research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­­[μ-N,N-bis­­(2-amino­eth­yl)ethane-1,2-di­amine]­bis­­[N,N-bis­­(2-amino­eth­yl)ethane-1,2-di­amine]-μ4-oxido-hexa-μ3-oxido-octa-μ2-oxido-tetra­oxido­tetra­nickel(II)hexa­tantalum(V) nona­deca­hydrate

crossmark logo

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: wbensch@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 August 2021; accepted 1 November 2021; online 9 November 2021)

Reaction of K8{Ta6O19}·16H2O with [Ni(tren)(H2O)Cl]Cl·H2O in different solvents led to the formation of single crystals of the title compound, [Ni4Ta6O19(C6H18N4)4]·19H2O or {[Ni2(κ4-tren)(μ-κ3-tren)]2Ta6O19}·19H2O (tren is N,N-bis­(2-amino­eth­yl)-1,2-ethanediamine, C6H18N4). In its crystal structure, one Lindqvist-type anion {Ta6O19}8– (point group symmetry [\overline{1}]) is connected to two NiII cations, with both of them coordinated by one tren ligand into discrete units. Both NiII cations are sixfold coordinated by O atoms of the anion and N atoms of the organic ligand, resulting in slightly distorted [NiON5] octa­hedra for one and [NiO3N3] octa­hedra for the other cation. These clusters are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonding involving water mol­ecules into layers parallel to the bc plane. Some of these water mol­ecules are positionally disordered and were refined using a split model. Powder X-ray diffraction revealed that a pure crystalline phase was obtained but that on storage at room-temperature this compound decomposed because of the loss of crystal water mol­ecules.

1. Chemical context

The investigation of synthesis conditions and crystal structures of new inorganic–organic hybrid polyoxidometalates (POMs) of V, Nb, Ta, Mo or W is still an emerging research field in inorganic chemistry. The enormous variety of their structural, physical and chemical properties and the resulting potential applications are reflected in the large number of reported compounds (Tagliavini et al., 2021[Tagliavini, V., Honisch, C., Serratì, S., Azzariti, A., Bonchio, M., Ruzza, P. & Carraro, M. (2021). RSC Adv. 11, 4952-4957.]; Streb, 2012[Streb, C. (2012). Dalton Trans. 41, 1651-1659.]; Bijelic et al., 2019[Bijelic, A., Aureliano, M. & Rompel, A. (2019). Angew. Chem. Int. Ed. 58, 2980-2999.]; Yamase, 2013[Yamase, T. (2013). Prog. Mol. Subcell. Biol. 54, 65-116.]; König, 2020[König, B. (2020). Editor. Chemical Photocatalysis. Berlin: De Gruyter.]; Čolović et al., 2020[Čolović, M. B., Lacković, M., Lalatović, J., Mougharbel, A. S., Kortz, U. & Krstić, D. Z. (2020). Curr. Med. Chem. 27, 362-379.]; Monakhov et al., 2015[Monakhov, K. Y., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443-8483.]). Within the POM family, polyoxidoniobates and -tantalates have a special position because of their challenging synthesis conditions, i.e. high pH values are required as a result of the high stability of their respective oxides. This is the reason why we have been engaged in the research field of POM chemistry for several years, with the aim in developing new synthesis routes, also with an increasing focus on the PONb and POTa chemistry (Müscher-Polzin et al., 2020a[Müscher-Polzin, P., Näther, C. & Bensch, W. (2020a). Z. Naturforsch. Teil B, 75, 583-588.],b[Müscher-Polzin, P., Näther, C. & Bensch, W. (2020b). Z. Anorg. Allg. Chem. 646, 193-198.]; Dopta et al., 2018a[Dopta, J., Grzanna, S., Näther, C. & Bensch, W. (2018a). Dalton Trans. 47, 15103-15113.],b[Dopta, J., Krause, D.-C., Näther, C. & Bensch, W. (2018b). Cryst. Growth Des. 18, 4130-4139.], 2020[Dopta, J., Mahnke, L. K. & Bensch, W. (2020). CrystEngComm, 22, 3254-3268.]). Most of the POMs are usually synthesized by solvothermal reactions using slightly soluble metal oxides. It turned out that the use of water-soluble compounds as precursor materials is more effective for generating new compounds, which opens the possibility of developing more efficient syntheses at room temperature (Dopta et al., 2020[Dopta, J., Mahnke, L. K. & Bensch, W. (2020). CrystEngComm, 22, 3254-3268.]; Mahnke et al., 2018a[Mahnke, L. K., Warzok, U., Lin, M., Näther, C., Schalley, C. A. & Bensch, W. (2018a). Chem. Eur. J. 24, 5522-5528.],b[Mahnke, L. K., Wendt, M., Näther, C. & Bensch, W. (2018b). Cryst. Growth Des. 18, 6100-6106.]). Some transition metal (TM) decorated POTas have also been synthesized by slow crystallization at room temperature (Guo et al., 2011[Guo, G.-L., Xu, Y.-Q., Chen, B.-K., Lin, Z.-G. & Hu, C.-W. (2011). Inorg. Chem. Commun. 14, 1448-1451.]; Li et al., 2019[Li, Z., Zhang, J., Lin, L.-D., Liu, J.-H., Li, X.-X. & Zheng, S.-T. (2019). Chem. Commun. 55, 11735-11738.]), which is characterized by long reaction times and high sensibility for parameter changes during reaction. To overcome these drawbacks, we were inter­ested in the possibility of faster crystallization times. To achieve this goal, we used preformed TM complexes and a special combination of different solvent gradients in the reaction vessel. Appropriate TM complexes are based on the tetra­dentate ligand N,N-bis­(2-amino­eth­yl)-1,2-ethanedi­amine (tren), which offers coordination flexibility, providing two free coordination sites in an octa­hedral environment, with the possibilities for further ligation to O atoms of POMs or acting as charge-balancing cations. Based on that reasoning, an aqueous solution of K8[Ta6O19]·16H2O was reacted with the preformed complex [Ni(tren)(H2O)Cl]Cl·H2O at room temperature, leading to crystallization of violet needle-like crystals of the title compound, which was characterized by single-crystal X-ray diffraction. Comparison of the experimental powder X-ray diffraction pattern with that calculated from single crystal data revealed that a pure crystalline phase had formed. However, the relatively high background indicated the presence of some amount of an amorphous phase (see Fig. S1 in the supporting information). This is in line with the observation that the title compound is very unstable in air, which might be traced back to the loss of crystal water mol­ecules, and was the reason why further investigations were not performed.

[Scheme 1]

2. Structural commentary

The crystal structure of {[Ni2(κ4-tren)(μ-κ3-tren)]2Ta6O19}·19H2O consists of one Lindqvist-type anion {Ta6O19}8–, located on a center of inversion, as well as two NiII cations, two N,N-bis­(2-amino­eth­yl)-1,2-ethanedi­amino ligands and nineteen water mol­ecules that are located in general positions (Figs. 1[link] and 2[link]). Some of the water O atoms are positionally disordered and were refined using a split model without locating their attached hydrogen atoms.

[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity. [Symmetry code: (A) −x + 1, −y, −z + 2].
[Figure 2]
Figure 2
View of the cluster motif of the title compound. Hydrogen atoms were omitted for clarity.

The {Ta6O19}8– anion is composed of six TaO6 octa­hedra sharing common edges. The Ta—O bond lengths range from 1.786 (2) to 2.057 (2) Å, which is consistent with common values. Bond-valence-sum calculations (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]; O'Keefe & Brese, 1991[O'Keefe, M. & Brese, N. E. (1991). J. Am. Chem. Soc. 113, 3226-3229.]) led to values of 4.98 valence units (v.u.) for Ta1, of 1.78 v.u. for Ni1 and of 1.69 v.u. for Ni2, which is in reasonable agreement with the oxidation states of +5 and +2 for Ta and Ni, respectively. Two symmetry-related pairs of NiII cations are covalently attached to the {Ta6O19}8– core: Ni2 forms bonds to three μ2-bridging O atoms with Ni—O bond lengths between 2.103 (2) and 2.170 (2) Å, while Ni1 is attached to a terminal O atom with a Ni—O bond length of 2.072 (2) Å (Fig. 3[link], Table 1[link]), which is slightly larger than the sum of their ionic radii (NiII with CN6 = 0.69 Å, O2− = 1.35 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The Ni1 cation is further coordinated by four N donor atoms (N1–N4) of one tren ligand and an additional N atom (N14) of another tren ligand, with Ni—N bonds ranging from 2.076 (3) to 2.172 (3) Å (Table 1[link]), which is in agreement with reported values of similar structures (Dopta et al. 2018a[Dopta, J., Grzanna, S., Näther, C. & Bensch, W. (2018a). Dalton Trans. 47, 15103-15113.]; Hegetschweiler et al., 2002[Hegetschweiler, K., Finn, R. C., Rarig, R. S., Sander, J., Steinhauser, S., Wörle, M. & Zubieta, J. (2002). Inorg. Chim. Acta, 337, 39-47.]; Niu et al., 2011[Niu, J., Wang, G., Zhao, J., Sui, Y., Ma, P. & Wang, J. (2011). Cryst. Growth Des. 11, 1253-1261.]; Kim et al., 2004[Kim, J. C., Cho, J., Kim, H. & Lough, A. J. (2004). Chem. Commun. pp. 1796-1797.]; Mash et al., 2019[Mash, B. L., Raghavan, A. & Ren, T. (2019). Eur. J. Inorg. Chem. 2019, 2065-2070.]; Junk & Steed, 2007[Junk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661-1668.]). One tren ligand connects both NiII cations via an Ni—μ-N—Ni bond of 2.082 (3) Å. Both NiII cations are in an octa­hedral environment, resulting in [Ni2O3N3] and [Ni1ON5] units (Fig. 3[link]). The bond angles within the complexes cover a wide range between 82.40 (13) and 178.92 (11)° for [Ni2O3N3] and between 74.98 (9) and 174.07 (11)° for [Ni1ON5], which shows that both NiII cations have a distorted octa­hedral environment. The distortion is caused by steric demands, because both NiII cations are coordinated by the anionic cluster as well as by tren ligands.

Table 1
Selected bond lengths (Å)

O1—Ni1 2.072 (2) Ni1—N3 2.105 (3)
O5—Ni2 2.170 (3) Ni1—N4 2.139 (3)
O6—Ni2i 2.149 (2) Ni1—N14i 2.082 (3)
O9—Ni2 2.103 (2) Ni2—N11 2.172 (3)
Ni1—N1 2.111 (3) Ni2—N12 2.094 (4)
Ni1—N2 2.120 (3) Ni2—N13 2.076 (3)
Symmetry code: (i) [-x+1, -y, -z+2].
[Figure 3]
Figure 3
View of the coordination environments of the two NiII cations with labeling of selected atoms. H atoms bonded to N atoms were omitted for clarity. [Symmetry code: (i) −x + 1, −y, −z + 2.]

3. Supra­molecular features

In the crystal, the discrete mol­ecular moieties are linked by O—H⋯O and O—H⋯N hydrogen bonds between the crystal water mol­ecules and the O atoms of the {Ta6O19}8– core (Table 2[link]). The water mol­ecules form discrete units categorized as D6 (Infantes et al., 2003[Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480-486.]; Infantes & Motherwell, 2002[Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454-461.]), of which each water mol­ecule is attached to an Ocluster atom with Ocluster⋯O distances between 1.88 and 1.99 Å and condensed into chains extending parallel to [010] (Fig. 4[link]). The [010] chains are further linked by Owater—H⋯N bonds with O⋯N separations between 2.232 and 2.537 Å, yielding another chain that propagates parallel to [001] (Table 2[link]), finally forming a layered structure parallel to the bc plane (Fig. 5[link]). There are additional C—H⋯N inter­actions (Table 2[link]). From both the C⋯N distances and the angles, it is obvious that these represent only weak inter­actions.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O4 0.99 2.52 3.293 (5) 135
N2—H2C⋯O4ii 0.91 2.59 3.394 (4) 148
N2—H2C⋯O8ii 0.91 2.42 3.208 (4) 146
N2—H2D⋯O4 0.91 2.59 3.236 (4) 129
N2—H2D⋯N2ii 0.91 2.62 3.338 (6) 136
C3—H3A⋯O19′iii 0.99 2.53 3.253 (8) 129
C3—H3B⋯O13iv 0.99 2.64 3.301 (6) 124
C4—H4B⋯O19′iii 0.99 2.60 3.135 (7) 114
N3—H3C⋯O18 0.91 2.40 3.197 (7) 146
N3—H3C⋯O19′ 0.91 2.45 3.266 (8) 149
N3—H3D⋯O8ii 0.91 2.02 2.915 (4) 169
N4—H4C⋯O15 0.91 2.54 3.244 (5) 135
C11—H11B⋯O16′ii 0.99 2.57 3.497 (12) 156
C12—H12B⋯O20 0.99 2.47 2.977 (8) 111
N12—H12C⋯O20 0.91 2.33 2.995 (7) 130
N12—H12D⋯O2 0.91 2.16 2.951 (4) 145
N12—H12D⋯O18′ii 0.91 2.39 3.168 (8) 144
C13—H13A⋯O13 0.99 2.59 3.380 (6) 137
N13—H13C⋯O3 0.91 2.10 2.937 (5) 153
N13—H13D⋯O14iv 0.91 2.23 3.103 (5) 160
C15—H15A⋯O1i 0.99 2.45 3.105 (5) 124
C16—H16A⋯O6i 0.99 2.63 3.514 (4) 149
C16—H16B⋯O11v 0.99 2.58 3.400 (5) 140
N14—H14C⋯O19 0.91 2.62 3.447 (7) 151
N14—H14C⋯O19′i 0.91 2.27 3.082 (7) 148
N14—H14D⋯O2v 0.91 2.04 2.941 (4) 169
O11—H11C⋯O2 0.84 1.97 2.794 (4) 165
O11—H11D⋯O14 0.84 2.00 2.826 (5) 170
O12—H12E⋯O7vi 0.84 1.97 2.784 (4) 163
O12—H12F⋯O16 0.84 1.86 2.686 (11) 170
O12—H12F⋯O16′ 0.84 2.25 3.079 (11) 169
O13—H13E⋯O11v 0.84 1.89 2.696 (5) 161
O13—H13F⋯O3vii 0.84 1.93 2.698 (4) 152
O13—H13F⋯O20v 0.84 2.59 3.101 (7) 120
O14—H14E⋯O20iv 0.84 1.94 2.757 (7) 164
O14—H14F⋯O9 0.84 2.01 2.762 (4) 149
O15—H15C⋯O17viii 0.84 2.01 2.787 (9) 153
O15—H15C⋯O17′viii 0.84 2.02 2.850 (10) 170
O15—H15D⋯O12iii 0.84 1.90 2.723 (6) 168
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+2, -y, -z+2]; (iii) [-x+2, -y, -z+3]; (iv) [-x+1, -y+1, -z+2]; (v) [x-1, y, z]; (vi) x+1, y, z; (vii) [-x, -y+1, -z+2]; (viii) [x+1, y-1, z+1].
[Figure 4]
Figure 4
View of the hydrogen-bonded chains running parallel to [010]. Inter­molecular hydrogen bonding is indicated by dashed lines. In the left part, hydrogen atoms were omitted for clarity.
[Figure 5]
Figure 5
View of the hydrogen-bonded layer extending parallel to the bc plane by linking the [010] chains via Owater⋯N bonds (black dashed lines: Owater⋯Owater; green dashed lines: Owater⋯N). Hydrogen atoms were omitted for clarity.

4. Database survey

There are only a few crystal structures of POMs reported in the literature with [NiII(tren)x] complexes covalently attached to the anionic core. Our group has already reported the rare [Ni2(tren)3]4+ and [{Ni(tren)}(trenH2){Ni(tren)}]6+ complexes that act as linking units between several anionic moieties (Lühmann et al., 2014[Lühmann, H., Näther, C., Kögerler, P. & Bensch, W. (2014). Inorg. Chim. Acta, 421, 549-552.]; Wang et al., 2013[Wang, J., Näther, C., Speldrich, M., Kögerler, P. & Bensch, W. (2013). CrystEngComm, 15, 10238-10245.]). In these structures, the NiII cation is coordinated by one tetra­dentate ligand and one additional tren mol­ecule connecting two NiII cations of neighboring POV ({V15Ge6}) clusters. A connection of two NiII cations bonded to separated clusters via two tren mol­ecules (with κ3 and κ4 modes) has not been reported until now. However, the crystal structure of a similar complex, viz. [Ni3((μ-tren)2(tren)2(H2O)2]6+ was reported previously (Matelková et al., 2013[Matelková, K., Moncol, J., Herchel, R., Dlháň, Ľ., Ivaniková, R., Svoboda, I., Padělková, Z. & Mašlejová, A. (2013). Polyhedron, 56, 1-8.]).

5. Synthesis and crystallization

Synthesis

All chemicals except K8{Ta6O19}·16H2O were purchased from commercial sources and were used without further purification [N,N-bis­(2-amino­eth­yl)-1,2-ethanedi­amine (tren) >96%, Aldrich; Ta2O5 99% Ta, Alfa Aesar; NiCl2·6H2O > 97%, Merck; KOH 85%, abcr; di­methyl­sulfoxide (DMSO) 99%, Grüssing]. The water-soluble precursor K8{Ta6O19}·16H2O was prepared according to Filowitz et al. (1969[Filowitz, M., Ho, R. K. C., Klemperer, W. G. & Shum, W. (1979). Inorg. Chem. 18, 93-103.]), and the prefabricated complex [Ni(tren)(H2O)Cl]Cl·H2O using the protocol of Marzotto et al. (1993[Marzotto, A., Clemente, D. A. & Valle, G. (1993). Acta Cryst. C49, 1252-1255.]).

0.03 mmol of Ni[(tren)(H2O)Cl]Cl·H2O were dissolved in 1 ml of a 4:1 DMSO:water solution (v/v) and subsequently transferred into a 5 ml snap-cap glass tube. Then 1 ml of a 3:1 mixture (v/v) of DMSO and water and a solution of 0.0125 mmol of K8{Ta6O19}·16H2O in 1 ml of water (pH = 12.3) were added slowly, one after the other, into the tube, which then was closed and left at room temperature. After a few days, pink–violet needle-shaped crystals were filtered off and washed with mother liquor.

Experimental details

The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C- and N-bound hydrogen atoms were refined with idealized positions with Uiso(H) = 1.2Ueq(C,N) using a riding model. Some of the hydrogen atoms belonging to water mol­ecules were located in a difference-Fourier map. Their bond lengths were set to ideal values and they were refined with Uiso(H) = 1.5Ueq(O). Some of the water atoms (O16–O19) are positionally disordered and were refined using a split model with 50% occupation for each of the corresponding sites; O20 was refined with one position and an occupation of 50%. The hydrogen atoms of water mol­ecules that could not be located were considered in the calculation of the mol­ecular formula.

Table 3
Experimental details

Crystal data
Chemical formula [Ni4Ta6O19(C6H18N4)4]·19H2O
Mr 2551.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.5033 (1), 12.0980 (2), 13.8640 (2)
α, β, γ (°) 73.748 (1), 80.918 (1), 80.842 (1)
V3) 1657.76 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 11.06
Crystal size (mm) 0.11 × 0.06 × 0.01 × 0.02 (radius)
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.686, 0.694
No. of measured, independent and observed [I > 2σ(I)] reflections 44996, 7897, 7404
Rint 0.030
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.05
No. of reflections 7897
No. of parameters 439
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.83, −1.13
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[µ-N,N-bis(2-aminoethyl)ethane-1,2-diamine]bis[N,N-bis(2-aminoethyl)ethane-1,2-diamine]-µ4-oxido-hexa-µ3-oxido-octa-µ2-oxido-tetraoxidotetranickel(II)hexatantalum(V) nonadecahydrate top
Crystal data top
[Ni4Ta6O19(C6H18N4)4]·19H2OZ = 1
Mr = 2551.81F(000) = 1210
Triclinic, P1Dx = 2.556 Mg m3
a = 10.5033 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0980 (2) ÅCell parameters from 37095 reflections
c = 13.8640 (2) Åθ = 2.4–34.0°
α = 73.748 (1)°µ = 11.06 mm1
β = 80.918 (1)°T = 100 K
γ = 80.842 (1)°Needle, light violet
V = 1657.76 (4) Å30.11 × 0.06 × 0.01 × 0.02 (radius) mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
7897 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source7404 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1515
Tmin = 0.686, Tmax = 0.694l = 1818
44996 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0386P)2 + 3.1986P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
7897 reflectionsΔρmax = 2.83 e Å3
439 parametersΔρmin = 1.13 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ta10.64607 (2)0.03553 (2)1.12174 (2)0.01205 (4)
Ta20.63326 (2)0.13631 (2)0.89100 (2)0.01300 (4)
Ta30.37445 (2)0.14420 (2)1.07511 (2)0.01322 (4)
O10.7572 (2)0.0558 (2)1.21206 (18)0.0165 (5)
O20.7303 (2)0.2421 (2)0.8064 (2)0.0217 (5)
O30.2829 (3)0.2550 (2)1.1292 (2)0.0234 (6)
O40.7273 (2)0.0788 (2)1.00901 (19)0.0147 (5)
O50.4815 (2)0.1550 (2)0.81001 (18)0.0158 (5)
O60.7149 (2)0.1593 (2)1.04715 (19)0.0149 (5)
O70.5176 (2)0.0863 (2)1.15884 (19)0.0164 (5)
O80.7070 (2)0.0048 (2)0.85123 (18)0.0159 (5)
O90.5036 (2)0.2344 (2)0.96735 (19)0.0156 (5)
O100.5000000.0000001.0000000.0136 (7)
Ni10.92251 (4)0.03103 (4)1.26360 (3)0.01532 (9)
N10.8699 (3)0.1472 (3)1.2539 (2)0.0201 (6)
C10.8585 (4)0.2037 (3)1.1455 (3)0.0230 (8)
H1A0.8531290.2888631.1331330.028*
H1B0.7779430.1859091.1273430.028*
C20.9754 (4)0.1607 (4)1.0799 (3)0.0270 (8)
H2A0.9607940.1888151.0077610.032*
H2B1.0538120.1912451.0882850.032*
N20.9951 (3)0.0334 (3)1.1095 (2)0.0211 (6)
H2C1.0813400.0082181.0999230.025*
H2D0.9535450.0057681.0699730.025*
C30.9730 (4)0.1919 (4)1.2894 (3)0.0292 (9)
H3A0.9318920.2502201.3261660.035*
H3B1.0298010.2312781.2298060.035*
C41.0561 (4)0.0973 (4)1.3584 (3)0.0253 (8)
H4A1.1370720.1266361.3632510.030*
H4B1.0083650.0759411.4271870.030*
N31.0883 (3)0.0053 (3)1.3184 (2)0.0197 (6)
H3C1.1130450.0686631.3682060.024*
H3D1.1551590.0056101.2676020.024*
C50.7429 (4)0.1552 (4)1.3166 (3)0.0257 (8)
H5A0.6746700.1415841.2809000.031*
H5B0.7211950.2342331.3266180.031*
C60.7451 (4)0.0670 (4)1.4187 (3)0.0268 (8)
H6A0.7982050.0905861.4607930.032*
H6B0.6556620.0636141.4541630.032*
N40.8004 (3)0.0488 (3)1.4047 (2)0.0234 (7)
H4C0.7349530.0903871.4057370.028*
H4D0.8474210.0879731.4563120.028*
Ni20.37645 (4)0.30477 (4)0.85661 (4)0.01769 (9)
N110.2586 (3)0.3909 (3)0.7352 (3)0.0228 (6)
C110.3553 (4)0.4394 (4)0.6485 (4)0.0384 (11)
H11A0.3087090.4960410.5950740.046*
H11B0.4016920.3758540.6196270.046*
C120.4526 (5)0.4980 (4)0.6785 (4)0.0476 (14)
H12A0.5242850.5146730.6228200.057*
H12B0.4106970.5724830.6917690.057*
N120.5045 (4)0.4215 (3)0.7703 (3)0.0384 (10)
H12C0.5214480.4657600.8090500.046*
H12D0.5808190.3808620.7520630.046*
C130.1726 (4)0.4869 (3)0.7696 (3)0.0282 (8)
H13A0.0920340.5047360.7366490.034*
H13B0.2172980.5574860.7489220.034*
C140.1381 (4)0.4544 (3)0.8830 (3)0.0260 (8)
H14A0.0873440.5212280.9050060.031*
H14B0.0849370.3891700.9038900.031*
N130.2613 (3)0.4200 (3)0.9300 (3)0.0247 (7)
H13C0.2448500.3854280.9973040.030*
H13D0.3021530.4833470.9224620.030*
C150.1831 (4)0.3213 (3)0.6974 (3)0.0222 (7)
H15A0.2419880.2546760.6814420.027*
H15B0.1509230.3697780.6336410.027*
C160.0684 (3)0.2759 (3)0.7707 (3)0.0197 (7)
H16A0.0983490.2286880.8356620.024*
H16B0.0054480.3415480.7841920.024*
N140.0054 (3)0.2040 (3)0.7259 (2)0.0202 (6)
H14C0.0049420.2404920.6588960.024*
H14D0.0790340.2055340.7540040.024*
O110.8066 (3)0.3844 (3)0.9091 (3)0.0378 (7)
H11C0.7797560.3531300.8704040.057*
H11D0.7335460.3878000.9436140.057*
O121.4219 (4)0.0650 (4)1.3614 (3)0.0536 (10)
H12E1.4505390.0859931.2998390.080*
H12F1.4280290.0077771.3768090.080*
O130.1468 (4)0.5884 (3)0.7766 (3)0.0537 (11)
H13E0.1775260.5281010.8127090.081*
H13F0.1989560.6455010.7864190.081*
O140.5770 (3)0.3988 (3)1.0444 (3)0.0459 (9)
H14E0.5502540.3801751.1064470.069*
H14F0.5287540.3547051.0348170.069*
O150.6112 (4)0.2362 (3)1.5414 (3)0.0511 (9)
H15C0.6832680.2714821.5578950.077*
H15D0.5952180.1772721.5639950.077*
O161.4662 (9)0.1666 (9)1.3937 (7)0.0297 (19)0.5
O16'1.4319 (10)0.1976 (9)1.3891 (8)0.0316 (19)0.5
O170.1862 (9)0.5860 (7)0.5871 (6)0.0354 (18)0.5
O17'0.1465 (9)0.6271 (8)0.5822 (8)0.042 (2)0.5
O181.2376 (6)0.2566 (6)1.4074 (4)0.0351 (14)0.5
O18'1.2585 (6)0.3647 (6)1.3875 (5)0.0398 (16)0.5
O190.0677 (7)0.4198 (6)0.5130 (5)0.0403 (15)0.5
O19'1.0608 (8)0.2496 (6)1.4918 (5)0.0445 (17)0.5
O200.5580 (6)0.6592 (5)0.7647 (4)0.0285 (12)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.00591 (6)0.01739 (7)0.01444 (7)0.00135 (5)0.00280 (5)0.00589 (5)
Ta20.00604 (6)0.01679 (7)0.01625 (7)0.00248 (5)0.00202 (5)0.00348 (5)
Ta30.00737 (7)0.01741 (7)0.01720 (7)0.00015 (5)0.00273 (5)0.00837 (5)
O10.0090 (10)0.0255 (13)0.0164 (11)0.0017 (9)0.0042 (9)0.0066 (10)
O20.0119 (11)0.0221 (13)0.0267 (14)0.0055 (10)0.0021 (10)0.0025 (10)
O30.0181 (13)0.0254 (14)0.0306 (15)0.0042 (10)0.0039 (11)0.0168 (12)
O40.0074 (10)0.0169 (11)0.0214 (12)0.0026 (8)0.0033 (9)0.0061 (9)
O50.0092 (11)0.0213 (12)0.0160 (11)0.0015 (9)0.0029 (9)0.0027 (9)
O60.0068 (10)0.0188 (12)0.0204 (12)0.0006 (9)0.0035 (9)0.0065 (9)
O70.0117 (11)0.0225 (12)0.0186 (12)0.0007 (9)0.0040 (9)0.0108 (10)
O80.0079 (10)0.0237 (12)0.0169 (12)0.0019 (9)0.0003 (9)0.0071 (10)
O90.0109 (11)0.0147 (11)0.0230 (12)0.0017 (9)0.0054 (9)0.0060 (10)
O100.0076 (15)0.0186 (17)0.0148 (16)0.0005 (12)0.0037 (12)0.0045 (13)
Ni10.00831 (18)0.0236 (2)0.0161 (2)0.00135 (16)0.00322 (15)0.00786 (17)
N10.0167 (14)0.0240 (15)0.0215 (15)0.0018 (11)0.0066 (12)0.0070 (12)
C10.0186 (17)0.0240 (18)0.0272 (19)0.0046 (14)0.0089 (15)0.0035 (15)
C20.0162 (17)0.037 (2)0.0244 (19)0.0087 (15)0.0005 (14)0.0015 (16)
N20.0090 (13)0.0366 (17)0.0192 (14)0.0031 (12)0.0028 (11)0.0089 (13)
C30.028 (2)0.028 (2)0.039 (2)0.0059 (16)0.0168 (17)0.0109 (17)
C40.0206 (18)0.033 (2)0.0275 (19)0.0053 (15)0.0093 (15)0.0126 (16)
N30.0104 (13)0.0309 (17)0.0186 (14)0.0041 (12)0.0021 (11)0.0068 (12)
C50.0177 (17)0.031 (2)0.030 (2)0.0053 (15)0.0036 (15)0.0151 (17)
C60.0197 (18)0.041 (2)0.0228 (18)0.0021 (16)0.0011 (14)0.0165 (17)
N40.0199 (15)0.0321 (18)0.0201 (15)0.0046 (13)0.0021 (12)0.0093 (13)
Ni20.0109 (2)0.0159 (2)0.0260 (2)0.00212 (16)0.00576 (17)0.00300 (18)
N110.0168 (14)0.0200 (15)0.0290 (17)0.0044 (12)0.0038 (12)0.0004 (13)
C110.023 (2)0.037 (2)0.040 (3)0.0050 (17)0.0006 (18)0.013 (2)
C120.027 (2)0.034 (2)0.065 (3)0.0093 (19)0.013 (2)0.020 (2)
N120.0217 (17)0.0235 (18)0.060 (3)0.0055 (14)0.0129 (17)0.0115 (17)
C130.0221 (18)0.0206 (18)0.041 (2)0.0010 (14)0.0138 (17)0.0023 (16)
C140.0184 (17)0.0202 (18)0.041 (2)0.0011 (14)0.0110 (16)0.0091 (16)
N130.0204 (15)0.0174 (15)0.0394 (19)0.0006 (12)0.0121 (14)0.0093 (13)
C150.0183 (17)0.0265 (19)0.0201 (17)0.0004 (14)0.0057 (14)0.0030 (14)
C160.0144 (16)0.0237 (18)0.0233 (18)0.0009 (13)0.0061 (13)0.0094 (14)
N140.0122 (13)0.0271 (16)0.0231 (15)0.0001 (11)0.0059 (11)0.0089 (13)
O110.0335 (17)0.0356 (17)0.0454 (19)0.0087 (13)0.0052 (14)0.0152 (14)
O120.061 (2)0.077 (3)0.0222 (16)0.006 (2)0.0038 (16)0.0188 (17)
O130.085 (3)0.0301 (17)0.042 (2)0.0068 (18)0.0191 (19)0.0177 (15)
O140.0352 (18)0.058 (2)0.058 (2)0.0262 (16)0.0025 (16)0.0311 (18)
O150.0348 (19)0.0385 (19)0.075 (3)0.0001 (15)0.0046 (18)0.0100 (18)
O160.026 (5)0.048 (6)0.018 (3)0.007 (3)0.002 (3)0.013 (3)
O16'0.035 (5)0.037 (5)0.025 (4)0.002 (3)0.006 (4)0.012 (3)
O170.043 (5)0.035 (5)0.027 (3)0.006 (3)0.001 (3)0.014 (3)
O17'0.035 (5)0.047 (6)0.051 (5)0.001 (4)0.005 (4)0.029 (4)
O180.035 (3)0.047 (4)0.023 (3)0.009 (3)0.009 (2)0.004 (3)
O18'0.037 (4)0.050 (4)0.024 (3)0.010 (3)0.003 (3)0.004 (3)
O190.039 (4)0.039 (4)0.038 (4)0.003 (3)0.005 (3)0.008 (3)
O19'0.061 (5)0.040 (4)0.034 (3)0.008 (3)0.005 (3)0.019 (3)
O200.026 (3)0.037 (3)0.029 (3)0.008 (2)0.005 (2)0.016 (2)
Geometric parameters (Å, º) top
Ta1—Ta23.3013 (2)N3—H3D0.9100
Ta1—Ta33.3325 (2)C5—H5A0.9900
Ta1—O11.786 (2)C5—H5B0.9900
Ta1—O41.957 (2)C5—C61.517 (6)
Ta1—O5i2.057 (2)C6—H6A0.9900
Ta1—O62.030 (2)C6—H6B0.9900
Ta1—O71.957 (2)C6—N41.482 (5)
Ta1—O102.3641 (1)N4—H4C0.9100
Ta2—Ta3i3.3056 (2)N4—H4D0.9100
Ta2—O21.803 (3)Ni2—N112.172 (3)
Ta2—O41.947 (2)Ni2—N122.094 (4)
Ta2—O52.040 (2)Ni2—N132.076 (3)
Ta2—O81.947 (2)N11—C111.493 (5)
Ta2—O92.029 (2)N11—C131.494 (5)
Ta2—O102.3737 (1)N11—C151.484 (5)
Ta2—Ni23.1254 (4)C11—H11A0.9900
Ta3—O31.791 (3)C11—H11B0.9900
Ta3—O6i2.015 (2)C11—C121.501 (7)
Ta3—O71.964 (2)C12—H12A0.9900
Ta3—O8i1.959 (3)C12—H12B0.9900
Ta3—O92.045 (3)C12—N121.475 (6)
Ta3—O102.3912 (1)N12—H12C0.9100
Ta3—Ni23.1064 (5)N12—H12D0.9100
O1—Ni12.072 (2)C13—H13A0.9900
O5—Ni22.170 (3)C13—H13B0.9900
O6—Ni2i2.149 (2)C13—C141.509 (6)
O9—Ni22.103 (2)C14—H14A0.9900
Ni1—N12.111 (3)C14—H14B0.9900
Ni1—N22.120 (3)C14—N131.489 (5)
Ni1—N32.105 (3)N13—H13C0.9100
Ni1—N42.139 (3)N13—H13D0.9100
Ni1—N14i2.082 (3)C15—H15A0.9900
N1—C11.482 (5)C15—H15B0.9900
N1—C31.486 (5)C15—C161.516 (5)
N1—C51.478 (5)C16—H16A0.9900
C1—H1A0.9900C16—H16B0.9900
C1—H1B0.9900C16—N141.482 (5)
C1—C21.522 (6)N14—H14C0.9100
C2—H2A0.9900N14—H14D0.9100
C2—H2B0.9900O11—H11C0.8399
C2—N21.467 (5)O11—H11D0.8396
N2—H2C0.9100O12—H12E0.8400
N2—H2D0.9100O12—H12F0.8401
C3—H3A0.9900O13—H13E0.8402
C3—H3B0.9900O13—H13F0.8399
C3—C41.523 (5)O14—H14E0.8400
C4—H4A0.9900O14—H14F0.8400
C4—H4B0.9900O15—H15C0.8398
C4—N31.468 (5)O15—H15D0.8399
N3—H3C0.9100
Ta2—Ta1—Ta362.304 (4)C5—N1—C3113.4 (3)
O1—Ta1—Ta2132.06 (8)N1—C1—H1A109.6
O1—Ta1—Ta3132.68 (8)N1—C1—H1B109.6
O1—Ta1—O499.95 (11)N1—C1—C2110.2 (3)
O1—Ta1—O5i104.23 (11)H1A—C1—H1B108.1
O1—Ta1—O6104.25 (10)C2—C1—H1A109.6
O1—Ta1—O7100.84 (11)C2—C1—H1B109.6
O1—Ta1—O10177.50 (8)C1—C2—H2A109.8
O4—Ta1—Ta232.17 (7)C1—C2—H2B109.8
O4—Ta1—Ta384.14 (7)H2A—C2—H2B108.2
O4—Ta1—O5i155.30 (10)N2—C2—C1109.5 (3)
O4—Ta1—O689.21 (10)N2—C2—H2A109.8
O4—Ta1—O790.86 (10)N2—C2—H2B109.8
O4—Ta1—O1078.10 (7)Ni1—N2—H2C109.5
O5i—Ta1—Ta2123.66 (7)Ni1—N2—H2D109.5
O5i—Ta1—Ta383.23 (7)C2—N2—Ni1110.6 (2)
O5i—Ta1—O1077.86 (7)C2—N2—H2C109.5
O6—Ta1—Ta283.44 (7)C2—N2—H2D109.5
O6—Ta1—Ta3123.02 (7)H2C—N2—H2D108.1
O6—Ta1—O5i80.09 (10)N1—C3—H3A108.9
O6—Ta1—O1077.37 (7)N1—C3—H3B108.9
O7—Ta1—Ta283.14 (7)N1—C3—C4113.3 (3)
O7—Ta1—Ta331.87 (7)H3A—C3—H3B107.7
O7—Ta1—O5i89.53 (10)C4—C3—H3A108.9
O7—Ta1—O6154.51 (10)C4—C3—H3B108.9
O7—Ta1—O1077.71 (7)C3—C4—H4A109.6
O10—Ta1—Ta245.949 (3)C3—C4—H4B109.6
O10—Ta1—Ta345.842 (3)H4A—C4—H4B108.1
Ta1—Ta2—Ta3i61.789 (4)N3—C4—C3110.1 (3)
O2—Ta2—Ta1135.83 (8)N3—C4—H4A109.6
O2—Ta2—Ta3i134.41 (9)N3—C4—H4B109.6
O2—Ta2—O4103.52 (11)Ni1—N3—H3C110.0
O2—Ta2—O5100.46 (11)Ni1—N3—H3D110.0
O2—Ta2—O8102.12 (12)C4—N3—Ni1108.3 (2)
O2—Ta2—O9102.38 (11)C4—N3—H3C110.0
O2—Ta2—O10178.28 (8)C4—N3—H3D110.0
O2—Ta2—Ni292.21 (8)H3C—N3—H3D108.4
O4—Ta2—Ta132.35 (7)N1—C5—H5A109.4
O4—Ta2—Ta3i81.68 (7)N1—C5—H5B109.4
O4—Ta2—O5155.76 (10)N1—C5—C6111.1 (3)
O4—Ta2—O887.94 (10)H5A—C5—H5B108.0
O4—Ta2—O989.28 (10)C6—C5—H5A109.4
O4—Ta2—O1078.04 (7)C6—C5—H5B109.4
O4—Ta2—Ni2130.95 (7)C5—C6—H6A109.7
O5—Ta2—Ta1123.50 (7)C5—C6—H6B109.7
O5—Ta2—Ta3i84.17 (7)H6A—C6—H6B108.2
O5—Ta2—O1077.94 (7)N4—C6—C5109.8 (3)
O5—Ta2—Ni243.70 (7)N4—C6—H6A109.7
O8—Ta2—Ta183.13 (7)N4—C6—H6B109.7
O8—Ta2—Ta3i32.29 (7)Ni1—N4—H4C109.6
O8—Ta2—O590.54 (10)Ni1—N4—H4D109.6
O8—Ta2—O9155.32 (10)C6—N4—Ni1110.2 (2)
O8—Ta2—O1078.58 (7)C6—N4—H4C109.6
O8—Ta2—Ni2134.06 (7)C6—N4—H4D109.6
O9—Ta2—Ta181.47 (7)H4C—N4—H4D108.1
O9—Ta2—Ta3i123.11 (7)Ta3—Ni2—Ta266.828 (9)
O9—Ta2—O582.10 (10)O5—Ni2—Ta240.50 (6)
O9—Ta2—O1076.85 (7)O5—Ni2—Ta385.33 (6)
O9—Ta2—Ni241.73 (7)O5—Ni2—N11103.85 (11)
O10—Ta2—Ta145.710 (3)O6i—Ni2—Ta284.09 (6)
O10—Ta2—Ta3i46.292 (3)O6i—Ni2—Ta340.14 (6)
O10—Ta2—Ni286.199 (9)O6i—Ni2—O574.98 (9)
Ni2—Ta2—Ta1115.605 (10)O6i—Ni2—N11108.66 (11)
Ni2—Ta2—Ta3i118.719 (9)O9—Ni2—Ta239.97 (7)
Ta2i—Ta3—Ta161.584 (4)O9—Ni2—Ta340.81 (7)
O3—Ta3—Ta1134.81 (9)O9—Ni2—O577.40 (10)
O3—Ta3—Ta2i135.63 (9)O9—Ni2—O6i77.27 (10)
O3—Ta3—O6i102.86 (11)O9—Ni2—N11174.07 (11)
O3—Ta3—O7103.09 (11)N11—Ni2—Ta2139.05 (9)
O3—Ta3—O8i103.56 (12)N11—Ni2—Ta3144.70 (8)
O3—Ta3—O9102.36 (12)N12—Ni2—Ta282.86 (10)
O3—Ta3—O10178.51 (10)N12—Ni2—Ta3131.62 (11)
O3—Ta3—Ni292.55 (9)N12—Ni2—O595.51 (14)
O6i—Ta3—Ta1121.97 (7)N12—Ni2—O6i166.92 (12)
O6i—Ta3—Ta2i83.52 (7)N12—Ni2—O992.05 (13)
O6i—Ta3—O981.65 (10)N12—Ni2—N1182.07 (13)
O6i—Ta3—O1076.99 (7)N13—Ni2—Ta2136.14 (9)
O6i—Ta3—Ni243.43 (7)N13—Ni2—Ta382.71 (10)
O7—Ta3—Ta131.73 (7)N13—Ni2—O5167.02 (12)
O7—Ta3—Ta2i82.02 (7)N13—Ni2—O6i92.56 (12)
O7—Ta3—O6i153.41 (10)N13—Ni2—O996.59 (12)
O7—Ta3—O987.26 (10)N13—Ni2—N1183.33 (13)
O7—Ta3—O1076.91 (7)N13—Ni2—N1296.20 (16)
O7—Ta3—Ni2129.41 (7)C11—N11—Ni2103.7 (2)
O8i—Ta3—Ta182.41 (7)C11—N11—C13110.2 (3)
O8i—Ta3—Ta2i32.08 (7)C13—N11—Ni2105.8 (2)
O8i—Ta3—O6i91.15 (10)C15—N11—Ni2119.3 (2)
O8i—Ta3—O788.35 (11)C15—N11—C11106.1 (3)
O8i—Ta3—O9154.04 (10)C15—N11—C13111.3 (3)
O8i—Ta3—O1077.93 (7)N11—C11—H11A109.0
O8i—Ta3—Ni2134.43 (7)N11—C11—H11B109.0
O9—Ta3—Ta180.45 (7)N11—C11—C12112.7 (4)
O9—Ta3—Ta2i121.97 (7)H11A—C11—H11B107.8
O9—Ta3—O1076.15 (7)C12—C11—H11A109.0
O9—Ta3—Ni242.21 (7)C12—C11—H11B109.0
O10—Ta3—Ta145.177 (3)C11—C12—H12A109.8
O10—Ta3—Ta2i45.855 (3)C11—C12—H12B109.8
O10—Ta3—Ni286.339 (9)H12A—C12—H12B108.3
Ni2—Ta3—Ta1115.241 (9)N12—C12—C11109.2 (4)
Ni2—Ta3—Ta2i118.381 (9)N12—C12—H12A109.8
Ta1—O1—Ni1155.51 (15)N12—C12—H12B109.8
Ta2—O4—Ta1115.48 (11)Ni2—N12—H12C109.0
Ta1i—O5—Ni299.62 (10)Ni2—N12—H12D109.0
Ta2—O5—Ta1i112.10 (11)C12—N12—Ni2112.7 (3)
Ta2—O5—Ni295.80 (10)C12—N12—H12C109.0
Ta1—O6—Ni2i101.20 (10)C12—N12—H12D109.0
Ta3i—O6—Ta1114.00 (11)H12C—N12—H12D107.8
Ta3i—O6—Ni2i96.43 (10)N11—C13—H13A109.4
Ta1—O7—Ta3116.40 (12)N11—C13—H13B109.4
Ta2—O8—Ta3i115.63 (12)N11—C13—C14111.3 (3)
Ta2—O9—Ta3114.78 (11)H13A—C13—H13B108.0
Ta2—O9—Ni298.30 (11)C14—C13—H13A109.4
Ta3—O9—Ni296.99 (10)C14—C13—H13B109.4
Ta1—O10—Ta1i180.0C13—C14—H14A110.1
Ta1—O10—Ta288.341 (5)C13—C14—H14B110.1
Ta1i—O10—Ta2i88.341 (5)H14A—C14—H14B108.4
Ta1i—O10—Ta291.659 (4)N13—C14—C13107.9 (3)
Ta1—O10—Ta2i91.659 (4)N13—C14—H14A110.1
Ta1—O10—Ta388.980 (4)N13—C14—H14B110.1
Ta1—O10—Ta3i91.020 (5)Ni2—N13—H13C110.4
Ta1i—O10—Ta391.020 (4)Ni2—N13—H13D110.4
Ta1i—O10—Ta3i88.980 (4)C14—N13—Ni2106.8 (2)
Ta2i—O10—Ta2180.0C14—N13—H13C110.4
Ta2i—O10—Ta387.852 (5)C14—N13—H13D110.4
Ta2i—O10—Ta3i92.147 (5)H13C—N13—H13D108.6
Ta2—O10—Ta3i87.854 (5)N11—C15—H15A108.7
Ta2—O10—Ta392.147 (5)N11—C15—H15B108.7
Ta3—O10—Ta3i180.0N11—C15—C16114.4 (3)
O1—Ni1—N196.31 (11)H15A—C15—H15B107.6
O1—Ni1—N286.87 (11)C16—C15—H15A108.7
O1—Ni1—N3178.92 (11)C16—C15—H15B108.7
O1—Ni1—N483.49 (11)C15—C16—H16A109.9
O1—Ni1—N14i89.60 (11)C15—C16—H16B109.9
N1—Ni1—N282.40 (13)H16A—C16—H16B108.3
N1—Ni1—N482.30 (13)N14—C16—C15108.9 (3)
N2—Ni1—N4160.88 (12)N14—C16—H16A109.9
N3—Ni1—N183.27 (12)N14—C16—H16B109.9
N3—Ni1—N294.05 (12)Ni1i—N14—H14C107.1
N3—Ni1—N495.46 (12)Ni1i—N14—H14D107.1
N14i—Ni1—N1173.85 (12)C16—N14—Ni1i120.8 (2)
N14i—Ni1—N296.26 (13)C16—N14—H14C107.1
N14i—Ni1—N390.85 (12)C16—N14—H14D107.1
N14i—Ni1—N4100.14 (13)H14C—N14—H14D106.8
C1—N1—Ni1105.6 (2)H11C—O11—H11D92.0
C1—N1—C3111.1 (3)H12E—O12—H12F106.4
C3—N1—Ni1109.3 (2)H13E—O13—H13F107.5
C5—N1—Ni1105.5 (2)H14E—O14—H14F89.4
C5—N1—C1111.5 (3)H15C—O15—H15D108.4
Ta2—Ta1—O1—Ni15.5 (4)C5—N1—C1—C2161.0 (3)
Ta3—Ta1—O1—Ni194.3 (3)C5—N1—C3—C495.1 (4)
O4—Ta1—O1—Ni13.1 (4)C5—C6—N4—Ni124.0 (4)
O5i—Ta1—O1—Ni1171.7 (3)Ni2—N11—C11—C1245.1 (4)
O6—Ta1—O1—Ni188.6 (4)Ni2—N11—C13—C1432.3 (3)
O7—Ta1—O1—Ni196.0 (3)Ni2—N11—C15—C1670.5 (4)
Ni1—N1—C1—C246.8 (3)N11—C11—C12—N1248.2 (6)
Ni1—N1—C3—C422.4 (4)N11—C13—C14—N1355.0 (4)
Ni1—N1—C5—C647.6 (3)N11—C15—C16—N14177.5 (3)
N1—C1—C2—N250.5 (4)C11—N11—C13—C14143.9 (3)
N1—C3—C4—N342.7 (5)C11—N11—C15—C16173.1 (3)
N1—C5—C6—N448.8 (4)C11—C12—N12—Ni224.9 (6)
C1—N1—C3—C4138.5 (4)C13—N11—C11—C1267.8 (4)
C1—N1—C5—C6161.7 (3)C13—N11—C15—C1653.2 (4)
C1—C2—N2—Ni127.3 (4)C13—C14—N13—Ni248.0 (3)
C3—N1—C1—C271.5 (4)C15—N11—C11—C12171.6 (4)
C3—N1—C5—C672.0 (4)C15—N11—C13—C1498.6 (4)
C3—C4—N3—Ni140.5 (4)C15—C16—N14—Ni1i82.7 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O40.992.523.293 (5)135
N2—H2C···O4ii0.912.593.394 (4)148
N2—H2C···O8ii0.912.423.208 (4)146
N2—H2D···O40.912.593.236 (4)129
N2—H2D···N2ii0.912.623.338 (6)136
C3—H3A···O19iii0.992.533.253 (8)129
C3—H3B···O13iv0.992.643.301 (6)124
C4—H4B···O19iii0.992.603.135 (7)114
N3—H3C···O180.912.403.197 (7)146
N3—H3C···O190.912.453.266 (8)149
N3—H3D···O8ii0.912.022.915 (4)169
N4—H4C···O150.912.543.244 (5)135
C11—H11B···O16ii0.992.573.497 (12)156
C12—H12B···O200.992.472.977 (8)111
N12—H12C···O200.912.332.995 (7)130
N12—H12D···O20.912.162.951 (4)145
N12—H12D···O18ii0.912.393.168 (8)144
C13—H13A···O130.992.593.380 (6)137
N13—H13C···O30.912.102.937 (5)153
N13—H13D···O14iv0.912.233.103 (5)160
C15—H15A···O1i0.992.453.105 (5)124
C16—H16A···O6i0.992.633.514 (4)149
C16—H16B···O11v0.992.583.400 (5)140
N14—H14C···O190.912.623.447 (7)151
N14—H14C···O19i0.912.273.082 (7)148
N14—H14D···O2v0.912.042.941 (4)169
O11—H11C···O20.841.972.794 (4)165
O11—H11D···O140.842.002.826 (5)170
O12—H12E···O7vi0.841.972.784 (4)163
O12—H12F···O160.841.862.686 (11)170
O12—H12F···O160.842.253.079 (11)169
O13—H13E···O11v0.841.892.696 (5)161
O13—H13F···O3vii0.841.932.698 (4)152
O13—H13F···O20v0.842.593.101 (7)120
O14—H14E···O20iv0.841.942.757 (7)164
O14—H14F···O90.842.012.762 (4)149
O15—H15C···O17viii0.842.012.787 (9)153
O15—H15C···O17viii0.842.022.850 (10)170
O15—H15D···O12iii0.841.902.723 (6)168
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x+2, y, z+3; (iv) x+1, y+1, z+2; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y+1, z+2; (viii) x+1, y1, z+1.
 

Acknowledgements

Financial support by the State of Schleswig-Holstein is gratefully acknowledged.

References

First citationBijelic, A., Aureliano, M. & Rompel, A. (2019). Angew. Chem. Int. Ed. 58, 2980–2999.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationČolović, M. B., Lacković, M., Lalatović, J., Mougharbel, A. S., Kortz, U. & Krstić, D. Z. (2020). Curr. Med. Chem. 27, 362–379.  Web of Science PubMed Google Scholar
First citationDopta, J., Grzanna, S., Näther, C. & Bensch, W. (2018a). Dalton Trans. 47, 15103–15113.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDopta, J., Krause, D.-C., Näther, C. & Bensch, W. (2018b). Cryst. Growth Des. 18, 4130–4139.  Web of Science CSD CrossRef CAS Google Scholar
First citationDopta, J., Mahnke, L. K. & Bensch, W. (2020). CrystEngComm, 22, 3254–3268.  Web of Science CrossRef CAS Google Scholar
First citationFilowitz, M., Ho, R. K. C., Klemperer, W. G. & Shum, W. (1979). Inorg. Chem. 18, 93–103.  CrossRef CAS Web of Science Google Scholar
First citationGuo, G.-L., Xu, Y.-Q., Chen, B.-K., Lin, Z.-G. & Hu, C.-W. (2011). Inorg. Chem. Commun. 14, 1448–1451.  Web of Science CSD CrossRef CAS Google Scholar
First citationHegetschweiler, K., Finn, R. C., Rarig, R. S., Sander, J., Steinhauser, S., Wörle, M. & Zubieta, J. (2002). Inorg. Chim. Acta, 337, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationInfantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486.  Web of Science CrossRef CAS Google Scholar
First citationInfantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.  Web of Science CrossRef CAS Google Scholar
First citationJunk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661–1668.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, J. C., Cho, J., Kim, H. & Lough, A. J. (2004). Chem. Commun. pp. 1796–1797.  Web of Science CSD CrossRef Google Scholar
First citationKönig, B. (2020). Editor. Chemical Photocatalysis. Berlin: De Gruyter.  Google Scholar
First citationLi, Z., Zhang, J., Lin, L.-D., Liu, J.-H., Li, X.-X. & Zheng, S.-T. (2019). Chem. Commun. 55, 11735–11738.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationLühmann, H., Näther, C., Kögerler, P. & Bensch, W. (2014). Inorg. Chim. Acta, 421, 549–552.  Google Scholar
First citationMahnke, L. K., Warzok, U., Lin, M., Näther, C., Schalley, C. A. & Bensch, W. (2018a). Chem. Eur. J. 24, 5522–5528.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahnke, L. K., Wendt, M., Näther, C. & Bensch, W. (2018b). Cryst. Growth Des. 18, 6100–6106.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarzotto, A., Clemente, D. A. & Valle, G. (1993). Acta Cryst. C49, 1252–1255.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMash, B. L., Raghavan, A. & Ren, T. (2019). Eur. J. Inorg. Chem. 2019, 2065–2070.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatelková, K., Moncol, J., Herchel, R., Dlháň, Ľ., Ivaniková, R., Svoboda, I., Padělková, Z. & Mašlejová, A. (2013). Polyhedron, 56, 1–8.  Google Scholar
First citationMonakhov, K. Y., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443–8483.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMüscher-Polzin, P., Näther, C. & Bensch, W. (2020a). Z. Naturforsch. Teil B, 75, 583–588.  Google Scholar
First citationMüscher-Polzin, P., Näther, C. & Bensch, W. (2020b). Z. Anorg. Allg. Chem. 646, 193–198.  Google Scholar
First citationNiu, J., Wang, G., Zhao, J., Sui, Y., Ma, P. & Wang, J. (2011). Cryst. Growth Des. 11, 1253–1261.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Keefe, M. & Brese, N. E. (1991). J. Am. Chem. Soc. 113, 3226–3229.  CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStreb, C. (2012). Dalton Trans. 41, 1651–1659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTagliavini, V., Honisch, C., Serratì, S., Azzariti, A., Bonchio, M., Ruzza, P. & Carraro, M. (2021). RSC Adv. 11, 4952–4957.  Web of Science CrossRef CAS Google Scholar
First citationWang, J., Näther, C., Speldrich, M., Kögerler, P. & Bensch, W. (2013). CrystEngComm, 15, 10238–10245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamase, T. (2013). Prog. Mol. Subcell. Biol. 54, 65–116.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds