research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural features of the oxidonitridophosphates K3MIII(PO3)3N (MIII = Al, Ga)

crossmark logo

aF.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS Ukraine, 42 Acad. Vernadskoho blv., 03142 Kyiv, Ukraine, bShimUkraine LLC, 18 Chigorina Str., office 429, 01042 Kyiv, Ukraine, cSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv, Ukraine, dFaculty of Horticulture, Ecology and Plants Protection, Uman National University of Horticulture, 1 Instytutska str., 20305 Uman, Cherkassy region, Ukraine, and eDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., 01601, Kyiv, Ukraine
*Correspondence e-mail: zvigo@ukr.net

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 October 2021; accepted 27 October 2021; online 2 November 2021)

Cubic crystals of tripotassium aluminium (or gallium) nitridotriphosphate, K3MIII(PO3)3N (MIII = Al, Ga), were grown by application of the self-flux method. In their isostructural crystal structures, all metal cations and the N atom occupy special positions with site symmetry 3, while the P and O atoms are situated in general positions. The three-dimensional framework of these oxidonitridophosphates is built up from [MIIIO6] octa­hedra linked together via (PO3)3N groups. The latter are formed from three PO3N tetra­hedra sharing a common N atom. The coordination environments of the three potassium cations are represented by two types of polyhedra, viz. KO9 for one and KO9N for the other two cations. An unusual tetra­dentate type of coordination for the latter potassium cations by the (PO3)3N6– anion is observed. These K3MIII(PO3)3N (MIII = Al, Ga) compounds are isostructural with the Na3MIII(PO3)3N (MIII = Al, V, Ti) compounds.

1. Chemical context

Oxidonitridophosphates with general compositions MI3MIII(PO3)3N and MI2MII2(PO3)3N (MI = Li, Na, K; MIII = Al, Cr, Ga, V and Ti; MII = Mg, Fe) have been prepared by solid-state synthesis (Feldmann, 1987a[Feldmann, W. (1987a). Z. Chem. 27, 100-101.],b[Feldmann, W. (1987b). Z. Chem. 27, 182-183.]; Massiot et al., 1996[Massiot, D., Conanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). Inorg. Chem. 35, 4957-4960.]; Conanec et al., 1996[Conanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). J. Solid State Chem. 121, 418-422.]), high-temperature thermal ammonolysis (Kim & Kim, 2013[Kim, M. & Kim, S.-J. (2013). Acta Cryst. E69, i34.]; Kim et al., 2017[Kim, J., Yoon, G., Lee, M. H., Kim, H., Lee, S. & Kang, K. (2017). Chem. Mater. 29, 7826-7832.]; Zhang et al., 2017[Zhang, H., Buchholz, D. & Passerini, S. (2017). Energies, 10, 889.]), flux-growth (Zatovsky et al., 2006[Zatovsky, I. V., Vorobjova, T. V., Domasevitch, K. V., Ogorodnyk, I. V. & Slobodyanik, N. S. (2006). Acta Cryst. E62, i32-i34.]) or solid–solid ion-exchange (Liu et al., 2018[Liu, J., Yin, L., Yang, X.-Q. & Khalifah, P. G. (2018). Chem. Mater. 30, 4609-4616.]). In recent years, oxidonitridophosphates containing the (PO3)3N6– anion have been intensively studied as promising cathode materials for Na-ion and Li-ion batteries. In particular, ionic conductivities and redox properties were investigated in detail for Na3Ti(PO3)3N (Liu et al., 2014[Liu, J., Chang, D., Whitfield, P., Janssen, Y., Yu, X., Zhou, Y., Bai, J., Ko, J., Nam, K.-W., Wu, L., Zhu, Y., Feygenson, M., Amatucci, G., Van der Ven, A., Yang, X.-Q. & Khalifah, P. (2014). Chem. Mater. 26, 3295-3305.]), Na3V(PO3)3N (Reynaud et al., 2017[Reynaud, M., Wizner, A., Katcho, N. A., Loaiza, L. C., Galceran, M., Carrasco, J., Rojo, T., Armand, M. & Casas-Cabanas, M. (2017). Electrochem. Commun. 84, 14-18.]; Kim et al., 2017[Kim, J., Yoon, G., Lee, M. H., Kim, H., Lee, S. & Kang, K. (2017). Chem. Mater. 29, 7826-7832.]; Zhang et al., 2017[Zhang, H., Buchholz, D. & Passerini, S. (2017). Energies, 10, 889.]; Xiao et al., 2021[Xiao, J., Hua, W. & Chen, M. (2021). Nanotechnology, 32, 425404.]; Wang et al., 2021[Wang, S., Li, H., Zhang, W., Zheng, J., Li, S., Hu, J., Lia, Y. & Zhang, Z. (2021). ACS Appl. Energy Mater. In the press. https://doi.org/10.1021/acsaem.1c02042.]), Li3V(PO3)3N (Liu et al., 2018[Liu, J., Yin, L., Yang, X.-Q. & Khalifah, P. G. (2018). Chem. Mater. 30, 4609-4616.]), Na2Fe2(PO3)3N and Li2Fe2(PO3)3N (Liu et al., 2013[Liu, J., Yu, X., Hu, E., Nam, K.-W., Yang, X.-Q. & Khalifah, P. G. (2013). Chem. Mater. 25, 3929-3931.]), Na2Mg2(PO3)3N (Cosby et al., 2020[Cosby, M. R., Mattei, G. S., Wang, Y., Li, Z., Bechtold, N., Chapman, K. W. & Khalifah, K. W. (2020). J. Phys. Chem. C, 124, 6522-6527.]), and Li2Mg2(PO3)3N (Liu et al., 2017[Liu, J., Whitfield, P. S., Saccomanno, M. R., Bo, S.-H., Hu, E., Yu, X., Bai, J., Grey, C. P., Yang, X.-Q. & Khalifah, P. G. (2017). J. Am. Chem. Soc. 139, 9192-9202.]). In addition, rare-earth-doped Na3Al(PO3)3N has been studied as a promising phosphor (Bang et al., 2013[Bang, S. Y., Khai, T. V., Oh, D. K., Maneeratanasarn, P., Choi, B. G., Ham, H. & Shim, K. B. (2013). J. Ceram. Process. Res. 14(S1), 74-76.]). However, the structural data for oxidonitridophosphates include only Na- or Li-containing compounds (Massiot et al., 1996[Massiot, D., Conanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). Inorg. Chem. 35, 4957-4960.]; Zatovsky et al., 2006[Zatovsky, I. V., Vorobjova, T. V., Domasevitch, K. V., Ogorodnyk, I. V. & Slobodyanik, N. S. (2006). Acta Cryst. E62, i32-i34.]; Kim & Kim, 2013[Kim, M. & Kim, S.-J. (2013). Acta Cryst. E69, i34.]; Liu et al., 2013[Liu, J., Yu, X., Hu, E., Nam, K.-W., Yang, X.-Q. & Khalifah, P. G. (2013). Chem. Mater. 25, 3929-3931.], 2017[Liu, J., Whitfield, P. S., Saccomanno, M. R., Bo, S.-H., Hu, E., Yu, X., Bai, J., Grey, C. P., Yang, X.-Q. & Khalifah, P. G. (2017). J. Am. Chem. Soc. 139, 9192-9202.], 2018[Liu, J., Yin, L., Yang, X.-Q. & Khalifah, P. G. (2018). Chem. Mater. 30, 4609-4616.]; Zhang et al., 2017[Zhang, H., Buchholz, D. & Passerini, S. (2017). Energies, 10, 889.]).

In this communication, we report the flux-growth synthesis, structural characterization and FTIR spectra for the two K-containing oxidonitridophosphates K3Al(PO3)3N (I) and K3Ga(PO3)3N (II).

2. Structural commentary

Compounds (I) and (II) (Fig. 1[link]) are isotypic and crystallize in the cubic Na3Al(PO3)3N structure in space-group type P213. The K, Al (or Ga) and N atoms are localized on threefold rotation axes (Wyckoff position 4 a), and the P and all O atoms occupy general 12 b sites (Fig. 1[link]). As shown in Fig. 2[link], the crystal structures of the K3MIII(PO3)3N (MIII = Al, Ga) title compounds consist of [MIIIO6] octa­hedra and (PO3)3N6– anions, which are linked via vertices, forming a three-dimensional framework. The (PO3)3N6– anion is built up from three PO3N tetra­hedra sharing a common N vertex atom. The P—O bond lengths for both structures range between 1.473 (9) and 1.534 (3) Å (Tables 1[link] and 2[link]), while the P—N bond lengths are 1.7084 (12) and 1.701 (4) Å for (I) and (II), respectively. The lengths of the P—O and P—N bonds are similar to those found in the isotypic oxidonitridophosphates such as Na3Al(PO3)3N (Conanec et al., 1994[Conanec, R., l'Haridon, P., Feldmann, W., Marchand, R. & Laurent, Y. (1994). Eur. J. Solid State Inorg. Chem. 31, 13-24.], 1996[Conanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). J. Solid State Chem. 121, 418-422.]), Na3Ti(PO3)3N (Zatovsky et al., 2006[Zatovsky, I. V., Vorobjova, T. V., Domasevitch, K. V., Ogorodnyk, I. V. & Slobodyanik, N. S. (2006). Acta Cryst. E62, i32-i34.]), or Na3V(PO3)3N (Kim & Kim, 2013[Kim, M. & Kim, S.-J. (2013). Acta Cryst. E69, i34.]). The octa­hedral coordination environments around MIII are slightly distorted, as indicated by the different MIII—O bond lengths (Tables 1[link] and 2[link]). The [MIIIO6] octa­hedra are slightly squeezed along the cubic cell diagonal. The average Al—O and Ga—O distances are 1.907 (3) and 1.963 (9) Å, respectively. These values are close to the sums of the ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of Al3+ and O2– (1.92 Å) and Ga3+ and O2− (2.00 Å), respectively.

Table 1
Selected geometric parameters (Å, °) for (I)

K1—O3i 2.623 (3) K3—N1 3.340 (6)
K1—O1ii 2.761 (3) K3—O3iv 3.379 (3)
K1—O2ii 3.261 (3) Al1—O1v 1.905 (3)
K2—O3iii 2.765 (3) Al1—O2iv 1.909 (3)
K2—N1 2.904 (6) P1—O3 1.493 (3)
K2—O1iii 2.967 (3) P1—O1 1.530 (3)
K2—O2 3.263 (3) P1—O2 1.534 (3)
K3—O3 2.679 (3) P1—N1 1.7084 (12)
K3—O2iv 2.803 (3)    
       
O3—P1—O1 111.58 (17) O1—P1—N1 105.82 (13)
O3—P1—O2 113.45 (16) O2—P1—N1 105.20 (17)
O1—P1—O2 109.85 (16) P1vi—N1—P1 118.53 (8)
O3—P1—N1 110.5 (2)    
Symmetry codes: (i) [-y+1, z-{\script{1\over 2}}, -x+{\script{1\over 2}}]; (ii) [-z+{\script{1\over 2}}, -x, y-{\script{1\over 2}}]; (iii) [z-{\script{1\over 2}}, -x+{\script{1\over 2}}, -y+1]; (iv) [-z+1, x+{\script{1\over 2}}, -y+{\script{3\over 2}}]; (v) [-z+{\script{3\over 2}}, -x+1, y+{\script{1\over 2}}]; (vi) z, x, y.

Table 2
Selected geometric parameters (Å, °) for (II)

K1—O3i 2.642 (8) K3—N1 3.310 (18)
K1—O1ii 2.807 (9) K3—O3v 3.412 (8)
K1—O2iii 3.216 (8) Ga1—O2vi 1.968 (9)
K2—O3iv 2.808 (9) Ga1—O2vii 1.968 (9)
K2—O1i 2.925 (9) P1—O3 1.473 (9)
K2—N1 2.977 (18) P1—O2 1.516 (9)
K2—O2 3.287 (8) P1—O1 1.524 (9)
K3—O3 2.665 (9) P1—N1 1.701 (4)
K3—O2v 2.785 (8)    
       
O3—P1—O2 113.8 (5) O2—P1—N1 107.0 (5)
O3—P1—O1 112.1 (5) O1—P1—N1 106.8 (4)
O2—P1—O1 107.9 (5) P1—N1—P1viii 118.8 (2)
O3—P1—N1 108.9 (7)    
Symmetry codes: (i) [z-{\script{1\over 2}}, -x+{\script{1\over 2}}, -y+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-z+{\script{1\over 2}}, -x, y-{\script{1\over 2}}]; (iv) [-y+1, z-{\script{1\over 2}}, -x+{\script{1\over 2}}]; (v) [-z+1, x+{\script{1\over 2}}, -y+{\script{3\over 2}}]; (vi) [-y+{\script{3\over 2}}, -z+1, x+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) z, x, y.
[Figure 1]
Figure 1
A view of the asymmetric units of K3Al(PO3)3N (I) and K3Ga(PO3)3N (II), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
[MIIIO6] octa­hedra and `three-blade propeller'-type anions (PO3)3N6– as principle building units for formation of the three-dimensional framework of (I) and (II).

Fig. 3[link] shows the coordination environments of potassium cations for (I) and (II). K1 has nine O-atom neighbors with K—O distances ranging from 2.623 (3) to 3.261 (3) Å, which includes three mono- and three bidentately coordinating (PO3)3N6– anions. K2O9N and K3O9N polyhedra are formed as a result of one tetra- and three bidentately coordinating oxidonitridophosphate anions. In the latter case, the upper boundary for K—O distances is 3.412 (8) Å; K2—N distances are 2.904 (6) and 2.977 (18) Å and K3—N contacts are 3.340 (6) and 3.310 (18) Å for (I) and (II), respectively. The coordination environments around the alkali metal for K-containing oxidonitridophosphates (K2O9N and K3O9N polyhedra) differ from those of the Na-containing compounds (Na2O6N and Na3O6N polyhedra). In addition, the (PO3)3N6– anions coordinate the two potassium cations in a tetra­dentate manner (Fig. 4[link]). As is shown schematically in Fig. 4[link] and in Table 3[link] for the isotypic MI3MIII(PO3)3N compounds, the MI, MIII and N atoms are arranged along the [111] direction in the sequence –M1IM2I–N–M3IMIIIM1I– whereby the M2I—N—M3I distances change in a different manner. In case of (I) and (II), the shape of the (PO3)3N6– anion is similar (the P—N distances are about 1.70 Å and the P—N—K3 angles are within 83-84°; Tables 1[link] and 2[link]). For the Na-containing analogues, the P—N bond is slightly larger (1.71–1.74 Å) and the P—N—Na3 angles are smaller within a wider range from 75 to 78° (Conanec et al., 1994[Conanec, R., l'Haridon, P., Feldmann, W., Marchand, R. & Laurent, Y. (1994). Eur. J. Solid State Inorg. Chem. 31, 13-24.], 1996[Conanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). J. Solid State Chem. 121, 418-422.]; Zatovsky et al., 2006[Zatovsky, I. V., Vorobjova, T. V., Domasevitch, K. V., Ogorodnyk, I. V. & Slobodyanik, N. S. (2006). Acta Cryst. E62, i32-i34.]; Kim & Kim, 2013[Kim, M. & Kim, S.-J. (2013). Acta Cryst. E69, i34.]).

Table 3
BVS results (v.u.) for (I) and (II)

Central Atom (I) (II)
Al1/Ga1 3.004 3.197
K1 1.486 1.400
K2 1.122 1.069
K3 1.315 1.360
P1 3 × 4.903 3 × 5.084
Σ 21.636 22.278
[Figure 3]
Figure 3
The coordination environment of potassium cations in (I) and (II).
[Figure 4]
Figure 4
Coordination of K2 and K3 cations by the (PO3)3N6– anion for (I) and (II).

To clarify some points regarding the structural changes we have calculated the bond-valence sums (BVS) for the K, P and Al atoms (I) and Ga atoms (II), respectively. Parameters were taken from Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) and for the K—N bond from Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The BVS for positively charged atoms in (I) is 21.64 v.u. and 22.28 v.u. for (II) while the sum of the charges of nine O and one N atom is equal to 21 v.u. (Table 4[link]). The higher values for the Ga-containing compound might be explained as follows. The BVS for Al in [AlO6] was found to be 3.00 v.u. while for Ga in [GaO6] it is 3.20 v.u. The remaining atoms also show a slight overbonding (Table 4[link]). We suppose that the anionic part (PO3)3N6– is rigid enough and cannot be stretched to larger sizes relative to the larger [GaO6] octa­hedron into a more expanded framework. This is the reason why shorter inter­atomic K—O and P—O distances are observed in the structure of (II) compared to that of (I) (Tables 1[link] and 2[link]). As expected, the unit-cell parameters of (I) are smaller than for (II), in good agreement with the ionic radii of Al3+ and Ga3+ (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). In other words, the rigid and almost flat `three-blade propeller' anions combine with [MIIIO6] octa­hedra to form the framework in which the cavities for the alkali cations become smaller as greater octa­hedra are involved. Moreover, the greater [MIIIO6] octa­hedra strongly influence the `three-blade propeller' anion, resulting in slightly shorter P—O and P—N bonds. On the other hand, the local environments of the K cations should also be mentioned. In the K2O9N polyhedron, the BVS for K2 is 1.12 v.u. in (I) and 1.07 in (II). The contribution to the K2—N1 bond to the valence sum is 0.12 v.u. for (I) and 0.10 for (II). These high values indicate a strong inter­action between the two atoms. The cavities in which K1 and K2 are located become larger with longer or almost the same K⋯O and K⋯N contacts, while the cavities in which K3 is situated become smaller with shortened K⋯O contacts in (II) in comparison with (I). BVS calculations for the phosphate tetra­hedra show similar results (Table 4[link]).

Table 4
Distances (Å) between atoms for (I), (II) and isotypic MI3MIII(PO3)3N compounds along [111]

Compound Atomic distance between neighboring atoms Reference
Na3Al(PO3)3N –Na1–3.438–Na2–2.875–N–3.197–Na3–3.068–Al–3.486–Na1– Massiot et al. (1996[Massiot, D., Conanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). Inorg. Chem. 35, 4957-4960.])
Na3Ti(PO3)3N –Na1–3.448–Na2–3.078–N–3.188–Na3–3.100–Ti–3.638–Na1– Zatovsky et al. (2006[Zatovsky, I. V., Vorobjova, T. V., Domasevitch, K. V., Ogorodnyk, I. V. & Slobodyanik, N. S. (2006). Acta Cryst. E62, i32-i34.])
Na3V(PO3)3N –Na1–3.477–Na2–2.947–N–3.234–Na3–3.100–V–3.606–Na1– Kim & Kim (2013[Kim, M. & Kim, S.-J. (2013). Acta Cryst. E69, i34.])
K3Al(PO3)3N –K1–3.723–K2–2.904–N–3.340–K3–3.400–Al–3.429–K1– This work
K3Ga(PO3)3N –K1–3.747–K2–2.978–N–3.310–K3–3.350–Ga–3.470–K1– This work

It should also be noted that further theoretical calculations of the electronic structure can bring final clarity to the principles of bonding of alkali cations with (PO3)3N6– anions in K3MIII(PO3)3N compounds. This could be a way for the creation of new materials with desired properties based on K-containing oxidonitridophosphates.

3. Synthesis and crystallization

For the synthesis of (I) and (II), KH2PO4, K4P2O7·10H2O, urea, Al2O3 or Ga2O3 (all analytically or extra pure grade) were used as initial reagents. The sequence of preparation procedure was as follows: (1) phosphates KPO3 and K4P2O7 were each prepared by calcining KH2PO4 and K4P2O7·10H2O at 873 K; (2) a mixture of 20.07 g of KPO3, 13.21 g of K4P2O7 and 30.03 g of urea (molar ratio K:P = 1:1.32, urea:P = 2:1) ground in an agate mortar, was heated to complete degassing at 623 K in a porcelain dish. The resulting solid was reground and heated to become a homogeneous liquid at 1023 K and then quenched by pouring the melt onto a copper sheet to form a glass. The glass was crushed using a mill, and a powder with a particle size of less than 125 µm was separated. According to chemical analysis, the prepared glass had the composition K1.32PO2.43N0.50; (3) a mixture of 10 g of glass (K1.32PO2.43N0.50) and 0.3 g of Al2O3 or 0.7 g of Ga2O3 powders were placed into porcelain crucibles and heated up to 1043 K and then cooled to 923 K at a rate of 25 K h−1. After cooling to room temperature, colorless tetra­hedral crystals of (I) or (II) were washed with deionized water. Elemental analysis indicated the presence of K, Al (or Ga), P and N in the atomic ratio 3:1:3:1.

The growing of well-shaped crystals of (I) and (II) suitable for single crystal X-ray diffraction analysis was one of main tasks during the present study. Hence, a similar way for the preparation of the potassium-containing phosphates to that for the previously reported sodium-containing compounds was applied, following the self-flux method for the preparation of crystalline nitro­gen-containing phosphates (Zatovsky et al., 2006[Zatovsky, I. V., Vorobjova, T. V., Domasevitch, K. V., Ogorodnyk, I. V. & Slobodyanik, N. S. (2006). Acta Cryst. E62, i32-i34.]). Thermal decomposition of urea is a multistage process and leads to the formation of C3N4 (Wang et al., 2017[Wang, A., Wang, C., Fu, L., Wong-Ng, W. & Lan, Y. (2017). Nano-Micro Lett. 9, 47.]). The initial MI–P–O–N (MI = alkali metal) melt can be obtained by the reaction of urea with alkali metal phosphates, when a mixture of phosphates and C3N4 inter­act. The change of the phosphate:C3N4 ratio (or phosphate:urea) and the nature of the alkali metal affects the composition of the resulting melt. In our case, the molar ratio of K:P was chosen to be 1:1.32 because a mixture of KPO3 and K4P2O7 in this ratio has the lowest melting point close to 886 K, and the urea:P ratio was set to 2:1. As a result, a glass of composition K1.32PO2.43N0.50 was obtained.

The solubilities of Al2O3 and Ga2O3 in the K1.32PO2.43N0.50 self-fluxes differ significantly. Crystallization of compound (I) occurs as a result of the inter­action of self-fluxes and 2–4%wt. Al2O3. The formation of a mixture of (I) and Al2O3 was observed when the initial amount of aluminum oxide was higher than 5%wt. The solubility of Ga2O3 in the self-flux is about 7%wt. at 1043 K, and subsequent cooling of the homogeneous melt led to the crystallization of compound (II). In all cases, the amount of nitro­gen in the self-fluxes rapidly decreases above 1063 K. This process occurs due to the thermal instability of P—N bonds at high temperatures, and leads to a redox reaction with the release of nitro­gen and phospho­rus. The latter vaporizes from the phosphate melts and starts to burn, which can be observed by periodical sparks on the melt surface (Zatovsky et al., 2000[Zatovsky, I. V., Slobodyanik, N. S., Stratiychuk, D. A., Domasevitch, K. V., Sieler, J. & Rusanov, E. B. (2000). Z. Naturforsch. Teil B, 55, 291-298.]). As a result, K–MIII–P–O (MIII = Al, Ga) melts prone to vitrifying are formed.

The obtained compounds (I) and (II) were further characterized using FTIR spectroscopy; FTIR spectra were collected at room temperature on KBr discs using a Thermo NICOLET Nexus 470 spectrophotometer. As can be seen in Fig. 5[link], the spectra of (I) and (II) are similar with respect to intensities and band positions (the difference in the band positions does not exceed 27 cm−1). The characteristic bands are in good agreement with the presence of the N(PO3)36– anion with C3v symmetry, which provides for a set of vibration modes: 6A1 + 5A2 + 11E (3A1 + A2 + 4E belong to stretching vibrations, and 3A1 + 4A2 + 7E are due to deformation vibrations). As shown in Fig. 5[link], the following regions can be distinguished in the FTIR spectra: (1) the bands in the region between 980 and 1220 cm−1 are assigned to νas and νs(PO3) stretching vibrations [four absorption bands in the frequency range between 1070 and 1220 cm−1 belong to νas(P—O), and two bands of between 980 and 1060 cm−1 correspond to νs(P—O)]; (2) νas(P—N—P) and νs(P—N—P) bands can be observed in the regions between 920 and 950 cm−1 and around 920 cm−1, respectively; (3) the range between 400 and 680 cm−1 includes absorption bands due to δ (P—O) and ν (Al—O) or ν (Ga—O) vibrations. In summary, in terms of the set of absorption bands, the FTIR spectra of the N(PO3)36– anion resemble those of the P2O74– anion.

[Figure 5]
Figure 5
FTIR spectra of (I) and (II).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. As a result of the shapes of the obtained crystals, their cell parameters and chemical compositions, we had expected that both structures should be isostructural with the previously reported Na3Al(PO3)3N and Na3Ti(PO3)3N structures. In fact, analysis of the single-crystal data showed that both compounds crystallize in the same space group type (P213) as the Na-containing oxidonitridophosphates. Originally, the crystal structures were solved by direct methods but we also performed refinements using the atomic coordinates of Na3Ti(PO3)3N as a starting model. The results were the same, confirming that both structures are isostructural with Na3Ti(PO3)3N (as well as with all previously reported cubic oxionitridophosphates with the same formula type).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula K3Al(NP3O9) K3Ga(NP3O9)
Mr 395.2 437.94
Crystal system, space group Cubic, P213 Cubic, P213
Temperature (K) 293 293
a (Å) 9.6970 (4) 9.7313 (9)
V3) 911.83 (11) 921.5 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.16 4.90
Crystal size (mm) 0.15 × 0.12 × 0.1 0.12 × 0.07 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur-3 Oxford Diffraction Xcalibur-3
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.844, 0.869 0.738, 0.804
No. of measured, independent and observed [I > 2σ(I)] reflections 7172, 745, 667 4964, 753, 517
Rint 0.078 0.155
(sin θ/λ)max−1) 0.660 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.052, 1.05 0.059, 0.102, 1
No. of reflections 745 753
No. of parameters 53 53
Δρmax, Δρmin (e Å−3) 0.27, −0.27 0.67, −0.60
Absolute structure Flack x determined using 269 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 153 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (6) 0.03 (5)
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXS2013/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (I); SHELXS2013/1 (Sheldrick, 2008) for (II). Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for (I); SHELXL2018/3 (Sheldrick, 2015) for (II). For both structures, molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Tripotassium aluminium nitridotriphosphate (I) top
Crystal data top
K3Al(NP3O9)Dx = 2.879 Mg m3
Mr = 395.2Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 7172 reflections
Hall symbol: P 2ac 2ab 3θ = 3.0–28.0°
a = 9.6970 (4) ŵ = 2.16 mm1
V = 911.83 (11) Å3T = 293 K
Z = 4Tetrahedron, colorless
F(000) = 7760.15 × 0.12 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.844, Tmax = 0.869k = 1210
7172 measured reflectionsl = 1212
745 independent reflections
Refinement top
Refinement on F2 'w = 1/[σ2(Fo2) + (0.0211P)2]
where P = (Fo2 + 2Fc2)/3'
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.026Δρmax = 0.27 e Å3
wR(F2) = 0.052Δρmin = 0.27 e Å3
S = 1.05Extinction correction: SHELXL2018/3 (Sheldrick, 2015)
745 reflectionsExtinction coefficient: 0.0037 (14)
53 parametersAbsolute structure: Flack x determined using 269 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.04655 (9)0.04655 (9)0.04655 (9)0.0178 (4)
K20.26820 (10)0.26820 (10)0.26820 (10)0.0195 (4)
K30.63996 (10)0.63996 (10)0.63996 (10)0.0207 (4)
Al10.84238 (12)0.84238 (12)0.84238 (12)0.0095 (5)
P10.32280 (11)0.56862 (11)0.46909 (11)0.0088 (3)
N10.4411 (3)0.4411 (3)0.4411 (3)0.0073 (11)
O10.2129 (3)0.5055 (3)0.5631 (3)0.0107 (6)
O20.2606 (3)0.5994 (3)0.3269 (3)0.0120 (6)
O30.3898 (3)0.6909 (3)0.5344 (3)0.0161 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0178 (4)0.0178 (4)0.0178 (4)0.0037 (4)0.0037 (4)0.0037 (4)
K20.0195 (4)0.0195 (4)0.0195 (4)0.0034 (4)0.0034 (4)0.0034 (4)
K30.0207 (4)0.0207 (4)0.0207 (4)0.0040 (4)0.0040 (4)0.0040 (4)
Al10.0095 (5)0.0095 (5)0.0095 (5)0.0006 (5)0.0006 (5)0.0006 (5)
P10.0081 (5)0.0087 (6)0.0096 (5)0.0003 (4)0.0010 (4)0.0003 (4)
N10.0073 (11)0.0073 (11)0.0073 (11)0.0001 (13)0.0001 (13)0.0001 (13)
O10.0103 (15)0.0108 (14)0.0110 (14)0.0004 (11)0.0043 (12)0.0021 (12)
O20.0116 (15)0.0147 (15)0.0099 (14)0.0022 (12)0.0019 (12)0.0007 (12)
O30.0163 (16)0.0116 (16)0.0204 (16)0.0023 (12)0.0019 (14)0.0037 (13)
Geometric parameters (Å, º) top
K1—O3i2.623 (3)K2—P1ii3.4199 (12)
K1—O3ii2.623 (3)K3—O3viii2.679 (3)
K1—O3iii2.623 (3)K3—O3ix2.679 (3)
K1—O1iv2.761 (3)K3—O32.679 (3)
K1—O1v2.761 (3)K3—O2x2.803 (3)
K1—O1vi2.761 (3)K3—O2xi2.803 (3)
K1—O2iv3.261 (3)K3—O2xii2.803 (3)
K1—O2vi3.261 (3)K3—N13.340 (6)
K1—O2v3.261 (3)K3—O3x3.379 (3)
K1—Al1vii3.429 (3)K3—O3xi3.379 (3)
K1—P1iv3.5911 (13)K3—O3xii3.379 (3)
K1—P1vi3.5911 (13)K3—Al13.400 (3)
K2—O3iii2.765 (3)K3—P1xii3.4997 (14)
K2—O3i2.765 (3)Al1—O1xiii1.905 (3)
K2—O3ii2.765 (3)Al1—O1xiv1.905 (3)
K2—N12.904 (6)Al1—O1xv1.905 (3)
K2—O1iii2.967 (3)Al1—O2x1.909 (3)
K2—O1i2.967 (3)Al1—O2xi1.909 (3)
K2—O1ii2.967 (3)Al1—O2xii1.909 (3)
K2—O23.263 (3)P1—O31.493 (3)
K2—O2viii3.263 (3)P1—O11.530 (3)
K2—O2ix3.263 (3)P1—O21.534 (3)
K2—P1iii3.4199 (12)P1—N11.7084 (12)
O3i—K1—O3ii79.95 (10)O2x—K3—O3xi60.45 (8)
O3i—K1—O3iii79.95 (10)O2xi—K3—O3xi47.20 (7)
O3ii—K1—O3iii79.95 (10)O2xii—K3—O3xi99.58 (8)
O3i—K1—O1iv111.53 (9)N1—K3—O3xi113.91 (5)
O3ii—K1—O1iv165.73 (9)O3x—K3—O3xi104.69 (6)
O3iii—K1—O1iv109.72 (8)O3viii—K3—O3xii143.68 (7)
O3i—K1—O1v109.72 (8)O3ix—K3—O3xii66.44 (10)
O3ii—K1—O1v111.53 (9)O3—K3—O3xii111.63 (2)
O3iii—K1—O1v165.73 (9)O2x—K3—O3xii99.58 (8)
O1iv—K1—O1v57.44 (9)O2xi—K3—O3xii60.45 (8)
O3i—K1—O1vi165.73 (9)O2xii—K3—O3xii47.20 (7)
O3ii—K1—O1vi109.72 (8)N1—K3—O3xii113.91 (5)
O3iii—K1—O1vi111.53 (9)O3x—K3—O3xii104.69 (6)
O1iv—K1—O1vi57.44 (9)O3xi—K3—O3xii104.69 (6)
O1v—K1—O1vi57.44 (9)O3viii—K3—Al1129.57 (6)
O3i—K1—O2iv63.69 (8)O3ix—K3—Al1129.57 (6)
O3ii—K1—O2iv143.60 (8)O3—K3—Al1129.57 (6)
O3iii—K1—O2iv94.55 (8)O2x—K3—Al134.15 (6)
O1iv—K1—O2iv48.34 (7)O2xi—K3—Al134.15 (6)
O1v—K1—O2iv81.13 (8)O2xii—K3—Al134.15 (6)
O1vi—K1—O2iv105.77 (8)N1—K3—Al1180.00 (9)
O3i—K1—O2vi143.60 (8)O3x—K3—Al166.09 (5)
O3ii—K1—O2vi94.55 (8)O3xi—K3—Al166.09 (5)
O3iii—K1—O2vi63.69 (8)O3xii—K3—Al166.09 (5)
O1iv—K1—O2vi81.13 (8)O3viii—K3—P1xii168.66 (7)
O1v—K1—O2vi105.77 (8)O3ix—K3—P1xii86.65 (6)
O1vi—K1—O2vi48.34 (7)O3—K3—P1xii101.22 (6)
O2iv—K1—O2vi115.34 (4)O2x—K3—P1xii82.96 (7)
O3i—K1—O2v94.55 (8)O2xi—K3—P1xii64.96 (6)
O3ii—K1—O2v63.69 (8)O2xii—K3—P1xii25.22 (6)
O3iii—K1—O2v143.60 (8)N1—K3—P1xii125.75 (3)
O1iv—K1—O2v105.77 (8)O3x—K3—P1xii79.71 (6)
O1v—K1—O2v48.34 (7)O3xi—K3—P1xii112.01 (6)
O1vi—K1—O2v81.13 (8)O3xii—K3—P1xii24.99 (5)
O2iv—K1—O2v115.34 (4)Al1—K3—P1xii54.25 (3)
O2vi—K1—O2v115.34 (4)O1xiii—Al1—O1xiv88.28 (14)
O3i—K1—Al1vii132.11 (7)O1xiii—Al1—O1xv88.28 (14)
O3ii—K1—Al1vii132.11 (7)O1xiv—Al1—O1xv88.28 (14)
O3iii—K1—Al1vii132.11 (7)O1xiii—Al1—O2x92.92 (12)
O1iv—K1—Al1vii33.70 (6)O1xiv—Al1—O2x175.81 (12)
O1v—K1—Al1vii33.70 (6)O1xv—Al1—O2x87.74 (11)
O1vi—K1—Al1vii33.70 (6)O1xiii—Al1—O2xi87.74 (11)
O2iv—K1—Al1vii77.34 (5)O1xiv—Al1—O2xi92.92 (12)
O2vi—K1—Al1vii77.34 (5)O1xv—Al1—O2xi175.81 (12)
O2v—K1—Al1vii77.34 (5)O2x—Al1—O2xi91.14 (13)
O3i—K1—P1iv88.98 (7)O1xiii—Al1—O2xii175.81 (12)
O3ii—K1—P1iv168.77 (7)O1xiv—Al1—O2xii87.74 (11)
O3iii—K1—P1iv100.08 (6)O1xv—Al1—O2xii92.92 (12)
O1iv—K1—P1iv23.55 (6)O2x—Al1—O2xii91.14 (14)
O1v—K1—P1iv70.37 (6)O2xi—Al1—O2xii91.14 (13)
O1vi—K1—P1iv80.83 (7)O1xiii—Al1—K3126.47 (10)
O2iv—K1—P1iv25.29 (5)O1xiv—Al1—K3126.47 (10)
O2vi—K1—P1iv95.49 (6)O1xv—Al1—K3126.47 (10)
O2v—K1—P1iv115.87 (6)O2x—Al1—K355.54 (10)
Al1vii—K1—P1iv55.54 (3)O2xi—Al1—K355.54 (10)
O3i—K1—P1vi168.77 (7)O2xii—Al1—K355.54 (10)
O3ii—K1—P1vi100.08 (6)O1xiii—Al1—K1xvi53.53 (10)
O3iii—K1—P1vi88.98 (7)O1xiv—Al1—K1xvi53.53 (10)
O1iv—K1—P1vi70.37 (6)O1xv—Al1—K1xvi53.53 (10)
O1v—K1—P1vi80.83 (7)O2x—Al1—K1xvi124.46 (10)
O1vi—K1—P1vi23.55 (6)O2xi—Al1—K1xvi124.46 (10)
O2iv—K1—P1vi115.87 (6)O2xii—Al1—K1xvi124.46 (10)
O2vi—K1—P1vi25.29 (5)K3—Al1—K1xvi180.00 (10)
O2v—K1—P1vi95.49 (6)O1xiii—Al1—K2xv45.00 (8)
Al1vii—K1—P1vi55.54 (3)O1xiv—Al1—K2xv125.19 (12)
P1iv—K1—P1vi91.14 (4)O1xv—Al1—K2xv67.60 (8)
O3iii—K2—O3i75.10 (9)O2x—Al1—K2xv54.13 (8)
O3iii—K2—O3ii75.10 (9)O2xi—Al1—K2xv108.53 (8)
O3i—K2—O3ii75.10 (9)O2xii—Al1—K2xv139.06 (9)
O3iii—K2—N1135.27 (6)K3—Al1—K2xv106.68 (3)
O3i—K2—N1135.27 (6)K1xvi—Al1—K2xv73.32 (3)
O3ii—K2—N1135.27 (6)O1xiii—Al1—K2xvii67.60 (8)
O3iii—K2—O1iii51.57 (8)O1xiv—Al1—K2xvii45.00 (8)
O3i—K2—O1iii123.82 (8)O1xv—Al1—K2xvii125.19 (12)
O3ii—K2—O1iii103.08 (8)O2x—Al1—K2xvii139.06 (9)
N1—K2—O1iii85.66 (6)O2xi—Al1—K2xvii54.13 (8)
O3iii—K2—O1i103.08 (8)O2xii—Al1—K2xvii108.53 (8)
O3i—K2—O1i51.57 (8)K3—Al1—K2xvii106.68 (3)
O3ii—K2—O1i123.82 (8)K1xvi—Al1—K2xvii73.32 (3)
N1—K2—O1i85.66 (6)K2xv—Al1—K2xvii112.11 (3)
O1iii—K2—O1i119.434 (16)O1xiii—Al1—K2xii125.19 (12)
O3iii—K2—O1ii123.82 (8)O1xiv—Al1—K2xii67.60 (8)
O3i—K2—O1ii103.08 (8)O1xv—Al1—K2xii45.00 (8)
O3ii—K2—O1ii51.57 (8)O2x—Al1—K2xii108.53 (8)
N1—K2—O1ii85.66 (6)O2xi—Al1—K2xii139.06 (9)
O1iii—K2—O1ii119.434 (16)O2xii—Al1—K2xii54.13 (8)
O1i—K2—O1ii119.434 (16)K3—Al1—K2xii106.68 (3)
O3iii—K2—O2120.12 (8)K1xvi—Al1—K2xii73.32 (3)
O3i—K2—O2155.11 (7)K2xv—Al1—K2xii112.11 (3)
O3ii—K2—O289.38 (7)K2xvii—Al1—K2xii112.11 (3)
N1—K2—O249.01 (5)O3—P1—O1111.58 (17)
O1iii—K2—O278.18 (7)O3—P1—O2113.45 (16)
O1i—K2—O2131.74 (9)O1—P1—O2109.85 (16)
O1ii—K2—O252.43 (7)O3—P1—N1110.5 (2)
O3iii—K2—O2viii89.38 (7)O1—P1—N1105.82 (13)
O3i—K2—O2viii120.12 (8)O2—P1—N1105.20 (17)
O3ii—K2—O2viii155.11 (7)O3—P1—K2xviii52.04 (12)
N1—K2—O2viii49.01 (5)O1—P1—K2xviii60.00 (11)
O1iii—K2—O2viii52.43 (7)O2—P1—K2xviii124.79 (11)
O1i—K2—O2viii78.18 (7)N1—P1—K2xviii130.01 (13)
O1ii—K2—O2viii131.74 (9)O3—P1—K3xix72.98 (11)
O2—K2—O2viii81.64 (8)O1—P1—K3xix98.65 (11)
O3iii—K2—O2ix155.11 (7)O2—P1—K3xix51.11 (11)
O3i—K2—O2ix89.38 (7)N1—P1—K3xix151.24 (7)
O3ii—K2—O2ix120.12 (8)K2xviii—P1—K3xix75.63 (3)
N1—K2—O2ix49.01 (5)O3—P1—K2161.98 (12)
O1iii—K2—O2ix131.74 (9)O1—P1—K283.96 (11)
O1i—K2—O2ix52.43 (7)O2—P1—K266.87 (11)
O1ii—K2—O2ix78.18 (7)N1—P1—K254.41 (18)
O2—K2—O2ix81.64 (8)K2xviii—P1—K2143.90 (4)
O2viii—K2—O2ix81.64 (8)K3xix—P1—K2114.96 (3)
O3iii—K2—P1iii25.20 (6)O3—P1—K343.33 (11)
O3i—K2—P1iii99.59 (7)O1—P1—K3113.68 (11)
O3ii—K2—P1iii86.94 (7)O2—P1—K3136.05 (12)
N1—K2—P1iii111.81 (3)N1—P1—K368.57 (19)
O1iii—K2—P1iii26.52 (6)K2xviii—P1—K374.83 (3)
O1i—K2—P1iii115.21 (6)K3xix—P1—K3114.91 (3)
O1ii—K2—P1iii123.59 (6)K2—P1—K3122.98 (3)
O2—K2—P1iii98.86 (5)O3—P1—K1xx119.94 (11)
O2viii—K2—P1iii71.74 (5)O1—P1—K1xx46.13 (11)
O2ix—K2—P1iii152.93 (6)O2—P1—K1xx65.25 (11)
O3iii—K2—P1ii99.59 (7)N1—P1—K1xx128.30 (17)
O3i—K2—P1ii86.94 (7)K2xviii—P1—K1xx78.82 (3)
O3ii—K2—P1ii25.20 (6)K3xix—P1—K1xx61.97 (3)
N1—K2—P1ii111.81 (3)K2—P1—K1xx77.22 (3)
O1iii—K2—P1ii115.21 (6)K3—P1—K1xx153.19 (4)
O1i—K2—P1ii123.59 (6)P1viii—N1—P1ix118.53 (8)
O1ii—K2—P1ii26.52 (6)P1viii—N1—P1118.53 (8)
O2—K2—P1ii71.74 (5)P1ix—N1—P1118.54 (8)
O2viii—K2—P1ii152.93 (6)P1viii—N1—K297.01 (18)
O2ix—K2—P1ii98.86 (5)P1ix—N1—K297.01 (18)
P1iii—K2—P1ii107.04 (3)P1—N1—K297.01 (18)
O3viii—K3—O3ix83.76 (9)P1viii—N1—K382.99 (18)
O3viii—K3—O383.76 (9)P1ix—N1—K382.99 (18)
O3ix—K3—O383.76 (9)P1—N1—K382.99 (18)
O3viii—K3—O2x104.80 (8)K2—N1—K3180.0 (3)
O3ix—K3—O2x162.69 (9)P1—O1—Al1xxi144.58 (18)
O3—K3—O2x111.80 (8)P1—O1—K1xx110.32 (14)
O3viii—K3—O2xi111.80 (8)Al1xxi—O1—K1xx92.77 (12)
O3ix—K3—O2xi104.80 (8)P1—O1—K2xviii93.47 (13)
O3—K3—O2xi162.69 (9)Al1xxi—O1—K2xviii108.00 (11)
O2x—K3—O2xi58.18 (9)K1xx—O1—K2xviii101.99 (8)
O3viii—K3—O2xii162.69 (9)P1—O2—Al1xix131.82 (18)
O3ix—K3—O2xii111.80 (8)P1—O2—K3xix103.68 (13)
O3—K3—O2xii104.80 (8)Al1xix—O2—K3xix90.31 (11)
O2x—K3—O2xii58.18 (9)P1—O2—K1xx89.45 (12)
O2xi—K3—O2xii58.18 (9)Al1xix—O2—K1xx138.56 (12)
O3viii—K3—N150.43 (6)K3xix—O2—K1xx73.60 (7)
O3ix—K3—N150.43 (6)P1—O2—K287.50 (12)
O3—K3—N150.43 (6)Al1xix—O2—K297.57 (11)
O2x—K3—N1145.85 (6)K3xix—O2—K2156.49 (11)
O2xi—K3—N1145.85 (6)K1xx—O2—K286.08 (7)
O2xii—K3—N1145.85 (6)P1—O3—K1xviii153.19 (17)
O3viii—K3—O3x111.63 (2)P1—O3—K3114.19 (14)
O3ix—K3—O3x143.68 (7)K1xviii—O3—K387.05 (9)
O3—K3—O3x66.44 (10)P1—O3—K2xviii102.76 (15)
O2x—K3—O3x47.20 (7)K1xviii—O3—K2xviii87.38 (8)
O2xi—K3—O3x99.58 (8)K3—O3—K2xviii102.41 (10)
O2xii—K3—O3x60.45 (8)P1—O3—K3xix82.03 (12)
N1—K3—O3x113.91 (5)K1xviii—O3—K3xix73.74 (6)
O3viii—K3—O3xi66.44 (10)K3—O3—K3xix158.41 (11)
O3ix—K3—O3xi111.63 (2)K2xviii—O3—K3xix86.76 (7)
O3—K3—O3xi143.68 (7)
Symmetry codes: (i) y+1, z1/2, x+1/2; (ii) x+1/2, y+1, z1/2; (iii) z1/2, x+1/2, y+1; (iv) z+1/2, x, y1/2; (v) y1/2, z+1/2, x; (vi) x, y1/2, z+1/2; (vii) x1, y1, z1; (viii) z, x, y; (ix) y, z, x; (x) z+1, x+1/2, y+3/2; (xi) y+3/2, z+1, x+1/2; (xii) x+1/2, y+3/2, z+1; (xiii) z+3/2, x+1, y+1/2; (xiv) y+1/2, z+3/2, x+1; (xv) x+1, y+1/2, z+3/2; (xvi) x+1, y+1, z+1; (xvii) x+3/2, y+1, z+1/2; (xviii) x+1/2, y+1, z+1/2; (xix) x1/2, y+3/2, z+1; (xx) x, y+1/2, z+1/2; (xxi) x+1, y1/2, z+3/2.
Tripotassium gallium nitridotriphosphate (II) top
Crystal data top
K3Ga(NP3O9)Dx = 3.157 Mg m3
Mr = 437.94Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 4964 reflections
Hall symbol: P 2ac 2ab 3θ = 3.0–28.0°
a = 9.7313 (9) ŵ = 4.90 mm1
V = 921.5 (3) Å3T = 293 K
Z = 4Irregular tetrahedron, colorless
F(000) = 8480.12 × 0.07 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.155
φ and ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 129
Tmin = 0.738, Tmax = 0.804k = 129
4964 measured reflectionsl = 1012
753 independent reflections
Refinement top
Refinement on F2 'w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3'
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.059Δρmax = 0.67 e Å3
wR(F2) = 0.102Δρmin = 0.60 e Å3
S = 1Extinction correction: SHELXL2018/3 (Sheldrick 2015)
753 reflectionsExtinction coefficient: 0.0038 (15)
53 parametersAbsolute structure: Flack x determined using 153 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.03 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.0456 (3)0.0456 (3)0.0456 (3)0.0326 (13)
K20.2679 (3)0.2679 (3)0.2679 (3)0.0329 (13)
K30.6410 (3)0.6410 (3)0.6410 (3)0.0358 (14)
Ga10.83974 (15)0.83974 (15)0.83974 (15)0.0235 (7)
P10.3255 (4)0.5696 (3)0.4719 (3)0.0221 (8)
N10.4446 (10)0.4446 (10)0.4446 (10)0.019 (4)
O10.2172 (8)0.5088 (9)0.5672 (8)0.024 (2)
O20.2578 (8)0.5989 (8)0.3347 (9)0.026 (2)
O30.3941 (8)0.6899 (8)0.5330 (8)0.028 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0326 (13)0.0326 (13)0.0326 (13)0.0026 (14)0.0026 (14)0.0026 (14)
K20.0329 (13)0.0329 (13)0.0329 (13)0.0034 (14)0.0034 (14)0.0034 (14)
K30.0358 (14)0.0358 (14)0.0358 (14)0.0040 (16)0.0040 (16)0.0040 (16)
Ga10.0235 (7)0.0235 (7)0.0235 (7)0.0007 (7)0.0007 (7)0.0007 (7)
P10.0243 (18)0.0217 (18)0.0204 (17)0.0025 (15)0.0006 (15)0.0001 (14)
N10.019 (4)0.019 (4)0.019 (4)0.003 (5)0.003 (5)0.003 (5)
O10.022 (5)0.029 (5)0.021 (5)0.002 (4)0.007 (4)0.010 (4)
O20.022 (4)0.031 (5)0.026 (5)0.005 (4)0.001 (4)0.003 (4)
O30.039 (6)0.023 (5)0.023 (5)0.005 (4)0.002 (4)0.006 (4)
Geometric parameters (Å, º) top
K1—O3i2.642 (8)K2—P1i3.409 (4)
K1—O3ii2.642 (8)K3—O32.665 (9)
K1—O3iii2.642 (8)K3—O3viii2.665 (9)
K1—O1iv2.807 (9)K3—O3ix2.665 (9)
K1—O1v2.807 (9)K3—O2x2.785 (8)
K1—O1vi2.807 (9)K3—O2xi2.785 (8)
K1—O2v3.216 (8)K3—O2xii2.785 (8)
K1—O2vi3.216 (8)K3—N13.310 (18)
K1—O2iv3.216 (8)K3—Ga13.350 (5)
K1—Ga1vii3.470 (6)K3—O3x3.412 (8)
K1—P1iv3.624 (5)K3—O3xi3.412 (8)
K1—P1vi3.624 (5)K3—O3xii3.412 (8)
K2—O3ii2.808 (9)K3—P1xii3.516 (4)
K2—O3i2.808 (9)Ga1—O1xiii1.958 (8)
K2—O3iii2.808 (9)Ga1—O1xiv1.958 (8)
K2—O1i2.925 (9)Ga1—O1xv1.958 (8)
K2—O1ii2.925 (9)Ga1—O2xi1.968 (9)
K2—O1iii2.925 (9)Ga1—O2x1.968 (9)
K2—N12.977 (18)Ga1—O2xii1.968 (9)
K2—O2viii3.287 (8)P1—O31.473 (9)
K2—O2ix3.287 (8)P1—O21.516 (9)
K2—O23.287 (8)P1—O11.524 (9)
K2—P1ii3.409 (4)P1—N11.701 (4)
O3i—K1—O3ii80.8 (3)O2x—K3—O3x46.3 (2)
O3i—K1—O3iii80.8 (3)O2xi—K3—O3x101.1 (2)
O3ii—K1—O3iii80.8 (3)O2xii—K3—O3x60.3 (2)
O3i—K1—O1iv111.5 (2)N1—K3—O3x114.13 (16)
O3ii—K1—O1iv165.6 (3)Ga1—K3—O3x65.87 (16)
O3iii—K1—O1iv108.0 (3)O3—K3—O3xi143.91 (19)
O3i—K1—O1v108.0 (3)O3viii—K3—O3xi111.65 (7)
O3ii—K1—O1v111.5 (2)O3ix—K3—O3xi67.3 (3)
O3iii—K1—O1v165.6 (3)O2x—K3—O3xi60.3 (2)
O1iv—K1—O1v58.5 (3)O2xi—K3—O3xi46.3 (2)
O3i—K1—O1vi165.6 (3)O2xii—K3—O3xi101.1 (2)
O3ii—K1—O1vi108.0 (3)N1—K3—O3xi114.13 (16)
O3iii—K1—O1vi111.5 (2)Ga1—K3—O3xi65.87 (16)
O1iv—K1—O1vi58.5 (3)O3x—K3—O3xi104.44 (18)
O1v—K1—O1vi58.5 (3)O3—K3—O3xii111.65 (7)
O3i—K1—O2v93.7 (2)O3viii—K3—O3xii67.3 (3)
O3ii—K1—O2v64.5 (2)O3ix—K3—O3xii143.91 (19)
O3iii—K1—O2v145.2 (3)O2x—K3—O3xii101.1 (2)
O1iv—K1—O2v106.0 (3)O2xi—K3—O3xii60.3 (2)
O1v—K1—O2v47.6 (2)O2xii—K3—O3xii46.3 (2)
O1vi—K1—O2v80.4 (2)N1—K3—O3xii114.13 (16)
O3i—K1—O2vi145.2 (3)Ga1—K3—O3xii65.87 (16)
O3ii—K1—O2vi93.7 (2)O3x—K3—O3xii104.44 (18)
O3iii—K1—O2vi64.5 (2)O3xi—K3—O3xii104.44 (18)
O1iv—K1—O2vi80.4 (2)O3—K3—P1xii101.2 (2)
O1v—K1—O2vi106.0 (3)O3viii—K3—P1xii86.72 (18)
O1vi—K1—O2vi47.6 (2)O3ix—K3—P1xii168.3 (2)
O2v—K1—O2vi114.96 (13)O2x—K3—P1xii85.1 (2)
O3i—K1—O2iv64.5 (2)O2xi—K3—P1xii66.1 (2)
O3ii—K1—O2iv145.2 (3)O2xii—K3—P1xii24.51 (18)
O3iii—K1—O2iv93.7 (2)N1—K3—P1xii125.23 (9)
O1iv—K1—O2iv47.6 (2)Ga1—K3—P1xii54.77 (9)
O1v—K1—O2iv80.4 (2)O3x—K3—P1xii79.98 (17)
O1vi—K1—O2iv106.0 (3)O3xi—K3—P1xii112.13 (19)
O2v—K1—O2iv114.96 (13)O3xii—K3—P1xii24.49 (15)
O2vi—K1—O2iv114.96 (13)O1xiii—Ga1—O1xiv88.9 (4)
O3i—K1—Ga1vii131.6 (2)O1xiii—Ga1—O1xv88.9 (4)
O3ii—K1—Ga1vii131.6 (2)O1xiv—Ga1—O1xv88.9 (4)
O3iii—K1—Ga1vii131.6 (2)O1xiii—Ga1—O2xi91.7 (3)
O1iv—K1—Ga1vii34.33 (17)O1xiv—Ga1—O2xi176.3 (3)
O1v—K1—Ga1vii34.33 (17)O1xv—Ga1—O2xi87.5 (3)
O1vi—K1—Ga1vii34.33 (17)O1xiii—Ga1—O2x176.3 (3)
O2v—K1—Ga1vii76.82 (17)O1xiv—Ga1—O2x87.5 (3)
O2vi—K1—Ga1vii76.82 (17)O1xv—Ga1—O2x91.7 (4)
O2iv—K1—Ga1vii76.82 (17)O2xi—Ga1—O2x92.0 (3)
O3i—K1—P1iv89.16 (19)O1xiii—Ga1—O2xii87.5 (3)
O3ii—K1—P1iv169.8 (2)O1xiv—Ga1—O2xii91.7 (3)
O3iii—K1—P1iv98.99 (18)O1xv—Ga1—O2xii176.3 (3)
O1iv—K1—P1iv23.26 (16)O2xi—Ga1—O2xii92.0 (3)
O1v—K1—P1iv70.29 (19)O2x—Ga1—O2xii92.0 (3)
O1vi—K1—P1iv81.7 (2)O1xiii—Ga1—K3126.1 (2)
O2v—K1—P1iv115.3 (2)O1xiv—Ga1—K3126.1 (2)
O2vi—K1—P1iv95.39 (17)O1xv—Ga1—K3126.1 (2)
O2iv—K1—P1iv24.71 (16)O2xi—Ga1—K356.2 (2)
Ga1vii—K1—P1iv55.56 (9)O2x—Ga1—K356.2 (2)
O3i—K1—P1vi169.8 (2)O2xii—Ga1—K356.2 (2)
O3ii—K1—P1vi98.99 (18)O1xiii—Ga1—K1xvi53.9 (2)
O3iii—K1—P1vi89.16 (19)O1xiv—Ga1—K1xvi53.9 (2)
O1iv—K1—P1vi70.29 (19)O1xv—Ga1—K1xvi53.9 (2)
O1v—K1—P1vi81.7 (2)O2xi—Ga1—K1xvi123.8 (2)
O1vi—K1—P1vi23.26 (17)O2x—Ga1—K1xvi123.8 (2)
O2v—K1—P1vi95.39 (17)O2xii—Ga1—K1xvi123.8 (2)
O2vi—K1—P1vi24.71 (16)K3—Ga1—K1xvi180.00 (7)
O2iv—K1—P1vi115.3 (2)O1xiii—Ga1—K2xiv124.6 (3)
Ga1vii—K1—P1vi55.56 (9)O1xiv—Ga1—K2xiv68.5 (3)
P1iv—K1—P1vi91.16 (13)O1xv—Ga1—K2xiv43.4 (3)
O3ii—K2—O3i75.1 (3)O2xi—Ga1—K2xiv108.3 (2)
O3ii—K2—O3iii75.1 (3)O2x—Ga1—K2xiv54.3 (2)
O3i—K2—O3iii75.1 (3)O2xii—Ga1—K2xiv140.0 (2)
O3ii—K2—O1i123.7 (3)K3—Ga1—K2xiv107.30 (4)
O3i—K2—O1i51.4 (2)K1xvi—Ga1—K2xiv72.70 (4)
O3iii—K2—O1i102.9 (2)O1xiii—Ga1—K2xvii43.4 (3)
O3ii—K2—O1ii51.4 (2)O1xiv—Ga1—K2xvii124.6 (3)
O3i—K2—O1ii102.9 (2)O1xv—Ga1—K2xvii68.5 (3)
O3iii—K2—O1ii123.7 (3)O2xi—Ga1—K2xvii54.3 (2)
O1i—K2—O1ii119.49 (5)O2x—Ga1—K2xvii140.0 (2)
O3ii—K2—O1iii102.9 (2)O2xii—Ga1—K2xvii108.3 (2)
O3i—K2—O1iii123.7 (3)K3—Ga1—K2xvii107.30 (4)
O3iii—K2—O1iii51.4 (2)K1xvi—Ga1—K2xvii72.70 (4)
O1i—K2—O1iii119.49 (5)K2xiv—Ga1—K2xvii111.55 (3)
O1ii—K2—O1iii119.49 (5)O1xiii—Ga1—K2xii68.5 (3)
O3ii—K2—N1135.25 (18)O1xiv—Ga1—K2xii43.4 (3)
O3i—K2—N1135.25 (18)O1xv—Ga1—K2xii124.6 (3)
O3iii—K2—N1135.25 (18)O2xi—Ga1—K2xii140.0 (2)
O1i—K2—N185.89 (18)O2x—Ga1—K2xii108.3 (2)
O1ii—K2—N185.89 (18)O2xii—Ga1—K2xii54.3 (2)
O1iii—K2—N185.89 (18)K3—Ga1—K2xii107.30 (4)
O3ii—K2—O2viii90.1 (2)K1xvi—Ga1—K2xii72.70 (4)
O3i—K2—O2viii156.0 (2)K2xiv—Ga1—K2xii111.55 (3)
O3iii—K2—O2viii119.8 (2)K2xvii—Ga1—K2xii111.55 (3)
O1i—K2—O2viii131.8 (3)O3—P1—O2113.8 (5)
O1ii—K2—O2viii53.5 (2)O3—P1—O1112.1 (5)
O1iii—K2—O2viii77.6 (2)O2—P1—O1107.9 (5)
N1—K2—O2viii48.52 (15)O3—P1—N1108.9 (7)
O3ii—K2—O2ix119.8 (2)O2—P1—N1107.0 (5)
O3i—K2—O2ix90.1 (2)O1—P1—N1106.8 (4)
O3iii—K2—O2ix156.0 (2)O3—P1—K2xviii53.9 (4)
O1i—K2—O2ix53.5 (2)O2—P1—K2xviii122.8 (3)
O1ii—K2—O2ix77.6 (2)O1—P1—K2xviii58.8 (4)
O1iii—K2—O2ix131.8 (3)N1—P1—K2xviii130.2 (4)
N1—K2—O2ix48.52 (15)O3—P1—K3xix73.8 (3)
O2viii—K2—O2ix80.9 (2)O2—P1—K3xix49.6 (3)
O3ii—K2—O2156.0 (2)O1—P1—K3xix98.5 (3)
O3i—K2—O2119.8 (2)N1—P1—K3xix150.7 (2)
O3iii—K2—O290.1 (2)K2xviii—P1—K3xix75.90 (10)
O1i—K2—O277.6 (2)O3—P1—K342.8 (3)
O1ii—K2—O2131.8 (3)O2—P1—K3138.4 (3)
O1iii—K2—O253.5 (2)O1—P1—K3113.1 (3)
N1—K2—O248.52 (15)N1—P1—K367.9 (6)
O2viii—K2—O280.9 (2)K2xviii—P1—K375.44 (8)
O2ix—K2—O280.9 (2)K3xix—P1—K3115.45 (9)
O3ii—K2—P1ii25.10 (18)O3—P1—K2160.8 (4)
O3i—K2—P1ii86.7 (2)O2—P1—K266.3 (3)
O3iii—K2—P1ii99.6 (2)O1—P1—K284.9 (4)
O1i—K2—P1ii123.33 (17)N1—P1—K255.6 (6)
O1ii—K2—P1ii26.44 (17)K2xviii—P1—K2143.62 (12)
O1iii—K2—P1ii115.25 (16)K3xix—P1—K2113.74 (10)
N1—K2—P1ii111.98 (9)K3—P1—K2123.46 (11)
O2viii—K2—P1ii72.82 (16)O3—P1—K1xx121.5 (3)
O2ix—K2—P1ii98.30 (15)O2—P1—K1xx62.4 (3)
O2—K2—P1ii153.45 (17)O1—P1—K1xx46.7 (3)
O3ii—K2—P1i99.6 (2)N1—P1—K1xx128.7 (6)
O3i—K2—P1i25.10 (18)K2xviii—P1—K1xx78.68 (8)
O3iii—K2—P1i86.7 (2)K3xix—P1—K1xx61.82 (9)
O1i—K2—P1i26.44 (17)K3—P1—K1xx153.65 (11)
O1ii—K2—P1i115.25 (16)K2—P1—K1xx76.43 (8)
O1iii—K2—P1i123.33 (17)P1—N1—P1viii118.8 (2)
N1—K2—P1i111.98 (9)P1—N1—P1ix118.8 (2)
O2viii—K2—P1i153.45 (17)P1viii—N1—P1ix118.8 (2)
O2ix—K2—P1i72.82 (16)P1—N1—K296.3 (6)
O2—K2—P1i98.30 (15)P1viii—N1—K296.3 (6)
P1ii—K2—P1i106.85 (10)P1ix—N1—K296.3 (6)
O3—K3—O3viii82.9 (3)P1—N1—K383.7 (6)
O3—K3—O3ix82.9 (3)P1viii—N1—K383.7 (6)
O3viii—K3—O3ix82.9 (3)P1ix—N1—K383.7 (6)
O3—K3—O2x111.2 (2)K2—N1—K3180.0 (9)
O3viii—K3—O2x164.8 (3)P1—O1—Ga1xxi143.5 (6)
O3ix—K3—O2x103.8 (2)P1—O1—K1xx110.0 (4)
O3—K3—O2xi164.8 (3)Ga1xxi—O1—K1xx91.7 (3)
O3viii—K3—O2xi103.8 (2)P1—O1—K2xviii94.8 (4)
O3ix—K3—O2xi111.2 (2)Ga1xxi—O1—K2xviii109.2 (3)
O2x—K3—O2xi61.1 (3)K1xx—O1—K2xviii102.2 (3)
O3—K3—O2xii103.8 (2)P1—O2—Ga1xix129.8 (5)
O3viii—K3—O2xii111.2 (2)P1—O2—K3xix105.8 (4)
O3ix—K3—O2xii164.8 (3)Ga1xix—O2—K3xix87.9 (3)
O2x—K3—O2xii61.1 (3)P1—O2—K1xx92.9 (4)
O2xi—K3—O2xii61.1 (3)Ga1xix—O2—K1xx137.2 (4)
O3—K3—N149.85 (19)K3xix—O2—K1xx74.99 (18)
O3viii—K3—N149.85 (19)P1—O2—K288.7 (3)
O3ix—K3—N149.85 (19)Ga1xix—O2—K296.6 (3)
O2x—K3—N1144.05 (18)K3xix—O2—K2156.9 (3)
O2xi—K3—N1144.05 (18)K1xx—O2—K286.6 (2)
O2xii—K3—N1144.05 (18)P1—O3—K1xviii153.3 (5)
O3—K3—Ga1130.15 (19)P1—O3—K3115.2 (4)
O3viii—K3—Ga1130.15 (19)K1xviii—O3—K387.5 (3)
O3ix—K3—Ga1130.15 (19)P1—O3—K2xviii101.0 (4)
O2x—K3—Ga135.95 (18)K1xviii—O3—K2xviii86.8 (3)
O2xi—K3—Ga135.95 (18)K3—O3—K2xviii102.2 (3)
O2xii—K3—Ga135.95 (18)P1—O3—K3xix81.7 (3)
N1—K3—Ga1180.0 (3)K1xviii—O3—K3xix73.36 (19)
O3—K3—O3x67.3 (3)K3—O3—K3xix158.9 (3)
O3viii—K3—O3x143.91 (19)K2xviii—O3—K3xix85.9 (2)
O3ix—K3—O3x111.65 (7)
Symmetry codes: (i) z1/2, x+1/2, y+1; (ii) y+1, z1/2, x+1/2; (iii) x+1/2, y+1, z1/2; (iv) x, y1/2, z+1/2; (v) z+1/2, x, y1/2; (vi) y1/2, z+1/2, x; (vii) x1, y1, z1; (viii) y, z, x; (ix) z, x, y; (x) z+1, x+1/2, y+3/2; (xi) y+3/2, z+1, x+1/2; (xii) x+1/2, y+3/2, z+1; (xiii) y+1/2, z+3/2, x+1; (xiv) x+1, y+1/2, z+3/2; (xv) z+3/2, x+1, y+1/2; (xvi) x+1, y+1, z+1; (xvii) x+3/2, y+1, z+1/2; (xviii) x+1/2, y+1, z+1/2; (xix) x1/2, y+3/2, z+1; (xx) x, y+1/2, z+1/2; (xxi) x+1, y1/2, z+3/2.
BVS results (v.u.) for (I) and (II) top
Central Atom(I)(II)
Al1/Ga13.0043.197
K11.4861.400
K21.1221.069
K31.3151.360
P13 × 4.9033 × 5.084
Σ21.63622.278
Distances (Å) between atoms for (I), (II) and isotypic MI3MIII(PO3)3N compounds along [111] top
CompoundAtomic distance between neighboring atomsReference
Na3Al(PO3)3N–Na1–3.438–Na2–2.875–N–3.197–Na3–3.068–Al–3.486–Na1–Massiot et al. (1996)
Na3Ti(PO3)3N–Na1–3.448–Na2–3.078–N–3.188–Na3–3.100–Ti–3.638–Na1–Zatovsky et al. (2006)
Na3V(PO3)3N–Na1–3.477–Na2–2.947–N–3.234–Na3–3.100–V–3.606–Na1–Kim & Kim (2013)
K3Al(PO3)3N–K1–3.723–K2–2.904–N–3.340–K3–3.400–Al–3.429–K1–This work
K3Ga(PO3)3N–K1–3.747–K2–2.978–N–3.310–K3–3.350–Ga–3.470–K1–This work
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBang, S. Y., Khai, T. V., Oh, D. K., Maneeratanasarn, P., Choi, B. G., Ham, H. & Shim, K. B. (2013). J. Ceram. Process. Res. 14(S1), 74–76.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationConanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). J. Solid State Chem. 121, 418–422.  CrossRef CAS Web of Science Google Scholar
First citationConanec, R., l'Haridon, P., Feldmann, W., Marchand, R. & Laurent, Y. (1994). Eur. J. Solid State Inorg. Chem. 31, 13–24.  CAS Google Scholar
First citationCosby, M. R., Mattei, G. S., Wang, Y., Li, Z., Bechtold, N., Chapman, K. W. & Khalifah, K. W. (2020). J. Phys. Chem. C, 124, 6522–6527.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeldmann, W. (1987a). Z. Chem. 27, 100–101.  CrossRef Google Scholar
First citationFeldmann, W. (1987b). Z. Chem. 27, 182–183.  CrossRef CAS Google Scholar
First citationKim, J., Yoon, G., Lee, M. H., Kim, H., Lee, S. & Kang, K. (2017). Chem. Mater. 29, 7826–7832.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKim, M. & Kim, S.-J. (2013). Acta Cryst. E69, i34.  CrossRef ICSD IUCr Journals Google Scholar
First citationLiu, J., Chang, D., Whitfield, P., Janssen, Y., Yu, X., Zhou, Y., Bai, J., Ko, J., Nam, K.-W., Wu, L., Zhu, Y., Feygenson, M., Amatucci, G., Van der Ven, A., Yang, X.-Q. & Khalifah, P. (2014). Chem. Mater. 26, 3295–3305.  Web of Science CrossRef ICSD CAS Google Scholar
First citationLiu, J., Whitfield, P. S., Saccomanno, M. R., Bo, S.-H., Hu, E., Yu, X., Bai, J., Grey, C. P., Yang, X.-Q. & Khalifah, P. G. (2017). J. Am. Chem. Soc. 139, 9192–9202.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationLiu, J., Yin, L., Yang, X.-Q. & Khalifah, P. G. (2018). Chem. Mater. 30, 4609–4616.  Web of Science CrossRef ICSD CAS Google Scholar
First citationLiu, J., Yu, X., Hu, E., Nam, K.-W., Yang, X.-Q. & Khalifah, P. G. (2013). Chem. Mater. 25, 3929–3931.  Web of Science CrossRef CAS Google Scholar
First citationMassiot, D., Conanec, R., Feldmann, W., Marchand, R. & Laurent, Y. (1996). Inorg. Chem. 35, 4957–4960.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReynaud, M., Wizner, A., Katcho, N. A., Loaiza, L. C., Galceran, M., Carrasco, J., Rojo, T., Armand, M. & Casas-Cabanas, M. (2017). Electrochem. Commun. 84, 14–18.  Web of Science CrossRef ICSD CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, A., Wang, C., Fu, L., Wong-Ng, W. & Lan, Y. (2017). Nano-Micro Lett. 9, 47.  Web of Science PubMed Google Scholar
First citationWang, S., Li, H., Zhang, W., Zheng, J., Li, S., Hu, J., Lia, Y. & Zhang, Z. (2021). ACS Appl. Energy Mater. In the press. https://doi.org/10.1021/acsaem.1c02042.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, J., Hua, W. & Chen, M. (2021). Nanotechnology, 32, 425404.  Google Scholar
First citationZatovsky, I. V., Slobodyanik, N. S., Stratiychuk, D. A., Domasevitch, K. V., Sieler, J. & Rusanov, E. B. (2000). Z. Naturforsch. Teil B, 55, 291–298.  CrossRef CAS Google Scholar
First citationZatovsky, I. V., Vorobjova, T. V., Domasevitch, K. V., Ogorodnyk, I. V. & Slobodyanik, N. S. (2006). Acta Cryst. E62, i32–i34.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationZhang, H., Buchholz, D. & Passerini, S. (2017). Energies, 10, 889.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds