research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A bis-chelate o-vanillin-2-ethano­lamine copper(II) complex bearing both imine and amine forms of the ligand

crossmark logo

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova, cesta 39, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: plyutanataliya@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 October 2021; accepted 4 November 2021; online 9 November 2021)

The mol­ecular bis-chelate complex (2-{[(2-hy­droxy­ethyl-κO)amino-κN]meth­yl}-6-meth­oxy­phenolato-κO)(2-{[(2-hy­droxy­eth­yl)imino-κN]meth­yl}-6-meth­oxy­phenolato-κO)copper(II), [Cu(C10H14NO3)(C10H12NO3)] or [Cu(HLim)(HLam); HLim = C10H14NO3; HLam = C10H12NO3, represents the first compound containing a salicyl­idene-2-ethano­lamine type ligand in both imino HLim (Schiff base) and amino HLam (reduced Schiff base) forms that has been structurally characterized on the basis of X-ray data. Two mol­ecules of the monodeprotonated ligands coordinate the CuII ion in an (N,Ophen)-bidentate and an (N,Ophen,Oalc)-tridentate fashion in the case of the imino and amino forms, respectively. The shape of the CuN2O3 coordination polyhedron is a distorted square-pyramid (geometry index τ5 = 0.26). Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, involving H atoms of the amino and hy­droxy­ethyl groups, create a two-dimensional supra­molecular array extending parallel to (010).

1. Chemical context

Over the last decade, research on transition-metal complexes with salicyl­idene-type Schiff bases (SB) gained a new impetus after a number of highly effective and simple M-(SB) catalysts were obtained, where M = Cu, Co, Al, etc (Payne et al., 2020[Payne, J., McKeown, P., Kociok-Köhn, G. & Jones, M. D. (2020). Chem. Commun. 56, 7163-7166.]; Mitra et al., 2015[Mitra, M., Raghavaiah, P. & Ghosh, R. (2015). New J. Chem. 39, 200-205.]; Fei et al., 2014[Fei, B.-L., Wang, J.-H., Yan, Q.-L., Liu, Q.-B., Long, J.-Y., Li, Y.-G., Shao, K.-Z., Su, Z.-M. & Sun, W.-Y. (2014). Chem. Lett. 43, 1158-1160.]; Saha et al., 2013[Saha, D., Maity, T., Bera, R. & Koner, S. (2013). Polyhedron, 56, 230-236.]). It has been shown that incorporation of partially or fully reduced Schiff bases (RSB) into the coordination spheres of metal cations can significantly increase their catalytic activities (Liu et al., 2020[Liu, K., Zhang, J., Huo, S., Dong, Q., Hao, Z., Han, Z., Lu, G.-L. & Lin, J. (2020). Inorg. Chim. Acta, 500, 119224.]; Huo et al., 2021[Huo, S., Chen, H. & Zuo, W. (2021). Eur. J. Inorg. Chem. pp. 37-42.]; Adão et al., 2014[Adão, P., Barroso, S., Avecilla, F., Oliveira, M. C. & Pessoa, J. C. (2014). J. Organomet. Chem. 760, 212-223.]; Sreenivasulu et al., 2005[Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635-4645.]). Despite the fact that complexes with RSB ligands are supposed to be very promising objects for the creation of new catalysts, information about their syntheses and structures is rather limited. Continuing our work on the elaboration of alternative methods for the synthesis of coordination compounds (Kokozay et al., 2018[Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183-237. Amsterdam: Elsevier.]), we have investigated the following system: zinc (powder) – copper (powder) – H2L – ammonium thio­cyanate – methanol, to prepare heterometallic Cu/Zn complexes with the Schiff base H2Lim, which is formed in situ upon condensation of o-vanillin and 2-amino­ethanol. The complex [Cu(HLim)(HLam)] (where H2Lim = 2-[(2-hy­droxy­eth­yl)imino­meth­yl]-6-meth­oxy­phenol; H2Lam = 2-[(2-hy­droxy­eth­yl)amino­meth­yl]-6-meth­oxy­phenol) was formed in the reaction mixture as an unintended by-product for which only a few crystals suitable for X-ray analysis were isolated.

[Scheme 1]

Herein, we report the crystal structure of the title compound, [Cu(HLim)(HLam)] (I)[link], which represents the first example of a mixed (SB/RSB) complex derived from salicyl­idene-2-amino­ethanol type ligands.

2. Structural commentary

The asymmetric unit of (I)[link] comprises one neutral mol­ecular complex [Cu(HLim)(HLam)] (Fig. 1[link]). The copper(II) ion has an O3N2 coordination set defined by two monodeprotonated mol­ecules of the organic ligands realizing their bidentate (N,O) and tridentate (O,N,O) functions for the SB and RSB forms, respectively. This difference in coordination behavior of the ligands can be explained by a higher flexibility of the amine ligand, and is observed in similar bis-chelate copper(II) complexes with salicyl­idene-2-amino­ethanol type ligands. Usually, [Cu(SB)2] complexes are square-planar and [Cu(RSB)2] complexes are octa­hedral. For the corresponding imine complexes, see: Li et al. (2005[Li, L.-Z., Zhao, C., Xu, T., Ji, H.-W., Yu, Y.-H., Guo, G.-Q. & Chao, H. (2005). J. Inorg. Biochem. 99, 1076-1082.]); Zabierowski et al. (2013[Zabierowski, P., Szklarzewicz, J., Kurpiewska, K., Lewiński, K. & Nitek, W. (2013). Polyhedron, 49, 74-83.], 2014[Zabierowski, P., Szklarzewicz, J. & Nitek, W. (2014). Acta Cryst. C70, 659-661.]); Xin et al. (2019[Xin, W., Jinglan, K., Yonghui, Z., Liguo, Y. & Linna, G. (2019). Z. Kristallogr. New Cryst. Struct. 234, 315-316.]); for amine complexes, see: Xie et al. (2000[Xie, Y., Bu, W., Chan, A. S.-C., Xu, X., Liu, Q., Zhang, Z., Yu, J. & Fan, Y. (2000). Inorg. Chim. Acta, 310, 257-260.]). It is worth noting that such a dependence was not found for similar NiII complexes, which have an octa­hedral shape via both tridentate imino and amino ligands. For [Ni(SB)2], see: Floyd et al. (2005[Floyd, J. M., Gray, G. M., VanEngen Spivey, A. G., Lawson, C. M., Pritchett, T. M., Ferry, M. J., Hoffman, R. C. & Mott, A. G. (2005). Inorg. Chim. Acta, 358, 3773-3785.]); Wang et al. (2011a[Wang, C.-Y., Li, J.-F., Wang, P. & Yuan, C.-J. (2011a). Acta Cryst. E67, m1227-m1228.],b[Wang, C.-Y., Ye, J.-Y., Wu, X. & Han, Z.-P. (2011b). Acta Cryst. E67, m1229.]); for [Ni(RSB)2], see: Zhang et al. (2007[Zhang, S.-H., Zou, H.-H., Zeng, M.-H. & Liang, H. (2007). Acta Cryst. E63, m2564.]). The shape of the coord­ination polyhedron of the CuII ion in (I)[link] can be described as distorted [4 + 1] square-pyramidal. The equatorial Cu—O(N) bond lengths vary from 1.923 (2) to 2.030 (3) Å and are in accordance with those found in related complexes (Stetsiuk et al., 2018[Stetsiuk, O., El-Ghayoury, A., Kokozay, V. N., Avarvari, N. & Petrusenko, S. R. (2018). J. Coord. Chem. 71, 68-77.]; Xie et al., 2000[Xie, Y., Bu, W., Chan, A. S.-C., Xu, X., Liu, Q., Zhang, Z., Yu, J. & Fan, Y. (2000). Inorg. Chim. Acta, 310, 257-260.]; Zabierowski et al., 2013[Zabierowski, P., Szklarzewicz, J., Kurpiewska, K., Lewiński, K. & Nitek, W. (2013). Polyhedron, 49, 74-83.]). The length of the long apical Cu—O bond of 2.432 (3) Å lies within the range of CuII—O bond lengths extending up to ca 2.70 Å (Alvarez, 2013[Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.]). The deviations in cis and trans [O—Cu—O(N)] angles [80.08 (10)–108.36 (10)° and 157.96 (12)–173.44 (11)°, respectively] are caused by the steric hindrances that are typical for chelate rings. According to the τ criterion for five-coordinate complexes (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]; O'Sullivan et al., 1999[O'Sullivan, C., Murphy, G., Murphy, B. & Hathaway, B. (1999). J. Chem. Soc. Dalton Trans. pp. 1835-1844.]), the distortion of the CuN2O3 coordination polyhedron is about 26% along the pathway from regular square-pyramidal to regular trigonal–bipyramidal. The bond-valence sums calculated for CuII with CN = 4 (1.86 valence units) and CN = 5 (1.99 valence units) (Allmann, 1975[Allmann, R. (1975). Monatsh. Chem. 106, 779-793.]; Shields et al., 2000[Shields, G. P., Raithby, P. R., Allen, F. H. & Motherwell, W. D. S. (2000). Acta Cryst. B56, 455-465.]) can serve as an additional argument in favor of the coordination number of 5 for CuII in (I)[link].

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], with the numbering scheme and displacement ellipsoids drawn at the 50% probability level (carbon-bound H atoms are omitted for clarity).

3. Supra­molecular features

Each mol­ecule of (I)[link] forms six inter­molecular hydrogen bonds with four adjacent mol­ecules whereby the following groups take part: non-coordinating hy­droxy­ethyl and amino groups (as H-atom donors), half of the phenolato and meth­oxy groups (as H-atom acceptors) and the coordinating hy­droxy­ethyl groups (both as H-atom donors and acceptors). Chains based on two hydrogen bonds O6—H6⋯O1ii and iiiO6⋯H2—N2 (Table 1[link], Fig. 2[link]) are formed along [001]. These chains are linked by O3—H3⋯O5i bonds (Table 1[link]) into supra­molecular sheets extending parallel to (010) (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.82 1.98 2.766 (3) 161
O6—H6⋯O1ii 0.75 (5) 2.19 (5) 2.916 (4) 163 (5)
N2—H2⋯O6iii 0.98 2.27 3.107 (4) 142
Symmetry codes: (i) [-x+2, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Fragment of the crystal packing of (I), showing inter­molecular O6—H6⋯O1 (green) and N2—H2⋯O6 (yellow) hydrogen bonds forming chains along [001]. [Symmetry codes: (′) 1 − x, 1 − y, [{1\over 2}] + z; (′′) 1 − x, 1 − y, −[{1\over 2}] + z].
[Figure 3]
Figure 3
The hydrogen-bonded sheet extending parallel to (010) in the crystal structure of (I)[link]. N—H⋯O (yellow) and O—H⋯O hydrogen bonds through participation of coordinating (green) and free (black) hy­droxy­ethyl groups are shown.

4. Database survey

Among the 33 deposited crystal structures of bis-complexes with a salicyl­idene-2-amino­ethanol-type ligand (CSD, version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are 30 hits for complexes with SBs and three hits for complexes with RSBs (Xie et al., 2000[Xie, Y., Bu, W., Chan, A. S.-C., Xu, X., Liu, Q., Zhang, Z., Yu, J. & Fan, Y. (2000). Inorg. Chim. Acta, 310, 257-260.], 2003[Xie, Y., Ni, J., Liu, X., Liu, Q., Xu, X., Du, C. & Zhu, Y. (2003). Trans. Met. Chem. 28, 367-370.]; Zhang et al., 2007[Zhang, S.-H., Zou, H.-H., Zeng, M.-H. & Liang, H. (2007). Acta Cryst. E63, m2564.]). M(SB)(RSB) complexes including both forms of a ligand are not known up to now.

5. Synthesis and crystallization

o-Vanillin (0.3 g, 0.002 mol) and 2-amino­ethanol (0.12 ml, 0.002 mol) were dissolved in methanol and then stirred magnetically at 323–333 K for 20 mins. Copper powder (0.06 g, 0.001 mol), zinc powder (0.07 g, 0.001 mol) and NH4SCN (0.15 g, 0.002 mol) were added to the hot yellow solution with further stirring until total dissolution of powder was observed (about 4 h). The resulting brown solution was filtered and left for 1 d. A green powdery precipitate with a few green crystals available for X-ray crystallographic analysis was collected by filtration.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound H atoms were placed in idealized positions and refined using a riding model. H atoms of the NH and OH groups were located in a difference-Fourier map. For the final model they were also treated as riding on their parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C10H14NO3)(C10H12NO3)]
Mr 453.97
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 8.3068 (9), 24.3280 (19), 10.1370 (9)
V3) 2048.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.11
Crystal size (mm) 0.31 × 0.15 × 0.05
 
Data collection
Diffractometer New Gemini, Dual, Cu at zero, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.509, 0.855
No. of measured, independent and observed [I > 2σ(I)] reflections 10546, 3777, 3539
Rint 0.036
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.06
No. of reflections 3777
No. of parameters 268
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.38
Absolute structure Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter −0.011 (15)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(2-{[(2-Hydroxyethyl-κO)amino-κN]methyl}-6-methoxyphenolato-κO)(2-{[(2-hydroxyethyl)imino-κN]methyl}-6-methoxyphenolato-κO)copper(II) top
Crystal data top
[Cu(C10H14NO3)(C10H12NO3)]Dx = 1.472 Mg m3
Mr = 453.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4616 reflections
a = 8.3068 (9) Åθ = 4.1–28.6°
b = 24.3280 (19) ŵ = 1.11 mm1
c = 10.1370 (9) ÅT = 150 K
V = 2048.6 (3) Å3Plate, green
Z = 40.31 × 0.15 × 0.05 mm
F(000) = 948
Data collection top
New Gemini, Dual, Cu at zero, Atlas
diffractometer
3777 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.6426 pixels mm-1θmax = 28.8°, θmin = 3.5°
ω scansh = 109
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2015)
k = 3131
Tmin = 0.509, Tmax = 0.855l = 1312
10546 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2171P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.31 e Å3
3777 reflectionsΔρmin = 0.38 e Å3
268 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
1 restraintAbsolute structure parameter: 0.011 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All N(H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups 2.a Ternary CH refined with riding coordinates: N2(H2) 2.b Secondary CH2 refined with riding coordinates: C9(H9A,H9B), C10(H10A,H10B), C18(H18A,H18B), C19(H19A,H19B), C20(H20A,H20B) 2.c Aromatic/amide H refined with riding coordinates: C3(H3A), C4(H4), C5(H5), C8(H8), C13(H13), C14(H14), C15(H15) 2.d Idealised Me refined as rotating group: C1(H1A,H1B,H1C), C11(H11A,H11B,H11C) 2.e Idealised tetrahedral OH refined as rotating group: O3(H3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.71596 (4)0.50706 (2)0.41167 (6)0.01347 (11)
O10.3846 (3)0.37604 (10)0.2532 (3)0.0268 (6)
O20.5898 (3)0.44465 (9)0.3556 (2)0.0194 (5)
O30.8418 (3)0.47888 (13)0.8013 (3)0.0303 (6)
H30.9107080.4612500.8408280.045*
O41.0725 (3)0.63655 (10)0.5057 (3)0.0219 (5)
O50.8755 (2)0.56419 (8)0.4016 (3)0.0176 (5)
O60.5411 (3)0.52613 (11)0.5985 (3)0.0187 (5)
H60.567 (5)0.5466 (18)0.649 (5)0.028*
N10.8651 (3)0.46065 (12)0.5178 (3)0.0154 (6)
N20.5490 (3)0.55538 (11)0.3227 (3)0.0155 (6)
H20.4756200.5303600.2765060.019*
C10.2700 (6)0.33956 (19)0.1958 (5)0.0428 (12)
H1A0.2005040.3597570.1376640.064*
H1B0.2069370.3228330.2642950.064*
H1C0.3252080.3115430.1468680.064*
C20.4986 (4)0.35356 (15)0.3365 (3)0.0196 (7)
C30.5087 (5)0.29840 (15)0.3675 (3)0.0245 (8)
H3A0.4348510.2736540.3324280.029*
C40.6303 (5)0.27994 (15)0.4515 (4)0.0303 (9)
H40.6365930.2428990.4735920.036*
C50.7397 (5)0.31605 (16)0.5012 (4)0.0255 (8)
H50.8213470.3030710.5557110.031*
C60.7321 (4)0.37315 (15)0.4720 (3)0.0187 (7)
C70.6087 (4)0.39289 (12)0.3878 (3)0.0155 (7)
C80.8504 (4)0.40836 (15)0.5316 (3)0.0184 (7)
H80.9249040.3913490.5866110.022*
C90.9906 (5)0.48739 (15)0.5970 (4)0.0208 (8)
H9A1.0483840.5136860.5428420.025*
H9B1.0668600.4600180.6275940.025*
C100.9173 (5)0.51648 (16)0.7138 (4)0.0246 (8)
H10A1.0007460.5363790.7607260.029*
H10B0.8385440.5429580.6829670.029*
C111.1634 (5)0.67643 (17)0.5768 (4)0.0309 (9)
H11A1.2347070.6951840.5174080.046*
H11B1.2251480.6584690.6442580.046*
H11C1.0915620.7025080.6166450.046*
C120.9635 (3)0.65617 (12)0.4146 (4)0.0180 (6)
C130.9540 (4)0.71095 (14)0.3758 (4)0.0247 (8)
H131.0250830.7367510.4102070.030*
C140.8373 (5)0.72677 (16)0.2852 (4)0.0294 (9)
H140.8324750.7630440.2565360.035*
C150.7285 (5)0.68872 (16)0.2376 (4)0.0249 (8)
H150.6485370.6999870.1793720.030*
C160.7364 (4)0.63357 (14)0.2756 (3)0.0172 (7)
C170.8560 (4)0.61619 (13)0.3639 (3)0.0156 (7)
C180.6167 (4)0.59254 (15)0.2197 (3)0.0191 (7)
H18A0.5293950.6123780.1777090.023*
H18B0.6696930.5705500.1527530.023*
C190.4499 (4)0.58501 (13)0.4204 (4)0.0201 (7)
H19A0.3545050.5998350.3782980.024*
H19B0.5108250.6153150.4575720.024*
C200.4019 (4)0.54520 (15)0.5289 (4)0.0220 (8)
H20A0.3293610.5633570.5899240.026*
H20B0.3455290.5141240.4906040.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01244 (19)0.01677 (18)0.01119 (17)0.00087 (13)0.0031 (2)0.0002 (3)
O10.0330 (15)0.0203 (12)0.0270 (14)0.0059 (11)0.0155 (11)0.0038 (11)
O20.0223 (13)0.0170 (11)0.0191 (11)0.0016 (10)0.0084 (10)0.0035 (10)
O30.0191 (13)0.0563 (18)0.0155 (12)0.0059 (14)0.0001 (11)0.0035 (13)
O40.0167 (12)0.0237 (12)0.0254 (12)0.0012 (10)0.0079 (11)0.0016 (11)
O50.0133 (10)0.0172 (9)0.0224 (11)0.0013 (8)0.0023 (12)0.0018 (13)
O60.0148 (13)0.0261 (13)0.0152 (11)0.0016 (10)0.0013 (10)0.0025 (11)
N10.0091 (13)0.0265 (15)0.0107 (12)0.0014 (11)0.0009 (10)0.0005 (12)
N20.0123 (13)0.0199 (14)0.0143 (12)0.0019 (11)0.0028 (11)0.0014 (12)
C10.047 (3)0.032 (2)0.049 (3)0.017 (2)0.029 (2)0.006 (2)
C20.0239 (19)0.0221 (17)0.0126 (15)0.0020 (14)0.0013 (14)0.0024 (14)
C30.030 (2)0.0193 (16)0.0239 (17)0.0026 (15)0.0004 (15)0.0018 (15)
C40.037 (2)0.0180 (17)0.036 (2)0.0062 (16)0.0021 (17)0.0066 (16)
C50.028 (2)0.0234 (19)0.0253 (18)0.0093 (15)0.0033 (16)0.0062 (17)
C60.0193 (18)0.0226 (18)0.0143 (17)0.0049 (14)0.0016 (13)0.0019 (15)
C70.0187 (16)0.0168 (13)0.0109 (17)0.0015 (12)0.0027 (12)0.0024 (13)
C80.0133 (17)0.0290 (19)0.0131 (15)0.0095 (14)0.0000 (13)0.0046 (15)
C90.0138 (18)0.033 (2)0.0157 (16)0.0009 (15)0.0048 (15)0.0074 (16)
C100.024 (2)0.0272 (19)0.0228 (18)0.0012 (17)0.0099 (17)0.0019 (16)
C110.029 (2)0.029 (2)0.035 (2)0.0051 (17)0.0109 (18)0.0042 (18)
C120.0134 (14)0.0215 (14)0.0191 (14)0.0022 (11)0.0007 (17)0.000 (2)
C130.0205 (18)0.0205 (15)0.033 (2)0.0040 (13)0.0023 (15)0.0013 (15)
C140.027 (2)0.0220 (18)0.039 (2)0.0011 (16)0.0012 (18)0.0126 (17)
C150.0217 (19)0.027 (2)0.025 (2)0.0035 (15)0.0027 (15)0.0091 (17)
C160.0152 (17)0.0231 (17)0.0132 (16)0.0018 (13)0.0022 (13)0.0021 (15)
C170.0144 (16)0.0184 (15)0.0139 (14)0.0030 (13)0.0054 (12)0.0038 (13)
C180.0179 (18)0.0265 (18)0.0129 (15)0.0031 (14)0.0018 (13)0.0026 (15)
C190.0137 (15)0.0221 (14)0.0245 (17)0.0014 (11)0.0019 (16)0.0019 (19)
C200.0126 (18)0.0302 (19)0.0232 (18)0.0016 (14)0.0009 (14)0.0037 (16)
Geometric parameters (Å, º) top
Cu1—O21.930 (2)C5—C61.422 (5)
Cu1—O51.923 (2)C6—C71.417 (5)
Cu1—O62.432 (3)C6—C81.437 (5)
Cu1—N11.992 (3)C8—H80.9300
Cu1—N22.030 (3)C9—H9A0.9700
O1—C11.426 (5)C9—H9B0.9700
O1—C21.382 (4)C9—C101.508 (5)
O2—C71.310 (4)C10—H10A0.9700
O3—H30.8200C10—H10B0.9700
O3—C101.420 (5)C11—H11A0.9600
O4—C111.425 (4)C11—H11B0.9600
O4—C121.379 (4)C11—H11C0.9600
O5—C171.332 (4)C12—C131.392 (5)
O6—H60.75 (5)C12—C171.417 (5)
O6—C201.432 (4)C13—H130.9300
N1—C81.286 (5)C13—C141.390 (5)
N1—C91.467 (5)C14—H140.9300
N2—H20.9800C14—C151.381 (6)
N2—C181.491 (4)C15—H150.9300
N2—C191.476 (4)C15—C161.397 (5)
C1—H1A0.9600C16—C171.402 (5)
C1—H1B0.9600C16—C181.518 (5)
C1—H1C0.9600C18—H18A0.9700
C2—C31.381 (5)C18—H18B0.9700
C2—C71.422 (5)C19—H19A0.9700
C3—H3A0.9300C19—H19B0.9700
C3—C41.396 (5)C19—C201.519 (5)
C4—H40.9300C20—H20A0.9700
C4—C51.360 (6)C20—H20B0.9700
C5—H50.9300
O2—Cu1—O693.16 (10)N1—C9—H9A109.5
O2—Cu1—N192.92 (11)N1—C9—H9B109.5
O2—Cu1—N287.35 (11)N1—C9—C10110.5 (3)
O5—Cu1—O2157.96 (12)H9A—C9—H9B108.1
O5—Cu1—O6108.36 (10)C10—C9—H9A109.5
O5—Cu1—N190.55 (10)C10—C9—H9B109.5
O5—Cu1—N291.65 (10)O3—C10—C9111.5 (3)
N1—Cu1—O693.37 (10)O3—C10—H10A109.3
N1—Cu1—N2173.44 (11)O3—C10—H10B109.3
N2—Cu1—O680.08 (10)C9—C10—H10A109.3
C2—O1—C1117.4 (3)C9—C10—H10B109.3
C7—O2—Cu1128.1 (2)H10A—C10—H10B108.0
C10—O3—H3109.5O4—C11—H11A109.5
C12—O4—C11116.8 (3)O4—C11—H11B109.5
C17—O5—Cu1128.2 (2)O4—C11—H11C109.5
Cu1—O6—H6119 (3)H11A—C11—H11B109.5
C20—O6—Cu199.2 (2)H11A—C11—H11C109.5
C20—O6—H6111 (3)H11B—C11—H11C109.5
C8—N1—Cu1124.1 (2)O4—C12—C13123.9 (3)
C8—N1—C9116.5 (3)O4—C12—C17114.8 (3)
C9—N1—Cu1119.1 (2)C13—C12—C17121.2 (3)
Cu1—N2—H2106.1C12—C13—H13120.3
C18—N2—Cu1113.8 (2)C14—C13—C12119.5 (3)
C18—N2—H2106.1C14—C13—H13120.3
C19—N2—Cu1111.4 (2)C13—C14—H14119.9
C19—N2—H2106.1C15—C14—C13120.1 (3)
C19—N2—C18112.6 (3)C15—C14—H14119.9
O1—C1—H1A109.5C14—C15—H15119.4
O1—C1—H1B109.5C14—C15—C16121.1 (3)
O1—C1—H1C109.5C16—C15—H15119.4
H1A—C1—H1B109.5C15—C16—C17119.9 (3)
H1A—C1—H1C109.5C15—C16—C18119.8 (3)
H1B—C1—H1C109.5C17—C16—C18120.2 (3)
O1—C2—C7113.5 (3)O5—C17—C12118.1 (3)
C3—C2—O1124.4 (3)O5—C17—C16123.8 (3)
C3—C2—C7122.1 (3)C16—C17—C12118.1 (3)
C2—C3—H3A120.2N2—C18—C16112.7 (3)
C2—C3—C4119.7 (3)N2—C18—H18A109.1
C4—C3—H3A120.2N2—C18—H18B109.1
C3—C4—H4119.9C16—C18—H18A109.1
C5—C4—C3120.1 (3)C16—C18—H18B109.1
C5—C4—H4119.9H18A—C18—H18B107.8
C4—C5—H5119.2N2—C19—H19A109.9
C4—C5—C6121.6 (4)N2—C19—H19B109.9
C6—C5—H5119.2N2—C19—C20108.7 (3)
C5—C6—C8117.7 (3)H19A—C19—H19B108.3
C7—C6—C5119.2 (3)C20—C19—H19A109.9
C7—C6—C8123.1 (3)C20—C19—H19B109.9
O2—C7—C2118.6 (3)O6—C20—C19110.6 (3)
O2—C7—C6124.2 (3)O6—C20—H20A109.5
C6—C7—C2117.2 (3)O6—C20—H20B109.5
N1—C8—C6127.5 (3)C19—C20—H20A109.5
N1—C8—H8116.2C19—C20—H20B109.5
C6—C8—H8116.2H20A—C20—H20B108.1
Cu1—O2—C7—C2178.7 (2)C5—C6—C7—C20.3 (5)
Cu1—O2—C7—C60.9 (5)C5—C6—C8—N1179.7 (3)
Cu1—O5—C17—C12153.4 (3)C7—C2—C3—C40.1 (5)
Cu1—O5—C17—C1627.4 (5)C7—C6—C8—N11.2 (6)
Cu1—O6—C20—C1944.8 (3)C8—N1—C9—C10102.7 (3)
Cu1—N1—C8—C62.6 (5)C8—C6—C7—O20.2 (5)
Cu1—N1—C9—C1071.2 (3)C8—C6—C7—C2179.4 (3)
Cu1—N2—C18—C1662.6 (3)C9—N1—C8—C6176.1 (3)
Cu1—N2—C19—C2044.5 (3)C11—O4—C12—C139.3 (5)
O1—C2—C3—C4179.1 (3)C11—O4—C12—C17169.1 (3)
O1—C2—C7—O21.8 (4)C12—C13—C14—C152.2 (6)
O1—C2—C7—C6178.6 (3)C13—C12—C17—O5177.7 (3)
O4—C12—C13—C14178.6 (3)C13—C12—C17—C161.6 (5)
O4—C12—C17—O53.9 (5)C13—C14—C15—C162.2 (6)
O4—C12—C17—C16176.9 (3)C14—C15—C16—C170.3 (6)
N1—C9—C10—O363.7 (4)C14—C15—C16—C18179.0 (3)
N2—C19—C20—O663.9 (4)C15—C16—C17—O5177.6 (3)
C1—O1—C2—C30.1 (5)C15—C16—C17—C121.5 (5)
C1—O1—C2—C7179.4 (4)C15—C16—C18—N2134.9 (3)
C2—C3—C4—C50.9 (6)C17—C12—C13—C140.3 (6)
C3—C2—C7—O2178.9 (3)C17—C16—C18—N245.8 (4)
C3—C2—C7—C60.7 (5)C18—N2—C19—C20173.8 (3)
C3—C4—C5—C61.3 (6)C18—C16—C17—O51.6 (5)
C4—C5—C6—C70.7 (6)C18—C16—C17—C12179.2 (3)
C4—C5—C6—C8178.5 (4)C19—N2—C18—C1665.4 (3)
C5—C6—C7—O2179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.821.982.766 (3)161
O6—H6···O1ii0.75 (5)2.19 (5)2.916 (4)163 (5)
N2—H2···O6iii0.982.273.107 (4)142
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x+1, y+1, z+1/2; (iii) x+1, y+1, z1/2.
 

Acknowledgements

EG gratefully acknowledges the Slovenian Research Agency (ARRS) for financial support of the present study.

Funding information

This work was been supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv. The work was also supported by the Slovenian Research Agency (ARRS) within the research program P1-0045, Inorganic Chemistry and Technology.

References

First citationAdão, P., Barroso, S., Avecilla, F., Oliveira, M. C. & Pessoa, J. C. (2014). J. Organomet. Chem. 760, 212–223.  Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAllmann, R. (1975). Monatsh. Chem. 106, 779–793.  CrossRef CAS Web of Science Google Scholar
First citationAlvarez, S. (2013). Dalton Trans. 42, 8617–8636.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFei, B.-L., Wang, J.-H., Yan, Q.-L., Liu, Q.-B., Long, J.-Y., Li, Y.-G., Shao, K.-Z., Su, Z.-M. & Sun, W.-Y. (2014). Chem. Lett. 43, 1158–1160.  Web of Science CSD CrossRef CAS Google Scholar
First citationFloyd, J. M., Gray, G. M., VanEngen Spivey, A. G., Lawson, C. M., Pritchett, T. M., Ferry, M. J., Hoffman, R. C. & Mott, A. G. (2005). Inorg. Chim. Acta, 358, 3773–3785.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuo, S., Chen, H. & Zuo, W. (2021). Eur. J. Inorg. Chem. pp. 37–42.  Web of Science CSD CrossRef Google Scholar
First citationKokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier.  Google Scholar
First citationLi, L.-Z., Zhao, C., Xu, T., Ji, H.-W., Yu, Y.-H., Guo, G.-Q. & Chao, H. (2005). J. Inorg. Biochem. 99, 1076–1082.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, K., Zhang, J., Huo, S., Dong, Q., Hao, Z., Han, Z., Lu, G.-L. & Lin, J. (2020). Inorg. Chim. Acta, 500, 119224.  Web of Science CSD CrossRef Google Scholar
First citationMitra, M., Raghavaiah, P. & Ghosh, R. (2015). New J. Chem. 39, 200–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Sullivan, C., Murphy, G., Murphy, B. & Hathaway, B. (1999). J. Chem. Soc. Dalton Trans. pp. 1835–1844.  Web of Science CSD CrossRef Google Scholar
First citationPayne, J., McKeown, P., Kociok-Köhn, G. & Jones, M. D. (2020). Chem. Commun. 56, 7163–7166.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaha, D., Maity, T., Bera, R. & Koner, S. (2013). Polyhedron, 56, 230–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShields, G. P., Raithby, P. R., Allen, F. H. & Motherwell, W. D. S. (2000). Acta Cryst. B56, 455–465.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.  Web of Science CSD CrossRef Google Scholar
First citationStetsiuk, O., El-Ghayoury, A., Kokozay, V. N., Avarvari, N. & Petrusenko, S. R. (2018). J. Coord. Chem. 71, 68–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-Y., Li, J.-F., Wang, P. & Yuan, C.-J. (2011a). Acta Cryst. E67, m1227–m1228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y., Ye, J.-Y., Wu, X. & Han, Z.-P. (2011b). Acta Cryst. E67, m1229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y., Bu, W., Chan, A. S.-C., Xu, X., Liu, Q., Zhang, Z., Yu, J. & Fan, Y. (2000). Inorg. Chim. Acta, 310, 257–260.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, Y., Ni, J., Liu, X., Liu, Q., Xu, X., Du, C. & Zhu, Y. (2003). Trans. Met. Chem. 28, 367–370.  Web of Science CSD CrossRef CAS Google Scholar
First citationXin, W., Jinglan, K., Yonghui, Z., Liguo, Y. & Linna, G. (2019). Z. Kristallogr. New Cryst. Struct. 234, 315–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationZabierowski, P., Szklarzewicz, J., Kurpiewska, K., Lewiński, K. & Nitek, W. (2013). Polyhedron, 49, 74–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationZabierowski, P., Szklarzewicz, J. & Nitek, W. (2014). Acta Cryst. C70, 659–661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Zou, H.-H., Zeng, M.-H. & Liang, H. (2007). Acta Cryst. E63, m2564.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds