research communications
A bis-chelate o-vanillin-2-ethanolamine copper(II) complex bearing both imine and amine forms of the ligand
aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova, cesta 39, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: plyutanataliya@gmail.com
The molecular bis-chelate complex (2-{[(2-hydroxyethyl-κO)amino-κN]methyl}-6-methoxyphenolato-κO)(2-{[(2-hydroxyethyl)imino-κN]methyl}-6-methoxyphenolato-κO)copper(II), [Cu(C10H14NO3)(C10H12NO3)] or [Cu(HLim)(HLam); HLim = C10H14NO3; HLam = C10H12NO3, represents the first compound containing a salicylidene-2-ethanolamine type ligand in both imino HLim (Schiff base) and amino HLam (reduced Schiff base) forms that has been structurally characterized on the basis of X-ray data. Two molecules of the monodeprotonated ligands coordinate the CuII ion in an (N,Ophen)-bidentate and an (N,Ophen,Oalc)-tridentate fashion in the case of the imino and amino forms, respectively. The shape of the CuN2O3 is a distorted square-pyramid (geometry index τ5 = 0.26). Intermolecular N—H⋯O and O—H⋯O hydrogen bonds, involving H atoms of the amino and hydroxyethyl groups, create a two-dimensional supramolecular array extending parallel to (010).
Keywords: crystal structure; copper; geometry index; hydrogen bonding.
CCDC reference: 2120197
1. Chemical context
Over the last decade, research on transition-metal complexes with salicylidene-type M-(SB) catalysts were obtained, where M = Cu, Co, Al, etc (Payne et al., 2020; Mitra et al., 2015; Fei et al., 2014; Saha et al., 2013). It has been shown that incorporation of partially or fully reduced (RSB) into the coordination spheres of metal cations can significantly increase their catalytic activities (Liu et al., 2020; Huo et al., 2021; Adão et al., 2014; Sreenivasulu et al., 2005). Despite the fact that complexes with RSB ligands are supposed to be very promising objects for the creation of new catalysts, information about their syntheses and structures is rather limited. Continuing our work on the elaboration of alternative methods for the synthesis of coordination compounds (Kokozay et al., 2018), we have investigated the following system: zinc (powder) – copper (powder) – H2L – ammonium thiocyanate – methanol, to prepare heterometallic Cu/Zn complexes with the Schiff base H2Lim, which is formed in situ upon condensation of o-vanillin and 2-aminoethanol. The complex [Cu(HLim)(HLam)] (where H2Lim = 2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenol; H2Lam = 2-[(2-hydroxyethyl)aminomethyl]-6-methoxyphenol) was formed in the reaction mixture as an unintended by-product for which only a few crystals suitable for X-ray analysis were isolated.
(SB) gained a new impetus after a number of highly effective and simpleHerein, we report the Lim)(HLam)] (I), which represents the first example of a mixed (SB/RSB) complex derived from salicylidene-2-aminoethanol type ligands.
of the title compound, [Cu(H2. Structural commentary
The comprises one neutral molecular complex [Cu(HLim)(HLam)] (Fig. 1). The copper(II) ion has an O3N2 coordination set defined by two monodeprotonated molecules of the organic ligands realizing their bidentate (N,O) and tridentate (O,N,O) functions for the SB and RSB forms, respectively. This difference in coordination behavior of the ligands can be explained by a higher flexibility of the amine ligand, and is observed in similar bis-chelate copper(II) complexes with salicylidene-2-aminoethanol type ligands. Usually, [Cu(SB)2] complexes are square-planar and [Cu(RSB)2] complexes are octahedral. For the corresponding imine complexes, see: Li et al. (2005); Zabierowski et al. (2013, 2014); Xin et al. (2019); for amine complexes, see: Xie et al. (2000). It is worth noting that such a dependence was not found for similar NiII complexes, which have an octahedral shape via both tridentate imino and amino ligands. For [Ni(SB)2], see: Floyd et al. (2005); Wang et al. (2011a,b); for [Ni(RSB)2], see: Zhang et al. (2007). The shape of the coordination polyhedron of the CuII ion in (I) can be described as distorted [4 + 1] square-pyramidal. The equatorial Cu—O(N) bond lengths vary from 1.923 (2) to 2.030 (3) Å and are in accordance with those found in related complexes (Stetsiuk et al., 2018; Xie et al., 2000; Zabierowski et al., 2013). The length of the long apical Cu—O bond of 2.432 (3) Å lies within the range of CuII—O bond lengths extending up to ca 2.70 Å (Alvarez, 2013). The deviations in cis and trans [O—Cu—O(N)] angles [80.08 (10)–108.36 (10)° and 157.96 (12)–173.44 (11)°, respectively] are caused by the steric hindrances that are typical for chelate rings. According to the τ criterion for five-coordinate complexes (Addison et al., 1984; O'Sullivan et al., 1999), the distortion of the CuN2O3 is about 26% along the pathway from regular square-pyramidal to regular trigonal–bipyramidal. The bond-valence sums calculated for CuII with CN = 4 (1.86 valence units) and CN = 5 (1.99 valence units) (Allmann, 1975; Shields et al., 2000) can serve as an additional argument in favor of the of 5 for CuII in (I).
of (I)3. Supramolecular features
Each molecule of (I) forms six intermolecular hydrogen bonds with four adjacent molecules whereby the following groups take part: non-coordinating hydroxyethyl and amino groups (as H-atom donors), half of the phenolato and methoxy groups (as H-atom acceptors) and the coordinating hydroxyethyl groups (both as H-atom donors and acceptors). Chains based on two hydrogen bonds O6—H6⋯O1ii and iiiO6⋯H2—N2 (Table 1, Fig. 2) are formed along [001]. These chains are linked by O3—H3⋯O5i bonds (Table 1) into supramolecular sheets extending parallel to (010) (Fig. 3).
4. Database survey
Among the 33 deposited crystal structures of bis-complexes with a salicylidene-2-aminoethanol-type ligand (CSD, version 5.42, last update February 2021; Groom et al., 2016), there are 30 hits for complexes with SBs and three hits for complexes with RSBs (Xie et al., 2000, 2003; Zhang et al., 2007). M(SB)(RSB) complexes including both forms of a ligand are not known up to now.
5. Synthesis and crystallization
o-Vanillin (0.3 g, 0.002 mol) and 2-aminoethanol (0.12 ml, 0.002 mol) were dissolved in methanol and then stirred magnetically at 323–333 K for 20 mins. Copper powder (0.06 g, 0.001 mol), zinc powder (0.07 g, 0.001 mol) and NH4SCN (0.15 g, 0.002 mol) were added to the hot yellow solution with further stirring until total dissolution of powder was observed (about 4 h). The resulting brown solution was filtered and left for 1 d. A green powdery precipitate with a few green crystals available for X-ray crystallographic analysis was collected by filtration.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in idealized positions and refined using a riding model. H atoms of the NH and OH groups were located in a difference-Fourier map. For the final model they were also treated as riding on their parent atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2120197
https://doi.org/10.1107/S205698902101166X/wm5622sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902101166X/wm5622Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C10H14NO3)(C10H12NO3)] | Dx = 1.472 Mg m−3 |
Mr = 453.97 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 4616 reflections |
a = 8.3068 (9) Å | θ = 4.1–28.6° |
b = 24.3280 (19) Å | µ = 1.11 mm−1 |
c = 10.1370 (9) Å | T = 150 K |
V = 2048.6 (3) Å3 | Plate, green |
Z = 4 | 0.31 × 0.15 × 0.05 mm |
F(000) = 948 |
New Gemini, Dual, Cu at zero, Atlas diffractometer | 3777 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3539 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 10.6426 pixels mm-1 | θmax = 28.8°, θmin = 3.5° |
ω scans | h = −10→9 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2015) | k = −31→31 |
Tmin = 0.509, Tmax = 0.855 | l = −13→12 |
10546 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2171P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.079 | (Δ/σ)max = 0.002 |
S = 1.06 | Δρmax = 0.31 e Å−3 |
3777 reflections | Δρmin = −0.38 e Å−3 |
268 parameters | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower |
1 restraint | Absolute structure parameter: −0.011 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All N(H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups 2.a Ternary CH refined with riding coordinates: N2(H2) 2.b Secondary CH2 refined with riding coordinates: C9(H9A,H9B), C10(H10A,H10B), C18(H18A,H18B), C19(H19A,H19B), C20(H20A,H20B) 2.c Aromatic/amide H refined with riding coordinates: C3(H3A), C4(H4), C5(H5), C8(H8), C13(H13), C14(H14), C15(H15) 2.d Idealised Me refined as rotating group: C1(H1A,H1B,H1C), C11(H11A,H11B,H11C) 2.e Idealised tetrahedral OH refined as rotating group: O3(H3) |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.71596 (4) | 0.50706 (2) | 0.41167 (6) | 0.01347 (11) | |
O1 | 0.3846 (3) | 0.37604 (10) | 0.2532 (3) | 0.0268 (6) | |
O2 | 0.5898 (3) | 0.44465 (9) | 0.3556 (2) | 0.0194 (5) | |
O3 | 0.8418 (3) | 0.47888 (13) | 0.8013 (3) | 0.0303 (6) | |
H3 | 0.910708 | 0.461250 | 0.840828 | 0.045* | |
O4 | 1.0725 (3) | 0.63655 (10) | 0.5057 (3) | 0.0219 (5) | |
O5 | 0.8755 (2) | 0.56419 (8) | 0.4016 (3) | 0.0176 (5) | |
O6 | 0.5411 (3) | 0.52613 (11) | 0.5985 (3) | 0.0187 (5) | |
H6 | 0.567 (5) | 0.5466 (18) | 0.649 (5) | 0.028* | |
N1 | 0.8651 (3) | 0.46065 (12) | 0.5178 (3) | 0.0154 (6) | |
N2 | 0.5490 (3) | 0.55538 (11) | 0.3227 (3) | 0.0155 (6) | |
H2 | 0.475620 | 0.530360 | 0.276506 | 0.019* | |
C1 | 0.2700 (6) | 0.33956 (19) | 0.1958 (5) | 0.0428 (12) | |
H1A | 0.200504 | 0.359757 | 0.137664 | 0.064* | |
H1B | 0.206937 | 0.322833 | 0.264295 | 0.064* | |
H1C | 0.325208 | 0.311543 | 0.146868 | 0.064* | |
C2 | 0.4986 (4) | 0.35356 (15) | 0.3365 (3) | 0.0196 (7) | |
C3 | 0.5087 (5) | 0.29840 (15) | 0.3675 (3) | 0.0245 (8) | |
H3A | 0.434851 | 0.273654 | 0.332428 | 0.029* | |
C4 | 0.6303 (5) | 0.27994 (15) | 0.4515 (4) | 0.0303 (9) | |
H4 | 0.636593 | 0.242899 | 0.473592 | 0.036* | |
C5 | 0.7397 (5) | 0.31605 (16) | 0.5012 (4) | 0.0255 (8) | |
H5 | 0.821347 | 0.303071 | 0.555711 | 0.031* | |
C6 | 0.7321 (4) | 0.37315 (15) | 0.4720 (3) | 0.0187 (7) | |
C7 | 0.6087 (4) | 0.39289 (12) | 0.3878 (3) | 0.0155 (7) | |
C8 | 0.8504 (4) | 0.40836 (15) | 0.5316 (3) | 0.0184 (7) | |
H8 | 0.924904 | 0.391349 | 0.586611 | 0.022* | |
C9 | 0.9906 (5) | 0.48739 (15) | 0.5970 (4) | 0.0208 (8) | |
H9A | 1.048384 | 0.513686 | 0.542842 | 0.025* | |
H9B | 1.066860 | 0.460018 | 0.627594 | 0.025* | |
C10 | 0.9173 (5) | 0.51648 (16) | 0.7138 (4) | 0.0246 (8) | |
H10A | 1.000746 | 0.536379 | 0.760726 | 0.029* | |
H10B | 0.838544 | 0.542958 | 0.682967 | 0.029* | |
C11 | 1.1634 (5) | 0.67643 (17) | 0.5768 (4) | 0.0309 (9) | |
H11A | 1.234707 | 0.695184 | 0.517408 | 0.046* | |
H11B | 1.225148 | 0.658469 | 0.644258 | 0.046* | |
H11C | 1.091562 | 0.702508 | 0.616645 | 0.046* | |
C12 | 0.9635 (3) | 0.65617 (12) | 0.4146 (4) | 0.0180 (6) | |
C13 | 0.9540 (4) | 0.71095 (14) | 0.3758 (4) | 0.0247 (8) | |
H13 | 1.025083 | 0.736751 | 0.410207 | 0.030* | |
C14 | 0.8373 (5) | 0.72677 (16) | 0.2852 (4) | 0.0294 (9) | |
H14 | 0.832475 | 0.763044 | 0.256536 | 0.035* | |
C15 | 0.7285 (5) | 0.68872 (16) | 0.2376 (4) | 0.0249 (8) | |
H15 | 0.648537 | 0.699987 | 0.179372 | 0.030* | |
C16 | 0.7364 (4) | 0.63357 (14) | 0.2756 (3) | 0.0172 (7) | |
C17 | 0.8560 (4) | 0.61619 (13) | 0.3639 (3) | 0.0156 (7) | |
C18 | 0.6167 (4) | 0.59254 (15) | 0.2197 (3) | 0.0191 (7) | |
H18A | 0.529395 | 0.612378 | 0.177709 | 0.023* | |
H18B | 0.669693 | 0.570550 | 0.152753 | 0.023* | |
C19 | 0.4499 (4) | 0.58501 (13) | 0.4204 (4) | 0.0201 (7) | |
H19A | 0.354505 | 0.599835 | 0.378298 | 0.024* | |
H19B | 0.510825 | 0.615315 | 0.457572 | 0.024* | |
C20 | 0.4019 (4) | 0.54520 (15) | 0.5289 (4) | 0.0220 (8) | |
H20A | 0.329361 | 0.563357 | 0.589924 | 0.026* | |
H20B | 0.345529 | 0.514124 | 0.490604 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01244 (19) | 0.01677 (18) | 0.01119 (17) | 0.00087 (13) | −0.0031 (2) | 0.0002 (3) |
O1 | 0.0330 (15) | 0.0203 (12) | 0.0270 (14) | −0.0059 (11) | −0.0155 (11) | 0.0038 (11) |
O2 | 0.0223 (13) | 0.0170 (11) | 0.0191 (11) | 0.0016 (10) | −0.0084 (10) | 0.0035 (10) |
O3 | 0.0191 (13) | 0.0563 (18) | 0.0155 (12) | 0.0059 (14) | −0.0001 (11) | 0.0035 (13) |
O4 | 0.0167 (12) | 0.0237 (12) | 0.0254 (12) | −0.0012 (10) | −0.0079 (11) | −0.0016 (11) |
O5 | 0.0133 (10) | 0.0172 (9) | 0.0224 (11) | 0.0013 (8) | −0.0023 (12) | 0.0018 (13) |
O6 | 0.0148 (13) | 0.0261 (13) | 0.0152 (11) | 0.0016 (10) | −0.0013 (10) | −0.0025 (11) |
N1 | 0.0091 (13) | 0.0265 (15) | 0.0107 (12) | 0.0014 (11) | −0.0009 (10) | 0.0005 (12) |
N2 | 0.0123 (13) | 0.0199 (14) | 0.0143 (12) | −0.0019 (11) | −0.0028 (11) | −0.0014 (12) |
C1 | 0.047 (3) | 0.032 (2) | 0.049 (3) | −0.017 (2) | −0.029 (2) | 0.006 (2) |
C2 | 0.0239 (19) | 0.0221 (17) | 0.0126 (15) | 0.0020 (14) | −0.0013 (14) | 0.0024 (14) |
C3 | 0.030 (2) | 0.0193 (16) | 0.0239 (17) | −0.0026 (15) | −0.0004 (15) | −0.0018 (15) |
C4 | 0.037 (2) | 0.0180 (17) | 0.036 (2) | 0.0062 (16) | −0.0021 (17) | 0.0066 (16) |
C5 | 0.028 (2) | 0.0234 (19) | 0.0253 (18) | 0.0093 (15) | −0.0033 (16) | 0.0062 (17) |
C6 | 0.0193 (18) | 0.0226 (18) | 0.0143 (17) | 0.0049 (14) | 0.0016 (13) | 0.0019 (15) |
C7 | 0.0187 (16) | 0.0168 (13) | 0.0109 (17) | 0.0015 (12) | 0.0027 (12) | 0.0024 (13) |
C8 | 0.0133 (17) | 0.0290 (19) | 0.0131 (15) | 0.0095 (14) | 0.0000 (13) | 0.0046 (15) |
C9 | 0.0138 (18) | 0.033 (2) | 0.0157 (16) | −0.0009 (15) | −0.0048 (15) | 0.0074 (16) |
C10 | 0.024 (2) | 0.0272 (19) | 0.0228 (18) | 0.0012 (17) | −0.0099 (17) | −0.0019 (16) |
C11 | 0.029 (2) | 0.029 (2) | 0.035 (2) | −0.0051 (17) | −0.0109 (18) | −0.0042 (18) |
C12 | 0.0134 (14) | 0.0215 (14) | 0.0191 (14) | 0.0022 (11) | 0.0007 (17) | 0.000 (2) |
C13 | 0.0205 (18) | 0.0205 (15) | 0.033 (2) | −0.0040 (13) | 0.0023 (15) | 0.0013 (15) |
C14 | 0.027 (2) | 0.0220 (18) | 0.039 (2) | 0.0011 (16) | 0.0012 (18) | 0.0126 (17) |
C15 | 0.0217 (19) | 0.027 (2) | 0.025 (2) | 0.0035 (15) | −0.0027 (15) | 0.0091 (17) |
C16 | 0.0152 (17) | 0.0231 (17) | 0.0132 (16) | 0.0018 (13) | 0.0022 (13) | 0.0021 (15) |
C17 | 0.0144 (16) | 0.0184 (15) | 0.0139 (14) | 0.0030 (13) | 0.0054 (12) | 0.0038 (13) |
C18 | 0.0179 (18) | 0.0265 (18) | 0.0129 (15) | 0.0031 (14) | −0.0018 (13) | 0.0026 (15) |
C19 | 0.0137 (15) | 0.0221 (14) | 0.0245 (17) | 0.0014 (11) | 0.0019 (16) | −0.0019 (19) |
C20 | 0.0126 (18) | 0.0302 (19) | 0.0232 (18) | 0.0016 (14) | 0.0009 (14) | 0.0037 (16) |
Cu1—O2 | 1.930 (2) | C5—C6 | 1.422 (5) |
Cu1—O5 | 1.923 (2) | C6—C7 | 1.417 (5) |
Cu1—O6 | 2.432 (3) | C6—C8 | 1.437 (5) |
Cu1—N1 | 1.992 (3) | C8—H8 | 0.9300 |
Cu1—N2 | 2.030 (3) | C9—H9A | 0.9700 |
O1—C1 | 1.426 (5) | C9—H9B | 0.9700 |
O1—C2 | 1.382 (4) | C9—C10 | 1.508 (5) |
O2—C7 | 1.310 (4) | C10—H10A | 0.9700 |
O3—H3 | 0.8200 | C10—H10B | 0.9700 |
O3—C10 | 1.420 (5) | C11—H11A | 0.9600 |
O4—C11 | 1.425 (4) | C11—H11B | 0.9600 |
O4—C12 | 1.379 (4) | C11—H11C | 0.9600 |
O5—C17 | 1.332 (4) | C12—C13 | 1.392 (5) |
O6—H6 | 0.75 (5) | C12—C17 | 1.417 (5) |
O6—C20 | 1.432 (4) | C13—H13 | 0.9300 |
N1—C8 | 1.286 (5) | C13—C14 | 1.390 (5) |
N1—C9 | 1.467 (5) | C14—H14 | 0.9300 |
N2—H2 | 0.9800 | C14—C15 | 1.381 (6) |
N2—C18 | 1.491 (4) | C15—H15 | 0.9300 |
N2—C19 | 1.476 (4) | C15—C16 | 1.397 (5) |
C1—H1A | 0.9600 | C16—C17 | 1.402 (5) |
C1—H1B | 0.9600 | C16—C18 | 1.518 (5) |
C1—H1C | 0.9600 | C18—H18A | 0.9700 |
C2—C3 | 1.381 (5) | C18—H18B | 0.9700 |
C2—C7 | 1.422 (5) | C19—H19A | 0.9700 |
C3—H3A | 0.9300 | C19—H19B | 0.9700 |
C3—C4 | 1.396 (5) | C19—C20 | 1.519 (5) |
C4—H4 | 0.9300 | C20—H20A | 0.9700 |
C4—C5 | 1.360 (6) | C20—H20B | 0.9700 |
C5—H5 | 0.9300 | ||
O2—Cu1—O6 | 93.16 (10) | N1—C9—H9A | 109.5 |
O2—Cu1—N1 | 92.92 (11) | N1—C9—H9B | 109.5 |
O2—Cu1—N2 | 87.35 (11) | N1—C9—C10 | 110.5 (3) |
O5—Cu1—O2 | 157.96 (12) | H9A—C9—H9B | 108.1 |
O5—Cu1—O6 | 108.36 (10) | C10—C9—H9A | 109.5 |
O5—Cu1—N1 | 90.55 (10) | C10—C9—H9B | 109.5 |
O5—Cu1—N2 | 91.65 (10) | O3—C10—C9 | 111.5 (3) |
N1—Cu1—O6 | 93.37 (10) | O3—C10—H10A | 109.3 |
N1—Cu1—N2 | 173.44 (11) | O3—C10—H10B | 109.3 |
N2—Cu1—O6 | 80.08 (10) | C9—C10—H10A | 109.3 |
C2—O1—C1 | 117.4 (3) | C9—C10—H10B | 109.3 |
C7—O2—Cu1 | 128.1 (2) | H10A—C10—H10B | 108.0 |
C10—O3—H3 | 109.5 | O4—C11—H11A | 109.5 |
C12—O4—C11 | 116.8 (3) | O4—C11—H11B | 109.5 |
C17—O5—Cu1 | 128.2 (2) | O4—C11—H11C | 109.5 |
Cu1—O6—H6 | 119 (3) | H11A—C11—H11B | 109.5 |
C20—O6—Cu1 | 99.2 (2) | H11A—C11—H11C | 109.5 |
C20—O6—H6 | 111 (3) | H11B—C11—H11C | 109.5 |
C8—N1—Cu1 | 124.1 (2) | O4—C12—C13 | 123.9 (3) |
C8—N1—C9 | 116.5 (3) | O4—C12—C17 | 114.8 (3) |
C9—N1—Cu1 | 119.1 (2) | C13—C12—C17 | 121.2 (3) |
Cu1—N2—H2 | 106.1 | C12—C13—H13 | 120.3 |
C18—N2—Cu1 | 113.8 (2) | C14—C13—C12 | 119.5 (3) |
C18—N2—H2 | 106.1 | C14—C13—H13 | 120.3 |
C19—N2—Cu1 | 111.4 (2) | C13—C14—H14 | 119.9 |
C19—N2—H2 | 106.1 | C15—C14—C13 | 120.1 (3) |
C19—N2—C18 | 112.6 (3) | C15—C14—H14 | 119.9 |
O1—C1—H1A | 109.5 | C14—C15—H15 | 119.4 |
O1—C1—H1B | 109.5 | C14—C15—C16 | 121.1 (3) |
O1—C1—H1C | 109.5 | C16—C15—H15 | 119.4 |
H1A—C1—H1B | 109.5 | C15—C16—C17 | 119.9 (3) |
H1A—C1—H1C | 109.5 | C15—C16—C18 | 119.8 (3) |
H1B—C1—H1C | 109.5 | C17—C16—C18 | 120.2 (3) |
O1—C2—C7 | 113.5 (3) | O5—C17—C12 | 118.1 (3) |
C3—C2—O1 | 124.4 (3) | O5—C17—C16 | 123.8 (3) |
C3—C2—C7 | 122.1 (3) | C16—C17—C12 | 118.1 (3) |
C2—C3—H3A | 120.2 | N2—C18—C16 | 112.7 (3) |
C2—C3—C4 | 119.7 (3) | N2—C18—H18A | 109.1 |
C4—C3—H3A | 120.2 | N2—C18—H18B | 109.1 |
C3—C4—H4 | 119.9 | C16—C18—H18A | 109.1 |
C5—C4—C3 | 120.1 (3) | C16—C18—H18B | 109.1 |
C5—C4—H4 | 119.9 | H18A—C18—H18B | 107.8 |
C4—C5—H5 | 119.2 | N2—C19—H19A | 109.9 |
C4—C5—C6 | 121.6 (4) | N2—C19—H19B | 109.9 |
C6—C5—H5 | 119.2 | N2—C19—C20 | 108.7 (3) |
C5—C6—C8 | 117.7 (3) | H19A—C19—H19B | 108.3 |
C7—C6—C5 | 119.2 (3) | C20—C19—H19A | 109.9 |
C7—C6—C8 | 123.1 (3) | C20—C19—H19B | 109.9 |
O2—C7—C2 | 118.6 (3) | O6—C20—C19 | 110.6 (3) |
O2—C7—C6 | 124.2 (3) | O6—C20—H20A | 109.5 |
C6—C7—C2 | 117.2 (3) | O6—C20—H20B | 109.5 |
N1—C8—C6 | 127.5 (3) | C19—C20—H20A | 109.5 |
N1—C8—H8 | 116.2 | C19—C20—H20B | 109.5 |
C6—C8—H8 | 116.2 | H20A—C20—H20B | 108.1 |
Cu1—O2—C7—C2 | 178.7 (2) | C5—C6—C7—C2 | −0.3 (5) |
Cu1—O2—C7—C6 | −0.9 (5) | C5—C6—C8—N1 | 179.7 (3) |
Cu1—O5—C17—C12 | 153.4 (3) | C7—C2—C3—C4 | −0.1 (5) |
Cu1—O5—C17—C16 | −27.4 (5) | C7—C6—C8—N1 | −1.2 (6) |
Cu1—O6—C20—C19 | −44.8 (3) | C8—N1—C9—C10 | −102.7 (3) |
Cu1—N1—C8—C6 | 2.6 (5) | C8—C6—C7—O2 | 0.2 (5) |
Cu1—N1—C9—C10 | 71.2 (3) | C8—C6—C7—C2 | −179.4 (3) |
Cu1—N2—C18—C16 | −62.6 (3) | C9—N1—C8—C6 | 176.1 (3) |
Cu1—N2—C19—C20 | −44.5 (3) | C11—O4—C12—C13 | 9.3 (5) |
O1—C2—C3—C4 | 179.1 (3) | C11—O4—C12—C17 | −169.1 (3) |
O1—C2—C7—O2 | 1.8 (4) | C12—C13—C14—C15 | 2.2 (6) |
O1—C2—C7—C6 | −178.6 (3) | C13—C12—C17—O5 | 177.7 (3) |
O4—C12—C13—C14 | −178.6 (3) | C13—C12—C17—C16 | −1.6 (5) |
O4—C12—C17—O5 | −3.9 (5) | C13—C14—C15—C16 | −2.2 (6) |
O4—C12—C17—C16 | 176.9 (3) | C14—C15—C16—C17 | 0.3 (6) |
N1—C9—C10—O3 | 63.7 (4) | C14—C15—C16—C18 | −179.0 (3) |
N2—C19—C20—O6 | 63.9 (4) | C15—C16—C17—O5 | −177.6 (3) |
C1—O1—C2—C3 | 0.1 (5) | C15—C16—C17—C12 | 1.5 (5) |
C1—O1—C2—C7 | 179.4 (4) | C15—C16—C18—N2 | −134.9 (3) |
C2—C3—C4—C5 | −0.9 (6) | C17—C12—C13—C14 | −0.3 (6) |
C3—C2—C7—O2 | −178.9 (3) | C17—C16—C18—N2 | 45.8 (4) |
C3—C2—C7—C6 | 0.7 (5) | C18—N2—C19—C20 | −173.8 (3) |
C3—C4—C5—C6 | 1.3 (6) | C18—C16—C17—O5 | 1.6 (5) |
C4—C5—C6—C7 | −0.7 (6) | C18—C16—C17—C12 | −179.2 (3) |
C4—C5—C6—C8 | 178.5 (4) | C19—N2—C18—C16 | 65.4 (3) |
C5—C6—C7—O2 | 179.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O5i | 0.82 | 1.98 | 2.766 (3) | 161 |
O6—H6···O1ii | 0.75 (5) | 2.19 (5) | 2.916 (4) | 163 (5) |
N2—H2···O6iii | 0.98 | 2.27 | 3.107 (4) | 142 |
Symmetry codes: (i) −x+2, −y+1, z+1/2; (ii) −x+1, −y+1, z+1/2; (iii) −x+1, −y+1, z−1/2. |
Acknowledgements
EG gratefully acknowledges the Slovenian Research Agency (ARRS) for financial support of the present study.
Funding information
This work was been supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv. The work was also supported by the Slovenian Research Agency (ARRS) within the research program P1-0045, Inorganic Chemistry and Technology.
References
Adão, P., Barroso, S., Avecilla, F., Oliveira, M. C. & Pessoa, J. C. (2014). J. Organomet. Chem. 760, 212–223. Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Allmann, R. (1975). Monatsh. Chem. 106, 779–793. CrossRef CAS Web of Science Google Scholar
Alvarez, S. (2013). Dalton Trans. 42, 8617–8636. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fei, B.-L., Wang, J.-H., Yan, Q.-L., Liu, Q.-B., Long, J.-Y., Li, Y.-G., Shao, K.-Z., Su, Z.-M. & Sun, W.-Y. (2014). Chem. Lett. 43, 1158–1160. Web of Science CSD CrossRef CAS Google Scholar
Floyd, J. M., Gray, G. M., VanEngen Spivey, A. G., Lawson, C. M., Pritchett, T. M., Ferry, M. J., Hoffman, R. C. & Mott, A. G. (2005). Inorg. Chim. Acta, 358, 3773–3785. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huo, S., Chen, H. & Zuo, W. (2021). Eur. J. Inorg. Chem. pp. 37–42. Web of Science CSD CrossRef Google Scholar
Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier. Google Scholar
Li, L.-Z., Zhao, C., Xu, T., Ji, H.-W., Yu, Y.-H., Guo, G.-Q. & Chao, H. (2005). J. Inorg. Biochem. 99, 1076–1082. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, K., Zhang, J., Huo, S., Dong, Q., Hao, Z., Han, Z., Lu, G.-L. & Lin, J. (2020). Inorg. Chim. Acta, 500, 119224. Web of Science CSD CrossRef Google Scholar
Mitra, M., Raghavaiah, P. & Ghosh, R. (2015). New J. Chem. 39, 200–205. Web of Science CSD CrossRef CAS Google Scholar
O'Sullivan, C., Murphy, G., Murphy, B. & Hathaway, B. (1999). J. Chem. Soc. Dalton Trans. pp. 1835–1844. Web of Science CSD CrossRef Google Scholar
Payne, J., McKeown, P., Kociok-Köhn, G. & Jones, M. D. (2020). Chem. Commun. 56, 7163–7166. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saha, D., Maity, T., Bera, R. & Koner, S. (2013). Polyhedron, 56, 230–236. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H. & Motherwell, W. D. S. (2000). Acta Cryst. B56, 455–465. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645. Web of Science CSD CrossRef Google Scholar
Stetsiuk, O., El-Ghayoury, A., Kokozay, V. N., Avarvari, N. & Petrusenko, S. R. (2018). J. Coord. Chem. 71, 68–77. Web of Science CSD CrossRef CAS Google Scholar
Wang, C.-Y., Li, J.-F., Wang, P. & Yuan, C.-J. (2011a). Acta Cryst. E67, m1227–m1228. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, C.-Y., Ye, J.-Y., Wu, X. & Han, Z.-P. (2011b). Acta Cryst. E67, m1229. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, Y., Bu, W., Chan, A. S.-C., Xu, X., Liu, Q., Zhang, Z., Yu, J. & Fan, Y. (2000). Inorg. Chim. Acta, 310, 257–260. Web of Science CSD CrossRef CAS Google Scholar
Xie, Y., Ni, J., Liu, X., Liu, Q., Xu, X., Du, C. & Zhu, Y. (2003). Trans. Met. Chem. 28, 367–370. Web of Science CSD CrossRef CAS Google Scholar
Xin, W., Jinglan, K., Yonghui, Z., Liguo, Y. & Linna, G. (2019). Z. Kristallogr. New Cryst. Struct. 234, 315–316. Web of Science CSD CrossRef CAS Google Scholar
Zabierowski, P., Szklarzewicz, J., Kurpiewska, K., Lewiński, K. & Nitek, W. (2013). Polyhedron, 49, 74–83. Web of Science CSD CrossRef CAS Google Scholar
Zabierowski, P., Szklarzewicz, J. & Nitek, W. (2014). Acta Cryst. C70, 659–661. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-H., Zou, H.-H., Zeng, M.-H. & Liang, H. (2007). Acta Cryst. E63, m2564. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.