0527 (10)
F3A0.4673 (6)0.5837 (17)0.0875 (12)0.064 (5)*0.25
F40.33071 (13)0.5681 (3)0.7388 (2)0.0590 (11)
F50.2643 (2)0.3420 (4)0.5447 (4)0.125 (3)
F60.30011 (16)0.3142 (4)0.4505 (5)0.128 (3)
F70.24878 (18)0.3913 (4)0.4284 (4)0.106 (2)
F80.42298 (13)0.3341 (3)0.3844 (3)0.0679 (13)
F90.45845 (18)0.3155 (4)0.2866 (3)0.102 (2)
F100.47779 (16)0.4025 (4)0.3882 (4)0.103 (2)
F110.39263 (19)0.6235 (7)0.0486 (3)0.088 (2)0.75
F120.4469 (3)0.6813 (7)0.0902 (4)0.089 (3)0.75
F130.4411 (4)0.5303 (5)0.0554 (4)0.102 (3)0.75
C10.30338 (17)0.9809 (5)0.3689 (4)0.0377 (15)
C20.30009 (17)0.9202 (5)0.4381 (4)0.0359 (14)
C30.32110 (17)0.9643 (5)0.5051 (4)0.0349 (15)
C40.33680 (19)1.0537 (5)0.4790 (5)0.0451 (17)
C50.3263 (2)1.0616 (5)0.3930 (5)0.0456 (18)
C60.28286 (19)0.9627 (6)0.2847 (4)0.057 (2)
H6A0.3022740.9445060.2465000.086*
H6B0.2691011.0229520.2650590.086*
H6C0.2638490.9088540.2877150.086*
C70.27336 (17)0.8335 (5)0.4455 (5)0.0482 (18)
H7A0.2641890.8094880.3903790.072*
H7B0.2507420.8536330.4745740.072*
H7C0.2876520.7805500.4763270.072*
C80.3214 (2)0.9282 (6)0.5923 (4)0.0526 (19)
H8A0.3309270.8598880.5956170.079*
H8B0.2946750.9309900.6097460.079*
H8C0.3387460.9702900.6284030.079*
C90.3541 (2)1.1334 (6)0.5340 (6)0.077 (3)
H9A0.3692751.1036880.5815810.115*
H9B0.3330021.1742350.5530250.115*
H9C0.3714601.1747020.5035730.115*
C100.3358 (3)1.1463 (6)0.3375 (6)0.076 (3)
H10A0.3568641.1866430.3652270.114*
H10B0.3123511.1871290.3253620.114*
H10C0.3444601.1199770.2860690.114*
C110.45358 (18)0.9564 (6)0.4048 (5)0.0511 (19)
C120.45269 (17)0.8548 (6)0.4005 (4)0.0464 (18)
C130.44244 (16)0.8168 (5)0.4758 (4)0.0367 (15)
C140.43624 (16)0.8966 (5)0.5274 (4)0.0374 (15)
C150.44352 (18)0.9842 (5)0.4837 (5)0.0457 (17)
C160.4660 (2)1.0261 (9)0.3402 (6)0.110 (4)
H16A0.4595230.9973060.2855170.165*
H16B0.4944101.0372200.3488370.165*
H16C0.4521771.0891530.3441490.165*
C170.4655 (2)0.7930 (8)0.3298 (5)0.090 (3)
H17A0.4566310.7246660.3356650.135*
H17B0.4942190.7943340.3307070.135*
H17C0.4539170.8201650.2774610.135*
C180.4437 (2)0.7100 (5)0.5018 (5)0.065 (2)
H18A0.4269270.7004290.5469500.097*
H18B0.4707980.6916130.5203960.097*
H18C0.4342350.6683090.4550300.097*
C190.4270 (2)0.8889 (7)0.6161 (4)0.064 (2)
H19A0.4200210.9543370.6360990.096*
H19B0.4501020.8638950.6496820.096*
H19C0.4049210.8434100.6200740.096*
C200.4470 (2)1.0879 (6)0.5166 (7)0.084 (3)
H20A0.4307631.1322800.4803340.126*
H20B0.4745081.1091600.5188930.126*
H20C0.4380321.0898720.5720710.126*
C210.33441 (17)0.6153 (4)0.4498 (4)0.0304 (13)
C220.34129 (16)0.6465 (4)0.5310 (4)0.0298 (13)
H220.3550050.7067940.5422500.036*
C230.32877 (16)0.5925 (4)0.5960 (4)0.0298 (13)
C240.30822 (17)0.5052 (4)0.5809 (4)0.0355 (15)
H240.2990700.4681290.6248610.043*
C250.30132 (17)0.4732 (4)0.5005 (4)0.0331 (14)
C260.31381 (16)0.5275 (4)0.4362 (4)0.0325 (14)
H260.3081820.5043970.3814380.039*
C270.33361 (18)0.6341 (5)0.6810 (4)0.0374 (15)
C280.2795 (2)0.3801 (5)0.4824 (5)0.0458 (17)
C290.38704 (17)0.6139 (4)0.3047 (4)0.0322 (14)
C300.40422 (16)0.5301 (4)0.3407 (4)0.0313 (13)
H300.3992180.5132090.3954240.038*
C310.42879 (17)0.4699 (4)0.2982 (4)0.0328 (14)
C320.43653 (18)0.4931 (5)0.2190 (4)0.0353 (14)
H320.4535320.4526730.1902720.042*
C330.41927 (19)0.5758 (4)0.1818 (4)0.0345 (14)
C340.39482 (17)0.6349 (5)0.2230 (4)0.0338 (14)
H340.3829490.6910270.1960170.041*
C350.4467 (2)0.3801 (5)0.3383 (4)0.0454 (17)
C360.4265 (2)0.6010 (5)0.0957 (4)0.0425 (16)
C370.30396 (19)0.6882 (5)0.2750 (4)0.0440 (16)
H37A0.2803890.7143530.2975350.066*
H37B0.2999010.6182640.2608110.066*
H37C0.3090360.7254300.2254700.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.02538 (11)0.02903 (13)0.04074 (15)0.00002 (10)0.00874 (9)0.00207 (11)
Ge10.0341 (3)0.0281 (3)0.0267 (3)0.0022 (3)0.0062 (3)0.0023 (3)
F10.068 (3)0.100 (4)0.073 (3)0.009 (3)0.013 (3)0.026 (3)
F20.055 (2)0.060 (3)0.041 (2)0.015 (2)0.0021 (19)0.0006 (19)
F30.062 (2)0.059 (3)0.037 (2)0.007 (2)0.0064 (19)0.0077 (19)
F40.080 (3)0.059 (3)0.037 (2)0.015 (2)0.001 (2)0.0139 (19)
F50.205 (7)0.088 (4)0.089 (4)0.099 (5)0.049 (4)0.022 (3)
F60.082 (4)0.048 (3)0.262 (8)0.015 (3)0.061 (5)0.070 (4)
F70.100 (4)0.062 (3)0.147 (5)0.034 (3)0.036 (4)0.004 (3)
F80.081 (3)0.050 (3)0.077 (3)0.022 (2)0.034 (3)0.026 (2)
F90.168 (5)0.081 (4)0.064 (3)0.086 (4)0.049 (3)0.023 (3)
F100.073 (3)0.101 (4)0.127 (5)0.010 (3)0.035 (3)0.042 (4)
F110.061 (4)0.172 (8)0.032 (3)0.016 (5)0.009 (3)0.036 (4)
F120.114 (7)0.113 (7)0.041 (4)0.080 (6)0.015 (4)0.012 (4)
F130.217 (10)0.063 (5)0.037 (4)0.080 (6)0.062 (5)0.019 (3)
C10.030 (3)0.048 (4)0.037 (4)0.014 (3)0.013 (3)0.014 (3)
C20.030 (3)0.039 (4)0.041 (4)0.004 (3)0.014 (3)0.002 (3)
C30.038 (3)0.038 (4)0.031 (4)0.013 (3)0.015 (3)0.002 (3)
C40.037 (3)0.030 (3)0.070 (5)0.005 (3)0.013 (3)0.008 (3)
C50.045 (4)0.039 (4)0.056 (5)0.010 (3)0.021 (3)0.017 (3)
C60.038 (4)0.097 (6)0.038 (4)0.022 (4)0.009 (3)0.017 (4)
C70.028 (3)0.051 (4)0.069 (5)0.000 (3)0.021 (3)0.004 (4)
C80.057 (4)0.068 (5)0.035 (4)0.022 (4)0.019 (3)0.003 (3)
C90.064 (5)0.059 (5)0.108 (8)0.007 (4)0.012 (5)0.043 (5)
C100.093 (6)0.039 (5)0.102 (7)0.019 (4)0.048 (6)0.036 (5)
C110.026 (3)0.081 (6)0.046 (5)0.016 (4)0.002 (3)0.021 (4)
C120.023 (3)0.073 (6)0.044 (4)0.001 (3)0.007 (3)0.011 (4)
C130.021 (3)0.038 (4)0.051 (4)0.005 (3)0.002 (3)0.002 (3)
C140.025 (3)0.053 (4)0.034 (4)0.003 (3)0.001 (3)0.006 (3)
C150.032 (3)0.034 (4)0.069 (5)0.009 (3)0.006 (3)0.002 (4)
C160.059 (5)0.167 (11)0.102 (8)0.059 (6)0.010 (5)0.080 (8)
C170.037 (4)0.169 (10)0.067 (6)0.005 (5)0.018 (4)0.049 (6)
C180.045 (4)0.041 (4)0.103 (7)0.010 (3)0.021 (4)0.003 (4)
C190.042 (4)0.112 (7)0.036 (4)0.004 (4)0.003 (3)0.001 (4)
C200.047 (4)0.047 (5)0.151 (9)0.004 (4)0.033 (5)0.021 (5)
C210.031 (3)0.029 (3)0.032 (3)0.002 (2)0.006 (3)0.000 (3)
C220.032 (3)0.026 (3)0.032 (3)0.000 (2)0.005 (3)0.002 (3)
C230.029 (3)0.028 (3)0.033 (3)0.000 (3)0.004 (2)0.002 (3)
C240.032 (3)0.033 (3)0.043 (4)0.001 (3)0.011 (3)0.006 (3)
C250.035 (3)0.023 (3)0.042 (4)0.002 (3)0.011 (3)0.005 (3)
C260.037 (3)0.029 (3)0.032 (3)0.003 (3)0.008 (3)0.006 (3)
C270.039 (3)0.035 (4)0.037 (4)0.004 (3)0.003 (3)0.007 (3)
C280.053 (4)0.026 (3)0.059 (5)0.003 (3)0.012 (4)0.004 (3)
C290.039 (3)0.025 (3)0.034 (4)0.004 (3)0.010 (3)0.011 (3)
C300.038 (3)0.034 (3)0.023 (3)0.001 (3)0.009 (3)0.001 (3)
C310.036 (3)0.033 (3)0.030 (3)0.000 (3)0.008 (3)0.000 (3)
C320.040 (3)0.035 (4)0.033 (4)0.004 (3)0.012 (3)0.006 (3)
C330.047 (4)0.030 (3)0.028 (3)0.003 (3)0.009 (3)0.001 (3)
C340.041 (3)0.030 (3)0.031 (4)0.004 (3)0.009 (3)0.002 (3)
C350.050 (4)0.053 (4)0.035 (4)0.014 (3)0.011 (3)0.006 (3)
C360.064 (5)0.031 (4)0.034 (4)0.000 (4)0.018 (3)0.004 (3)
C370.049 (4)0.046 (4)0.037 (4)0.010 (3)0.002 (3)0.004 (3)
Geometric parameters (Å, º) top
U1—F12.243 (5)C10—H10B0.9800
U1—C52.676 (6)C10—H10C0.9800
U1—C112.691 (6)C11—C121.375 (11)
U1—C152.697 (6)C11—C151.411 (10)
U1—C122.701 (6)C11—C161.501 (10)
U1—C12.707 (6)C12—C131.403 (9)
U1—C32.710 (5)C12—C171.519 (10)
U1—C42.712 (6)C13—C141.396 (9)
U1—C142.713 (6)C13—C181.505 (9)
U1—C22.727 (6)C14—C151.415 (9)
U1—C132.731 (6)C14—C191.510 (9)
U1—Ge13.0524 (7)C15—C201.502 (10)
Ge1—C211.991 (6)C16—H16A0.9800
Ge1—C371.994 (6)C16—H16B0.9800
Ge1—C291.996 (6)C16—H16C0.9800
F1A—C361.21 (2)C17—H17A0.9800
F2—C271.331 (7)C17—H17B0.9800
F2A—C361.15 (2)C17—H17C0.9800
F3—C271.354 (7)C18—H18A0.9800
F3A—C361.43 (2)C18—H18B0.9800
F4—C271.308 (7)C18—H18C0.9800
F5—C281.288 (8)C19—H19A0.9800
F6—C281.274 (8)C19—H19B0.9800
F7—C281.319 (9)C19—H19C0.9800
F8—C351.309 (8)C20—H20A0.9800
F9—C351.302 (8)C20—H20B0.9800
F10—C351.315 (8)C20—H20C0.9800
F11—C361.367 (9)C21—C261.388 (8)
F12—C361.296 (9)C21—C221.389 (8)
F13—C361.284 (8)C22—C231.386 (8)
C1—C51.381 (9)C22—H220.9500
C1—C21.407 (8)C23—C241.384 (8)
C1—C61.506 (9)C23—C271.491 (9)
C2—C31.388 (9)C24—C251.380 (8)
C2—C71.498 (9)C24—H240.9500
C3—C41.403 (9)C25—C261.377 (8)
C3—C81.502 (9)C25—C281.479 (9)
C4—C51.419 (10)C26—H260.9500
C4—C91.491 (10)C29—C301.383 (8)
C5—C101.512 (9)C29—C341.410 (8)
C6—H6A0.9800C30—C311.397 (8)
C6—H6B0.9800C30—H300.9500
C6—H6C0.9800C31—C321.377 (8)
C7—H7A0.9800C31—C351.485 (9)
C7—H7B0.9800C32—C331.379 (8)
C7—H7C0.9800C32—H320.9500
C8—H8A0.9800C33—C341.374 (8)
C8—H8B0.9800C33—C361.486 (9)
C8—H8C0.9800C34—H340.9500
C9—H9A0.9800C37—H37A0.9800
C9—H9B0.9800C37—H37B0.9800
C9—H9C0.9800C37—H37C0.9800
C10—H10A0.9800
F1—U1—C582.3 (2)C12—C11—C15107.8 (6)
F1—U1—C1178.98 (19)C12—C11—C16126.7 (9)
C5—U1—C11116.4 (2)C15—C11—C16125.3 (9)
F1—U1—C15105.5 (2)C12—C11—U175.6 (4)
C5—U1—C15105.4 (2)C15—C11—U175.0 (3)
C11—U1—C1530.4 (2)C16—C11—U1118.9 (5)
F1—U1—C1283.48 (19)C11—C12—C13109.2 (6)
C5—U1—C12145.5 (2)C11—C12—C17125.5 (8)
C11—U1—C1229.5 (2)C13—C12—C17124.9 (8)
C15—U1—C1249.3 (2)C11—C12—U174.8 (4)
F1—U1—C181.23 (17)C13—C12—U176.2 (3)
C5—U1—C129.7 (2)C17—C12—U1121.1 (4)
C11—U1—C1143.3 (2)C14—C13—C12107.8 (6)
C15—U1—C1134.6 (2)C14—C13—C18125.1 (7)
C12—U1—C1164.6 (2)C12—C13—C18126.5 (7)
F1—U1—C3129.29 (18)C14—C13—U174.5 (3)
C5—U1—C349.87 (19)C12—C13—U173.9 (4)
C11—U1—C3132.6 (2)C18—C13—U1124.4 (4)
C15—U1—C3103.1 (2)C13—C14—C15107.5 (6)
C12—U1—C3145.1 (2)C13—C14—C19125.4 (7)
C1—U1—C349.31 (18)C15—C14—C19126.9 (7)
F1—U1—C4111.3 (2)C13—C14—U175.8 (3)
C5—U1—C430.5 (2)C15—C14—U174.2 (4)
C11—U1—C4111.5 (2)C19—C14—U1120.0 (4)
C15—U1—C488.0 (2)C11—C15—C14107.7 (6)
C12—U1—C4137.3 (2)C11—C15—C20123.8 (8)
C1—U1—C449.4 (2)C14—C15—C20127.8 (8)
C3—U1—C429.99 (19)C11—C15—U174.6 (4)
F1—U1—C14128.42 (18)C14—C15—U175.5 (3)
C5—U1—C14123.0 (2)C20—C15—U1123.5 (5)
C11—U1—C1449.9 (2)C11—C16—H16A109.5
C15—U1—C1430.33 (19)C11—C16—H16B109.5
C12—U1—C1449.38 (19)H16A—C16—H16B109.5
C1—U1—C14143.59 (19)C11—C16—H16C109.5
C3—U1—C1495.79 (18)H16A—C16—H16C109.5
C4—U1—C1495.8 (2)H16B—C16—H16C109.5
F1—U1—C2108.56 (18)C12—C17—H17A109.5
C5—U1—C249.49 (19)C12—C17—H17B109.5
C11—U1—C2160.6 (2)H17A—C17—H17B109.5
C15—U1—C2132.6 (2)C12—C17—H17C109.5
C12—U1—C2163.9 (2)H17A—C17—H17C109.5
C1—U1—C230.00 (18)H17B—C17—H17C109.5
C3—U1—C229.58 (18)C13—C18—H18A109.5
C4—U1—C249.20 (19)C13—C18—H18B109.5
C14—U1—C2122.10 (19)H18A—C18—H18B109.5
F1—U1—C13112.51 (18)C13—C18—H18C109.5
C5—U1—C13152.4 (2)H18A—C18—H18C109.5
C11—U1—C1349.4 (2)H18B—C18—H18C109.5
C15—U1—C1349.38 (19)C14—C19—H19A109.5
C12—U1—C1329.9 (2)C14—C19—H19B109.5
C1—U1—C13165.14 (19)H19A—C19—H19B109.5
C3—U1—C13117.94 (19)C14—C19—H19C109.5
C4—U1—C13125.0 (2)H19A—C19—H19C109.5
C14—U1—C1329.71 (18)H19B—C19—H19C109.5
C2—U1—C13135.15 (19)C15—C20—H20A109.5
F1—U1—Ge188.92 (14)C15—C20—H20B109.5
C5—U1—Ge1120.59 (16)H20A—C20—H20B109.5
C11—U1—Ge1119.17 (19)C15—C20—H20C109.5
C15—U1—Ge1133.34 (14)H20A—C20—H20C109.5
C12—U1—Ge190.33 (16)H20B—C20—H20C109.5
C1—U1—Ge190.88 (15)C26—C21—C22116.9 (5)
C3—U1—Ge1100.65 (14)C26—C21—Ge1123.0 (4)
C4—U1—Ge1128.17 (14)C22—C21—Ge1119.9 (4)
C14—U1—Ge1108.11 (14)C23—C22—C21122.0 (5)
C2—U1—Ge179.47 (13)C23—C22—H22119.0
C13—U1—Ge184.01 (13)C21—C22—H22119.0
C21—Ge1—C37102.4 (3)C24—C23—C22120.0 (5)
C21—Ge1—C29101.7 (2)C24—C23—C27120.1 (5)
C37—Ge1—C2997.9 (3)C22—C23—C27119.6 (5)
C21—Ge1—U1116.65 (17)C25—C24—C23118.5 (6)
C37—Ge1—U1117.2 (2)C25—C24—H24120.7
C29—Ge1—U1117.87 (16)C23—C24—H24120.7
C5—C1—C2108.5 (6)C26—C25—C24121.1 (6)
C5—C1—C6126.6 (6)C26—C25—C28119.1 (6)
C2—C1—C6124.8 (6)C24—C25—C28119.8 (6)
C5—C1—U173.9 (4)C25—C26—C21121.4 (6)
C2—C1—U175.8 (3)C25—C26—H26119.3
C6—C1—U1119.6 (4)C21—C26—H26119.3
C3—C2—C1107.9 (6)F4—C27—F2108.1 (5)
C3—C2—C7123.3 (6)F4—C27—F3105.9 (5)
C1—C2—C7127.9 (6)F2—C27—F3104.8 (5)
C3—C2—U174.5 (3)F4—C27—C23113.8 (5)
C1—C2—U174.2 (3)F2—C27—C23112.2 (5)
C7—C2—U1125.6 (4)F3—C27—C23111.6 (5)
C2—C3—C4108.5 (6)F6—C28—F5108.5 (7)
C2—C3—C8124.4 (6)F6—C28—F7104.0 (7)
C4—C3—C8126.6 (6)F5—C28—F7102.6 (7)
C2—C3—U175.9 (3)F6—C28—C25113.0 (6)
C4—C3—U175.1 (3)F5—C28—C25114.5 (6)
C8—C3—U1122.1 (4)F7—C28—C25113.2 (6)
C3—C4—C5107.1 (6)C30—C29—C34117.3 (5)
C3—C4—C9125.6 (7)C30—C29—Ge1124.1 (4)
C5—C4—C9126.2 (7)C34—C29—Ge1118.5 (4)
C3—C4—U174.9 (3)C29—C30—C31121.2 (5)
C5—C4—U173.3 (4)C29—C30—H30119.4
C9—C4—U1126.3 (5)C31—C30—H30119.4
C1—C5—C4108.0 (6)C32—C31—C30120.4 (6)
C1—C5—C10125.1 (7)C32—C31—C35119.6 (5)
C4—C5—C10126.8 (7)C30—C31—C35120.0 (5)
C1—C5—U176.4 (4)C31—C32—C33119.2 (5)
C4—C5—U176.2 (4)C31—C32—H32120.4
C10—C5—U1117.0 (5)C33—C32—H32120.4
C1—C6—H6A109.5C34—C33—C32120.8 (6)
C1—C6—H6B109.5C34—C33—C36119.2 (6)
H6A—C6—H6B109.5C32—C33—C36120.0 (5)
C1—C6—H6C109.5C33—C34—C29121.2 (6)
H6A—C6—H6C109.5C33—C34—H34119.4
H6B—C6—H6C109.5C29—C34—H34119.4
C2—C7—H7A109.5F9—C35—F8107.1 (6)
C2—C7—H7B109.5F9—C35—F10106.0 (6)
H7A—C7—H7B109.5F8—C35—F10105.2 (6)
C2—C7—H7C109.5F9—C35—C31113.7 (6)
H7A—C7—H7C109.5F8—C35—C31113.0 (5)
H7B—C7—H7C109.5F10—C35—C31111.3 (6)
C3—C8—H8A109.5F2A—C36—F1A115.9 (18)
C3—C8—H8B109.5F13—C36—F12110.8 (8)
H8A—C8—H8B109.5F13—C36—F11103.0 (7)
C3—C8—H8C109.5F12—C36—F11102.0 (7)
H8A—C8—H8C109.5F2A—C36—F3A103.2 (15)
H8B—C8—H8C109.5F1A—C36—F3A98.2 (13)
C4—C9—H9A109.5F2A—C36—C33115.4 (12)
C4—C9—H9B109.5F1A—C36—C33114.2 (12)
H9A—C9—H9B109.5F13—C36—C33114.6 (6)
C4—C9—H9C109.5F12—C36—C33113.1 (6)
H9A—C9—H9C109.5F11—C36—C33112.2 (6)
H9B—C9—H9C109.5F3A—C36—C33107.2 (10)
C5—C10—H10A109.5Ge1—C37—H37A109.5
C5—C10—H10B109.5Ge1—C37—H37B109.5
H10A—C10—H10B109.5H37A—C37—H37B109.5
C5—C10—H10C109.5Ge1—C37—H37C109.5
H10A—C10—H10C109.5H37A—C37—H37C109.5
H10B—C10—H10C109.5H37B—C37—H37C109.5
Selected geometric parameters (Å, °) for 1 and 2 top
Parameter12
U1—Ge13.0428 (7)3.0524 (7)
U1—Ge1—C21118.5 (2)116.65 (17)
U1—Ge1—C29116.73 (18)117.87 (16)
top
ContactDistance (D···A)Distance (D—H···A)
1
Ge1—H···I14.5876 (9)3.16 (8)
C7—H···F123.314 (9)2.524
C16—H···C303.70 (1)2.79
C20B—H···F73.44 (1)2.65
2
C7—H···F33.403 (8)2.652
C7—H···C243.536 (9)2.863
C7···C73.36 (1)
C10—H···F33.216 (8)2.617
C16—H···C193.84 (1)2.87
C18—H···F103.446 (8)2.543
C20—H···C113.57 (1)2.80
C20—H···C123.654 (9)2.752
H···A distances involving riding H atoms are rounded to the precision of the D···A distance.

Footnotes

Current address: Heavy Elements Group, Argonne National Laboratory, Lemont, IL 60439, USA.

Funding information

We gratefully acknowledge the Department of Energy, Office of Basic Energy Sciences, Heavy Element Program under Award DE-SC0021273 (JRW).

References

First citationBehrle, A. C. & Walensky, J. R. (2016). Dalton Trans. 45, 10042–10049.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBender, J. E. IV, Litz, K. E., Giarikos, D., Wells, N. J., Banaszak Holl, M. M. & Kampf, J. W. (1997). Chem. Eur. J. 3, 1793–1796.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlake, P. C., Lappert, M. F., Taylor, R. G., Atwood, J. L., Hunter, W. E. & Zhang, H. (1995). J. Chem. Soc. Dalton Trans. pp. 3335–3341.  CrossRef Web of Science Google Scholar
First citationBoreen, M. A., McCabe, K. N., Lohrey, T. D., Watt, F. A., Maron, L., Hohloch, S. & Arnold, J. (2020). Inorg. Chem. 59, 8580–8588.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrackbill, I. J., Douair, I., Lussier, D. J., Boreen, M. A., Maron, L. & Arnold, J. (2020). Chem. Eur. J. 26, 2360–2364.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2015). APEX3, SAINT, AXScale, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationDiaconescu, P. L., Odom, A. L., Agapie, T. & Cummins, C. C. (2001). Organometallics, 20, 4993–4995.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, W. J., Nyce, G. W., Johnston, M. A. & Ziller, J. W. (2000). J. Am. Chem. Soc. 122, 12019–12020.  Web of Science CSD CrossRef CAS Google Scholar
First citationGraves, C. R., Schelter, E. J., Cantat, T., Scott, B. L. & Kiplinger, J. L. (2008). Organometallics, 27, 5371–5378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKagan, B. D., Lichtscheidl, A. G., Erickson, K. A., Monreal, M. J., Scott, B. L., Nelson, A. T. & Kiplinger, J. L. (2018). Eur. J. Inorg. Chem. pp. 1247–1253.  Web of Science CSD CrossRef Google Scholar
First citationKaltsoyannis, N. (2013). Inorg. Chem. 52, 3407–3413.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKing, W. A. & Marks, T. J. (1995). Inorg. Chim. Acta, 229, 343–354.  CrossRef CAS Web of Science Google Scholar
First citationNeidig, M. L., Clark, D. L. & Martin, R. L. (2013). Coord. Chem. Rev. 257, 394–406.  Web of Science CrossRef CAS Google Scholar
First citationPorchia, M., Brianese, N., Casellato, U., Ossola, F., Rossetto, G., Zanella, P. & Graziani, R. (1989). J. Chem. Soc. Dalton Trans. pp. 677–681.  CSD CrossRef Web of Science Google Scholar
First citationPorchia, M., Casellato, U., Ossola, F., Rossetto, G., Zanella, P. & Graziani, R. (1986). J. Chem. Soc. Chem. Commun. pp. 1034–1035.  CSD CrossRef Web of Science Google Scholar
First citationPorchia, M., Ossola, F., Rossetto, G., Zanella, P. & Brianese, N. (1987). J. Chem. Soc. Chem. Commun. pp. 550–551.  CrossRef Web of Science Google Scholar
First citationRadu, N. S., Engeler, M. P., Gerlach, C. P., Tilley, T. D. & Rheingold, A. L. (1995). J. Am. Chem. Soc. 117, 3621–3622.  CSD CrossRef CAS Web of Science Google Scholar
First citationRéant, B. L. L., Berryman, V. E. J., Seed, J. A., Basford, A. R., Formanuik, A., Wooles, A. J., Kaltsoyannis, N., Liddle, S. T. & Mills, D. P. (2020a). Chem. Commun. 56, 12620–12623.  Google Scholar
First citationRéant, B. L. L., Liddle, S. T. & Mills, D. P. (2020b). Chem. Sci. 11, 10871–10886.  Web of Science PubMed Google Scholar
First citationRungthanaphatsophon, P., Huang, P. & Walensky, J. R. (2018). Organometallics, 37, 1884–1891.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, J., Batista, E. R., Boland, K. S., Bone, S. E., Bradley, J. A., Cary, S. K., Clark, D. L., Conradson, S. D., Ditter, A. S., Kaltsoyannis, N., Keith, J. M., Kerridge, A., Kozimor, S. A., Löble, M. W., Martin, R. L., Minasian, S. G., Mocko, V., La Pierre, H. S., Seidler, G. T., Shuh, D. K., Wilkerson, M. P., Wolfsberg, L. E. & Yang, P. (2018). J. Am. Chem. Soc. 140, 17977–17984.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTarlton, M. L., Del Rosal, I., Vilanova, S. P., Kelley, S. P., Maron, L. & Walensky, J. R. (2020). Organometallics, 39, 2152–2161.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarlton, M. L., Fajen, O. J., Kelley, S. P., Kerridge, A., Malcomson, T., Morrison, T. L., Shores, M. P., Xhani, X. & Walensky, J. R. (2021). Inorg. Chem. 60, 10614–10630.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationThomson, R. K., Graves, C. R., Scott, B. L. & Kiplinger, J. L. (2010). Dalton Trans. 39, 6826–6831.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVilanova, S. P., Alayoglu, P., Heidarian, M., Huang, P. & Walensky, J. R. (2017). Chem. Eur. J. 23, 16748–16752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWalensky, J. R., Martin, R. L., Ziller, J. W. & Evans, W. J. (2010). Inorg. Chem. 49, 10007–10012.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWinston, M. S., Batista, E. R., Yang, P., Tondreau, A. M. & Boncella, J. M. (2016). Inorg. Chem. 55, 5534–5539.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds