research communications
Synthesis and μ-N,N-bis(2-aminoethyl)ethane-1,2-diamine]bis[N,N-bis(2-aminoethyl)ethane-1,2-diamine]-μ4-oxido-hexa-μ3-oxido-octa-μ2-oxido-tetraoxidotetranickel(II)hexatantalum(V) nonadecahydrate
of bis[aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: wbensch@ac.uni-kiel.de
Reaction of K8{Ta6O19}·16H2O with [Ni(tren)(H2O)Cl]Cl·H2O in different solvents led to the formation of single crystals of the title compound, [Ni4Ta6O19(C6H18N4)4]·19H2O or {[Ni2(κ4-tren)(μ-κ3-tren)]2Ta6O19}·19H2O (tren is N,N-bis(2-aminoethyl)-1,2-ethanediamine, C6H18N4). In its one Lindqvist-type anion {Ta6O19}8– (point group symmetry ) is connected to two NiII cations, with both of them coordinated by one tren ligand into discrete units. Both NiII cations are sixfold coordinated by O atoms of the anion and N atoms of the organic ligand, resulting in slightly distorted [NiON5] octahedra for one and [NiO3N3] octahedra for the other cation. These clusters are linked by intermolecular O—H⋯O and N—H⋯O hydrogen bonding involving water molecules into layers parallel to the bc plane. Some of these water molecules are positionally disordered and were refined using a split model. Powder X-ray diffraction revealed that a pure crystalline phase was obtained but that on storage at room-temperature this compound decomposed because of the loss of crystal water molecules.
CCDC reference: 2119604
1. Chemical context
The investigation of synthesis conditions and crystal structures of new inorganic–organic hybrid polyoxidometalates (POMs) of V, Nb, Ta, Mo or W is still an emerging research field in inorganic chemistry. The enormous variety of their structural, physical and chemical properties and the resulting potential applications are reflected in the large number of reported compounds (Tagliavini et al., 2021; Streb, 2012; Bijelic et al., 2019; Yamase, 2013; König, 2020; Čolović et al., 2020; Monakhov et al., 2015). Within the POM family, polyoxidoniobates and -tantalates have a special position because of their challenging synthesis conditions, i.e. high pH values are required as a result of the high stability of their respective oxides. This is the reason why we have been engaged in the research field of POM chemistry for several years, with the aim in developing new synthesis routes, also with an increasing focus on the PONb and POTa chemistry (Müscher-Polzin et al., 2020a,b; Dopta et al., 2018a,b, 2020). Most of the POMs are usually synthesized by solvothermal reactions using slightly soluble metal oxides. It turned out that the use of water-soluble compounds as precursor materials is more effective for generating new compounds, which opens the possibility of developing more efficient syntheses at room temperature (Dopta et al., 2020; Mahnke et al., 2018a,b). Some transition metal (TM) decorated POTas have also been synthesized by slow crystallization at room temperature (Guo et al., 2011; Li et al., 2019), which is characterized by long reaction times and high sensibility for parameter changes during reaction. To overcome these drawbacks, we were interested in the possibility of faster crystallization times. To achieve this goal, we used preformed TM complexes and a special combination of different solvent gradients in the reaction vessel. Appropriate TM complexes are based on the tetradentate ligand N,N-bis(2-aminoethyl)-1,2-ethanediamine (tren), which offers coordination flexibility, providing two free coordination sites in an octahedral environment, with the possibilities for further ligation to O atoms of POMs or acting as charge-balancing cations. Based on that reasoning, an aqueous solution of K8[Ta6O19]·16H2O was reacted with the preformed complex [Ni(tren)(H2O)Cl]Cl·H2O at room temperature, leading to crystallization of violet needle-like crystals of the title compound, which was characterized by single-crystal X-ray diffraction. Comparison of the experimental powder X-ray diffraction pattern with that calculated from single crystal data revealed that a pure crystalline phase had formed. However, the relatively high background indicated the presence of some amount of an amorphous phase (see Fig. S1 in the supporting information). This is in line with the observation that the title compound is very unstable in air, which might be traced back to the loss of crystal water molecules, and was the reason why further investigations were not performed.
2. Structural commentary
The 2(κ4-tren)(μ-κ3-tren)]2Ta6O19}·19H2O consists of one Lindqvist-type anion {Ta6O19}8–, located on a center of inversion, as well as two NiII cations, two N,N-bis(2-aminoethyl)-1,2-ethanediamino ligands and nineteen water molecules that are located in general positions (Figs. 1 and 2). Some of the water O atoms are positionally disordered and were refined using a split model without locating their attached hydrogen atoms.
of {[NiThe {Ta6O19}8– anion is composed of six TaO6 octahedra sharing common edges. The Ta—O bond lengths range from 1.786 (2) to 2.057 (2) Å, which is consistent with common values. Bond-valence-sum calculations (Brown & Altermatt, 1985; Liu & Thorp, 1993; O'Keefe & Brese, 1991) led to values of 4.98 valence units (v.u.) for Ta1, of 1.78 v.u. for Ni1 and of 1.69 v.u. for Ni2, which is in reasonable agreement with the oxidation states of +5 and +2 for Ta and Ni, respectively. Two symmetry-related pairs of NiII cations are covalently attached to the {Ta6O19}8– core: Ni2 forms bonds to three μ2-bridging O atoms with Ni—O bond lengths between 2.103 (2) and 2.170 (2) Å, while Ni1 is attached to a terminal O atom with a Ni—O bond length of 2.072 (2) Å (Fig. 3, Table 1), which is slightly larger than the sum of their ionic radii (NiII with CN6 = 0.69 Å, O2− = 1.35 Å; Shannon, 1976). The Ni1 cation is further coordinated by four N donor atoms (N1–N4) of one tren ligand and an additional N atom (N14) of another tren ligand, with Ni—N bonds ranging from 2.076 (3) to 2.172 (3) Å (Table 1), which is in agreement with reported values of similar structures (Dopta et al. 2018a; Hegetschweiler et al., 2002; Niu et al., 2011; Kim et al., 2004; Mash et al., 2019; Junk & Steed, 2007). One tren ligand connects both NiII cations via an Ni—μ-N—Ni bond of 2.082 (3) Å. Both NiII cations are in an octahedral environment, resulting in [Ni2O3N3] and [Ni1ON5] units (Fig. 3). The bond angles within the complexes cover a wide range between 82.40 (13) and 178.92 (11)° for [Ni2O3N3] and between 74.98 (9) and 174.07 (11)° for [Ni1ON5], which shows that both NiII cations have a distorted octahedral environment. The distortion is caused by steric demands, because both NiII cations are coordinated by the anionic cluster as well as by tren ligands.
3. Supramolecular features
In the crystal, the discrete molecular moieties are linked by O—H⋯O and O—H⋯N hydrogen bonds between the crystal water molecules and the O atoms of the {Ta6O19}8– core (Table 2). The water molecules form discrete units categorized as D6 (Infantes et al., 2003; Infantes & Motherwell, 2002), of which each water molecule is attached to an Ocluster atom with Ocluster⋯O distances between 1.88 and 1.99 Å and condensed into chains extending parallel to [010] (Fig. 4). The [010] chains are further linked by Owater—H⋯N bonds with O⋯N separations between 2.232 and 2.537 Å, yielding another chain that propagates parallel to [001] (Table 2), finally forming a layered structure parallel to the bc plane (Fig. 5). There are additional C—H⋯N interactions (Table 2). From both the C⋯N distances and the angles, it is obvious that these represent only weak interactions.
4. Database survey
There are only a few crystal structures of POMs reported in the literature with [NiII(tren)x] complexes covalently attached to the anionic core. Our group has already reported the rare [Ni2(tren)3]4+ and [{Ni(tren)}(trenH2){Ni(tren)}]6+ complexes that act as linking units between several anionic moieties (Lühmann et al., 2014; Wang et al., 2013). In these structures, the NiII cation is coordinated by one tetradentate ligand and one additional tren molecule connecting two NiII cations of neighboring POV ({V15Ge6}) clusters. A connection of two NiII cations bonded to separated clusters via two tren molecules (with κ3 and κ4 modes) has not been reported until now. However, the of a similar complex, viz. [Ni3((μ-tren)2(tren)2(H2O)2]6+ was reported previously (Matelková et al., 2013).
5. Synthesis and crystallization
Synthesis
All chemicals except K8{Ta6O19}·16H2O were purchased from commercial sources and were used without further purification [N,N-bis(2-aminoethyl)-1,2-ethanediamine (tren) >96%, Aldrich; Ta2O5 99% Ta, Alfa Aesar; NiCl2·6H2O > 97%, Merck; KOH 85%, abcr; dimethylsulfoxide (DMSO) 99%, Grüssing]. The water-soluble precursor K8{Ta6O19}·16H2O was prepared according to Filowitz et al. (1969), and the prefabricated complex [Ni(tren)(H2O)Cl]Cl·H2O using the protocol of Marzotto et al. (1993).
0.03 mmol of Ni[(tren)(H2O)Cl]Cl·H2O were dissolved in 1 ml of a 4:1 DMSO:water solution (v/v) and subsequently transferred into a 5 ml snap-cap glass tube. Then 1 ml of a 3:1 mixture (v/v) of DMSO and water and a solution of 0.0125 mmol of K8{Ta6O19}·16H2O in 1 ml of water (pH = 12.3) were added slowly, one after the other, into the tube, which then was closed and left at room temperature. After a few days, pink–violet needle-shaped crystals were filtered off and washed with mother liquor.
Experimental details
The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.
6. Refinement
Crystal data, data collection and structure . The C- and N-bound hydrogen atoms were refined with idealized positions with Uiso(H) = 1.2Ueq(C,N) using a riding model. Some of the hydrogen atoms belonging to water molecules were located in a difference-Fourier map. Their bond lengths were set to ideal values and they were refined with Uiso(H) = 1.5Ueq(O). Some of the water atoms (O16–O19) are positionally disordered and were refined using a split model with 50% occupation for each of the corresponding sites; O20 was refined with one position and an occupation of 50%. The hydrogen atoms of water molecules that could not be located were considered in the calculation of the molecular formula.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2119604
https://doi.org/10.1107/S2056989021011531/wm5616sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021011531/wm5616Isup2.hkl
Figure S1: Experimental and calculated XRPD powder pattern of the title compound. DOI: https://doi.org/10.1107/S2056989021011531/wm5616sup3.tif
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni4Ta6O19(C6H18N4)4]·19H2O | Z = 1 |
Mr = 2551.81 | F(000) = 1210 |
Triclinic, P1 | Dx = 2.556 Mg m−3 |
a = 10.5033 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.0980 (2) Å | Cell parameters from 37095 reflections |
c = 13.8640 (2) Å | θ = 2.4–34.0° |
α = 73.748 (1)° | µ = 11.06 mm−1 |
β = 80.918 (1)° | T = 100 K |
γ = 80.842 (1)° | Needle, light violet |
V = 1657.76 (4) Å3 | 0.11 × 0.06 × 0.01 × 0.02 (radius) mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 7897 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 7404 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.9°, θmin = 2.4° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −15→15 |
Tmin = 0.686, Tmax = 0.694 | l = −18→18 |
44996 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0386P)2 + 3.1986P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.003 |
7897 reflections | Δρmax = 2.83 e Å−3 |
439 parameters | Δρmin = −1.13 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ta1 | 0.64607 (2) | −0.03553 (2) | 1.12174 (2) | 0.01205 (4) | |
Ta2 | 0.63326 (2) | 0.13631 (2) | 0.89100 (2) | 0.01300 (4) | |
Ta3 | 0.37445 (2) | 0.14420 (2) | 1.07511 (2) | 0.01322 (4) | |
O1 | 0.7572 (2) | −0.0558 (2) | 1.21206 (18) | 0.0165 (5) | |
O2 | 0.7303 (2) | 0.2421 (2) | 0.8064 (2) | 0.0217 (5) | |
O3 | 0.2829 (3) | 0.2550 (2) | 1.1292 (2) | 0.0234 (6) | |
O4 | 0.7273 (2) | 0.0788 (2) | 1.00901 (19) | 0.0147 (5) | |
O5 | 0.4815 (2) | 0.1550 (2) | 0.81001 (18) | 0.0158 (5) | |
O6 | 0.7149 (2) | −0.1593 (2) | 1.04715 (19) | 0.0149 (5) | |
O7 | 0.5176 (2) | 0.0863 (2) | 1.15884 (19) | 0.0164 (5) | |
O8 | 0.7070 (2) | −0.0048 (2) | 0.85123 (18) | 0.0159 (5) | |
O9 | 0.5036 (2) | 0.2344 (2) | 0.96735 (19) | 0.0156 (5) | |
O10 | 0.500000 | 0.000000 | 1.000000 | 0.0136 (7) | |
Ni1 | 0.92251 (4) | −0.03103 (4) | 1.26360 (3) | 0.01532 (9) | |
N1 | 0.8699 (3) | 0.1472 (3) | 1.2539 (2) | 0.0201 (6) | |
C1 | 0.8585 (4) | 0.2037 (3) | 1.1455 (3) | 0.0230 (8) | |
H1A | 0.853129 | 0.288863 | 1.133133 | 0.028* | |
H1B | 0.777943 | 0.185909 | 1.127343 | 0.028* | |
C2 | 0.9754 (4) | 0.1607 (4) | 1.0799 (3) | 0.0270 (8) | |
H2A | 0.960794 | 0.188815 | 1.007761 | 0.032* | |
H2B | 1.053812 | 0.191245 | 1.088285 | 0.032* | |
N2 | 0.9951 (3) | 0.0334 (3) | 1.1095 (2) | 0.0211 (6) | |
H2C | 1.081340 | 0.008218 | 1.099923 | 0.025* | |
H2D | 0.953545 | 0.005768 | 1.069973 | 0.025* | |
C3 | 0.9730 (4) | 0.1919 (4) | 1.2894 (3) | 0.0292 (9) | |
H3A | 0.931892 | 0.250220 | 1.326166 | 0.035* | |
H3B | 1.029801 | 0.231278 | 1.229806 | 0.035* | |
C4 | 1.0561 (4) | 0.0973 (4) | 1.3584 (3) | 0.0253 (8) | |
H4A | 1.137072 | 0.126636 | 1.363251 | 0.030* | |
H4B | 1.008365 | 0.075941 | 1.427187 | 0.030* | |
N3 | 1.0883 (3) | −0.0053 (3) | 1.3184 (2) | 0.0197 (6) | |
H3C | 1.113045 | −0.068663 | 1.368206 | 0.024* | |
H3D | 1.155159 | 0.005610 | 1.267602 | 0.024* | |
C5 | 0.7429 (4) | 0.1552 (4) | 1.3166 (3) | 0.0257 (8) | |
H5A | 0.674670 | 0.141584 | 1.280900 | 0.031* | |
H5B | 0.721195 | 0.234233 | 1.326618 | 0.031* | |
C6 | 0.7451 (4) | 0.0670 (4) | 1.4187 (3) | 0.0268 (8) | |
H6A | 0.798205 | 0.090586 | 1.460793 | 0.032* | |
H6B | 0.655662 | 0.063614 | 1.454163 | 0.032* | |
N4 | 0.8004 (3) | −0.0488 (3) | 1.4047 (2) | 0.0234 (7) | |
H4C | 0.734953 | −0.090387 | 1.405737 | 0.028* | |
H4D | 0.847421 | −0.087973 | 1.456312 | 0.028* | |
Ni2 | 0.37645 (4) | 0.30477 (4) | 0.85661 (4) | 0.01769 (9) | |
N11 | 0.2586 (3) | 0.3909 (3) | 0.7352 (3) | 0.0228 (6) | |
C11 | 0.3553 (4) | 0.4394 (4) | 0.6485 (4) | 0.0384 (11) | |
H11A | 0.308709 | 0.496041 | 0.595074 | 0.046* | |
H11B | 0.401692 | 0.375854 | 0.619627 | 0.046* | |
C12 | 0.4526 (5) | 0.4980 (4) | 0.6785 (4) | 0.0476 (14) | |
H12A | 0.524285 | 0.514673 | 0.622820 | 0.057* | |
H12B | 0.410697 | 0.572483 | 0.691769 | 0.057* | |
N12 | 0.5045 (4) | 0.4215 (3) | 0.7703 (3) | 0.0384 (10) | |
H12C | 0.521448 | 0.465760 | 0.809050 | 0.046* | |
H12D | 0.580819 | 0.380862 | 0.752063 | 0.046* | |
C13 | 0.1726 (4) | 0.4869 (3) | 0.7696 (3) | 0.0282 (8) | |
H13A | 0.092034 | 0.504736 | 0.736649 | 0.034* | |
H13B | 0.217298 | 0.557486 | 0.748922 | 0.034* | |
C14 | 0.1381 (4) | 0.4544 (3) | 0.8830 (3) | 0.0260 (8) | |
H14A | 0.087344 | 0.521228 | 0.905006 | 0.031* | |
H14B | 0.084937 | 0.389170 | 0.903890 | 0.031* | |
N13 | 0.2613 (3) | 0.4200 (3) | 0.9300 (3) | 0.0247 (7) | |
H13C | 0.244850 | 0.385428 | 0.997304 | 0.030* | |
H13D | 0.302153 | 0.483347 | 0.922462 | 0.030* | |
C15 | 0.1831 (4) | 0.3213 (3) | 0.6974 (3) | 0.0222 (7) | |
H15A | 0.241988 | 0.254676 | 0.681442 | 0.027* | |
H15B | 0.150923 | 0.369778 | 0.633641 | 0.027* | |
C16 | 0.0684 (3) | 0.2759 (3) | 0.7707 (3) | 0.0197 (7) | |
H16A | 0.098349 | 0.228688 | 0.835662 | 0.024* | |
H16B | 0.005448 | 0.341548 | 0.784192 | 0.024* | |
N14 | 0.0054 (3) | 0.2040 (3) | 0.7259 (2) | 0.0202 (6) | |
H14C | 0.004942 | 0.240492 | 0.658896 | 0.024* | |
H14D | −0.079034 | 0.205534 | 0.754004 | 0.024* | |
O11 | 0.8066 (3) | 0.3844 (3) | 0.9091 (3) | 0.0378 (7) | |
H11C | 0.779756 | 0.353130 | 0.870404 | 0.057* | |
H11D | 0.733546 | 0.387800 | 0.943614 | 0.057* | |
O12 | 1.4219 (4) | 0.0650 (4) | 1.3614 (3) | 0.0536 (10) | |
H12E | 1.450539 | 0.085993 | 1.299839 | 0.080* | |
H12F | 1.428029 | −0.007777 | 1.376809 | 0.080* | |
O13 | −0.1468 (4) | 0.5884 (3) | 0.7766 (3) | 0.0537 (11) | |
H13E | −0.177526 | 0.528101 | 0.812709 | 0.081* | |
H13F | −0.198956 | 0.645501 | 0.786419 | 0.081* | |
O14 | 0.5770 (3) | 0.3988 (3) | 1.0444 (3) | 0.0459 (9) | |
H14E | 0.550254 | 0.380175 | 1.106447 | 0.069* | |
H14F | 0.528754 | 0.354705 | 1.034817 | 0.069* | |
O15 | 0.6112 (4) | −0.2362 (3) | 1.5414 (3) | 0.0511 (9) | |
H15C | 0.683268 | −0.271482 | 1.557895 | 0.077* | |
H15D | 0.595218 | −0.177272 | 1.563995 | 0.077* | |
O16 | 1.4662 (9) | −0.1666 (9) | 1.3937 (7) | 0.0297 (19) | 0.5 |
O16' | 1.4319 (10) | −0.1976 (9) | 1.3891 (8) | 0.0316 (19) | 0.5 |
O17 | −0.1862 (9) | 0.5860 (7) | 0.5871 (6) | 0.0354 (18) | 0.5 |
O17' | −0.1465 (9) | 0.6271 (8) | 0.5822 (8) | 0.042 (2) | 0.5 |
O18 | 1.2376 (6) | −0.2566 (6) | 1.4074 (4) | 0.0351 (14) | 0.5 |
O18' | 1.2585 (6) | −0.3647 (6) | 1.3875 (5) | 0.0398 (16) | 0.5 |
O19 | −0.0677 (7) | 0.4198 (6) | 0.5130 (5) | 0.0403 (15) | 0.5 |
O19' | 1.0608 (8) | −0.2496 (6) | 1.4918 (5) | 0.0445 (17) | 0.5 |
O20 | 0.5580 (6) | 0.6592 (5) | 0.7647 (4) | 0.0285 (12) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ta1 | 0.00591 (6) | 0.01739 (7) | 0.01444 (7) | −0.00135 (5) | −0.00280 (5) | −0.00589 (5) |
Ta2 | 0.00604 (6) | 0.01679 (7) | 0.01625 (7) | −0.00248 (5) | −0.00202 (5) | −0.00348 (5) |
Ta3 | 0.00737 (7) | 0.01741 (7) | 0.01720 (7) | −0.00015 (5) | −0.00273 (5) | −0.00837 (5) |
O1 | 0.0090 (10) | 0.0255 (13) | 0.0164 (11) | −0.0017 (9) | −0.0042 (9) | −0.0066 (10) |
O2 | 0.0119 (11) | 0.0221 (13) | 0.0267 (14) | −0.0055 (10) | −0.0021 (10) | 0.0025 (10) |
O3 | 0.0181 (13) | 0.0254 (14) | 0.0306 (15) | 0.0042 (10) | −0.0039 (11) | −0.0168 (12) |
O4 | 0.0074 (10) | 0.0169 (11) | 0.0214 (12) | −0.0026 (8) | −0.0033 (9) | −0.0061 (9) |
O5 | 0.0092 (11) | 0.0213 (12) | 0.0160 (11) | −0.0015 (9) | −0.0029 (9) | −0.0027 (9) |
O6 | 0.0068 (10) | 0.0188 (12) | 0.0204 (12) | −0.0006 (9) | −0.0035 (9) | −0.0065 (9) |
O7 | 0.0117 (11) | 0.0225 (12) | 0.0186 (12) | −0.0007 (9) | −0.0040 (9) | −0.0108 (10) |
O8 | 0.0079 (10) | 0.0237 (12) | 0.0169 (12) | −0.0019 (9) | −0.0003 (9) | −0.0071 (10) |
O9 | 0.0109 (11) | 0.0147 (11) | 0.0230 (12) | −0.0017 (9) | −0.0054 (9) | −0.0060 (10) |
O10 | 0.0076 (15) | 0.0186 (17) | 0.0148 (16) | 0.0005 (12) | −0.0037 (12) | −0.0045 (13) |
Ni1 | 0.00831 (18) | 0.0236 (2) | 0.0161 (2) | −0.00135 (16) | −0.00322 (15) | −0.00786 (17) |
N1 | 0.0167 (14) | 0.0240 (15) | 0.0215 (15) | −0.0018 (11) | −0.0066 (12) | −0.0070 (12) |
C1 | 0.0186 (17) | 0.0240 (18) | 0.0272 (19) | −0.0046 (14) | −0.0089 (15) | −0.0035 (15) |
C2 | 0.0162 (17) | 0.037 (2) | 0.0244 (19) | −0.0087 (15) | −0.0005 (14) | −0.0015 (16) |
N2 | 0.0090 (13) | 0.0366 (17) | 0.0192 (14) | −0.0031 (12) | −0.0028 (11) | −0.0089 (13) |
C3 | 0.028 (2) | 0.028 (2) | 0.039 (2) | −0.0059 (16) | −0.0168 (17) | −0.0109 (17) |
C4 | 0.0206 (18) | 0.033 (2) | 0.0275 (19) | −0.0053 (15) | −0.0093 (15) | −0.0126 (16) |
N3 | 0.0104 (13) | 0.0309 (17) | 0.0186 (14) | −0.0041 (12) | −0.0021 (11) | −0.0068 (12) |
C5 | 0.0177 (17) | 0.031 (2) | 0.030 (2) | 0.0053 (15) | −0.0036 (15) | −0.0151 (17) |
C6 | 0.0197 (18) | 0.041 (2) | 0.0228 (18) | −0.0021 (16) | 0.0011 (14) | −0.0165 (17) |
N4 | 0.0199 (15) | 0.0321 (18) | 0.0201 (15) | −0.0046 (13) | −0.0021 (12) | −0.0093 (13) |
Ni2 | 0.0109 (2) | 0.0159 (2) | 0.0260 (2) | −0.00212 (16) | −0.00576 (17) | −0.00300 (18) |
N11 | 0.0168 (14) | 0.0200 (15) | 0.0290 (17) | −0.0044 (12) | −0.0038 (12) | −0.0004 (13) |
C11 | 0.023 (2) | 0.037 (2) | 0.040 (3) | −0.0050 (17) | −0.0006 (18) | 0.013 (2) |
C12 | 0.027 (2) | 0.034 (2) | 0.065 (3) | −0.0093 (19) | −0.013 (2) | 0.020 (2) |
N12 | 0.0217 (17) | 0.0235 (18) | 0.060 (3) | −0.0055 (14) | −0.0129 (17) | 0.0115 (17) |
C13 | 0.0221 (18) | 0.0206 (18) | 0.041 (2) | −0.0010 (14) | −0.0138 (17) | −0.0023 (16) |
C14 | 0.0184 (17) | 0.0202 (18) | 0.041 (2) | 0.0011 (14) | −0.0110 (16) | −0.0091 (16) |
N13 | 0.0204 (15) | 0.0174 (15) | 0.0394 (19) | 0.0006 (12) | −0.0121 (14) | −0.0093 (13) |
C15 | 0.0183 (17) | 0.0265 (19) | 0.0201 (17) | −0.0004 (14) | −0.0057 (14) | −0.0030 (14) |
C16 | 0.0144 (16) | 0.0237 (18) | 0.0233 (18) | 0.0009 (13) | −0.0061 (13) | −0.0094 (14) |
N14 | 0.0122 (13) | 0.0271 (16) | 0.0231 (15) | 0.0001 (11) | −0.0059 (11) | −0.0089 (13) |
O11 | 0.0335 (17) | 0.0356 (17) | 0.0454 (19) | −0.0087 (13) | 0.0052 (14) | −0.0152 (14) |
O12 | 0.061 (2) | 0.077 (3) | 0.0222 (16) | −0.006 (2) | 0.0038 (16) | −0.0188 (17) |
O13 | 0.085 (3) | 0.0301 (17) | 0.042 (2) | −0.0068 (18) | 0.0191 (19) | −0.0177 (15) |
O14 | 0.0352 (18) | 0.058 (2) | 0.058 (2) | −0.0262 (16) | 0.0025 (16) | −0.0311 (18) |
O15 | 0.0348 (19) | 0.0385 (19) | 0.075 (3) | −0.0001 (15) | −0.0046 (18) | −0.0100 (18) |
O16 | 0.026 (5) | 0.048 (6) | 0.018 (3) | −0.007 (3) | −0.002 (3) | −0.013 (3) |
O16' | 0.035 (5) | 0.037 (5) | 0.025 (4) | −0.002 (3) | −0.006 (4) | −0.012 (3) |
O17 | 0.043 (5) | 0.035 (5) | 0.027 (3) | 0.006 (3) | −0.001 (3) | −0.014 (3) |
O17' | 0.035 (5) | 0.047 (6) | 0.051 (5) | −0.001 (4) | −0.005 (4) | −0.029 (4) |
O18 | 0.035 (3) | 0.047 (4) | 0.023 (3) | −0.009 (3) | −0.009 (2) | −0.004 (3) |
O18' | 0.037 (4) | 0.050 (4) | 0.024 (3) | 0.010 (3) | −0.003 (3) | −0.004 (3) |
O19 | 0.039 (4) | 0.039 (4) | 0.038 (4) | −0.003 (3) | 0.005 (3) | −0.008 (3) |
O19' | 0.061 (5) | 0.040 (4) | 0.034 (3) | 0.008 (3) | −0.005 (3) | −0.019 (3) |
O20 | 0.026 (3) | 0.037 (3) | 0.029 (3) | −0.008 (2) | −0.005 (2) | −0.016 (2) |
Ta1—Ta2 | 3.3013 (2) | N3—H3D | 0.9100 |
Ta1—Ta3 | 3.3325 (2) | C5—H5A | 0.9900 |
Ta1—O1 | 1.786 (2) | C5—H5B | 0.9900 |
Ta1—O4 | 1.957 (2) | C5—C6 | 1.517 (6) |
Ta1—O5i | 2.057 (2) | C6—H6A | 0.9900 |
Ta1—O6 | 2.030 (2) | C6—H6B | 0.9900 |
Ta1—O7 | 1.957 (2) | C6—N4 | 1.482 (5) |
Ta1—O10 | 2.3641 (1) | N4—H4C | 0.9100 |
Ta2—Ta3i | 3.3056 (2) | N4—H4D | 0.9100 |
Ta2—O2 | 1.803 (3) | Ni2—N11 | 2.172 (3) |
Ta2—O4 | 1.947 (2) | Ni2—N12 | 2.094 (4) |
Ta2—O5 | 2.040 (2) | Ni2—N13 | 2.076 (3) |
Ta2—O8 | 1.947 (2) | N11—C11 | 1.493 (5) |
Ta2—O9 | 2.029 (2) | N11—C13 | 1.494 (5) |
Ta2—O10 | 2.3737 (1) | N11—C15 | 1.484 (5) |
Ta2—Ni2 | 3.1254 (4) | C11—H11A | 0.9900 |
Ta3—O3 | 1.791 (3) | C11—H11B | 0.9900 |
Ta3—O6i | 2.015 (2) | C11—C12 | 1.501 (7) |
Ta3—O7 | 1.964 (2) | C12—H12A | 0.9900 |
Ta3—O8i | 1.959 (3) | C12—H12B | 0.9900 |
Ta3—O9 | 2.045 (3) | C12—N12 | 1.475 (6) |
Ta3—O10 | 2.3912 (1) | N12—H12C | 0.9100 |
Ta3—Ni2 | 3.1064 (5) | N12—H12D | 0.9100 |
O1—Ni1 | 2.072 (2) | C13—H13A | 0.9900 |
O5—Ni2 | 2.170 (3) | C13—H13B | 0.9900 |
O6—Ni2i | 2.149 (2) | C13—C14 | 1.509 (6) |
O9—Ni2 | 2.103 (2) | C14—H14A | 0.9900 |
Ni1—N1 | 2.111 (3) | C14—H14B | 0.9900 |
Ni1—N2 | 2.120 (3) | C14—N13 | 1.489 (5) |
Ni1—N3 | 2.105 (3) | N13—H13C | 0.9100 |
Ni1—N4 | 2.139 (3) | N13—H13D | 0.9100 |
Ni1—N14i | 2.082 (3) | C15—H15A | 0.9900 |
N1—C1 | 1.482 (5) | C15—H15B | 0.9900 |
N1—C3 | 1.486 (5) | C15—C16 | 1.516 (5) |
N1—C5 | 1.478 (5) | C16—H16A | 0.9900 |
C1—H1A | 0.9900 | C16—H16B | 0.9900 |
C1—H1B | 0.9900 | C16—N14 | 1.482 (5) |
C1—C2 | 1.522 (6) | N14—H14C | 0.9100 |
C2—H2A | 0.9900 | N14—H14D | 0.9100 |
C2—H2B | 0.9900 | O11—H11C | 0.8399 |
C2—N2 | 1.467 (5) | O11—H11D | 0.8396 |
N2—H2C | 0.9100 | O12—H12E | 0.8400 |
N2—H2D | 0.9100 | O12—H12F | 0.8401 |
C3—H3A | 0.9900 | O13—H13E | 0.8402 |
C3—H3B | 0.9900 | O13—H13F | 0.8399 |
C3—C4 | 1.523 (5) | O14—H14E | 0.8400 |
C4—H4A | 0.9900 | O14—H14F | 0.8400 |
C4—H4B | 0.9900 | O15—H15C | 0.8398 |
C4—N3 | 1.468 (5) | O15—H15D | 0.8399 |
N3—H3C | 0.9100 | ||
Ta2—Ta1—Ta3 | 62.304 (4) | C5—N1—C3 | 113.4 (3) |
O1—Ta1—Ta2 | 132.06 (8) | N1—C1—H1A | 109.6 |
O1—Ta1—Ta3 | 132.68 (8) | N1—C1—H1B | 109.6 |
O1—Ta1—O4 | 99.95 (11) | N1—C1—C2 | 110.2 (3) |
O1—Ta1—O5i | 104.23 (11) | H1A—C1—H1B | 108.1 |
O1—Ta1—O6 | 104.25 (10) | C2—C1—H1A | 109.6 |
O1—Ta1—O7 | 100.84 (11) | C2—C1—H1B | 109.6 |
O1—Ta1—O10 | 177.50 (8) | C1—C2—H2A | 109.8 |
O4—Ta1—Ta2 | 32.17 (7) | C1—C2—H2B | 109.8 |
O4—Ta1—Ta3 | 84.14 (7) | H2A—C2—H2B | 108.2 |
O4—Ta1—O5i | 155.30 (10) | N2—C2—C1 | 109.5 (3) |
O4—Ta1—O6 | 89.21 (10) | N2—C2—H2A | 109.8 |
O4—Ta1—O7 | 90.86 (10) | N2—C2—H2B | 109.8 |
O4—Ta1—O10 | 78.10 (7) | Ni1—N2—H2C | 109.5 |
O5i—Ta1—Ta2 | 123.66 (7) | Ni1—N2—H2D | 109.5 |
O5i—Ta1—Ta3 | 83.23 (7) | C2—N2—Ni1 | 110.6 (2) |
O5i—Ta1—O10 | 77.86 (7) | C2—N2—H2C | 109.5 |
O6—Ta1—Ta2 | 83.44 (7) | C2—N2—H2D | 109.5 |
O6—Ta1—Ta3 | 123.02 (7) | H2C—N2—H2D | 108.1 |
O6—Ta1—O5i | 80.09 (10) | N1—C3—H3A | 108.9 |
O6—Ta1—O10 | 77.37 (7) | N1—C3—H3B | 108.9 |
O7—Ta1—Ta2 | 83.14 (7) | N1—C3—C4 | 113.3 (3) |
O7—Ta1—Ta3 | 31.87 (7) | H3A—C3—H3B | 107.7 |
O7—Ta1—O5i | 89.53 (10) | C4—C3—H3A | 108.9 |
O7—Ta1—O6 | 154.51 (10) | C4—C3—H3B | 108.9 |
O7—Ta1—O10 | 77.71 (7) | C3—C4—H4A | 109.6 |
O10—Ta1—Ta2 | 45.949 (3) | C3—C4—H4B | 109.6 |
O10—Ta1—Ta3 | 45.842 (3) | H4A—C4—H4B | 108.1 |
Ta1—Ta2—Ta3i | 61.789 (4) | N3—C4—C3 | 110.1 (3) |
O2—Ta2—Ta1 | 135.83 (8) | N3—C4—H4A | 109.6 |
O2—Ta2—Ta3i | 134.41 (9) | N3—C4—H4B | 109.6 |
O2—Ta2—O4 | 103.52 (11) | Ni1—N3—H3C | 110.0 |
O2—Ta2—O5 | 100.46 (11) | Ni1—N3—H3D | 110.0 |
O2—Ta2—O8 | 102.12 (12) | C4—N3—Ni1 | 108.3 (2) |
O2—Ta2—O9 | 102.38 (11) | C4—N3—H3C | 110.0 |
O2—Ta2—O10 | 178.28 (8) | C4—N3—H3D | 110.0 |
O2—Ta2—Ni2 | 92.21 (8) | H3C—N3—H3D | 108.4 |
O4—Ta2—Ta1 | 32.35 (7) | N1—C5—H5A | 109.4 |
O4—Ta2—Ta3i | 81.68 (7) | N1—C5—H5B | 109.4 |
O4—Ta2—O5 | 155.76 (10) | N1—C5—C6 | 111.1 (3) |
O4—Ta2—O8 | 87.94 (10) | H5A—C5—H5B | 108.0 |
O4—Ta2—O9 | 89.28 (10) | C6—C5—H5A | 109.4 |
O4—Ta2—O10 | 78.04 (7) | C6—C5—H5B | 109.4 |
O4—Ta2—Ni2 | 130.95 (7) | C5—C6—H6A | 109.7 |
O5—Ta2—Ta1 | 123.50 (7) | C5—C6—H6B | 109.7 |
O5—Ta2—Ta3i | 84.17 (7) | H6A—C6—H6B | 108.2 |
O5—Ta2—O10 | 77.94 (7) | N4—C6—C5 | 109.8 (3) |
O5—Ta2—Ni2 | 43.70 (7) | N4—C6—H6A | 109.7 |
O8—Ta2—Ta1 | 83.13 (7) | N4—C6—H6B | 109.7 |
O8—Ta2—Ta3i | 32.29 (7) | Ni1—N4—H4C | 109.6 |
O8—Ta2—O5 | 90.54 (10) | Ni1—N4—H4D | 109.6 |
O8—Ta2—O9 | 155.32 (10) | C6—N4—Ni1 | 110.2 (2) |
O8—Ta2—O10 | 78.58 (7) | C6—N4—H4C | 109.6 |
O8—Ta2—Ni2 | 134.06 (7) | C6—N4—H4D | 109.6 |
O9—Ta2—Ta1 | 81.47 (7) | H4C—N4—H4D | 108.1 |
O9—Ta2—Ta3i | 123.11 (7) | Ta3—Ni2—Ta2 | 66.828 (9) |
O9—Ta2—O5 | 82.10 (10) | O5—Ni2—Ta2 | 40.50 (6) |
O9—Ta2—O10 | 76.85 (7) | O5—Ni2—Ta3 | 85.33 (6) |
O9—Ta2—Ni2 | 41.73 (7) | O5—Ni2—N11 | 103.85 (11) |
O10—Ta2—Ta1 | 45.710 (3) | O6i—Ni2—Ta2 | 84.09 (6) |
O10—Ta2—Ta3i | 46.292 (3) | O6i—Ni2—Ta3 | 40.14 (6) |
O10—Ta2—Ni2 | 86.199 (9) | O6i—Ni2—O5 | 74.98 (9) |
Ni2—Ta2—Ta1 | 115.605 (10) | O6i—Ni2—N11 | 108.66 (11) |
Ni2—Ta2—Ta3i | 118.719 (9) | O9—Ni2—Ta2 | 39.97 (7) |
Ta2i—Ta3—Ta1 | 61.584 (4) | O9—Ni2—Ta3 | 40.81 (7) |
O3—Ta3—Ta1 | 134.81 (9) | O9—Ni2—O5 | 77.40 (10) |
O3—Ta3—Ta2i | 135.63 (9) | O9—Ni2—O6i | 77.27 (10) |
O3—Ta3—O6i | 102.86 (11) | O9—Ni2—N11 | 174.07 (11) |
O3—Ta3—O7 | 103.09 (11) | N11—Ni2—Ta2 | 139.05 (9) |
O3—Ta3—O8i | 103.56 (12) | N11—Ni2—Ta3 | 144.70 (8) |
O3—Ta3—O9 | 102.36 (12) | N12—Ni2—Ta2 | 82.86 (10) |
O3—Ta3—O10 | 178.51 (10) | N12—Ni2—Ta3 | 131.62 (11) |
O3—Ta3—Ni2 | 92.55 (9) | N12—Ni2—O5 | 95.51 (14) |
O6i—Ta3—Ta1 | 121.97 (7) | N12—Ni2—O6i | 166.92 (12) |
O6i—Ta3—Ta2i | 83.52 (7) | N12—Ni2—O9 | 92.05 (13) |
O6i—Ta3—O9 | 81.65 (10) | N12—Ni2—N11 | 82.07 (13) |
O6i—Ta3—O10 | 76.99 (7) | N13—Ni2—Ta2 | 136.14 (9) |
O6i—Ta3—Ni2 | 43.43 (7) | N13—Ni2—Ta3 | 82.71 (10) |
O7—Ta3—Ta1 | 31.73 (7) | N13—Ni2—O5 | 167.02 (12) |
O7—Ta3—Ta2i | 82.02 (7) | N13—Ni2—O6i | 92.56 (12) |
O7—Ta3—O6i | 153.41 (10) | N13—Ni2—O9 | 96.59 (12) |
O7—Ta3—O9 | 87.26 (10) | N13—Ni2—N11 | 83.33 (13) |
O7—Ta3—O10 | 76.91 (7) | N13—Ni2—N12 | 96.20 (16) |
O7—Ta3—Ni2 | 129.41 (7) | C11—N11—Ni2 | 103.7 (2) |
O8i—Ta3—Ta1 | 82.41 (7) | C11—N11—C13 | 110.2 (3) |
O8i—Ta3—Ta2i | 32.08 (7) | C13—N11—Ni2 | 105.8 (2) |
O8i—Ta3—O6i | 91.15 (10) | C15—N11—Ni2 | 119.3 (2) |
O8i—Ta3—O7 | 88.35 (11) | C15—N11—C11 | 106.1 (3) |
O8i—Ta3—O9 | 154.04 (10) | C15—N11—C13 | 111.3 (3) |
O8i—Ta3—O10 | 77.93 (7) | N11—C11—H11A | 109.0 |
O8i—Ta3—Ni2 | 134.43 (7) | N11—C11—H11B | 109.0 |
O9—Ta3—Ta1 | 80.45 (7) | N11—C11—C12 | 112.7 (4) |
O9—Ta3—Ta2i | 121.97 (7) | H11A—C11—H11B | 107.8 |
O9—Ta3—O10 | 76.15 (7) | C12—C11—H11A | 109.0 |
O9—Ta3—Ni2 | 42.21 (7) | C12—C11—H11B | 109.0 |
O10—Ta3—Ta1 | 45.177 (3) | C11—C12—H12A | 109.8 |
O10—Ta3—Ta2i | 45.855 (3) | C11—C12—H12B | 109.8 |
O10—Ta3—Ni2 | 86.339 (9) | H12A—C12—H12B | 108.3 |
Ni2—Ta3—Ta1 | 115.241 (9) | N12—C12—C11 | 109.2 (4) |
Ni2—Ta3—Ta2i | 118.381 (9) | N12—C12—H12A | 109.8 |
Ta1—O1—Ni1 | 155.51 (15) | N12—C12—H12B | 109.8 |
Ta2—O4—Ta1 | 115.48 (11) | Ni2—N12—H12C | 109.0 |
Ta1i—O5—Ni2 | 99.62 (10) | Ni2—N12—H12D | 109.0 |
Ta2—O5—Ta1i | 112.10 (11) | C12—N12—Ni2 | 112.7 (3) |
Ta2—O5—Ni2 | 95.80 (10) | C12—N12—H12C | 109.0 |
Ta1—O6—Ni2i | 101.20 (10) | C12—N12—H12D | 109.0 |
Ta3i—O6—Ta1 | 114.00 (11) | H12C—N12—H12D | 107.8 |
Ta3i—O6—Ni2i | 96.43 (10) | N11—C13—H13A | 109.4 |
Ta1—O7—Ta3 | 116.40 (12) | N11—C13—H13B | 109.4 |
Ta2—O8—Ta3i | 115.63 (12) | N11—C13—C14 | 111.3 (3) |
Ta2—O9—Ta3 | 114.78 (11) | H13A—C13—H13B | 108.0 |
Ta2—O9—Ni2 | 98.30 (11) | C14—C13—H13A | 109.4 |
Ta3—O9—Ni2 | 96.99 (10) | C14—C13—H13B | 109.4 |
Ta1—O10—Ta1i | 180.0 | C13—C14—H14A | 110.1 |
Ta1—O10—Ta2 | 88.341 (5) | C13—C14—H14B | 110.1 |
Ta1i—O10—Ta2i | 88.341 (5) | H14A—C14—H14B | 108.4 |
Ta1i—O10—Ta2 | 91.659 (4) | N13—C14—C13 | 107.9 (3) |
Ta1—O10—Ta2i | 91.659 (4) | N13—C14—H14A | 110.1 |
Ta1—O10—Ta3 | 88.980 (4) | N13—C14—H14B | 110.1 |
Ta1—O10—Ta3i | 91.020 (5) | Ni2—N13—H13C | 110.4 |
Ta1i—O10—Ta3 | 91.020 (4) | Ni2—N13—H13D | 110.4 |
Ta1i—O10—Ta3i | 88.980 (4) | C14—N13—Ni2 | 106.8 (2) |
Ta2i—O10—Ta2 | 180.0 | C14—N13—H13C | 110.4 |
Ta2i—O10—Ta3 | 87.852 (5) | C14—N13—H13D | 110.4 |
Ta2i—O10—Ta3i | 92.147 (5) | H13C—N13—H13D | 108.6 |
Ta2—O10—Ta3i | 87.854 (5) | N11—C15—H15A | 108.7 |
Ta2—O10—Ta3 | 92.147 (5) | N11—C15—H15B | 108.7 |
Ta3—O10—Ta3i | 180.0 | N11—C15—C16 | 114.4 (3) |
O1—Ni1—N1 | 96.31 (11) | H15A—C15—H15B | 107.6 |
O1—Ni1—N2 | 86.87 (11) | C16—C15—H15A | 108.7 |
O1—Ni1—N3 | 178.92 (11) | C16—C15—H15B | 108.7 |
O1—Ni1—N4 | 83.49 (11) | C15—C16—H16A | 109.9 |
O1—Ni1—N14i | 89.60 (11) | C15—C16—H16B | 109.9 |
N1—Ni1—N2 | 82.40 (13) | H16A—C16—H16B | 108.3 |
N1—Ni1—N4 | 82.30 (13) | N14—C16—C15 | 108.9 (3) |
N2—Ni1—N4 | 160.88 (12) | N14—C16—H16A | 109.9 |
N3—Ni1—N1 | 83.27 (12) | N14—C16—H16B | 109.9 |
N3—Ni1—N2 | 94.05 (12) | Ni1i—N14—H14C | 107.1 |
N3—Ni1—N4 | 95.46 (12) | Ni1i—N14—H14D | 107.1 |
N14i—Ni1—N1 | 173.85 (12) | C16—N14—Ni1i | 120.8 (2) |
N14i—Ni1—N2 | 96.26 (13) | C16—N14—H14C | 107.1 |
N14i—Ni1—N3 | 90.85 (12) | C16—N14—H14D | 107.1 |
N14i—Ni1—N4 | 100.14 (13) | H14C—N14—H14D | 106.8 |
C1—N1—Ni1 | 105.6 (2) | H11C—O11—H11D | 92.0 |
C1—N1—C3 | 111.1 (3) | H12E—O12—H12F | 106.4 |
C3—N1—Ni1 | 109.3 (2) | H13E—O13—H13F | 107.5 |
C5—N1—Ni1 | 105.5 (2) | H14E—O14—H14F | 89.4 |
C5—N1—C1 | 111.5 (3) | H15C—O15—H15D | 108.4 |
Ta2—Ta1—O1—Ni1 | −5.5 (4) | C5—N1—C1—C2 | −161.0 (3) |
Ta3—Ta1—O1—Ni1 | −94.3 (3) | C5—N1—C3—C4 | 95.1 (4) |
O4—Ta1—O1—Ni1 | −3.1 (4) | C5—C6—N4—Ni1 | 24.0 (4) |
O5i—Ta1—O1—Ni1 | 171.7 (3) | Ni2—N11—C11—C12 | −45.1 (4) |
O6—Ta1—O1—Ni1 | 88.6 (4) | Ni2—N11—C13—C14 | −32.3 (3) |
O7—Ta1—O1—Ni1 | −96.0 (3) | Ni2—N11—C15—C16 | 70.5 (4) |
Ni1—N1—C1—C2 | −46.8 (3) | N11—C11—C12—N12 | 48.2 (6) |
Ni1—N1—C3—C4 | −22.4 (4) | N11—C13—C14—N13 | 55.0 (4) |
Ni1—N1—C5—C6 | 47.6 (3) | N11—C15—C16—N14 | −177.5 (3) |
N1—C1—C2—N2 | 50.5 (4) | C11—N11—C13—C14 | −143.9 (3) |
N1—C3—C4—N3 | 42.7 (5) | C11—N11—C15—C16 | −173.1 (3) |
N1—C5—C6—N4 | −48.8 (4) | C11—C12—N12—Ni2 | −24.9 (6) |
C1—N1—C3—C4 | −138.5 (4) | C13—N11—C11—C12 | 67.8 (4) |
C1—N1—C5—C6 | 161.7 (3) | C13—N11—C15—C16 | −53.2 (4) |
C1—C2—N2—Ni1 | −27.3 (4) | C13—C14—N13—Ni2 | −48.0 (3) |
C3—N1—C1—C2 | 71.5 (4) | C15—N11—C11—C12 | −171.6 (4) |
C3—N1—C5—C6 | −72.0 (4) | C15—N11—C13—C14 | 98.6 (4) |
C3—C4—N3—Ni1 | −40.5 (4) | C15—C16—N14—Ni1i | 82.7 (3) |
Symmetry code: (i) −x+1, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O4 | 0.99 | 2.52 | 3.293 (5) | 135 |
N2—H2C···O4ii | 0.91 | 2.59 | 3.394 (4) | 148 |
N2—H2C···O8ii | 0.91 | 2.42 | 3.208 (4) | 146 |
N2—H2D···O4 | 0.91 | 2.59 | 3.236 (4) | 129 |
N2—H2D···N2ii | 0.91 | 2.62 | 3.338 (6) | 136 |
C3—H3A···O19′iii | 0.99 | 2.53 | 3.253 (8) | 129 |
C3—H3B···O13iv | 0.99 | 2.64 | 3.301 (6) | 124 |
C4—H4B···O19′iii | 0.99 | 2.60 | 3.135 (7) | 114 |
N3—H3C···O18 | 0.91 | 2.40 | 3.197 (7) | 146 |
N3—H3C···O19′ | 0.91 | 2.45 | 3.266 (8) | 149 |
N3—H3D···O8ii | 0.91 | 2.02 | 2.915 (4) | 169 |
N4—H4C···O15 | 0.91 | 2.54 | 3.244 (5) | 135 |
C11—H11B···O16′ii | 0.99 | 2.57 | 3.497 (12) | 156 |
C12—H12B···O20 | 0.99 | 2.47 | 2.977 (8) | 111 |
N12—H12C···O20 | 0.91 | 2.33 | 2.995 (7) | 130 |
N12—H12D···O2 | 0.91 | 2.16 | 2.951 (4) | 145 |
N12—H12D···O18′ii | 0.91 | 2.39 | 3.168 (8) | 144 |
C13—H13A···O13 | 0.99 | 2.59 | 3.380 (6) | 137 |
N13—H13C···O3 | 0.91 | 2.10 | 2.937 (5) | 153 |
N13—H13D···O14iv | 0.91 | 2.23 | 3.103 (5) | 160 |
C15—H15A···O1i | 0.99 | 2.45 | 3.105 (5) | 124 |
C16—H16A···O6i | 0.99 | 2.63 | 3.514 (4) | 149 |
C16—H16B···O11v | 0.99 | 2.58 | 3.400 (5) | 140 |
N14—H14C···O19 | 0.91 | 2.62 | 3.447 (7) | 151 |
N14—H14C···O19′i | 0.91 | 2.27 | 3.082 (7) | 148 |
N14—H14D···O2v | 0.91 | 2.04 | 2.941 (4) | 169 |
O11—H11C···O2 | 0.84 | 1.97 | 2.794 (4) | 165 |
O11—H11D···O14 | 0.84 | 2.00 | 2.826 (5) | 170 |
O12—H12E···O7vi | 0.84 | 1.97 | 2.784 (4) | 163 |
O12—H12F···O16 | 0.84 | 1.86 | 2.686 (11) | 170 |
O12—H12F···O16′ | 0.84 | 2.25 | 3.079 (11) | 169 |
O13—H13E···O11v | 0.84 | 1.89 | 2.696 (5) | 161 |
O13—H13F···O3vii | 0.84 | 1.93 | 2.698 (4) | 152 |
O13—H13F···O20v | 0.84 | 2.59 | 3.101 (7) | 120 |
O14—H14E···O20iv | 0.84 | 1.94 | 2.757 (7) | 164 |
O14—H14F···O9 | 0.84 | 2.01 | 2.762 (4) | 149 |
O15—H15C···O17viii | 0.84 | 2.01 | 2.787 (9) | 153 |
O15—H15C···O17′viii | 0.84 | 2.02 | 2.850 (10) | 170 |
O15—H15D···O12iii | 0.84 | 1.90 | 2.723 (6) | 168 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y, −z+2; (iii) −x+2, −y, −z+3; (iv) −x+1, −y+1, −z+2; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x, −y+1, −z+2; (viii) x+1, y−1, z+1. |
Acknowledgements
Financial support by the State of Schleswig-Holstein is gratefully acknowledged.
References
Bijelic, A., Aureliano, M. & Rompel, A. (2019). Angew. Chem. Int. Ed. 58, 2980–2999. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Čolović, M. B., Lacković, M., Lalatović, J., Mougharbel, A. S., Kortz, U. & Krstić, D. Z. (2020). Curr. Med. Chem. 27, 362–379. Web of Science PubMed Google Scholar
Dopta, J., Grzanna, S., Näther, C. & Bensch, W. (2018a). Dalton Trans. 47, 15103–15113. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dopta, J., Krause, D.-C., Näther, C. & Bensch, W. (2018b). Cryst. Growth Des. 18, 4130–4139. Web of Science CSD CrossRef CAS Google Scholar
Dopta, J., Mahnke, L. K. & Bensch, W. (2020). CrystEngComm, 22, 3254–3268. Web of Science CrossRef CAS Google Scholar
Filowitz, M., Ho, R. K. C., Klemperer, W. G. & Shum, W. (1979). Inorg. Chem. 18, 93–103. CrossRef CAS Web of Science Google Scholar
Guo, G.-L., Xu, Y.-Q., Chen, B.-K., Lin, Z.-G. & Hu, C.-W. (2011). Inorg. Chem. Commun. 14, 1448–1451. Web of Science CSD CrossRef CAS Google Scholar
Hegetschweiler, K., Finn, R. C., Rarig, R. S., Sander, J., Steinhauser, S., Wörle, M. & Zubieta, J. (2002). Inorg. Chim. Acta, 337, 39–47. Web of Science CSD CrossRef CAS Google Scholar
Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486. Web of Science CrossRef CAS Google Scholar
Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461. Web of Science CrossRef CAS Google Scholar
Junk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661–1668. Web of Science CSD CrossRef CAS Google Scholar
Kim, J. C., Cho, J., Kim, H. & Lough, A. J. (2004). Chem. Commun. pp. 1796–1797. Web of Science CSD CrossRef Google Scholar
König, B. (2020). Editor. Chemical Photocatalysis. Berlin: De Gruyter. Google Scholar
Li, Z., Zhang, J., Lin, L.-D., Liu, J.-H., Li, X.-X. & Zheng, S.-T. (2019). Chem. Commun. 55, 11735–11738. Web of Science CSD CrossRef CAS Google Scholar
Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105. CrossRef CAS Web of Science Google Scholar
Lühmann, H., Näther, C., Kögerler, P. & Bensch, W. (2014). Inorg. Chim. Acta, 421, 549–552. Google Scholar
Mahnke, L. K., Warzok, U., Lin, M., Näther, C., Schalley, C. A. & Bensch, W. (2018a). Chem. Eur. J. 24, 5522–5528. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahnke, L. K., Wendt, M., Näther, C. & Bensch, W. (2018b). Cryst. Growth Des. 18, 6100–6106. Web of Science CSD CrossRef CAS Google Scholar
Marzotto, A., Clemente, D. A. & Valle, G. (1993). Acta Cryst. C49, 1252–1255. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Mash, B. L., Raghavan, A. & Ren, T. (2019). Eur. J. Inorg. Chem. 2019, 2065–2070. Web of Science CSD CrossRef CAS Google Scholar
Matelková, K., Moncol, J., Herchel, R., Dlháň, Ľ., Ivaniková, R., Svoboda, I., Padělková, Z. & Mašlejová, A. (2013). Polyhedron, 56, 1–8. Google Scholar
Monakhov, K. Y., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443–8483. Web of Science CrossRef CAS PubMed Google Scholar
Müscher-Polzin, P., Näther, C. & Bensch, W. (2020a). Z. Naturforsch. Teil B, 75, 583–588. Google Scholar
Müscher-Polzin, P., Näther, C. & Bensch, W. (2020b). Z. Anorg. Allg. Chem. 646, 193–198. Google Scholar
Niu, J., Wang, G., Zhao, J., Sui, Y., Ma, P. & Wang, J. (2011). Cryst. Growth Des. 11, 1253–1261. Web of Science CSD CrossRef CAS Google Scholar
O'Keefe, M. & Brese, N. E. (1991). J. Am. Chem. Soc. 113, 3226–3229. CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Streb, C. (2012). Dalton Trans. 41, 1651–1659. Web of Science CrossRef CAS PubMed Google Scholar
Tagliavini, V., Honisch, C., Serratì, S., Azzariti, A., Bonchio, M., Ruzza, P. & Carraro, M. (2021). RSC Adv. 11, 4952–4957. Web of Science CrossRef CAS Google Scholar
Wang, J., Näther, C., Speldrich, M., Kögerler, P. & Bensch, W. (2013). CrystEngComm, 15, 10238–10245. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamase, T. (2013). Prog. Mol. Subcell. Biol. 54, 65–116. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.