research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two metal–organic frameworks based on Sr2+ and 1,2,4,5-tetra­kis­(4-carb­­oxy­phen­yl)benzene linkers

crossmark logo

aInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan, bDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, and cDepartment of Chemistry, University at Buffalo, Buffalo, New York, 14260, USA
*Correspondence e-mail: evgeniio@buffalo.edu

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 14 October 2021; accepted 28 October 2021; online 9 November 2021)

Two structurally different metal–organic frameworks based on Sr2+ ions and 1,2,4,5-tetra­kis­(4-carb­oxy­phen­yl)benzene linkers have been synthesized solvothermally in different solvent systems and studied with single-crystal X-ray diffraction technique. These are poly[[μ12-4,4′,4′′,4′′′-(benzene-1,2,4,5-tetra­yl)tetra­benzoato](di­methyl­formamide)­distrontium(II)], [Sr2(C34H18O8)(C3H7NO)2]n, and poly[tetra­aqua­{μ2-4,4′-[4,5-bis­(4-carb­oxy­phen­yl)benzene-1,2-di­yl]dibenzoato}tris­trontium(II)], [Sr3(C34H20O8)2(H2O)4]. The differences are noted between the crystal structures and coordination modes of these two MOFs, which are responsible for their semiconductor properties, where structural control over the bandgap is desirable. Hydrogen bonding is present in only one of the compounds, suggesting it has a slightly higher structural stability.

1. Chemical context

Porous crystalline networks based on metal ion-coordinated organic ligands, known as metal–organic frameworks (MOFs), have been an object of extensive studies for the past two decades. Such inter­est in these materials can be attributed to their fascinating properties and potential applications in a wide range of areas – from luminescent lighting and sensing to gas storage, to semiconductors (Kreno et al. 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]; Zhou et al. 2012[Zhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673-674.]; Furukawa et al. 2013[Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.]; Gassensmith et al. 2014[Gassensmith, J. J., Kim, J. Y., Holcroft, J. M., Farha, O. K., Stoddart, J. F., Hupp, J. T. & Jeong, N. C. (2014). J. Am. Chem. Soc. 136, 8277-8282.]). Their intrinsically unlimited structural and compositional diversity allows the design of structures with virtually any desirable properties. Belonging to the class of coordination compounds, MOFs naturally tend to work particularly well when synth­esized with transition-metal-ion centers, yet they still suffer from several drawbacks, namely the decreased stability, toxicity and relatively high cost of manufacture. In recent years, a new class of alkaline-metal-based MOFs has arisen, providing a solution for the aforementioned problems. Abundant in Earth's crust and generally non-toxic, ions of Ca, Sr and Ba, for example, have been reported to provide a structurally rich array of compounds with increased stability and unique properties (Kundu et al. 2012[Kundu, T., Sahoo, S. C. & Banerjee, R. (2012). Chem. Commun. 48, 4998-5000.]). Strontium to date has been a more `exotic' choice in MOF design, with very few structures synthesized and studied. Still, several reports have recently indicated the possibility of Sr–MOF design, which yields structures with unique luminescent (Jia et al. 2017[Jia, Y. Y., Liu, X. T., Wang, W. H., Zhang, L. Z., Zhang, Y. H. & Bu, X. H. (2017). Philos. Transact. Ser. A Math. Phys. Eng. Sci. 375, 2084.]) and semiconducting (Usman et al. 2015[Usman, M., Mendiratta, S., Batjargal, S., Haider, G., Hayashi, M., Rao Gade, N., Chen, J. W., Chen, Y. F. & Lu, K. L. (2015). Appl. Mater. Interfaces, 7, 22767-22774.]) properties, the latter being relatively rare for MOFs and of great inter­est.

[Scheme 1]

In this work two metal–organic complexes have been synthesized from strontium nitrate as metal ion source and 1,2,4,5-tetra­kis­(4-carb­oxy­phen­yl)benzene as linker under slightly different synthetic conditions (see Synthesis and crystallization). For reference purposes these are labeled as MOF1 and MOF2, for the di­methyl­formamide (DMF) and non-DMF containing products, poly[[μ12-4,4′,4′′,4′′′-(benzene-1,2,4,5-tetra­yl)tetra­benzoato](di­methyl­formamide)­distron­tium(II)] and poly[tetra­aqua­[μ2-4,5-bis­(4-carb­oxy­phen­yl)-4,4′-(benzene-1,2-di­yl)dibenzoato]tris­trontium(II)], respectively.

2. Structural commentary

Fig. 1[link] illustrates the mol­ecular structures of MOF1 and MOF2, specifically their asymmetric units. Selected bond lengths are summarized in Tables 1[link] and 2[link]. In both complexes, an Sr atom with an O7 coordination set is present; however, in MOF2 the asymmetric unit contains two Sr atoms, one seven- and the other eight-coordinated. In MOF1, the O7 set comprises six O atoms belonging to the carboxyl groups of the ligands (O1–O4) and one atom (O5) belonging to a DMF mol­ecule. In MOF2, the seven-coordinated Sr atom is surrounded by five oxygens of carboxyl groups (O4–O7, O9) and two oxygens of water mol­ecules (O8 and O10). The other Sr atom coordinates eight oxygen atoms somewhat similarly: two from water (O8) and six from the carboxyl groups of the ligands (O5–O7). The multidentate nature of the 1,2,4,5-tetra­kis­(4-carb­oxy­phen­yl)benzene ligand, together with the high coordination number of the Sr atom, results in an inter­esting structure for both complexes.

Table 1
Selected bond lengths (Å) for MOF1[link]

Sr1—O4 2.5094 (15) Sr1—O1iii 2.5792 (16)
Sr1—O2i 2.5170 (16) Sr1—O3iv 2.5848 (16)
Sr1—O3ii 2.5180 (15) Sr1—O1v 2.6176 (16)
Sr1—O5 2.5780 (18)    
Symmetry codes: (i) [x+2, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, -y, -z+1]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Selected bond lengths (Å) for MOF2[link]

Sr1—O7 2.4788 (14) Sr2—O9ii 2.5646 (13)
Sr1—O6i 2.5935 (14) Sr2—O7iii 2.6392 (14)
Sr1—O8 2.5938 (14) Sr2—O4iv 2.6598 (14)
Sr1—O5i 2.7767 (15) Sr2—O8iii 2.6849 (15)
Sr2—O5 2.5510 (16) Sr2—O9iii 2.8510 (14)
Symmetry codes: (i) [x, y-1, z]; (ii) [x-1, y+1, z]; (iii) [-x+1, -y+1, -z+2]; (iv) [-x+1, -y+2, -z+1].
[Figure 1]
Figure 1
A view of the asymmetric units of MOF1 (top) and MOF2 (bottom) with the atom-labeling schemes. Displacement ellipsoids are drawn at the 50% probability level.

The coordination environments of the Sr ions for both complexes are presented in Fig. 2[link]. It can be seen that in MOF1 all available oxygen atoms are coordinated to a metal center, thus all carboxyl groups in the ligands participate in the coordination.

[Figure 2]
Figure 2
Coordination environments of the Sr atoms in MOF1 (top) with an O7 set and MOF2 (bottom) with O8 and O7 sets.

In MOF2, atoms O1–O3 are not involved in coordination. While this fact leaves one of the four carboxyl groups (the O1–C1–O2 group) uncoordinated, it does receive some degree of additional stability from hydrogen bonding via the O1 atom (see Supra­molecular features for more details). The remaining O2 atom shows some degree of disorder due to vibration.

3. Supra­molecular features

. The packing of MOF1 is shown in Fig. 3[link]. While the abundance of carboxyl groups in the ligand provides a lot of potential for hydrogen-bonding sites, only MOF2 exhibits such inter­actions (Table 3[link]). Four inequivalent hydrogen bonds of the type O—H⋯O are found in the crystal packing (Fig. 4[link]), which are likely to contribute to additional structural stability compared to MOF1, which is lacking these or any other specific inter­actions. That said, three out of the four hydrogen bonds in MOF2 stabilize the water mol­ecule rather than the crystal structure directly

Table 3
Hydrogen-bond geometry (Å, °) for MOF2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 1.79 2.6051 (18) 164
O10—H10A⋯O2v 0.84 (3) 1.97 (3) 2.795 (2) 168 (3)
O10—H10B⋯O6vi 0.78 (3) 2.01 (3) 2.787 (2) 173 (3)
O8—H8B⋯O3vii 0.83 (3) 1.77 (3) 2.5948 (19) 170 (3)
Symmetry codes: (i) [x, y-1, z]; (v) [-x+1, -y+1, -z+1]; (vi) [x-1, y, z]; (vii) [x, y-1, z+1].
[Figure 3]
Figure 3
A view along the a axis of MOF1. Large channel-like pores are occupied by the DMF solvent mol­ecules.
[Figure 4]
Figure 4
A view along the a axis of MOF2.

4. Database survey

No entries were found in the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for metal–organic frameworks with the same metal–ligand combination as in the title compounds. For MOFs based on the title ligand, shown in the scheme below, and different metal ions, the search yielded eleven matches, among which ions of such metals as Cu, Mg, Zn, Co and Bi were present. The crystal structure of the pure ligand (ZARXOI; Hisaki et al. 2017[Hisaki, I., Emilya Affendy, N. Q. & Tohnai, N. (2017). CrystEngComm, 19, 4892-4898.]), shown below, was also found during the search.

The ligand crystallizes in the ortho­rhom­bic system in space group Pbcn. MOFs with this linker, however, prefer the triclinic space group P[\overline1], with some exceptions (see Table 4[link]).

[Scheme 2]

Table 4
Selected CSD data for title ligand-derived MOFs

CSD code Cation Coordination number Space group Crystal system Reference
ATIBUD Zn2+ 6 P[\overline{1}] triclinic (Dissem et al. 2021[Dissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727-8735.])
ATICAK Zn2+ 6 P[\overline{1}] triclinic (Dissem et al. 2021[Dissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727-8735.])
ATICEO Zn2+ 6 P[\overline{1}] triclinic (Dissem et al. 2021[Dissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727-8735.])
ATICIS Cu2+ 6 P[\overline{1}] triclinic (Dissem et al. 2021[Dissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727-8735.])
ATICOY Cu2+ 6 P[\overline{1}] triclinic (Dissem et al. 2021[Dissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727-8735.])
ATICUE Cu2+ 6 P[\overline{1}] triclinic (Dissem et al. 2021[Dissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727-8735.])
FIYDEZ Co2+ 6 I2/a monoclinic (Dhankhar & Nagaraja 2019[Dhankhar, S. S. & Nagaraja, C. M. (2019). New J. Chem. 43, 2163-2170.])
MIFKUJ Zn2+ 4 P[\overline{1}] triclinic (Karra et al. 2013[Karra, J. R., Huang, Y.-G. & Walton, K. S. (2013). Cryst. Growth Des. 13, 1075-1081.])
MIFLIY Mg2+ 6 C2/c monoclinic (Karra, et al. 2013[Karra, J. R., Huang, Y.-G. & Walton, K. S. (2013). Cryst. Growth Des. 13, 1075-1081.])
MIFMIZ Ni2+ 6 P[\overline{1}] triclinic (Karra et al. 2013[Karra, J. R., Huang, Y.-G. & Walton, K. S. (2013). Cryst. Growth Des. 13, 1075-1081.])
MIHMOI Bi2+ 5 C2/c monoclinic (Köppen et al. 2018[Köppen, M., Meyer, V., Ångström, J., Inge, A. K. & Stock, N. (2018). Cryst. Growth Des. 18, 4060-4067.])

The dihedral angles between the phenyl rings and the central benzene moiety in the ligand are nearly equal: two pairs of 52.66 (18)° and two pairs of 51.05 (18)°. In MOF1, the pairwise equality of these angles is conserved; however, both sets of phenyl rings experience significant twists, being 38.08 (11) and 57.88 (11)°, respectively, for each pair. In MOF2, an even larger difference is observed, with dihedral angles of 47.44 (8), 60.17 (8), 60.49 (8) and 70.64 (8)° being found between the rings.

5. Synthesis and crystallization

MOF1 was synthesized as follows. Strontium nitrate (0.0212 g, 0.1 mmol), and 1,2,4,5-tetra­kis­(4-carb­oxy­phen­yl) benzene (0.0558 g, 0.1 mmol) were measured, placed in a beaker and dissolved in a mixture of DMF (3 mL) and water (3 mL). The solution was stirred, transferred to a Teflon-lined autoclave and sealed in a reactor, which was placed in the oven at 393 K for 120 h. The autoclave was removed from the oven and allowed to cool to room temperature.

The procedure for MOF2 differed slightly. The same amounts of the metal precursor and ligand were placed in a beaker and dissolved in a mixture of ethanol (3 mL) and water (3 mL). The solution was stirred, transferred to a Teflon-lined autoclave and sealed in a reactor, which was placed in the oven at 393 K for 120 h. The autoclave was removed from the oven and allowed to cool to room temperature.

After each synthesis, the white crystals of the products were washed with methanol and collected by means of vacuum filtration into a capped vial. An important aspect of this study is the demonstrated possibility of structural control over Sr-based MOFs via slight changes in the synthesis conditions. This may be particularly important for semiconducting MOFs, where a structurally tuned bandgap may be desirable.

6. Powder X-ray diffraction

In order to identify any potential byproducts or starting materials within the bulk material of MOF2, PXRD was conducted using a conventional Bragg–Brentano PXRD instrument. A Pawley fit shows only one crystalline phase (Fig. 5[link]), and this crystalline phase corresponds to the desired product as it has similar lattice parameters to the single crystal with only a minor increase of 7 Å3 of the total unit-cell volume from the single crystal to bulk solid at RT. The resulting lattice parameters for MOF2 from PXRD are a = 9.274 (1), b = 11.391 (1), c = 19.274 (3) Å, α = 80.38 (1), β = 82.04 (1), γ = 86.11 (1)°, V = 1986.3 Å3. Unfortunately, in the case of MOF1, an analysis by PXRD reveals the phases for MOF1 and MOF2 in the same bulk material (Fig. 6[link]), as in order to do a Pawley fit for this sample both structures are needed. It is possible that for the bulk solid of MOF1 other additional impurities are present as a few peaks below 10° were not indexed for either MOF1 or MOF2 (Fig. 6[link]).

[Figure 5]
Figure 5
Pawley fit for MOF2. The initial parameters were taken from the cif file.
[Figure 6]
Figure 6
Pawley fit for the bulk solid obtained in the synthesis of MOF1. The thick blue lines indicate the crystalline phase for MOF2 while the thick black lines indicate the crystalline phase for MOF1. The initial parameters were taken from the cif files for both MOFs.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All C-bound H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model, Uiso(H) = 1.2Ueq(C). All O-bound H atoms were found from difference Fourier maps and freely refined. For MOF2, it was not possible to localize the H atoms at O3 and O6.

Table 5
Experimental details

  MOF1 MOF2
Crystal data
Chemical formula [Sr2(C34H18O8)(C3H7NO)2] [Sr3(C34H20O8)2(H2O)4]
Mr 875.92 1445.91
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 173 100
a, b, c (Å) 5.9350 (2), 18.6130 (8), 16.1256 (7) 9.240 (3), 11.330 (4), 19.414 (7)
α, β, γ (°) 90, 91.853 (2), 90 80.147 (6), 81.815 (7), 85.494 (7)
V3) 1780.43 (12) 1979.1 (12)
Z 2 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.06 2.08
Crystal size (mm) 0.41 × 0.12 × 0.10 0.4 × 0.3 × 0.2
 
Data collection
Diffractometer Bruker D8 VENTURE diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1907-1913.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1907-1913.])
Tmin, Tmax 0.63, 0.75 0.636, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 91152, 5387, 4453 33795, 10986, 9468
Rint 0.092 0.027
(sin θ/λ)max−1) 0.713 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.113, 0.87 0.030, 0.085, 1.08
No. of reflections 5387 10986
No. of parameters 246 429
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.94, −0.79 0.58, −0.40
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b). Molecular graphics: Mercury (Macrae et al., 2020) for MOF1; OLEX2 (Dolomanov et al., 2009) for MOF2. For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[µ12-4,4',4'',4'''-(benzene-1,2,4,5-tetrayl)tetrabenzoato](dimethylformamide)distrontium(II)] (MOF1) top
Crystal data top
[Sr2(C34H18O8)(C3H7NO)2]F(000) = 884
Mr = 875.92Dx = 1.634 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9350 (2) ÅCell parameters from 9912 reflections
b = 18.6130 (8) Åθ = 2.5–30.3°
c = 16.1256 (7) ŵ = 3.06 mm1
β = 91.853 (2)°T = 173 K
V = 1780.43 (12) Å3Needle, colourless
Z = 20.41 × 0.12 × 0.10 mm
Data collection top
Bruker D8 VENTURE
diffractometer
5387 independent reflections
Radiation source: microfocus sealed tube, sealed tube4453 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.092
Detector resolution: 10.4167 pixels mm-1θmax = 30.4°, θmin = 2.5°
ω and φ scans, narrow frame width, shutterlessh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2626
Tmin = 0.63, Tmax = 0.75l = 2222
91152 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5387 reflections(Δ/σ)max = 0.002
246 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.79 e Å3
Special details top

Experimental. Crystal suitable for X–ray structure determination was selected under the polarizing microscope, covered with Paratone oil and mounted on a goniometer head using Mitegen cryoloop. Experiment was performed at the low temperature. QUINN software was used to calculate optimal data collection strategy. Data were collected till resolution of 0.71 A and were truncated with XPREP till actual observed resolution.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The systematic absences in the diffraction data were consistent for the stated space group. The position of almost all non—hydrogen atoms were found by direct methods. The remaining atoms were located in an alternating series of least–squares cycles on difference Fourier map.

All non–hydrogen atoms were refined in full–matrix anisotropic approximation. All hydrogen atoms were placed in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

Final results were tested with CHECKCIF routine and all A–warnings (if any) were addressed on the very top of this file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr11.26769 (3)0.02155 (2)0.57357 (2)0.00827 (8)
O10.0949 (3)0.55858 (9)0.06890 (10)0.0112 (3)
O20.4151 (3)0.55104 (9)0.13843 (10)0.0136 (3)
O30.6267 (2)0.07945 (8)0.52809 (10)0.0109 (3)
O40.9519 (3)0.10863 (9)0.59477 (11)0.0134 (3)
O51.3861 (3)0.09879 (10)0.70033 (12)0.0221 (4)
N11.3944 (4)0.20500 (12)0.76924 (15)0.0237 (5)
C10.2063 (3)0.55326 (11)0.13488 (13)0.0087 (4)
C20.0700 (3)0.54814 (12)0.21498 (13)0.0091 (4)
C30.1403 (3)0.58190 (12)0.22287 (13)0.0100 (4)
H30.1323440.6333130.2050030.012*
C40.2716 (3)0.57343 (12)0.29489 (14)0.0104 (4)
H40.4129540.5972160.3001850.013*
C50.1993 (4)0.53065 (11)0.35938 (14)0.0094 (4)
C60.0111 (4)0.49740 (14)0.35140 (14)0.0131 (4)
H60.062460.4681510.3952160.016*
C70.1471 (4)0.50652 (13)0.27989 (15)0.0127 (4)
H70.291390.4844620.2755910.015*
C80.3496 (4)0.51761 (11)0.43368 (14)0.0094 (4)
C90.4097 (4)0.44680 (12)0.45112 (14)0.0106 (4)
H90.346650.4098480.4170020.013*
C100.5582 (3)0.42735 (11)0.51635 (13)0.0097 (4)
C110.6141 (4)0.35008 (11)0.52796 (13)0.0096 (4)
C120.8328 (4)0.32679 (12)0.54984 (15)0.0123 (4)
H120.9504020.3610230.5573420.015*
C130.8791 (3)0.25430 (12)0.56065 (15)0.0119 (4)
H131.0272040.2397310.5772660.014*
C140.7129 (3)0.20260 (11)0.54761 (14)0.0097 (4)
C150.4962 (4)0.22504 (12)0.52379 (16)0.0150 (4)
H150.3810250.1904940.5131770.018*
C160.4483 (4)0.29796 (12)0.51552 (15)0.0142 (4)
H160.2986890.3124970.5010340.017*
C170.7695 (3)0.12412 (12)0.55842 (13)0.0089 (4)
C181.2917 (4)0.15257 (14)0.72679 (16)0.0202 (5)
H181.1339680.1569330.716090.024*
C191.2757 (6)0.27042 (18)0.7921 (2)0.0426 (9)
H19A1.3435780.3117970.7648470.064*
H19B1.2873270.2768230.8524450.064*
H19C1.1166260.2665550.7744820.064*
C201.6365 (5)0.20386 (19)0.7840 (2)0.0397 (8)
H20A1.7027820.2474210.7609360.06*
H20B1.7000940.1615030.7572980.06*
H20C1.6703760.201880.8438780.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00658 (11)0.00830 (11)0.00978 (12)0.00054 (6)0.00196 (7)0.00102 (7)
O10.0118 (7)0.0121 (8)0.0096 (7)0.0008 (6)0.0000 (6)0.0014 (6)
O20.0084 (7)0.0193 (9)0.0128 (8)0.0002 (6)0.0036 (6)0.0017 (6)
O30.0109 (7)0.0073 (7)0.0142 (8)0.0020 (6)0.0014 (6)0.0011 (6)
O40.0104 (7)0.0106 (8)0.0188 (8)0.0039 (6)0.0041 (6)0.0012 (6)
O50.0218 (9)0.0208 (10)0.0232 (10)0.0048 (7)0.0053 (7)0.0092 (7)
N10.0247 (11)0.0178 (11)0.0283 (12)0.0004 (9)0.0026 (9)0.0089 (9)
C10.0104 (9)0.0064 (10)0.0092 (9)0.0007 (7)0.0022 (7)0.0014 (7)
C20.0094 (9)0.0091 (10)0.0088 (9)0.0023 (8)0.0018 (7)0.0026 (8)
C30.0099 (9)0.0086 (9)0.0115 (10)0.0006 (7)0.0021 (8)0.0002 (8)
C40.0080 (9)0.0099 (10)0.0131 (10)0.0008 (7)0.0038 (7)0.0013 (8)
C50.0111 (10)0.0072 (10)0.0096 (10)0.0017 (7)0.0038 (8)0.0007 (7)
C60.0143 (10)0.0132 (10)0.0118 (11)0.0032 (9)0.0015 (8)0.0030 (9)
C70.0094 (9)0.0141 (11)0.0146 (11)0.0023 (8)0.0010 (8)0.0003 (9)
C80.0094 (9)0.0090 (10)0.0095 (10)0.0017 (7)0.0030 (8)0.0020 (7)
C90.0134 (9)0.0083 (10)0.0098 (10)0.0002 (8)0.0048 (8)0.0007 (8)
C100.0114 (9)0.0083 (10)0.0093 (10)0.0000 (7)0.0017 (7)0.0001 (7)
C110.0121 (9)0.0053 (9)0.0112 (10)0.0017 (7)0.0031 (7)0.0004 (7)
C120.0113 (10)0.0063 (10)0.0193 (11)0.0017 (8)0.0015 (8)0.0009 (8)
C130.0071 (9)0.0090 (10)0.0195 (11)0.0022 (7)0.0032 (8)0.0004 (8)
C140.0095 (9)0.0074 (9)0.0122 (10)0.0015 (7)0.0011 (8)0.0001 (8)
C150.0110 (10)0.0090 (10)0.0246 (12)0.0023 (8)0.0047 (9)0.0012 (9)
C160.0091 (9)0.0083 (10)0.0249 (12)0.0004 (7)0.0045 (8)0.0020 (9)
C170.0115 (9)0.0085 (10)0.0067 (9)0.0005 (7)0.0007 (7)0.0009 (7)
C180.0186 (11)0.0243 (13)0.0172 (12)0.0013 (10)0.0056 (9)0.0056 (10)
C190.0467 (19)0.0247 (16)0.056 (2)0.0092 (14)0.0039 (16)0.0189 (16)
C200.0273 (15)0.0388 (19)0.053 (2)0.0104 (13)0.0019 (14)0.0190 (16)
Geometric parameters (Å, º) top
Sr1—O42.5094 (15)C5—C81.490 (3)
Sr1—O2i2.5170 (16)C6—C71.396 (3)
Sr1—O3ii2.5180 (15)C6—H60.95
Sr1—O52.5780 (18)C7—H70.95
Sr1—O1iii2.5792 (16)C8—C91.392 (3)
Sr1—O3iv2.5848 (16)C8—C10vii1.403 (3)
Sr1—O1v2.6176 (16)C9—C101.398 (3)
Sr1—C3v3.193 (2)C9—H90.95
Sr1—C1v3.318 (2)C10—C111.487 (3)
Sr1—C2v3.346 (2)C11—C161.392 (3)
Sr1—Sr1vi3.7817 (4)C11—C121.402 (3)
Sr1—Sr1iv3.9854 (4)C12—C131.387 (3)
O1—C11.274 (3)C12—H120.95
O2—C11.243 (2)C13—C141.389 (3)
O3—C171.274 (3)C13—H130.95
O4—C171.248 (2)C14—C151.394 (3)
O5—C181.230 (3)C14—C171.508 (3)
N1—C181.329 (3)C15—C161.392 (3)
N1—C201.449 (4)C15—H150.95
N1—C191.460 (4)C16—H160.95
C1—C21.505 (3)C18—H180.95
C2—C71.391 (3)C19—H19A0.98
C2—C31.399 (3)C19—H19B0.98
C3—C41.387 (3)C19—H19C0.98
C3—H31.0C20—H20A0.98
C4—C51.389 (3)C20—H20B0.98
C4—H40.95C20—H20C0.98
C5—C61.396 (3)
O4—Sr1—O2i147.34 (5)C20—N1—C19117.0 (2)
O4—Sr1—O3ii113.95 (5)O2—C1—O1125.8 (2)
O2i—Sr1—O3ii73.87 (5)O2—C1—C2117.87 (19)
O4—Sr1—O573.58 (5)O1—C1—C2116.28 (18)
O2i—Sr1—O577.82 (6)O2—C1—Sr1ix148.85 (15)
O3ii—Sr1—O577.34 (6)O1—C1—Sr1ix46.87 (10)
O4—Sr1—O1iii70.83 (5)C2—C1—Sr1ix77.98 (11)
O2i—Sr1—O1iii141.62 (5)C7—C2—C3119.7 (2)
O3ii—Sr1—O1iii86.67 (5)C7—C2—C1120.01 (19)
O5—Sr1—O1iii130.36 (5)C3—C2—C1120.18 (19)
O4—Sr1—O3iv138.90 (5)C7—C2—Sr1ix121.05 (15)
O2i—Sr1—O3iv71.32 (5)C3—C2—Sr1ix71.58 (12)
O3ii—Sr1—O3iv84.36 (5)C1—C2—Sr1ix75.93 (11)
O5—Sr1—O3iv147.47 (5)C4—C3—C2120.0 (2)
O1iii—Sr1—O3iv74.15 (5)C4—C3—Sr1ix115.00 (14)
O4—Sr1—O1v75.82 (5)C2—C3—Sr1ix83.85 (13)
O2i—Sr1—O1v108.02 (5)C4—C3—H3111.7
O3ii—Sr1—O1v159.75 (5)C2—C3—H3111.7
O5—Sr1—O1v122.91 (6)Sr1ix—C3—H3111.7
O1iii—Sr1—O1v79.85 (5)C3—C4—C5120.90 (19)
O3iv—Sr1—O1v77.49 (5)C3—C4—H4119.5
O4—Sr1—C3v95.21 (6)C5—C4—H4119.5
O2i—Sr1—C3v63.58 (5)C4—C5—C6118.8 (2)
O3ii—Sr1—C3v134.51 (5)C4—C5—C8120.27 (19)
O5—Sr1—C3v78.67 (6)C6—C5—C8120.8 (2)
O1iii—Sr1—C3v137.38 (5)C5—C6—C7120.9 (2)
O3iv—Sr1—C3v96.19 (5)C5—C6—H6119.5
O1v—Sr1—C3v57.55 (5)C7—C6—H6119.5
O4—Sr1—C1v65.57 (5)C2—C7—C6119.6 (2)
O2i—Sr1—C1v106.31 (5)C2—C7—H7120.2
O3ii—Sr1—C1v179.38 (5)C6—C7—H7120.2
O5—Sr1—C1v102.11 (6)C9—C8—C10vii118.86 (19)
O1iii—Sr1—C1v93.50 (5)C9—C8—C5117.35 (19)
O3iv—Sr1—C1v96.26 (5)C10vii—C8—C5123.70 (18)
O1v—Sr1—C1v20.81 (5)C8—C9—C10123.3 (2)
C3v—Sr1—C1v45.45 (5)C8—C9—H9118.4
O4—Sr1—C2v72.01 (5)C10—C9—H9118.4
O2i—Sr1—C2v88.00 (5)C9—C10—C8vii117.9 (2)
O3ii—Sr1—C2v153.58 (5)C9—C10—C11118.56 (19)
O5—Sr1—C2v80.19 (6)C8vii—C10—C11123.55 (19)
O1iii—Sr1—C2v118.76 (5)C16—C11—C12117.72 (19)
O3iv—Sr1—C2v108.25 (5)C16—C11—C10120.14 (19)
O1v—Sr1—C2v44.66 (5)C12—C11—C10122.13 (19)
C3v—Sr1—C2v24.57 (5)C13—C12—C11120.7 (2)
C1v—Sr1—C2v26.10 (5)C13—C12—H12119.7
O4—Sr1—Sr1vi141.76 (4)C11—C12—H12119.7
O2i—Sr1—Sr1vi66.18 (4)C12—C13—C14121.19 (19)
O3ii—Sr1—Sr1vi42.86 (4)C12—C13—H13119.4
O5—Sr1—Sr1vi115.48 (4)C14—C13—H13119.4
O1iii—Sr1—Sr1vi76.98 (3)C13—C14—C15118.6 (2)
O3iv—Sr1—Sr1vi41.50 (3)C13—C14—C17119.93 (18)
O1v—Sr1—Sr1vi118.46 (4)C15—C14—C17121.48 (19)
C3v—Sr1—Sr1vi122.72 (4)C16—C15—C14120.1 (2)
C1v—Sr1—Sr1vi137.76 (4)C16—C15—H15119.9
C2v—Sr1—Sr1vi144.14 (4)C14—C15—H15119.9
O4—Sr1—Sr1iv68.07 (4)C11—C16—C15121.6 (2)
O2i—Sr1—Sr1iv135.27 (4)C11—C16—H16119.2
O3ii—Sr1—Sr1iv125.35 (4)C15—C16—H16119.2
O5—Sr1—Sr1iv140.89 (4)O4—C17—O3125.9 (2)
O1iii—Sr1—Sr1iv40.28 (4)O4—C17—C14117.70 (19)
O3iv—Sr1—Sr1iv71.39 (3)O3—C17—C14116.42 (18)
O1v—Sr1—Sr1iv39.57 (3)O5—C18—N1124.8 (2)
C3v—Sr1—Sr1iv97.11 (4)O5—C18—H18117.6
C1v—Sr1—Sr1iv54.94 (4)N1—C18—H18117.6
C2v—Sr1—Sr1iv81.03 (4)N1—C19—H19A109.5
Sr1vi—Sr1—Sr1iv99.625 (9)N1—C19—H19B109.5
C1—O1—Sr1viii121.40 (13)H19A—C19—H19B109.5
C1—O1—Sr1ix112.32 (13)N1—C19—H19C109.5
Sr1viii—O1—Sr1ix100.15 (5)H19A—C19—H19C109.5
C1—O2—Sr1x137.05 (15)H19B—C19—H19C109.5
C17—O3—Sr1xi136.59 (14)N1—C20—H20A109.5
C17—O3—Sr1iv123.11 (13)N1—C20—H20B109.5
Sr1xi—O3—Sr1iv95.64 (5)H20A—C20—H20B109.5
C17—O4—Sr1136.51 (15)N1—C20—H20C109.5
C18—O5—Sr1127.84 (16)H20A—C20—H20C109.5
C18—N1—C20120.6 (2)H20B—C20—H20C109.5
C18—N1—C19121.7 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+2, y, z+1; (v) x+1, y+1/2, z+1/2; (vi) x+3, y, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y+1/2, z+1/2; (ix) x1, y+1/2, z1/2; (x) x2, y+1/2, z1/2; (xi) x1, y, z.
Poly[tetraaqua{µ2-4,4'-[4,5-bis(4-carboxyphenyl)benzene-1,2-diyl]dibenzoato}tristrontium(II)] (MOF2) top
Crystal data top
[Sr3(C34H20O8)2(H2O)4]Z = 1
Mr = 1445.91F(000) = 728
Triclinic, P1Dx = 1.213 Mg m3
a = 9.240 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.330 (4) ÅCell parameters from 6851 reflections
c = 19.414 (7) Åθ = 2.2–29.5°
α = 80.147 (6)°µ = 2.08 mm1
β = 81.815 (7)°T = 100 K
γ = 85.494 (7)°Block, colourless
V = 1979.1 (12) Å30.4 × 0.3 × 0.2 mm
Data collection top
Bruker APEXII CCD
diffractometer
9468 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 29.6°, θmin = 1.1°
Tmin = 0.636, Tmax = 0.746h = 1212
33795 measured reflectionsk = 1515
10986 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.5586P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
10986 reflectionsΔρmax = 0.58 e Å3
429 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.5000000.0000001.0000000.01031 (5)
Sr20.15862 (2)0.96611 (2)0.90833 (2)0.01075 (5)
O40.77813 (13)0.93490 (11)0.22606 (6)0.0152 (2)
O90.96489 (13)0.12177 (11)0.95084 (6)0.0146 (2)
O70.72246 (13)0.11703 (11)0.97587 (6)0.0160 (2)
O80.68307 (14)0.14150 (11)1.06935 (7)0.0162 (2)
O10.76027 (14)0.07521 (11)0.32051 (7)0.0181 (3)
H10.7822660.0344470.2878410.027*
O30.66572 (15)0.77992 (12)0.20373 (6)0.0200 (3)
O50.43315 (14)0.91708 (13)0.88233 (7)0.0227 (3)
O60.65612 (14)0.87652 (13)0.91244 (7)0.0234 (3)
O100.06290 (16)0.93714 (14)0.85044 (8)0.0241 (3)
H10A0.043 (3)0.902 (3)0.8154 (17)0.048 (8)*
H10B0.144 (4)0.926 (3)0.8668 (17)0.055 (10)*
C240.72064 (18)0.70771 (15)0.81898 (9)0.0136 (3)
H240.7842040.7061620.8535600.016*
C320.83640 (18)0.15159 (14)0.93521 (8)0.0111 (3)
C280.77431 (18)0.37379 (14)0.73685 (8)0.0113 (3)
C80.76849 (18)0.44315 (15)0.53917 (8)0.0119 (3)
C220.59333 (18)0.78304 (15)0.82027 (9)0.0141 (3)
C260.75375 (18)0.44479 (15)0.66608 (8)0.0121 (3)
C90.72867 (18)0.56715 (15)0.52837 (8)0.0126 (3)
C310.81624 (18)0.23133 (14)0.86662 (8)0.0111 (3)
C30.7261 (2)0.20327 (16)0.43041 (9)0.0172 (3)
H30.6657550.1380700.4330790.021*
O20.9557 (2)0.1732 (2)0.26628 (10)0.0622 (7)
C250.75471 (18)0.63506 (15)0.76738 (9)0.0136 (3)
H250.8403200.5828390.7677530.016*
C230.55765 (18)0.86423 (15)0.87496 (8)0.0141 (3)
C270.78312 (18)0.38512 (15)0.60765 (8)0.0122 (3)
H270.8139990.3024610.6147920.015*
C190.66454 (19)0.63775 (15)0.71480 (8)0.0137 (3)
C100.72208 (19)0.63780 (15)0.45634 (8)0.0131 (3)
C20.83334 (19)0.22956 (16)0.37336 (9)0.0167 (3)
C40.7072 (2)0.27333 (15)0.48400 (9)0.0178 (3)
H40.6339450.2549080.5232060.021*
C140.71919 (18)0.83331 (15)0.24491 (8)0.0132 (3)
C50.79416 (18)0.36995 (15)0.48094 (8)0.0123 (3)
C290.91564 (19)0.33494 (16)0.75236 (9)0.0173 (3)
H290.9979890.3558550.7183690.021*
C150.81029 (19)0.80003 (15)0.36476 (9)0.0150 (3)
H150.8724510.8648660.3490270.018*
C130.71811 (18)0.76987 (15)0.31994 (8)0.0123 (3)
C180.70443 (18)0.56721 (15)0.65602 (8)0.0134 (3)
C160.8109 (2)0.73478 (15)0.43264 (9)0.0155 (3)
H160.8724780.7566000.4631000.019*
C300.93634 (19)0.26586 (16)0.81727 (9)0.0172 (3)
H301.0327070.2422590.8278610.021*
C340.65490 (19)0.34253 (17)0.78723 (9)0.0185 (4)
H340.5588260.3705100.7779760.022*
C120.62771 (19)0.67390 (16)0.34409 (9)0.0156 (3)
H120.5643850.6532730.3140450.019*
C170.69599 (19)0.62599 (15)0.58677 (9)0.0143 (3)
H170.6669230.7090080.5793560.017*
C110.62918 (19)0.60830 (16)0.41139 (9)0.0162 (3)
H110.5671560.5433380.4269890.019*
C330.67545 (19)0.27033 (17)0.85127 (9)0.0178 (4)
H330.5929740.2474820.8847450.021*
C210.5004 (2)0.78371 (19)0.76956 (10)0.0247 (4)
H210.4121350.8327200.7709100.030*
C10.8559 (2)0.15670 (18)0.31465 (10)0.0227 (4)
C200.5364 (2)0.71297 (19)0.71694 (10)0.0251 (4)
H200.4733200.7156350.6820290.030*
C60.9027 (2)0.3952 (2)0.42362 (10)0.0250 (4)
H60.9632710.4603330.4207420.030*
C70.9219 (2)0.3245 (2)0.37053 (11)0.0321 (5)
H70.9965860.3414180.3318080.039*
H8A0.737 (3)0.194 (2)1.0494 (13)0.032 (7)*
H8B0.672 (3)0.173 (2)1.1116 (15)0.034 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01136 (10)0.01259 (10)0.00711 (9)0.00104 (7)0.00067 (7)0.00224 (7)
Sr20.01190 (7)0.01228 (8)0.00779 (7)0.00083 (5)0.00211 (5)0.00080 (5)
O40.0191 (6)0.0167 (6)0.0094 (5)0.0026 (5)0.0017 (4)0.0003 (5)
O90.0140 (6)0.0154 (6)0.0135 (6)0.0022 (5)0.0041 (4)0.0009 (5)
O70.0164 (6)0.0202 (6)0.0104 (5)0.0057 (5)0.0031 (5)0.0032 (5)
O80.0196 (6)0.0158 (6)0.0113 (6)0.0006 (5)0.0017 (5)0.0023 (5)
O10.0250 (7)0.0169 (6)0.0146 (6)0.0032 (5)0.0023 (5)0.0074 (5)
O30.0294 (7)0.0219 (6)0.0099 (6)0.0098 (5)0.0066 (5)0.0007 (5)
O50.0202 (6)0.0334 (8)0.0147 (6)0.0106 (6)0.0026 (5)0.0097 (5)
O60.0170 (6)0.0361 (8)0.0216 (7)0.0007 (6)0.0016 (5)0.0184 (6)
O100.0168 (7)0.0388 (8)0.0207 (7)0.0069 (6)0.0011 (6)0.0146 (6)
C240.0146 (7)0.0166 (8)0.0105 (7)0.0002 (6)0.0029 (6)0.0037 (6)
C320.0174 (8)0.0080 (7)0.0085 (7)0.0005 (6)0.0037 (6)0.0008 (6)
C280.0176 (8)0.0104 (7)0.0057 (7)0.0017 (6)0.0023 (6)0.0002 (6)
C80.0138 (7)0.0146 (8)0.0077 (7)0.0028 (6)0.0004 (6)0.0029 (6)
C220.0143 (7)0.0184 (8)0.0100 (7)0.0012 (6)0.0003 (6)0.0054 (6)
C260.0144 (7)0.0148 (8)0.0068 (7)0.0014 (6)0.0020 (6)0.0002 (6)
C90.0160 (8)0.0148 (8)0.0065 (7)0.0011 (6)0.0023 (6)0.0002 (6)
C310.0152 (7)0.0099 (7)0.0080 (7)0.0003 (6)0.0026 (6)0.0001 (6)
C30.0218 (9)0.0143 (8)0.0158 (8)0.0054 (7)0.0014 (7)0.0040 (6)
O20.0733 (14)0.0800 (14)0.0415 (11)0.0564 (12)0.0388 (10)0.0477 (11)
C250.0132 (7)0.0147 (8)0.0125 (7)0.0013 (6)0.0018 (6)0.0024 (6)
C230.0157 (8)0.0170 (8)0.0089 (7)0.0005 (6)0.0022 (6)0.0035 (6)
C270.0160 (7)0.0109 (7)0.0093 (7)0.0014 (6)0.0018 (6)0.0002 (6)
C190.0178 (8)0.0155 (8)0.0074 (7)0.0015 (6)0.0016 (6)0.0021 (6)
C100.0183 (8)0.0135 (7)0.0068 (7)0.0030 (6)0.0011 (6)0.0014 (6)
C20.0191 (8)0.0215 (9)0.0112 (8)0.0047 (7)0.0007 (6)0.0073 (7)
C40.0248 (9)0.0141 (8)0.0132 (8)0.0053 (7)0.0053 (7)0.0032 (6)
C140.0152 (7)0.0150 (8)0.0081 (7)0.0009 (6)0.0016 (6)0.0008 (6)
C50.0154 (7)0.0135 (7)0.0079 (7)0.0010 (6)0.0028 (6)0.0013 (6)
C290.0165 (8)0.0192 (8)0.0121 (8)0.0032 (7)0.0019 (6)0.0036 (6)
C150.0201 (8)0.0136 (8)0.0113 (7)0.0024 (6)0.0035 (6)0.0004 (6)
C130.0142 (7)0.0147 (7)0.0074 (7)0.0010 (6)0.0014 (6)0.0009 (6)
C180.0161 (7)0.0157 (8)0.0091 (7)0.0017 (6)0.0026 (6)0.0042 (6)
C160.0228 (8)0.0151 (8)0.0097 (7)0.0015 (7)0.0064 (6)0.0020 (6)
C300.0120 (7)0.0218 (9)0.0142 (8)0.0043 (6)0.0007 (6)0.0036 (7)
C340.0137 (8)0.0282 (9)0.0122 (8)0.0020 (7)0.0061 (6)0.0045 (7)
C120.0164 (8)0.0214 (9)0.0091 (7)0.0042 (7)0.0041 (6)0.0013 (6)
C170.0199 (8)0.0128 (7)0.0099 (7)0.0013 (6)0.0030 (6)0.0010 (6)
C110.0183 (8)0.0200 (8)0.0094 (7)0.0044 (7)0.0022 (6)0.0018 (6)
C330.0135 (8)0.0272 (9)0.0105 (8)0.0048 (7)0.0013 (6)0.0049 (7)
C210.0218 (9)0.0350 (11)0.0211 (9)0.0145 (8)0.0103 (7)0.0165 (8)
C10.0270 (10)0.0293 (10)0.0146 (8)0.0101 (8)0.0014 (7)0.0111 (7)
C200.0263 (10)0.0357 (11)0.0174 (9)0.0144 (8)0.0133 (7)0.0144 (8)
C60.0261 (10)0.0342 (11)0.0182 (9)0.0179 (8)0.0082 (7)0.0162 (8)
C70.0312 (11)0.0487 (13)0.0207 (10)0.0255 (10)0.0153 (8)0.0223 (10)
Geometric parameters (Å, º) top
Sr1—Sr2i3.9099 (11)C26—C271.401 (2)
Sr1—Sr2ii3.9099 (11)C26—C181.415 (2)
Sr1—O72.4788 (14)C9—C101.494 (2)
Sr1—O7iii2.4787 (14)C9—C171.397 (2)
Sr1—O6i2.5935 (14)C31—C301.393 (2)
Sr1—O82.5938 (14)C31—C331.397 (2)
Sr1—O8iii2.5938 (13)C3—H30.9500
Sr1—O5i2.7767 (15)C3—C21.385 (2)
Sr1—O5ii2.7767 (15)C3—C41.397 (2)
Sr1—O6ii2.5935 (14)O2—C11.220 (2)
Sr1—C23i3.0535 (18)C25—H250.9500
Sr1—C23ii3.0535 (18)C25—C191.402 (2)
Sr2—Sr2iv4.4117 (11)C27—H270.9500
Sr2—O52.5510 (16)C19—C181.491 (2)
Sr2—O9v2.5646 (13)C19—C201.404 (2)
Sr2—O7ii2.6392 (14)C10—C161.398 (3)
Sr2—O4vi2.6598 (14)C10—C111.403 (2)
Sr2—O8ii2.6849 (15)C2—C11.501 (2)
Sr2—O9ii2.8510 (14)C2—C71.391 (3)
Sr2—O102.5392 (16)C4—H40.9500
Sr2—C32ii3.1066 (18)C4—C51.396 (3)
O4—C141.286 (2)C14—C131.509 (2)
O9—C321.273 (2)C5—C61.394 (2)
O7—C321.268 (2)C29—H290.9500
O8—H8A0.85 (3)C29—C301.394 (2)
O8—H8B0.83 (3)C15—H150.9500
O1—H10.8400C15—C131.399 (2)
O1—C11.308 (2)C15—C161.397 (2)
O3—C141.255 (2)C13—C121.399 (3)
O5—C231.256 (2)C18—C171.404 (2)
O6—C231.273 (2)C16—H160.9500
O10—H10A0.84 (3)C30—H300.9500
O10—H10B0.78 (3)C34—H340.9500
C24—H240.9500C34—C331.395 (2)
C24—C221.398 (2)C12—H120.9500
C24—C251.390 (2)C12—C111.390 (2)
C32—C311.502 (2)C17—H170.9500
C28—C261.498 (2)C11—H110.9500
C28—C291.402 (2)C33—H330.9500
C28—C341.391 (2)C21—H210.9500
C8—C91.412 (2)C21—C201.392 (2)
C8—C271.399 (2)C20—H200.9500
C8—C51.495 (2)C6—H60.9500
C22—C231.507 (2)C6—C71.394 (3)
C22—C211.394 (2)C7—H70.9500
Sr2ii—Sr1—Sr2i180.0Sr1—O8—H8B128.5 (18)
O7—Sr1—Sr2i138.27 (3)Sr2ii—O8—H8A111.1 (17)
O7—Sr1—Sr2ii41.73 (3)Sr2ii—O8—H8B93.8 (18)
O7iii—Sr1—Sr2i41.73 (3)H8A—O8—H8B103 (2)
O7iii—Sr1—Sr2ii138.27 (3)C1—O1—H1109.5
O7iii—Sr1—O7180.0Sr2—O5—Sr1vii94.33 (4)
O7iii—Sr1—O8iii77.85 (5)C23—O5—Sr1vii90.30 (10)
O7iii—Sr1—O8102.15 (5)C23—O5—Sr2164.35 (13)
O7—Sr1—O877.85 (5)C23—O6—Sr1vii98.52 (10)
O7—Sr1—O8iii102.15 (5)Sr2—O10—H10A114 (2)
O7iii—Sr1—O5i66.62 (4)Sr2—O10—H10B131 (2)
O7iii—Sr1—O5ii113.38 (4)H10A—O10—H10B108 (3)
O7—Sr1—O5ii66.62 (4)C22—C24—H24119.8
O7—Sr1—O5i113.38 (4)C25—C24—H24119.8
O7iii—Sr1—O6i98.62 (5)C25—C24—C22120.34 (15)
O7—Sr1—O6i81.38 (5)O9—C32—Sr2ii66.58 (9)
O7—Sr1—O6ii98.62 (5)O9—C32—C31119.81 (15)
O7iii—Sr1—O6ii81.38 (5)O7—C32—Sr2ii56.97 (8)
O7iii—Sr1—C23i81.08 (5)O7—C32—O9122.40 (15)
O7—Sr1—C23i98.92 (5)O7—C32—C31117.79 (14)
O7—Sr1—C23ii81.08 (5)C31—C32—Sr2ii167.23 (10)
O7iii—Sr1—C23ii98.92 (5)C29—C28—C26119.86 (15)
O8iii—Sr1—Sr2i43.11 (3)C34—C28—C26121.10 (15)
O8iii—Sr1—Sr2ii136.89 (3)C34—C28—C29119.01 (15)
O8—Sr1—Sr2ii43.11 (3)C9—C8—C5123.17 (14)
O8—Sr1—Sr2i136.89 (3)C27—C8—C9118.73 (14)
O8—Sr1—O8iii180.0C27—C8—C5118.10 (14)
O8iii—Sr1—O5ii113.92 (4)C24—C22—C23120.60 (15)
O8iii—Sr1—O5i66.08 (4)C21—C22—C24119.23 (15)
O8—Sr1—O5i113.92 (4)C21—C22—C23120.16 (15)
O8—Sr1—O5ii66.08 (4)C27—C26—C28117.55 (14)
O8—Sr1—C23ii87.51 (5)C27—C26—C18119.17 (14)
O8—Sr1—C23i92.49 (5)C18—C26—C28123.26 (14)
O8iii—Sr1—C23ii92.49 (5)C8—C9—C10122.08 (14)
O8iii—Sr1—C23i87.51 (5)C17—C9—C8118.99 (14)
O5ii—Sr1—Sr2i139.41 (3)C17—C9—C10118.92 (15)
O5i—Sr1—Sr2ii139.41 (3)C30—C31—C32120.86 (14)
O5ii—Sr1—Sr2ii40.59 (3)C30—C31—C33119.19 (15)
O5i—Sr1—Sr2i40.59 (3)C33—C31—C32119.94 (15)
O5ii—Sr1—O5i180.0C2—C3—H3120.2
O5ii—Sr1—C23i155.72 (4)C2—C3—C4119.53 (17)
O5i—Sr1—C23ii155.72 (4)C4—C3—H3120.2
O5ii—Sr1—C23ii24.28 (4)C24—C25—H25119.5
O5i—Sr1—C23i24.28 (4)C24—C25—C19120.94 (15)
O6i—Sr1—Sr2i88.58 (4)C19—C25—H25119.5
O6ii—Sr1—Sr2i91.42 (4)O5—C23—Sr1vii65.42 (9)
O6ii—Sr1—Sr2ii88.58 (4)O5—C23—O6122.20 (15)
O6i—Sr1—Sr2ii91.42 (4)O5—C23—C22119.59 (15)
O6i—Sr1—O8iii107.63 (5)O6—C23—Sr1vii57.14 (8)
O6ii—Sr1—O8107.63 (5)O6—C23—C22118.21 (14)
O6i—Sr1—O872.37 (5)C22—C23—Sr1vii172.18 (11)
O6ii—Sr1—O8iii72.37 (5)C8—C27—C26122.21 (15)
O6i—Sr1—O5i48.54 (4)C8—C27—H27118.9
O6i—Sr1—O5ii131.46 (4)C26—C27—H27118.9
O6ii—Sr1—O5i131.46 (4)C25—C19—C18121.83 (14)
O6ii—Sr1—O5ii48.54 (4)C25—C19—C20118.21 (15)
O6ii—Sr1—O6i180.0C20—C19—C18119.91 (15)
O6i—Sr1—C23i24.34 (4)C16—C10—C9119.67 (15)
O6i—Sr1—C23ii155.66 (4)C16—C10—C11118.95 (15)
O6ii—Sr1—C23ii24.34 (4)C11—C10—C9121.38 (16)
O6ii—Sr1—C23i155.66 (4)C3—C2—C1120.94 (17)
C23i—Sr1—Sr2i64.29 (4)C3—C2—C7119.59 (16)
C23ii—Sr1—Sr2i115.71 (4)C7—C2—C1119.46 (16)
C23i—Sr1—Sr2ii115.71 (4)C3—C4—H4119.4
C23ii—Sr1—Sr2ii64.29 (4)C5—C4—C3121.16 (16)
C23ii—Sr1—C23i180.0C5—C4—H4119.4
Sr1vii—Sr2—Sr2iv93.96 (3)O4—C14—C13119.38 (15)
O4vi—Sr2—Sr1vii106.35 (3)O3—C14—O4123.88 (15)
O4vi—Sr2—Sr2iv137.39 (3)O3—C14—C13116.68 (15)
O4vi—Sr2—O9ii168.98 (4)C4—C5—C8119.14 (15)
O4vi—Sr2—O8ii83.07 (4)C6—C5—C8121.91 (16)
O4vi—Sr2—C32ii166.58 (4)C6—C5—C4118.95 (16)
O9v—Sr2—Sr1vii105.08 (3)C28—C29—H29119.7
O9ii—Sr2—Sr1vii82.69 (3)C30—C29—C28120.56 (16)
O9ii—Sr2—Sr2iv33.35 (3)C30—C29—H29119.7
O9v—Sr2—Sr2iv37.67 (3)C13—C15—H15120.0
O9v—Sr2—O4vi100.08 (4)C16—C15—H15120.0
O9v—Sr2—O9ii71.01 (4)C16—C15—C13120.00 (17)
O9v—Sr2—O7ii101.82 (4)C15—C13—C14121.99 (16)
O9v—Sr2—O8ii76.22 (5)C12—C13—C14118.85 (15)
O9ii—Sr2—C32ii24.19 (4)C12—C13—C15119.08 (15)
O9v—Sr2—C32ii88.37 (4)C26—C18—C19123.52 (14)
O7ii—Sr2—Sr1vii38.69 (3)C17—C18—C26118.15 (14)
O7ii—Sr2—Sr2iv71.57 (4)C17—C18—C19118.32 (15)
O7ii—Sr2—O4vi142.86 (4)C10—C16—H16119.6
O7ii—Sr2—O9ii47.66 (4)C15—C16—C10120.86 (16)
O7ii—Sr2—O8ii73.57 (4)C15—C16—H16119.6
O7ii—Sr2—C32ii23.75 (4)C31—C30—C29120.23 (15)
O8ii—Sr2—Sr1vii41.32 (3)C31—C30—H30119.9
O8ii—Sr2—Sr2iv88.84 (4)C29—C30—H30119.9
O8ii—Sr2—O9ii100.54 (4)C28—C34—H34119.8
O8ii—Sr2—C32ii88.92 (4)C28—C34—C33120.36 (16)
O5—Sr2—Sr1vii45.08 (3)C33—C34—H34119.8
O5—Sr2—Sr2iv137.42 (3)C13—C12—H12119.5
O5—Sr2—O4vi76.87 (4)C11—C12—C13120.96 (16)
O5—Sr2—O9ii114.15 (4)C11—C12—H12119.5
O5—Sr2—O9v144.28 (4)C9—C17—C18122.55 (15)
O5—Sr2—O7ii67.83 (4)C9—C17—H17118.7
O5—Sr2—O8ii68.06 (5)C18—C17—H17118.7
O5—Sr2—C32ii90.17 (4)C10—C11—H11119.9
O10—Sr2—Sr1vii178.20 (4)C12—C11—C10120.14 (17)
O10—Sr2—Sr2iv85.99 (4)C12—C11—H11119.9
O10—Sr2—O4vi74.80 (5)C31—C33—H33119.7
O10—Sr2—O9v75.95 (5)C34—C33—C31120.58 (16)
O10—Sr2—O9ii96.32 (5)C34—C33—H33119.7
O10—Sr2—O7ii139.82 (5)C22—C21—H21119.8
O10—Sr2—O8ii140.46 (5)C20—C21—C22120.36 (16)
O10—Sr2—O5134.53 (5)C20—C21—H21119.8
O10—Sr2—C32ii117.68 (5)O1—C1—C2114.09 (16)
C32ii—Sr2—Sr1vii61.05 (3)O2—C1—O1123.89 (18)
C32ii—Sr2—Sr2iv52.70 (3)O2—C1—C2122.01 (18)
C14—O4—Sr2vi122.70 (10)C19—C20—H20119.6
Sr2viii—O9—Sr2ii108.99 (4)C21—C20—C19120.87 (16)
C32—O9—Sr2viii131.25 (11)C21—C20—H20119.6
C32—O9—Sr2ii89.23 (10)C5—C6—H6120.2
Sr1—O7—Sr2ii99.58 (4)C5—C6—C7119.68 (18)
C32—O7—Sr1149.74 (11)C7—C6—H6120.2
C32—O7—Sr2ii99.28 (10)C2—C7—C6121.07 (18)
Sr1—O8—Sr2ii95.57 (5)C2—C7—H7119.5
Sr1—O8—H8A120.0 (17)C6—C7—H7119.5
Sr1—O7—C32—Sr2ii127.9 (2)C3—C2—C1—O14.7 (3)
Sr1—O7—C32—O9114.9 (2)C3—C2—C1—O2175.1 (2)
Sr1—O7—C32—C3165.6 (3)C3—C2—C7—C61.2 (3)
Sr1vii—O5—C23—O66.63 (18)C3—C4—C5—C8179.25 (16)
Sr1vii—O5—C23—C22173.24 (14)C3—C4—C5—C60.8 (3)
Sr1vii—O6—C23—O57.2 (2)C25—C24—C22—C23178.49 (16)
Sr1vii—O6—C23—C22172.70 (13)C25—C24—C22—C210.5 (3)
Sr2vi—O4—C14—O311.3 (2)C25—C19—C18—C2647.3 (3)
Sr2vi—O4—C14—C13166.13 (10)C25—C19—C18—C17131.15 (18)
Sr2viii—O9—C32—Sr2ii114.91 (12)C25—C19—C20—C210.5 (3)
Sr2ii—O9—C32—O711.91 (16)C23—C22—C21—C20177.01 (19)
Sr2viii—O9—C32—O7102.99 (17)C27—C8—C9—C10175.15 (16)
Sr2viii—O9—C32—C3177.48 (19)C27—C8—C9—C174.1 (2)
Sr2ii—O9—C32—C31167.61 (13)C27—C8—C5—C459.6 (2)
Sr2ii—O7—C32—O913.06 (17)C27—C8—C5—C6120.3 (2)
Sr2ii—O7—C32—C31166.47 (12)C27—C26—C18—C19177.53 (16)
Sr2—O5—C23—Sr1vii107.4 (4)C27—C26—C18—C174.0 (2)
Sr2—O5—C23—O6114.0 (4)C19—C18—C17—C9178.88 (16)
Sr2—O5—C23—C2265.9 (5)C10—C9—C17—C18177.77 (16)
Sr2ii—C32—C31—C30122.0 (5)C2—C3—C4—C50.3 (3)
Sr2ii—C32—C31—C3358.9 (6)C4—C3—C2—C1179.59 (17)
O4—C14—C13—C1517.0 (2)C4—C3—C2—C70.7 (3)
O4—C14—C13—C12166.39 (15)C4—C5—C6—C70.3 (3)
O9—C32—C31—C305.0 (2)C14—C13—C12—C11176.26 (15)
O9—C32—C31—C33175.99 (16)C5—C8—C9—C105.7 (3)
O7—C32—C31—C30175.50 (16)C5—C8—C9—C17175.09 (16)
O7—C32—C31—C333.6 (2)C5—C8—C27—C26176.56 (15)
O3—C14—C13—C15160.52 (16)C5—C6—C7—C20.7 (4)
O3—C14—C13—C1216.0 (2)C29—C28—C26—C2769.2 (2)
C24—C22—C23—O5169.00 (17)C29—C28—C26—C18111.8 (2)
C24—C22—C23—O610.9 (3)C29—C28—C34—C332.1 (3)
C24—C22—C21—C202.0 (3)C15—C13—C12—C110.4 (3)
C24—C25—C19—C18175.55 (16)C13—C15—C16—C101.1 (3)
C24—C25—C19—C202.0 (3)C13—C12—C11—C100.0 (3)
C32—C31—C30—C29176.78 (16)C18—C26—C27—C81.5 (3)
C32—C31—C33—C34178.78 (16)C18—C19—C20—C21177.09 (19)
C28—C26—C27—C8179.53 (15)C16—C10—C11—C120.9 (2)
C28—C26—C18—C191.4 (3)C16—C15—C13—C14176.71 (15)
C28—C26—C18—C17177.02 (16)C16—C15—C13—C120.2 (2)
C28—C29—C30—C312.1 (3)C30—C31—C33—C340.3 (3)
C28—C34—C33—C311.9 (3)C34—C28—C26—C27108.97 (19)
C8—C9—C10—C16120.06 (19)C34—C28—C26—C1870.0 (2)
C8—C9—C10—C1159.4 (2)C34—C28—C29—C300.1 (3)
C8—C9—C17—C181.5 (3)C17—C9—C10—C1659.2 (2)
C8—C5—C6—C7179.76 (19)C17—C9—C10—C11121.37 (19)
C22—C24—C25—C191.5 (3)C11—C10—C16—C151.5 (2)
C22—C21—C20—C191.5 (3)C33—C31—C30—C292.3 (3)
C26—C28—C29—C30178.16 (16)C21—C22—C23—O512.0 (3)
C26—C28—C34—C33176.15 (17)C21—C22—C23—O6168.11 (18)
C26—C18—C17—C92.6 (3)C1—C2—C7—C6179.1 (2)
C9—C8—C27—C262.7 (3)C20—C19—C18—C26135.20 (19)
C9—C8—C5—C4119.61 (19)C20—C19—C18—C1746.4 (3)
C9—C8—C5—C660.5 (2)C7—C2—C1—O1175.59 (19)
C9—C10—C16—C15177.99 (15)C7—C2—C1—O24.6 (3)
C9—C10—C11—C12178.55 (16)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y+2, z+2; (v) x1, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z; (viii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.792.6051 (18)164
O10—H10A···O2ix0.84 (3)1.97 (3)2.795 (2)168 (3)
O10—H10B···O6x0.78 (3)2.01 (3)2.787 (2)173 (3)
O8—H8B···O3xi0.83 (3)1.77 (3)2.5948 (19)170 (3)
Symmetry codes: (i) x, y1, z; (ix) x+1, y+1, z+1; (x) x1, y, z; (xi) x, y1, z+1.
Selected CSD data for title ligand-derived MOFs top
CSD codeCationCoordination numberSpace groupCrystal systemReference
ATIBUDZn2+6P1triclinic(Dissem et al. 2021)
ATICAKZn2+6P1triclinic(Dissem et al. 2021)
ATICEOZn2+6P1triclinic(Dissem et al. 2021)
ATICISCu2+6P1triclinic(Dissem et al. 2021)
ATICOYCu2+6P1triclinic(Dissem et al. 2021)
ATICUECu2+6P1triclinic(Dissem et al. 2021)
FIYDEZCo2+6I2/amonoclinic(Dhankhar & Nagaraja 2019)
MIFKUJZn2+4P1triclinic(Karra et al. 2013)
MIFLIYMg2+6C2/2cmonoclinic(Karra, et al. 2013)
MIFMIZNi2+6P1triclinic(Karra et al. 2013)
MIHMOIBi2+5C2/2cmonoclinic(Köppen et al. 2018)
 

Funding information

Funding for this research was provided by: National Science Foundation, PREM (award No. DMR-1523611; award No. DMR-2122108).

References

First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDhankhar, S. S. & Nagaraja, C. M. (2019). New J. Chem. 43, 2163–2170.  Web of Science CSD CrossRef CAS Google Scholar
First citationDissem, N., Essalhi, M., Ferhi, N., Abidi, A., Maris, T. & Duong, A. (2021). Dalton Trans. 50, 8727–8735.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.  Web of Science CrossRef PubMed Google Scholar
First citationGassensmith, J. J., Kim, J. Y., Holcroft, J. M., Farha, O. K., Stoddart, J. F., Hupp, J. T. & Jeong, N. C. (2014). J. Am. Chem. Soc. 136, 8277–8282.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHisaki, I., Emilya Affendy, N. Q. & Tohnai, N. (2017). CrystEngComm, 19, 4892–4898.  Web of Science CSD CrossRef CAS Google Scholar
First citationJia, Y. Y., Liu, X. T., Wang, W. H., Zhang, L. Z., Zhang, Y. H. & Bu, X. H. (2017). Philos. Transact. Ser. A Math. Phys. Eng. Sci. 375, 2084.  Google Scholar
First citationKarra, J. R., Huang, Y.-G. & Walton, K. S. (2013). Cryst. Growth Des. 13, 1075–1081.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöppen, M., Meyer, V., Ångström, J., Inge, A. K. & Stock, N. (2018). Cryst. Growth Des. 18, 4060–4067.  Google Scholar
First citationKrause, L., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1907–1913.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKundu, T., Sahoo, S. C. & Banerjee, R. (2012). Chem. Commun. 48, 4998–5000.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUsman, M., Mendiratta, S., Batjargal, S., Haider, G., Hayashi, M., Rao Gade, N., Chen, J. W., Chen, Y. F. & Lu, K. L. (2015). Appl. Mater. Interfaces, 7, 22767–22774.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H. C., Long, J. R. & Yaghi, O. M. (2012). Chem. Rev. 112, 673–674.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds