research communications
Two metal–organic frameworks based on Sr2+ and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene linkers
aInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan, bDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, and cDepartment of Chemistry, University at Buffalo, Buffalo, New York, 14260, USA
*Correspondence e-mail: evgeniio@buffalo.edu
Two structurally different metal–organic frameworks based on Sr2+ ions and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene linkers have been synthesized solvothermally in different solvent systems and studied with single-crystal X-ray diffraction technique. These are poly[[μ12-4,4′,4′′,4′′′-(benzene-1,2,4,5-tetrayl)tetrabenzoato](dimethylformamide)distrontium(II)], [Sr2(C34H18O8)(C3H7NO)2]n, and poly[tetraaqua{μ2-4,4′-[4,5-bis(4-carboxyphenyl)benzene-1,2-diyl]dibenzoato}tristrontium(II)], [Sr3(C34H20O8)2(H2O)4]. The differences are noted between the crystal structures and coordination modes of these two MOFs, which are responsible for their semiconductor properties, where structural control over the bandgap is desirable. Hydrogen bonding is present in only one of the compounds, suggesting it has a slightly higher structural stability.
1. Chemical context
Porous crystalline networks based on metal ion-coordinated organic ligands, known as metal–organic frameworks (MOFs), have been an object of extensive studies for the past two decades. Such interest in these materials can be attributed to their fascinating properties and potential applications in a wide range of areas – from luminescent lighting and sensing to gas storage, to semiconductors (Kreno et al. 2012; Zhou et al. 2012; Furukawa et al. 2013; Gassensmith et al. 2014). Their intrinsically unlimited structural and compositional diversity allows the design of structures with virtually any desirable properties. Belonging to the class of coordination compounds, MOFs naturally tend to work particularly well when synthesized with transition-metal-ion centers, yet they still suffer from several drawbacks, namely the decreased stability, toxicity and relatively high cost of manufacture. In recent years, a new class of alkaline-metal-based MOFs has arisen, providing a solution for the aforementioned problems. Abundant in Earth's crust and generally non-toxic, ions of Ca, Sr and Ba, for example, have been reported to provide a structurally rich array of compounds with increased stability and unique properties (Kundu et al. 2012). Strontium to date has been a more `exotic' choice in MOF design, with very few structures synthesized and studied. Still, several reports have recently indicated the possibility of Sr–MOF design, which yields structures with unique luminescent (Jia et al. 2017) and semiconducting (Usman et al. 2015) properties, the latter being relatively rare for MOFs and of great interest.
In this work two metal–organic complexes have been synthesized from strontium nitrate as metal Synthesis and crystallization). For reference purposes these are labeled as MOF1 and MOF2, for the dimethylformamide (DMF) and non-DMF containing products, poly[[μ12-4,4′,4′′,4′′′-(benzene-1,2,4,5-tetrayl)tetrabenzoato](dimethylformamide)distrontium(II)] and poly[tetraaqua[μ2-4,5-bis(4-carboxyphenyl)-4,4′-(benzene-1,2-diyl)dibenzoato]tristrontium(II)], respectively.
and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene as linker under slightly different synthetic conditions (see2. Structural commentary
Fig. 1 illustrates the molecular structures of MOF1 and MOF2, specifically their asymmetric units. Selected bond lengths are summarized in Tables 1 and 2. In both complexes, an Sr atom with an O7 coordination set is present; however, in MOF2 the contains two Sr atoms, one seven- and the other eight-coordinated. In MOF1, the O7 set comprises six O atoms belonging to the carboxyl groups of the ligands (O1–O4) and one atom (O5) belonging to a DMF molecule. In MOF2, the seven-coordinated Sr atom is surrounded by five oxygens of carboxyl groups (O4–O7, O9) and two oxygens of water molecules (O8 and O10). The other Sr atom coordinates eight oxygen atoms somewhat similarly: two from water (O8) and six from the carboxyl groups of the ligands (O5–O7). The multidentate nature of the 1,2,4,5-tetrakis(4-carboxyphenyl)benzene ligand, together with the high of the Sr atom, results in an interesting structure for both complexes.
|
The coordination environments of the Sr ions for both complexes are presented in Fig. 2. It can be seen that in MOF1 all available oxygen atoms are coordinated to a metal center, thus all carboxyl groups in the ligands participate in the coordination.
In MOF2, atoms O1–O3 are not involved in coordination. While this fact leaves one of the four carboxyl groups (the O1–C1–O2 group) uncoordinated, it does receive some degree of additional stability from hydrogen bonding via the O1 atom (see Supramolecular features for more details). The remaining O2 atom shows some degree of disorder due to vibration.
3. Supramolecular features
. The packing of MOF1 is shown in Fig. 3. While the abundance of carboxyl groups in the ligand provides a lot of potential for hydrogen-bonding sites, only MOF2 exhibits such interactions (Table 3). Four inequivalent hydrogen bonds of the type O—H⋯O are found in the crystal packing (Fig. 4), which are likely to contribute to additional structural stability compared to MOF1, which is lacking these or any other specific interactions. That said, three out of the four hydrogen bonds in MOF2 stabilize the water molecule rather than the directly
4. Database survey
No entries were found in the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016) for metal–organic frameworks with the same metal–ligand combination as in the title compounds. For MOFs based on the title ligand, shown in the scheme below, and different metal ions, the search yielded eleven matches, among which ions of such metals as Cu, Mg, Zn, Co and Bi were present. The of the pure ligand (ZARXOI; Hisaki et al. 2017), shown below, was also found during the search.
The ligand crystallizes in the orthorhombic system in Pbcn. MOFs with this linker, however, prefer the triclinic P, with some exceptions (see Table 4).
|
The dihedral angles between the phenyl rings and the central benzene moiety in the ligand are nearly equal: two pairs of 52.66 (18)° and two pairs of 51.05 (18)°. In MOF1, the pairwise equality of these angles is conserved; however, both sets of phenyl rings experience significant twists, being 38.08 (11) and 57.88 (11)°, respectively, for each pair. In MOF2, an even larger difference is observed, with dihedral angles of 47.44 (8), 60.17 (8), 60.49 (8) and 70.64 (8)° being found between the rings.
5. Synthesis and crystallization
MOF1 was synthesized as follows. Strontium nitrate (0.0212 g, 0.1 mmol), and 1,2,4,5-tetrakis(4-carboxyphenyl) benzene (0.0558 g, 0.1 mmol) were measured, placed in a beaker and dissolved in a mixture of DMF (3 mL) and water (3 mL). The solution was stirred, transferred to a Teflon-lined autoclave and sealed in a reactor, which was placed in the oven at 393 K for 120 h. The autoclave was removed from the oven and allowed to cool to room temperature.
The procedure for MOF2 differed slightly. The same amounts of the metal precursor and ligand were placed in a beaker and dissolved in a mixture of ethanol (3 mL) and water (3 mL). The solution was stirred, transferred to a Teflon-lined autoclave and sealed in a reactor, which was placed in the oven at 393 K for 120 h. The autoclave was removed from the oven and allowed to cool to room temperature.
After each synthesis, the white crystals of the products were washed with methanol and collected by means of vacuum filtration into a capped vial. An important aspect of this study is the demonstrated possibility of structural control over Sr-based MOFs via slight changes in the synthesis conditions. This may be particularly important for semiconducting MOFs, where a structurally tuned bandgap may be desirable.
6. Powder X-ray diffraction
In order to identify any potential byproducts or starting materials within the bulk material of MOF2, PXRD was conducted using a conventional Bragg–Brentano PXRD instrument. A Pawley fit shows only one crystalline phase (Fig. 5), and this crystalline phase corresponds to the desired product as it has similar lattice parameters to the single crystal with only a minor increase of 7 Å3 of the total unit-cell volume from the single crystal to bulk solid at RT. The resulting lattice parameters for MOF2 from PXRD are a = 9.274 (1), b = 11.391 (1), c = 19.274 (3) Å, α = 80.38 (1), β = 82.04 (1), γ = 86.11 (1)°, V = 1986.3 Å3. Unfortunately, in the case of MOF1, an analysis by PXRD reveals the phases for MOF1 and MOF2 in the same bulk material (Fig. 6), as in order to do a Pawley fit for this sample both structures are needed. It is possible that for the bulk solid of MOF1 other additional impurities are present as a few peaks below 10° were not indexed for either MOF1 or MOF2 (Fig. 6).
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model, Uiso(H) = 1.2Ueq(C). All O-bound H atoms were found from difference Fourier maps and freely refined. For MOF2, it was not possible to localize the H atoms at O3 and O6.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989021011361/yk2158sup1.cif
contains datablocks global, MOF2, MOF1. DOI:Structure factors: contains datablock MOF1. DOI: https://doi.org/10.1107/S2056989021011361/yk2158MOF1sup2.hkl
Structure factors: contains datablock MOF2. DOI: https://doi.org/10.1107/S2056989021011361/yk2158MOF2sup3.hkl
For both structures, data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b). Molecular graphics: Mercury (Macrae et al., 2020) for MOF1; OLEX2 (Dolomanov et al., 2009) for MOF2. For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Sr2(C34H18O8)(C3H7NO)2] | F(000) = 884 |
Mr = 875.92 | Dx = 1.634 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.9350 (2) Å | Cell parameters from 9912 reflections |
b = 18.6130 (8) Å | θ = 2.5–30.3° |
c = 16.1256 (7) Å | µ = 3.06 mm−1 |
β = 91.853 (2)° | T = 173 K |
V = 1780.43 (12) Å3 | Needle, colourless |
Z = 2 | 0.41 × 0.12 × 0.10 mm |
Bruker D8 VENTURE diffractometer | 5387 independent reflections |
Radiation source: microfocus sealed tube, sealed tube | 4453 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.092 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 30.4°, θmin = 2.5° |
ω and φ scans, narrow frame width, shutterless | h = −8→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −26→26 |
Tmin = 0.63, Tmax = 0.75 | l = −22→22 |
91152 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 0.87 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
5387 reflections | (Δ/σ)max = 0.002 |
246 parameters | Δρmax = 0.94 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
Experimental. Crystal suitable for X–ray structure determination was selected under the polarizing microscope, covered with Paratone oil and mounted on a goniometer head using Mitegen cryoloop. Experiment was performed at the low temperature. QUINN software was used to calculate optimal data collection strategy. Data were collected till resolution of 0.71 A and were truncated with XPREP till actual observed resolution. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The systematic absences in the diffraction data were consistent for the stated space group. The position of almost all non—hydrogen atoms were found by direct methods. The remaining atoms were located in an alternating series of least–squares cycles on difference Fourier map. All non–hydrogen atoms were refined in full–matrix anisotropic approximation. All hydrogen atoms were placed in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. Final results were tested with CHECKCIF routine and all A–warnings (if any) were addressed on the very top of this file. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 1.26769 (3) | 0.02155 (2) | 0.57357 (2) | 0.00827 (8) | |
O1 | −0.0949 (3) | 0.55858 (9) | 0.06890 (10) | 0.0112 (3) | |
O2 | −0.4151 (3) | 0.55104 (9) | 0.13843 (10) | 0.0136 (3) | |
O3 | 0.6267 (2) | 0.07945 (8) | 0.52809 (10) | 0.0109 (3) | |
O4 | 0.9519 (3) | 0.10863 (9) | 0.59477 (11) | 0.0134 (3) | |
O5 | 1.3861 (3) | 0.09879 (10) | 0.70033 (12) | 0.0221 (4) | |
N1 | 1.3944 (4) | 0.20500 (12) | 0.76924 (15) | 0.0237 (5) | |
C1 | −0.2063 (3) | 0.55326 (11) | 0.13488 (13) | 0.0087 (4) | |
C2 | −0.0700 (3) | 0.54814 (12) | 0.21498 (13) | 0.0091 (4) | |
C3 | 0.1403 (3) | 0.58190 (12) | 0.22287 (13) | 0.0100 (4) | |
H3 | 0.132344 | 0.633313 | 0.205003 | 0.012* | |
C4 | 0.2716 (3) | 0.57343 (12) | 0.29489 (14) | 0.0104 (4) | |
H4 | 0.412954 | 0.597216 | 0.300185 | 0.013* | |
C5 | 0.1993 (4) | 0.53065 (11) | 0.35938 (14) | 0.0094 (4) | |
C6 | −0.0111 (4) | 0.49740 (14) | 0.35140 (14) | 0.0131 (4) | |
H6 | −0.06246 | 0.468151 | 0.395216 | 0.016* | |
C7 | −0.1471 (4) | 0.50652 (13) | 0.27989 (15) | 0.0127 (4) | |
H7 | −0.29139 | 0.484462 | 0.275591 | 0.015* | |
C8 | 0.3496 (4) | 0.51761 (11) | 0.43368 (14) | 0.0094 (4) | |
C9 | 0.4097 (4) | 0.44680 (12) | 0.45112 (14) | 0.0106 (4) | |
H9 | 0.34665 | 0.409848 | 0.417002 | 0.013* | |
C10 | 0.5582 (3) | 0.42735 (11) | 0.51635 (13) | 0.0097 (4) | |
C11 | 0.6141 (4) | 0.35008 (11) | 0.52796 (13) | 0.0096 (4) | |
C12 | 0.8328 (4) | 0.32679 (12) | 0.54984 (15) | 0.0123 (4) | |
H12 | 0.950402 | 0.361023 | 0.557342 | 0.015* | |
C13 | 0.8791 (3) | 0.25430 (12) | 0.56065 (15) | 0.0119 (4) | |
H13 | 1.027204 | 0.239731 | 0.577266 | 0.014* | |
C14 | 0.7129 (3) | 0.20260 (11) | 0.54761 (14) | 0.0097 (4) | |
C15 | 0.4962 (4) | 0.22504 (12) | 0.52379 (16) | 0.0150 (4) | |
H15 | 0.381025 | 0.190494 | 0.513177 | 0.018* | |
C16 | 0.4483 (4) | 0.29796 (12) | 0.51552 (15) | 0.0142 (4) | |
H16 | 0.298689 | 0.312497 | 0.501034 | 0.017* | |
C17 | 0.7695 (3) | 0.12412 (12) | 0.55842 (13) | 0.0089 (4) | |
C18 | 1.2917 (4) | 0.15257 (14) | 0.72679 (16) | 0.0202 (5) | |
H18 | 1.133968 | 0.156933 | 0.71609 | 0.024* | |
C19 | 1.2757 (6) | 0.27042 (18) | 0.7921 (2) | 0.0426 (9) | |
H19A | 1.343578 | 0.311797 | 0.764847 | 0.064* | |
H19B | 1.287327 | 0.276823 | 0.852445 | 0.064* | |
H19C | 1.116626 | 0.266555 | 0.774482 | 0.064* | |
C20 | 1.6365 (5) | 0.20386 (19) | 0.7840 (2) | 0.0397 (8) | |
H20A | 1.702782 | 0.247421 | 0.760936 | 0.06* | |
H20B | 1.700094 | 0.161503 | 0.757298 | 0.06* | |
H20C | 1.670376 | 0.20188 | 0.843878 | 0.06* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.00658 (11) | 0.00830 (11) | 0.00978 (12) | 0.00054 (6) | −0.00196 (7) | −0.00102 (7) |
O1 | 0.0118 (7) | 0.0121 (8) | 0.0096 (7) | −0.0008 (6) | 0.0000 (6) | −0.0014 (6) |
O2 | 0.0084 (7) | 0.0193 (9) | 0.0128 (8) | 0.0002 (6) | −0.0036 (6) | −0.0017 (6) |
O3 | 0.0109 (7) | 0.0073 (7) | 0.0142 (8) | −0.0020 (6) | −0.0014 (6) | −0.0011 (6) |
O4 | 0.0104 (7) | 0.0106 (8) | 0.0188 (8) | 0.0039 (6) | −0.0041 (6) | −0.0012 (6) |
O5 | 0.0218 (9) | 0.0208 (10) | 0.0232 (10) | 0.0048 (7) | −0.0053 (7) | −0.0092 (7) |
N1 | 0.0247 (11) | 0.0178 (11) | 0.0283 (12) | 0.0004 (9) | −0.0026 (9) | −0.0089 (9) |
C1 | 0.0104 (9) | 0.0064 (10) | 0.0092 (9) | −0.0007 (7) | −0.0022 (7) | −0.0014 (7) |
C2 | 0.0094 (9) | 0.0091 (10) | 0.0088 (9) | 0.0023 (8) | −0.0018 (7) | −0.0026 (8) |
C3 | 0.0099 (9) | 0.0086 (9) | 0.0115 (10) | 0.0006 (7) | −0.0021 (8) | −0.0002 (8) |
C4 | 0.0080 (9) | 0.0099 (10) | 0.0131 (10) | −0.0008 (7) | −0.0038 (7) | −0.0013 (8) |
C5 | 0.0111 (10) | 0.0072 (10) | 0.0096 (10) | 0.0017 (7) | −0.0038 (8) | −0.0007 (7) |
C6 | 0.0143 (10) | 0.0132 (10) | 0.0118 (11) | −0.0032 (9) | −0.0015 (8) | 0.0030 (9) |
C7 | 0.0094 (9) | 0.0141 (11) | 0.0146 (11) | −0.0023 (8) | −0.0010 (8) | −0.0003 (9) |
C8 | 0.0094 (9) | 0.0090 (10) | 0.0095 (10) | 0.0017 (7) | −0.0030 (8) | 0.0020 (7) |
C9 | 0.0134 (9) | 0.0083 (10) | 0.0098 (10) | 0.0002 (8) | −0.0048 (8) | −0.0007 (8) |
C10 | 0.0114 (9) | 0.0083 (10) | 0.0093 (10) | 0.0000 (7) | −0.0017 (7) | 0.0001 (7) |
C11 | 0.0121 (9) | 0.0053 (9) | 0.0112 (10) | 0.0017 (7) | −0.0031 (7) | 0.0004 (7) |
C12 | 0.0113 (10) | 0.0063 (10) | 0.0193 (11) | −0.0017 (8) | −0.0015 (8) | 0.0009 (8) |
C13 | 0.0071 (9) | 0.0090 (10) | 0.0195 (11) | 0.0022 (7) | −0.0032 (8) | −0.0004 (8) |
C14 | 0.0095 (9) | 0.0074 (9) | 0.0122 (10) | 0.0015 (7) | −0.0011 (8) | 0.0001 (8) |
C15 | 0.0110 (10) | 0.0090 (10) | 0.0246 (12) | −0.0023 (8) | −0.0047 (9) | 0.0012 (9) |
C16 | 0.0091 (9) | 0.0083 (10) | 0.0249 (12) | −0.0004 (7) | −0.0045 (8) | 0.0020 (9) |
C17 | 0.0115 (9) | 0.0085 (10) | 0.0067 (9) | −0.0005 (7) | 0.0007 (7) | −0.0009 (7) |
C18 | 0.0186 (11) | 0.0243 (13) | 0.0172 (12) | 0.0013 (10) | −0.0056 (9) | −0.0056 (10) |
C19 | 0.0467 (19) | 0.0247 (16) | 0.056 (2) | 0.0092 (14) | −0.0039 (16) | −0.0189 (16) |
C20 | 0.0273 (15) | 0.0388 (19) | 0.053 (2) | −0.0104 (13) | −0.0019 (14) | −0.0190 (16) |
Sr1—O4 | 2.5094 (15) | C5—C8 | 1.490 (3) |
Sr1—O2i | 2.5170 (16) | C6—C7 | 1.396 (3) |
Sr1—O3ii | 2.5180 (15) | C6—H6 | 0.95 |
Sr1—O5 | 2.5780 (18) | C7—H7 | 0.95 |
Sr1—O1iii | 2.5792 (16) | C8—C9 | 1.392 (3) |
Sr1—O3iv | 2.5848 (16) | C8—C10vii | 1.403 (3) |
Sr1—O1v | 2.6176 (16) | C9—C10 | 1.398 (3) |
Sr1—C3v | 3.193 (2) | C9—H9 | 0.95 |
Sr1—C1v | 3.318 (2) | C10—C11 | 1.487 (3) |
Sr1—C2v | 3.346 (2) | C11—C16 | 1.392 (3) |
Sr1—Sr1vi | 3.7817 (4) | C11—C12 | 1.402 (3) |
Sr1—Sr1iv | 3.9854 (4) | C12—C13 | 1.387 (3) |
O1—C1 | 1.274 (3) | C12—H12 | 0.95 |
O2—C1 | 1.243 (2) | C13—C14 | 1.389 (3) |
O3—C17 | 1.274 (3) | C13—H13 | 0.95 |
O4—C17 | 1.248 (2) | C14—C15 | 1.394 (3) |
O5—C18 | 1.230 (3) | C14—C17 | 1.508 (3) |
N1—C18 | 1.329 (3) | C15—C16 | 1.392 (3) |
N1—C20 | 1.449 (4) | C15—H15 | 0.95 |
N1—C19 | 1.460 (4) | C16—H16 | 0.95 |
C1—C2 | 1.505 (3) | C18—H18 | 0.95 |
C2—C7 | 1.391 (3) | C19—H19A | 0.98 |
C2—C3 | 1.399 (3) | C19—H19B | 0.98 |
C3—C4 | 1.387 (3) | C19—H19C | 0.98 |
C3—H3 | 1.0 | C20—H20A | 0.98 |
C4—C5 | 1.389 (3) | C20—H20B | 0.98 |
C4—H4 | 0.95 | C20—H20C | 0.98 |
C5—C6 | 1.396 (3) | ||
O4—Sr1—O2i | 147.34 (5) | C20—N1—C19 | 117.0 (2) |
O4—Sr1—O3ii | 113.95 (5) | O2—C1—O1 | 125.8 (2) |
O2i—Sr1—O3ii | 73.87 (5) | O2—C1—C2 | 117.87 (19) |
O4—Sr1—O5 | 73.58 (5) | O1—C1—C2 | 116.28 (18) |
O2i—Sr1—O5 | 77.82 (6) | O2—C1—Sr1ix | 148.85 (15) |
O3ii—Sr1—O5 | 77.34 (6) | O1—C1—Sr1ix | 46.87 (10) |
O4—Sr1—O1iii | 70.83 (5) | C2—C1—Sr1ix | 77.98 (11) |
O2i—Sr1—O1iii | 141.62 (5) | C7—C2—C3 | 119.7 (2) |
O3ii—Sr1—O1iii | 86.67 (5) | C7—C2—C1 | 120.01 (19) |
O5—Sr1—O1iii | 130.36 (5) | C3—C2—C1 | 120.18 (19) |
O4—Sr1—O3iv | 138.90 (5) | C7—C2—Sr1ix | 121.05 (15) |
O2i—Sr1—O3iv | 71.32 (5) | C3—C2—Sr1ix | 71.58 (12) |
O3ii—Sr1—O3iv | 84.36 (5) | C1—C2—Sr1ix | 75.93 (11) |
O5—Sr1—O3iv | 147.47 (5) | C4—C3—C2 | 120.0 (2) |
O1iii—Sr1—O3iv | 74.15 (5) | C4—C3—Sr1ix | 115.00 (14) |
O4—Sr1—O1v | 75.82 (5) | C2—C3—Sr1ix | 83.85 (13) |
O2i—Sr1—O1v | 108.02 (5) | C4—C3—H3 | 111.7 |
O3ii—Sr1—O1v | 159.75 (5) | C2—C3—H3 | 111.7 |
O5—Sr1—O1v | 122.91 (6) | Sr1ix—C3—H3 | 111.7 |
O1iii—Sr1—O1v | 79.85 (5) | C3—C4—C5 | 120.90 (19) |
O3iv—Sr1—O1v | 77.49 (5) | C3—C4—H4 | 119.5 |
O4—Sr1—C3v | 95.21 (6) | C5—C4—H4 | 119.5 |
O2i—Sr1—C3v | 63.58 (5) | C4—C5—C6 | 118.8 (2) |
O3ii—Sr1—C3v | 134.51 (5) | C4—C5—C8 | 120.27 (19) |
O5—Sr1—C3v | 78.67 (6) | C6—C5—C8 | 120.8 (2) |
O1iii—Sr1—C3v | 137.38 (5) | C5—C6—C7 | 120.9 (2) |
O3iv—Sr1—C3v | 96.19 (5) | C5—C6—H6 | 119.5 |
O1v—Sr1—C3v | 57.55 (5) | C7—C6—H6 | 119.5 |
O4—Sr1—C1v | 65.57 (5) | C2—C7—C6 | 119.6 (2) |
O2i—Sr1—C1v | 106.31 (5) | C2—C7—H7 | 120.2 |
O3ii—Sr1—C1v | 179.38 (5) | C6—C7—H7 | 120.2 |
O5—Sr1—C1v | 102.11 (6) | C9—C8—C10vii | 118.86 (19) |
O1iii—Sr1—C1v | 93.50 (5) | C9—C8—C5 | 117.35 (19) |
O3iv—Sr1—C1v | 96.26 (5) | C10vii—C8—C5 | 123.70 (18) |
O1v—Sr1—C1v | 20.81 (5) | C8—C9—C10 | 123.3 (2) |
C3v—Sr1—C1v | 45.45 (5) | C8—C9—H9 | 118.4 |
O4—Sr1—C2v | 72.01 (5) | C10—C9—H9 | 118.4 |
O2i—Sr1—C2v | 88.00 (5) | C9—C10—C8vii | 117.9 (2) |
O3ii—Sr1—C2v | 153.58 (5) | C9—C10—C11 | 118.56 (19) |
O5—Sr1—C2v | 80.19 (6) | C8vii—C10—C11 | 123.55 (19) |
O1iii—Sr1—C2v | 118.76 (5) | C16—C11—C12 | 117.72 (19) |
O3iv—Sr1—C2v | 108.25 (5) | C16—C11—C10 | 120.14 (19) |
O1v—Sr1—C2v | 44.66 (5) | C12—C11—C10 | 122.13 (19) |
C3v—Sr1—C2v | 24.57 (5) | C13—C12—C11 | 120.7 (2) |
C1v—Sr1—C2v | 26.10 (5) | C13—C12—H12 | 119.7 |
O4—Sr1—Sr1vi | 141.76 (4) | C11—C12—H12 | 119.7 |
O2i—Sr1—Sr1vi | 66.18 (4) | C12—C13—C14 | 121.19 (19) |
O3ii—Sr1—Sr1vi | 42.86 (4) | C12—C13—H13 | 119.4 |
O5—Sr1—Sr1vi | 115.48 (4) | C14—C13—H13 | 119.4 |
O1iii—Sr1—Sr1vi | 76.98 (3) | C13—C14—C15 | 118.6 (2) |
O3iv—Sr1—Sr1vi | 41.50 (3) | C13—C14—C17 | 119.93 (18) |
O1v—Sr1—Sr1vi | 118.46 (4) | C15—C14—C17 | 121.48 (19) |
C3v—Sr1—Sr1vi | 122.72 (4) | C16—C15—C14 | 120.1 (2) |
C1v—Sr1—Sr1vi | 137.76 (4) | C16—C15—H15 | 119.9 |
C2v—Sr1—Sr1vi | 144.14 (4) | C14—C15—H15 | 119.9 |
O4—Sr1—Sr1iv | 68.07 (4) | C11—C16—C15 | 121.6 (2) |
O2i—Sr1—Sr1iv | 135.27 (4) | C11—C16—H16 | 119.2 |
O3ii—Sr1—Sr1iv | 125.35 (4) | C15—C16—H16 | 119.2 |
O5—Sr1—Sr1iv | 140.89 (4) | O4—C17—O3 | 125.9 (2) |
O1iii—Sr1—Sr1iv | 40.28 (4) | O4—C17—C14 | 117.70 (19) |
O3iv—Sr1—Sr1iv | 71.39 (3) | O3—C17—C14 | 116.42 (18) |
O1v—Sr1—Sr1iv | 39.57 (3) | O5—C18—N1 | 124.8 (2) |
C3v—Sr1—Sr1iv | 97.11 (4) | O5—C18—H18 | 117.6 |
C1v—Sr1—Sr1iv | 54.94 (4) | N1—C18—H18 | 117.6 |
C2v—Sr1—Sr1iv | 81.03 (4) | N1—C19—H19A | 109.5 |
Sr1vi—Sr1—Sr1iv | 99.625 (9) | N1—C19—H19B | 109.5 |
C1—O1—Sr1viii | 121.40 (13) | H19A—C19—H19B | 109.5 |
C1—O1—Sr1ix | 112.32 (13) | N1—C19—H19C | 109.5 |
Sr1viii—O1—Sr1ix | 100.15 (5) | H19A—C19—H19C | 109.5 |
C1—O2—Sr1x | 137.05 (15) | H19B—C19—H19C | 109.5 |
C17—O3—Sr1xi | 136.59 (14) | N1—C20—H20A | 109.5 |
C17—O3—Sr1iv | 123.11 (13) | N1—C20—H20B | 109.5 |
Sr1xi—O3—Sr1iv | 95.64 (5) | H20A—C20—H20B | 109.5 |
C17—O4—Sr1 | 136.51 (15) | N1—C20—H20C | 109.5 |
C18—O5—Sr1 | 127.84 (16) | H20A—C20—H20C | 109.5 |
C18—N1—C20 | 120.6 (2) | H20B—C20—H20C | 109.5 |
C18—N1—C19 | 121.7 (2) |
Symmetry codes: (i) x+2, −y+1/2, z+1/2; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+2, −y, −z+1; (v) x+1, −y+1/2, z+1/2; (vi) −x+3, −y, −z+1; (vii) −x+1, −y+1, −z+1; (viii) −x+1, y+1/2, −z+1/2; (ix) x−1, −y+1/2, z−1/2; (x) x−2, −y+1/2, z−1/2; (xi) x−1, y, z. |
[Sr3(C34H20O8)2(H2O)4] | Z = 1 |
Mr = 1445.91 | F(000) = 728 |
Triclinic, P1 | Dx = 1.213 Mg m−3 |
a = 9.240 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.330 (4) Å | Cell parameters from 6851 reflections |
c = 19.414 (7) Å | θ = 2.2–29.5° |
α = 80.147 (6)° | µ = 2.08 mm−1 |
β = 81.815 (7)° | T = 100 K |
γ = 85.494 (7)° | Block, colourless |
V = 1979.1 (12) Å3 | 0.4 × 0.3 × 0.2 mm |
Bruker APEXII CCD diffractometer | 9468 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.027 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 29.6°, θmin = 1.1° |
Tmin = 0.636, Tmax = 0.746 | h = −12→12 |
33795 measured reflections | k = −15→15 |
10986 independent reflections | l = −26→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0478P)2 + 0.5586P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.003 |
10986 reflections | Δρmax = 0.58 e Å−3 |
429 parameters | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.500000 | 0.000000 | 1.000000 | 0.01031 (5) | |
Sr2 | 0.15862 (2) | 0.96611 (2) | 0.90833 (2) | 0.01075 (5) | |
O4 | 0.77813 (13) | 0.93490 (11) | 0.22606 (6) | 0.0152 (2) | |
O9 | 0.96489 (13) | 0.12177 (11) | 0.95084 (6) | 0.0146 (2) | |
O7 | 0.72246 (13) | 0.11703 (11) | 0.97587 (6) | 0.0160 (2) | |
O8 | 0.68307 (14) | −0.14150 (11) | 1.06935 (7) | 0.0162 (2) | |
O1 | 0.76027 (14) | 0.07521 (11) | 0.32051 (7) | 0.0181 (3) | |
H1 | 0.782266 | 0.034447 | 0.287841 | 0.027* | |
O3 | 0.66572 (15) | 0.77992 (12) | 0.20373 (6) | 0.0200 (3) | |
O5 | 0.43315 (14) | 0.91708 (13) | 0.88233 (7) | 0.0227 (3) | |
O6 | 0.65612 (14) | 0.87652 (13) | 0.91244 (7) | 0.0234 (3) | |
O10 | −0.06290 (16) | 0.93714 (14) | 0.85044 (8) | 0.0241 (3) | |
H10A | −0.043 (3) | 0.902 (3) | 0.8154 (17) | 0.048 (8)* | |
H10B | −0.144 (4) | 0.926 (3) | 0.8668 (17) | 0.055 (10)* | |
C24 | 0.72064 (18) | 0.70771 (15) | 0.81898 (9) | 0.0136 (3) | |
H24 | 0.784204 | 0.706162 | 0.853560 | 0.016* | |
C32 | 0.83640 (18) | 0.15159 (14) | 0.93521 (8) | 0.0111 (3) | |
C28 | 0.77431 (18) | 0.37379 (14) | 0.73685 (8) | 0.0113 (3) | |
C8 | 0.76849 (18) | 0.44315 (15) | 0.53917 (8) | 0.0119 (3) | |
C22 | 0.59333 (18) | 0.78304 (15) | 0.82027 (9) | 0.0141 (3) | |
C26 | 0.75375 (18) | 0.44479 (15) | 0.66608 (8) | 0.0121 (3) | |
C9 | 0.72867 (18) | 0.56715 (15) | 0.52837 (8) | 0.0126 (3) | |
C31 | 0.81624 (18) | 0.23133 (14) | 0.86662 (8) | 0.0111 (3) | |
C3 | 0.7261 (2) | 0.20327 (16) | 0.43041 (9) | 0.0172 (3) | |
H3 | 0.665755 | 0.138070 | 0.433079 | 0.021* | |
O2 | 0.9557 (2) | 0.1732 (2) | 0.26628 (10) | 0.0622 (7) | |
C25 | 0.75471 (18) | 0.63506 (15) | 0.76738 (9) | 0.0136 (3) | |
H25 | 0.840320 | 0.582839 | 0.767753 | 0.016* | |
C23 | 0.55765 (18) | 0.86423 (15) | 0.87496 (8) | 0.0141 (3) | |
C27 | 0.78312 (18) | 0.38512 (15) | 0.60765 (8) | 0.0122 (3) | |
H27 | 0.813999 | 0.302461 | 0.614792 | 0.015* | |
C19 | 0.66454 (19) | 0.63775 (15) | 0.71480 (8) | 0.0137 (3) | |
C10 | 0.72208 (19) | 0.63780 (15) | 0.45634 (8) | 0.0131 (3) | |
C2 | 0.83334 (19) | 0.22956 (16) | 0.37336 (9) | 0.0167 (3) | |
C4 | 0.7072 (2) | 0.27333 (15) | 0.48400 (9) | 0.0178 (3) | |
H4 | 0.633945 | 0.254908 | 0.523206 | 0.021* | |
C14 | 0.71919 (18) | 0.83331 (15) | 0.24491 (8) | 0.0132 (3) | |
C5 | 0.79416 (18) | 0.36995 (15) | 0.48094 (8) | 0.0123 (3) | |
C29 | 0.91564 (19) | 0.33494 (16) | 0.75236 (9) | 0.0173 (3) | |
H29 | 0.997989 | 0.355855 | 0.718369 | 0.021* | |
C15 | 0.81029 (19) | 0.80003 (15) | 0.36476 (9) | 0.0150 (3) | |
H15 | 0.872451 | 0.864866 | 0.349027 | 0.018* | |
C13 | 0.71811 (18) | 0.76987 (15) | 0.31994 (8) | 0.0123 (3) | |
C18 | 0.70443 (18) | 0.56721 (15) | 0.65602 (8) | 0.0134 (3) | |
C16 | 0.8109 (2) | 0.73478 (15) | 0.43264 (9) | 0.0155 (3) | |
H16 | 0.872478 | 0.756600 | 0.463100 | 0.019* | |
C30 | 0.93634 (19) | 0.26586 (16) | 0.81727 (9) | 0.0172 (3) | |
H30 | 1.032707 | 0.242259 | 0.827861 | 0.021* | |
C34 | 0.65490 (19) | 0.34253 (17) | 0.78723 (9) | 0.0185 (4) | |
H34 | 0.558826 | 0.370510 | 0.777976 | 0.022* | |
C12 | 0.62771 (19) | 0.67390 (16) | 0.34409 (9) | 0.0156 (3) | |
H12 | 0.564385 | 0.653273 | 0.314045 | 0.019* | |
C17 | 0.69599 (19) | 0.62599 (15) | 0.58677 (9) | 0.0143 (3) | |
H17 | 0.666923 | 0.709008 | 0.579356 | 0.017* | |
C11 | 0.62918 (19) | 0.60830 (16) | 0.41139 (9) | 0.0162 (3) | |
H11 | 0.567156 | 0.543338 | 0.426989 | 0.019* | |
C33 | 0.67545 (19) | 0.27033 (17) | 0.85127 (9) | 0.0178 (4) | |
H33 | 0.592974 | 0.247482 | 0.884745 | 0.021* | |
C21 | 0.5004 (2) | 0.78371 (19) | 0.76956 (10) | 0.0247 (4) | |
H21 | 0.412135 | 0.832720 | 0.770910 | 0.030* | |
C1 | 0.8559 (2) | 0.15670 (18) | 0.31465 (10) | 0.0227 (4) | |
C20 | 0.5364 (2) | 0.71297 (19) | 0.71694 (10) | 0.0251 (4) | |
H20 | 0.473320 | 0.715635 | 0.682029 | 0.030* | |
C6 | 0.9027 (2) | 0.3952 (2) | 0.42362 (10) | 0.0250 (4) | |
H6 | 0.963271 | 0.460333 | 0.420742 | 0.030* | |
C7 | 0.9219 (2) | 0.3245 (2) | 0.37053 (11) | 0.0321 (5) | |
H7 | 0.996586 | 0.341418 | 0.331808 | 0.039* | |
H8A | 0.737 (3) | −0.194 (2) | 1.0494 (13) | 0.032 (7)* | |
H8B | 0.672 (3) | −0.173 (2) | 1.1116 (15) | 0.034 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.01136 (10) | 0.01259 (10) | 0.00711 (9) | −0.00104 (7) | −0.00067 (7) | −0.00224 (7) |
Sr2 | 0.01190 (7) | 0.01228 (8) | 0.00779 (7) | 0.00083 (5) | −0.00211 (5) | −0.00080 (5) |
O4 | 0.0191 (6) | 0.0167 (6) | 0.0094 (5) | −0.0026 (5) | −0.0017 (4) | −0.0003 (5) |
O9 | 0.0140 (6) | 0.0154 (6) | 0.0135 (6) | 0.0022 (5) | −0.0041 (4) | 0.0009 (5) |
O7 | 0.0164 (6) | 0.0202 (6) | 0.0104 (5) | −0.0057 (5) | −0.0031 (5) | 0.0032 (5) |
O8 | 0.0196 (6) | 0.0158 (6) | 0.0113 (6) | 0.0006 (5) | −0.0017 (5) | 0.0023 (5) |
O1 | 0.0250 (7) | 0.0169 (6) | 0.0146 (6) | −0.0032 (5) | −0.0023 (5) | −0.0074 (5) |
O3 | 0.0294 (7) | 0.0219 (6) | 0.0099 (6) | −0.0098 (5) | −0.0066 (5) | 0.0007 (5) |
O5 | 0.0202 (6) | 0.0334 (8) | 0.0147 (6) | 0.0106 (6) | −0.0026 (5) | −0.0097 (5) |
O6 | 0.0170 (6) | 0.0361 (8) | 0.0216 (7) | −0.0007 (6) | −0.0016 (5) | −0.0184 (6) |
O10 | 0.0168 (7) | 0.0388 (8) | 0.0207 (7) | −0.0069 (6) | −0.0011 (6) | −0.0146 (6) |
C24 | 0.0146 (7) | 0.0166 (8) | 0.0105 (7) | −0.0002 (6) | −0.0029 (6) | −0.0037 (6) |
C32 | 0.0174 (8) | 0.0080 (7) | 0.0085 (7) | −0.0005 (6) | −0.0037 (6) | −0.0008 (6) |
C28 | 0.0176 (8) | 0.0104 (7) | 0.0057 (7) | −0.0017 (6) | −0.0023 (6) | 0.0002 (6) |
C8 | 0.0138 (7) | 0.0146 (8) | 0.0077 (7) | −0.0028 (6) | −0.0004 (6) | −0.0029 (6) |
C22 | 0.0143 (7) | 0.0184 (8) | 0.0100 (7) | 0.0012 (6) | −0.0003 (6) | −0.0054 (6) |
C26 | 0.0144 (7) | 0.0148 (8) | 0.0068 (7) | −0.0014 (6) | −0.0020 (6) | 0.0002 (6) |
C9 | 0.0160 (8) | 0.0148 (8) | 0.0065 (7) | −0.0011 (6) | −0.0023 (6) | 0.0002 (6) |
C31 | 0.0152 (7) | 0.0099 (7) | 0.0080 (7) | −0.0003 (6) | −0.0026 (6) | −0.0001 (6) |
C3 | 0.0218 (9) | 0.0143 (8) | 0.0158 (8) | −0.0054 (7) | 0.0014 (7) | −0.0040 (6) |
O2 | 0.0733 (14) | 0.0800 (14) | 0.0415 (11) | −0.0564 (12) | 0.0388 (10) | −0.0477 (11) |
C25 | 0.0132 (7) | 0.0147 (8) | 0.0125 (7) | 0.0013 (6) | −0.0018 (6) | −0.0024 (6) |
C23 | 0.0157 (8) | 0.0170 (8) | 0.0089 (7) | −0.0005 (6) | 0.0022 (6) | −0.0035 (6) |
C27 | 0.0160 (7) | 0.0109 (7) | 0.0093 (7) | −0.0014 (6) | −0.0018 (6) | 0.0002 (6) |
C19 | 0.0178 (8) | 0.0155 (8) | 0.0074 (7) | 0.0015 (6) | −0.0016 (6) | −0.0021 (6) |
C10 | 0.0183 (8) | 0.0135 (7) | 0.0068 (7) | 0.0030 (6) | −0.0011 (6) | −0.0014 (6) |
C2 | 0.0191 (8) | 0.0215 (9) | 0.0112 (8) | −0.0047 (7) | −0.0007 (6) | −0.0073 (7) |
C4 | 0.0248 (9) | 0.0141 (8) | 0.0132 (8) | −0.0053 (7) | 0.0053 (7) | −0.0032 (6) |
C14 | 0.0152 (7) | 0.0150 (8) | 0.0081 (7) | 0.0009 (6) | −0.0016 (6) | 0.0008 (6) |
C5 | 0.0154 (7) | 0.0135 (7) | 0.0079 (7) | 0.0010 (6) | −0.0028 (6) | −0.0013 (6) |
C29 | 0.0165 (8) | 0.0192 (8) | 0.0121 (8) | 0.0032 (7) | 0.0019 (6) | 0.0036 (6) |
C15 | 0.0201 (8) | 0.0136 (8) | 0.0113 (7) | −0.0024 (6) | −0.0035 (6) | 0.0004 (6) |
C13 | 0.0142 (7) | 0.0147 (7) | 0.0074 (7) | 0.0010 (6) | −0.0014 (6) | −0.0009 (6) |
C18 | 0.0161 (7) | 0.0157 (8) | 0.0091 (7) | 0.0017 (6) | −0.0026 (6) | −0.0042 (6) |
C16 | 0.0228 (8) | 0.0151 (8) | 0.0097 (7) | −0.0015 (7) | −0.0064 (6) | −0.0020 (6) |
C30 | 0.0120 (7) | 0.0218 (9) | 0.0142 (8) | 0.0043 (6) | −0.0007 (6) | 0.0036 (7) |
C34 | 0.0137 (8) | 0.0282 (9) | 0.0122 (8) | −0.0020 (7) | −0.0061 (6) | 0.0045 (7) |
C12 | 0.0164 (8) | 0.0214 (9) | 0.0091 (7) | −0.0042 (7) | −0.0041 (6) | 0.0013 (6) |
C17 | 0.0199 (8) | 0.0128 (7) | 0.0099 (7) | 0.0013 (6) | −0.0030 (6) | −0.0010 (6) |
C11 | 0.0183 (8) | 0.0200 (8) | 0.0094 (7) | −0.0044 (7) | −0.0022 (6) | 0.0018 (6) |
C33 | 0.0135 (8) | 0.0272 (9) | 0.0105 (8) | −0.0048 (7) | −0.0013 (6) | 0.0049 (7) |
C21 | 0.0218 (9) | 0.0350 (11) | 0.0211 (9) | 0.0145 (8) | −0.0103 (7) | −0.0165 (8) |
C1 | 0.0270 (10) | 0.0293 (10) | 0.0146 (8) | −0.0101 (8) | 0.0014 (7) | −0.0111 (7) |
C20 | 0.0263 (10) | 0.0357 (11) | 0.0174 (9) | 0.0144 (8) | −0.0133 (7) | −0.0144 (8) |
C6 | 0.0261 (10) | 0.0342 (11) | 0.0182 (9) | −0.0179 (8) | 0.0082 (7) | −0.0162 (8) |
C7 | 0.0312 (11) | 0.0487 (13) | 0.0207 (10) | −0.0255 (10) | 0.0153 (8) | −0.0223 (10) |
Sr1—Sr2i | 3.9099 (11) | C26—C27 | 1.401 (2) |
Sr1—Sr2ii | 3.9099 (11) | C26—C18 | 1.415 (2) |
Sr1—O7 | 2.4788 (14) | C9—C10 | 1.494 (2) |
Sr1—O7iii | 2.4787 (14) | C9—C17 | 1.397 (2) |
Sr1—O6i | 2.5935 (14) | C31—C30 | 1.393 (2) |
Sr1—O8 | 2.5938 (14) | C31—C33 | 1.397 (2) |
Sr1—O8iii | 2.5938 (13) | C3—H3 | 0.9500 |
Sr1—O5i | 2.7767 (15) | C3—C2 | 1.385 (2) |
Sr1—O5ii | 2.7767 (15) | C3—C4 | 1.397 (2) |
Sr1—O6ii | 2.5935 (14) | O2—C1 | 1.220 (2) |
Sr1—C23i | 3.0535 (18) | C25—H25 | 0.9500 |
Sr1—C23ii | 3.0535 (18) | C25—C19 | 1.402 (2) |
Sr2—Sr2iv | 4.4117 (11) | C27—H27 | 0.9500 |
Sr2—O5 | 2.5510 (16) | C19—C18 | 1.491 (2) |
Sr2—O9v | 2.5646 (13) | C19—C20 | 1.404 (2) |
Sr2—O7ii | 2.6392 (14) | C10—C16 | 1.398 (3) |
Sr2—O4vi | 2.6598 (14) | C10—C11 | 1.403 (2) |
Sr2—O8ii | 2.6849 (15) | C2—C1 | 1.501 (2) |
Sr2—O9ii | 2.8510 (14) | C2—C7 | 1.391 (3) |
Sr2—O10 | 2.5392 (16) | C4—H4 | 0.9500 |
Sr2—C32ii | 3.1066 (18) | C4—C5 | 1.396 (3) |
O4—C14 | 1.286 (2) | C14—C13 | 1.509 (2) |
O9—C32 | 1.273 (2) | C5—C6 | 1.394 (2) |
O7—C32 | 1.268 (2) | C29—H29 | 0.9500 |
O8—H8A | 0.85 (3) | C29—C30 | 1.394 (2) |
O8—H8B | 0.83 (3) | C15—H15 | 0.9500 |
O1—H1 | 0.8400 | C15—C13 | 1.399 (2) |
O1—C1 | 1.308 (2) | C15—C16 | 1.397 (2) |
O3—C14 | 1.255 (2) | C13—C12 | 1.399 (3) |
O5—C23 | 1.256 (2) | C18—C17 | 1.404 (2) |
O6—C23 | 1.273 (2) | C16—H16 | 0.9500 |
O10—H10A | 0.84 (3) | C30—H30 | 0.9500 |
O10—H10B | 0.78 (3) | C34—H34 | 0.9500 |
C24—H24 | 0.9500 | C34—C33 | 1.395 (2) |
C24—C22 | 1.398 (2) | C12—H12 | 0.9500 |
C24—C25 | 1.390 (2) | C12—C11 | 1.390 (2) |
C32—C31 | 1.502 (2) | C17—H17 | 0.9500 |
C28—C26 | 1.498 (2) | C11—H11 | 0.9500 |
C28—C29 | 1.402 (2) | C33—H33 | 0.9500 |
C28—C34 | 1.391 (2) | C21—H21 | 0.9500 |
C8—C9 | 1.412 (2) | C21—C20 | 1.392 (2) |
C8—C27 | 1.399 (2) | C20—H20 | 0.9500 |
C8—C5 | 1.495 (2) | C6—H6 | 0.9500 |
C22—C23 | 1.507 (2) | C6—C7 | 1.394 (3) |
C22—C21 | 1.394 (2) | C7—H7 | 0.9500 |
Sr2ii—Sr1—Sr2i | 180.0 | Sr1—O8—H8B | 128.5 (18) |
O7—Sr1—Sr2i | 138.27 (3) | Sr2ii—O8—H8A | 111.1 (17) |
O7—Sr1—Sr2ii | 41.73 (3) | Sr2ii—O8—H8B | 93.8 (18) |
O7iii—Sr1—Sr2i | 41.73 (3) | H8A—O8—H8B | 103 (2) |
O7iii—Sr1—Sr2ii | 138.27 (3) | C1—O1—H1 | 109.5 |
O7iii—Sr1—O7 | 180.0 | Sr2—O5—Sr1vii | 94.33 (4) |
O7iii—Sr1—O8iii | 77.85 (5) | C23—O5—Sr1vii | 90.30 (10) |
O7iii—Sr1—O8 | 102.15 (5) | C23—O5—Sr2 | 164.35 (13) |
O7—Sr1—O8 | 77.85 (5) | C23—O6—Sr1vii | 98.52 (10) |
O7—Sr1—O8iii | 102.15 (5) | Sr2—O10—H10A | 114 (2) |
O7iii—Sr1—O5i | 66.62 (4) | Sr2—O10—H10B | 131 (2) |
O7iii—Sr1—O5ii | 113.38 (4) | H10A—O10—H10B | 108 (3) |
O7—Sr1—O5ii | 66.62 (4) | C22—C24—H24 | 119.8 |
O7—Sr1—O5i | 113.38 (4) | C25—C24—H24 | 119.8 |
O7iii—Sr1—O6i | 98.62 (5) | C25—C24—C22 | 120.34 (15) |
O7—Sr1—O6i | 81.38 (5) | O9—C32—Sr2ii | 66.58 (9) |
O7—Sr1—O6ii | 98.62 (5) | O9—C32—C31 | 119.81 (15) |
O7iii—Sr1—O6ii | 81.38 (5) | O7—C32—Sr2ii | 56.97 (8) |
O7iii—Sr1—C23i | 81.08 (5) | O7—C32—O9 | 122.40 (15) |
O7—Sr1—C23i | 98.92 (5) | O7—C32—C31 | 117.79 (14) |
O7—Sr1—C23ii | 81.08 (5) | C31—C32—Sr2ii | 167.23 (10) |
O7iii—Sr1—C23ii | 98.92 (5) | C29—C28—C26 | 119.86 (15) |
O8iii—Sr1—Sr2i | 43.11 (3) | C34—C28—C26 | 121.10 (15) |
O8iii—Sr1—Sr2ii | 136.89 (3) | C34—C28—C29 | 119.01 (15) |
O8—Sr1—Sr2ii | 43.11 (3) | C9—C8—C5 | 123.17 (14) |
O8—Sr1—Sr2i | 136.89 (3) | C27—C8—C9 | 118.73 (14) |
O8—Sr1—O8iii | 180.0 | C27—C8—C5 | 118.10 (14) |
O8iii—Sr1—O5ii | 113.92 (4) | C24—C22—C23 | 120.60 (15) |
O8iii—Sr1—O5i | 66.08 (4) | C21—C22—C24 | 119.23 (15) |
O8—Sr1—O5i | 113.92 (4) | C21—C22—C23 | 120.16 (15) |
O8—Sr1—O5ii | 66.08 (4) | C27—C26—C28 | 117.55 (14) |
O8—Sr1—C23ii | 87.51 (5) | C27—C26—C18 | 119.17 (14) |
O8—Sr1—C23i | 92.49 (5) | C18—C26—C28 | 123.26 (14) |
O8iii—Sr1—C23ii | 92.49 (5) | C8—C9—C10 | 122.08 (14) |
O8iii—Sr1—C23i | 87.51 (5) | C17—C9—C8 | 118.99 (14) |
O5ii—Sr1—Sr2i | 139.41 (3) | C17—C9—C10 | 118.92 (15) |
O5i—Sr1—Sr2ii | 139.41 (3) | C30—C31—C32 | 120.86 (14) |
O5ii—Sr1—Sr2ii | 40.59 (3) | C30—C31—C33 | 119.19 (15) |
O5i—Sr1—Sr2i | 40.59 (3) | C33—C31—C32 | 119.94 (15) |
O5ii—Sr1—O5i | 180.0 | C2—C3—H3 | 120.2 |
O5ii—Sr1—C23i | 155.72 (4) | C2—C3—C4 | 119.53 (17) |
O5i—Sr1—C23ii | 155.72 (4) | C4—C3—H3 | 120.2 |
O5ii—Sr1—C23ii | 24.28 (4) | C24—C25—H25 | 119.5 |
O5i—Sr1—C23i | 24.28 (4) | C24—C25—C19 | 120.94 (15) |
O6i—Sr1—Sr2i | 88.58 (4) | C19—C25—H25 | 119.5 |
O6ii—Sr1—Sr2i | 91.42 (4) | O5—C23—Sr1vii | 65.42 (9) |
O6ii—Sr1—Sr2ii | 88.58 (4) | O5—C23—O6 | 122.20 (15) |
O6i—Sr1—Sr2ii | 91.42 (4) | O5—C23—C22 | 119.59 (15) |
O6i—Sr1—O8iii | 107.63 (5) | O6—C23—Sr1vii | 57.14 (8) |
O6ii—Sr1—O8 | 107.63 (5) | O6—C23—C22 | 118.21 (14) |
O6i—Sr1—O8 | 72.37 (5) | C22—C23—Sr1vii | 172.18 (11) |
O6ii—Sr1—O8iii | 72.37 (5) | C8—C27—C26 | 122.21 (15) |
O6i—Sr1—O5i | 48.54 (4) | C8—C27—H27 | 118.9 |
O6i—Sr1—O5ii | 131.46 (4) | C26—C27—H27 | 118.9 |
O6ii—Sr1—O5i | 131.46 (4) | C25—C19—C18 | 121.83 (14) |
O6ii—Sr1—O5ii | 48.54 (4) | C25—C19—C20 | 118.21 (15) |
O6ii—Sr1—O6i | 180.0 | C20—C19—C18 | 119.91 (15) |
O6i—Sr1—C23i | 24.34 (4) | C16—C10—C9 | 119.67 (15) |
O6i—Sr1—C23ii | 155.66 (4) | C16—C10—C11 | 118.95 (15) |
O6ii—Sr1—C23ii | 24.34 (4) | C11—C10—C9 | 121.38 (16) |
O6ii—Sr1—C23i | 155.66 (4) | C3—C2—C1 | 120.94 (17) |
C23i—Sr1—Sr2i | 64.29 (4) | C3—C2—C7 | 119.59 (16) |
C23ii—Sr1—Sr2i | 115.71 (4) | C7—C2—C1 | 119.46 (16) |
C23i—Sr1—Sr2ii | 115.71 (4) | C3—C4—H4 | 119.4 |
C23ii—Sr1—Sr2ii | 64.29 (4) | C5—C4—C3 | 121.16 (16) |
C23ii—Sr1—C23i | 180.0 | C5—C4—H4 | 119.4 |
Sr1vii—Sr2—Sr2iv | 93.96 (3) | O4—C14—C13 | 119.38 (15) |
O4vi—Sr2—Sr1vii | 106.35 (3) | O3—C14—O4 | 123.88 (15) |
O4vi—Sr2—Sr2iv | 137.39 (3) | O3—C14—C13 | 116.68 (15) |
O4vi—Sr2—O9ii | 168.98 (4) | C4—C5—C8 | 119.14 (15) |
O4vi—Sr2—O8ii | 83.07 (4) | C6—C5—C8 | 121.91 (16) |
O4vi—Sr2—C32ii | 166.58 (4) | C6—C5—C4 | 118.95 (16) |
O9v—Sr2—Sr1vii | 105.08 (3) | C28—C29—H29 | 119.7 |
O9ii—Sr2—Sr1vii | 82.69 (3) | C30—C29—C28 | 120.56 (16) |
O9ii—Sr2—Sr2iv | 33.35 (3) | C30—C29—H29 | 119.7 |
O9v—Sr2—Sr2iv | 37.67 (3) | C13—C15—H15 | 120.0 |
O9v—Sr2—O4vi | 100.08 (4) | C16—C15—H15 | 120.0 |
O9v—Sr2—O9ii | 71.01 (4) | C16—C15—C13 | 120.00 (17) |
O9v—Sr2—O7ii | 101.82 (4) | C15—C13—C14 | 121.99 (16) |
O9v—Sr2—O8ii | 76.22 (5) | C12—C13—C14 | 118.85 (15) |
O9ii—Sr2—C32ii | 24.19 (4) | C12—C13—C15 | 119.08 (15) |
O9v—Sr2—C32ii | 88.37 (4) | C26—C18—C19 | 123.52 (14) |
O7ii—Sr2—Sr1vii | 38.69 (3) | C17—C18—C26 | 118.15 (14) |
O7ii—Sr2—Sr2iv | 71.57 (4) | C17—C18—C19 | 118.32 (15) |
O7ii—Sr2—O4vi | 142.86 (4) | C10—C16—H16 | 119.6 |
O7ii—Sr2—O9ii | 47.66 (4) | C15—C16—C10 | 120.86 (16) |
O7ii—Sr2—O8ii | 73.57 (4) | C15—C16—H16 | 119.6 |
O7ii—Sr2—C32ii | 23.75 (4) | C31—C30—C29 | 120.23 (15) |
O8ii—Sr2—Sr1vii | 41.32 (3) | C31—C30—H30 | 119.9 |
O8ii—Sr2—Sr2iv | 88.84 (4) | C29—C30—H30 | 119.9 |
O8ii—Sr2—O9ii | 100.54 (4) | C28—C34—H34 | 119.8 |
O8ii—Sr2—C32ii | 88.92 (4) | C28—C34—C33 | 120.36 (16) |
O5—Sr2—Sr1vii | 45.08 (3) | C33—C34—H34 | 119.8 |
O5—Sr2—Sr2iv | 137.42 (3) | C13—C12—H12 | 119.5 |
O5—Sr2—O4vi | 76.87 (4) | C11—C12—C13 | 120.96 (16) |
O5—Sr2—O9ii | 114.15 (4) | C11—C12—H12 | 119.5 |
O5—Sr2—O9v | 144.28 (4) | C9—C17—C18 | 122.55 (15) |
O5—Sr2—O7ii | 67.83 (4) | C9—C17—H17 | 118.7 |
O5—Sr2—O8ii | 68.06 (5) | C18—C17—H17 | 118.7 |
O5—Sr2—C32ii | 90.17 (4) | C10—C11—H11 | 119.9 |
O10—Sr2—Sr1vii | 178.20 (4) | C12—C11—C10 | 120.14 (17) |
O10—Sr2—Sr2iv | 85.99 (4) | C12—C11—H11 | 119.9 |
O10—Sr2—O4vi | 74.80 (5) | C31—C33—H33 | 119.7 |
O10—Sr2—O9v | 75.95 (5) | C34—C33—C31 | 120.58 (16) |
O10—Sr2—O9ii | 96.32 (5) | C34—C33—H33 | 119.7 |
O10—Sr2—O7ii | 139.82 (5) | C22—C21—H21 | 119.8 |
O10—Sr2—O8ii | 140.46 (5) | C20—C21—C22 | 120.36 (16) |
O10—Sr2—O5 | 134.53 (5) | C20—C21—H21 | 119.8 |
O10—Sr2—C32ii | 117.68 (5) | O1—C1—C2 | 114.09 (16) |
C32ii—Sr2—Sr1vii | 61.05 (3) | O2—C1—O1 | 123.89 (18) |
C32ii—Sr2—Sr2iv | 52.70 (3) | O2—C1—C2 | 122.01 (18) |
C14—O4—Sr2vi | 122.70 (10) | C19—C20—H20 | 119.6 |
Sr2viii—O9—Sr2ii | 108.99 (4) | C21—C20—C19 | 120.87 (16) |
C32—O9—Sr2viii | 131.25 (11) | C21—C20—H20 | 119.6 |
C32—O9—Sr2ii | 89.23 (10) | C5—C6—H6 | 120.2 |
Sr1—O7—Sr2ii | 99.58 (4) | C5—C6—C7 | 119.68 (18) |
C32—O7—Sr1 | 149.74 (11) | C7—C6—H6 | 120.2 |
C32—O7—Sr2ii | 99.28 (10) | C2—C7—C6 | 121.07 (18) |
Sr1—O8—Sr2ii | 95.57 (5) | C2—C7—H7 | 119.5 |
Sr1—O8—H8A | 120.0 (17) | C6—C7—H7 | 119.5 |
Sr1—O7—C32—Sr2ii | −127.9 (2) | C3—C2—C1—O1 | 4.7 (3) |
Sr1—O7—C32—O9 | −114.9 (2) | C3—C2—C1—O2 | −175.1 (2) |
Sr1—O7—C32—C31 | 65.6 (3) | C3—C2—C7—C6 | −1.2 (3) |
Sr1vii—O5—C23—O6 | −6.63 (18) | C3—C4—C5—C8 | 179.25 (16) |
Sr1vii—O5—C23—C22 | 173.24 (14) | C3—C4—C5—C6 | −0.8 (3) |
Sr1vii—O6—C23—O5 | 7.2 (2) | C25—C24—C22—C23 | −178.49 (16) |
Sr1vii—O6—C23—C22 | −172.70 (13) | C25—C24—C22—C21 | 0.5 (3) |
Sr2vi—O4—C14—O3 | −11.3 (2) | C25—C19—C18—C26 | 47.3 (3) |
Sr2vi—O4—C14—C13 | 166.13 (10) | C25—C19—C18—C17 | −131.15 (18) |
Sr2viii—O9—C32—Sr2ii | 114.91 (12) | C25—C19—C20—C21 | 0.5 (3) |
Sr2ii—O9—C32—O7 | −11.91 (16) | C23—C22—C21—C20 | 177.01 (19) |
Sr2viii—O9—C32—O7 | 102.99 (17) | C27—C8—C9—C10 | 175.15 (16) |
Sr2viii—O9—C32—C31 | −77.48 (19) | C27—C8—C9—C17 | −4.1 (2) |
Sr2ii—O9—C32—C31 | 167.61 (13) | C27—C8—C5—C4 | 59.6 (2) |
Sr2ii—O7—C32—O9 | 13.06 (17) | C27—C8—C5—C6 | −120.3 (2) |
Sr2ii—O7—C32—C31 | −166.47 (12) | C27—C26—C18—C19 | 177.53 (16) |
Sr2—O5—C23—Sr1vii | −107.4 (4) | C27—C26—C18—C17 | −4.0 (2) |
Sr2—O5—C23—O6 | −114.0 (4) | C19—C18—C17—C9 | −178.88 (16) |
Sr2—O5—C23—C22 | 65.9 (5) | C10—C9—C17—C18 | −177.77 (16) |
Sr2ii—C32—C31—C30 | 122.0 (5) | C2—C3—C4—C5 | 0.3 (3) |
Sr2ii—C32—C31—C33 | −58.9 (6) | C4—C3—C2—C1 | −179.59 (17) |
O4—C14—C13—C15 | −17.0 (2) | C4—C3—C2—C7 | 0.7 (3) |
O4—C14—C13—C12 | 166.39 (15) | C4—C5—C6—C7 | 0.3 (3) |
O9—C32—C31—C30 | 5.0 (2) | C14—C13—C12—C11 | 176.26 (15) |
O9—C32—C31—C33 | −175.99 (16) | C5—C8—C9—C10 | −5.7 (3) |
O7—C32—C31—C30 | −175.50 (16) | C5—C8—C9—C17 | 175.09 (16) |
O7—C32—C31—C33 | 3.6 (2) | C5—C8—C27—C26 | −176.56 (15) |
O3—C14—C13—C15 | 160.52 (16) | C5—C6—C7—C2 | 0.7 (4) |
O3—C14—C13—C12 | −16.0 (2) | C29—C28—C26—C27 | 69.2 (2) |
C24—C22—C23—O5 | −169.00 (17) | C29—C28—C26—C18 | −111.8 (2) |
C24—C22—C23—O6 | 10.9 (3) | C29—C28—C34—C33 | −2.1 (3) |
C24—C22—C21—C20 | −2.0 (3) | C15—C13—C12—C11 | −0.4 (3) |
C24—C25—C19—C18 | 175.55 (16) | C13—C15—C16—C10 | 1.1 (3) |
C24—C25—C19—C20 | −2.0 (3) | C13—C12—C11—C10 | 0.0 (3) |
C32—C31—C30—C29 | 176.78 (16) | C18—C26—C27—C8 | 1.5 (3) |
C32—C31—C33—C34 | −178.78 (16) | C18—C19—C20—C21 | −177.09 (19) |
C28—C26—C27—C8 | −179.53 (15) | C16—C10—C11—C12 | 0.9 (2) |
C28—C26—C18—C19 | −1.4 (3) | C16—C15—C13—C14 | −176.71 (15) |
C28—C26—C18—C17 | 177.02 (16) | C16—C15—C13—C12 | −0.2 (2) |
C28—C29—C30—C31 | 2.1 (3) | C30—C31—C33—C34 | 0.3 (3) |
C28—C34—C33—C31 | 1.9 (3) | C34—C28—C26—C27 | −108.97 (19) |
C8—C9—C10—C16 | −120.06 (19) | C34—C28—C26—C18 | 70.0 (2) |
C8—C9—C10—C11 | 59.4 (2) | C34—C28—C29—C30 | 0.1 (3) |
C8—C9—C17—C18 | 1.5 (3) | C17—C9—C10—C16 | 59.2 (2) |
C8—C5—C6—C7 | −179.76 (19) | C17—C9—C10—C11 | −121.37 (19) |
C22—C24—C25—C19 | 1.5 (3) | C11—C10—C16—C15 | −1.5 (2) |
C22—C21—C20—C19 | 1.5 (3) | C33—C31—C30—C29 | −2.3 (3) |
C26—C28—C29—C30 | −178.16 (16) | C21—C22—C23—O5 | 12.0 (3) |
C26—C28—C34—C33 | 176.15 (17) | C21—C22—C23—O6 | −168.11 (18) |
C26—C18—C17—C9 | 2.6 (3) | C1—C2—C7—C6 | 179.1 (2) |
C9—C8—C27—C26 | 2.7 (3) | C20—C19—C18—C26 | −135.20 (19) |
C9—C8—C5—C4 | −119.61 (19) | C20—C19—C18—C17 | 46.4 (3) |
C9—C8—C5—C6 | 60.5 (2) | C7—C2—C1—O1 | −175.59 (19) |
C9—C10—C16—C15 | 177.99 (15) | C7—C2—C1—O2 | 4.6 (3) |
C9—C10—C11—C12 | −178.55 (16) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y, −z+2; (iv) −x, −y+2, −z+2; (v) x−1, y+1, z; (vi) −x+1, −y+2, −z+1; (vii) x, y+1, z; (viii) x+1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.79 | 2.6051 (18) | 164 |
O10—H10A···O2ix | 0.84 (3) | 1.97 (3) | 2.795 (2) | 168 (3) |
O10—H10B···O6x | 0.78 (3) | 2.01 (3) | 2.787 (2) | 173 (3) |
O8—H8B···O3xi | 0.83 (3) | 1.77 (3) | 2.5948 (19) | 170 (3) |
Symmetry codes: (i) x, y−1, z; (ix) −x+1, −y+1, −z+1; (x) x−1, y, z; (xi) x, y−1, z+1. |
CSD code | Cation | Coordination number | Space group | Crystal system | Reference |
ATIBUD | Zn2+ | 6 | P1 | triclinic | (Dissem et al. 2021) |
ATICAK | Zn2+ | 6 | P1 | triclinic | (Dissem et al. 2021) |
ATICEO | Zn2+ | 6 | P1 | triclinic | (Dissem et al. 2021) |
ATICIS | Cu2+ | 6 | P1 | triclinic | (Dissem et al. 2021) |
ATICOY | Cu2+ | 6 | P1 | triclinic | (Dissem et al. 2021) |
ATICUE | Cu2+ | 6 | P1 | triclinic | (Dissem et al. 2021) |
FIYDEZ | Co2+ | 6 | I2/a | monoclinic | (Dhankhar & Nagaraja 2019) |
MIFKUJ | Zn2+ | 4 | P1 | triclinic | (Karra et al. 2013) |
MIFLIY | Mg2+ | 6 | C2/2c | monoclinic | (Karra, et al. 2013) |
MIFMIZ | Ni2+ | 6 | P1 | triclinic | (Karra et al. 2013) |
MIHMOI | Bi2+ | 5 | C2/2c | monoclinic | (Köppen et al. 2018) |
Funding information
Funding for this research was provided by: National Science Foundation, PREM (award No. DMR-1523611; award No. DMR-2122108).
References
Bruker (2017). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Dhankhar, S. S. & Nagaraja, C. M. (2019). New J. Chem. 43, 2163–2170. Web of Science CSD CrossRef CAS Google Scholar
Dissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727–8735. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444. Web of Science CrossRef PubMed Google Scholar
Gassensmith, J. J., Kim, J. Y., Holcroft, J. M., Farha, O. K., Stoddart, J. F., Hupp, J. T. & Jeong, N. C. (2014). J. Am. Chem. Soc. 136, 8277–8282. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hisaki, I., Emilya Affendy, N. Q. & Tohnai, N. (2017). CrystEngComm, 19, 4892–4898. Web of Science CSD CrossRef CAS Google Scholar
Jia, Y. Y., Liu, X. T., Wang, W. H., Zhang, L. Z., Zhang, Y. H. & Bu, X. H. (2017). Philos. Transact. Ser. A Math. Phys. Eng. Sci. 375, 2084. Google Scholar
Karra, J. R., Huang, Y.-G. & Walton, K. S. (2013). Cryst. Growth Des. 13, 1075–1081. Web of Science CSD CrossRef CAS Google Scholar
Köppen, M., Meyer, V., Ångström, J., Inge, A. K. & Stock, N. (2018). Cryst. Growth Des. 18, 4060–4067. Google Scholar
Krause, L., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1907–1913. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125. Web of Science CrossRef CAS PubMed Google Scholar
Kundu, T., Sahoo, S. C. & Banerjee, R. (2012). Chem. Commun. 48, 4998–5000. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Usman, M., Mendiratta, S., Batjargal, S., Haider, G., Hayashi, M., Rao Gade, N., Chen, J. W., Chen, Y. F. & Lu, K. L. (2015). Appl. Mater. Interfaces, 7, 22767–22774. Web of Science CSD CrossRef CAS Google Scholar
Zhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673–674. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.