Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a TbIII–CuII glycine­hydroxamate 15-metallacrown-5 sulfate complex

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 62, Kyiv, 01601, Ukraine, bL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine, Prospect Nauki 31, Kiev 03028, Ukraine, cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IA 47907-2084, USA, and dDepartment of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA
*Correspondence e-mail: annpavlis@ukr.net

(Received 1 August 2021; accepted 9 November 2021; online 18 November 2021)

The core of the title complex, bis­[hexa­aqua­hemi­aqua­penta­kis­(μ3-glycine­hydroxamato)sulfato­penta­copper(II)terbium(III)] sulfate hexa­hydrate, [TbCu5(SO4)(GlyHA)5(H2O)6.5]2(SO4)·6H2O (1), which belongs to the 15-metalla­crown-5 family, consists of five glycine­hydroxamate dianions (GlyHA2−; C2H4N2O2) and five copper(II) ions linked together forming a metallamacrocyclic moiety. The terbium(III) ion is connected to the centre of the metallamacrocycle through five hydroxamate oxygen atoms. The coordination environment of the Tb3+ ion is completed to an octa­coordination level by oxygen atoms of a bidentate sulfate and an apically coordinated water mol­ecule, while the copper(II) atoms are square-planar, penta- or hexa­coordinate due to the apical coordination of water mol­ecules. Continuous shape calculations indicate that the coordination polyhedron of the Tb3+ ion in 1 is best described as square anti­prismatic. The positive charge of each pair of [TbCu5(GlyHA)5(H2O)6.5(SO4)]22+ fragments is compensated by a non-coordinated sulfate anion, which is located on an inversion center with 1:1 disordered oxygen atoms. Complex 1 is isomorphous with the previously reported compounds [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where LnIII = Pr, Nd, Sm, Eu, Gd, Dy and Ho.

1. Chemical context

Numerous research studies devoted to polynuclear 3d–4f assemblies have been stimulated by their non-trivial lumin­escence properties (Jankolovits et al., 2011[Jankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. 123, 9834-9838.]; Maity et al., 2015[Maity, M., Majee, M. C., Kundu, S., Samanta, S. K., Sañudo, E. C., Ghosh, S. & Chaudhury, M. (2015). Inorg. Chem. 54, 9715-9726.]), single-mol­ecule magnet (SMM) behaviour (Dhers et al., 2016[Dhers, S., Feltham, H. L. C., Rouzières, M., Clérac, R. & Brooker, S. (2016). Dalton Trans. 45, 18089-18093.]; Zangana et al., 2014[Zangana, K. H., Pineda, E. M., Vitorica-Yrezabal, I. J., McInnes, E. J. L. & Winpenny, R. E. P. (2014). Dalton Trans. 43, 13242-13249.]) and their significant magnetocaloric effect (Pavlishchuk & Pavlishchuk, 2020[Pavlishchuk, A. V. & Pavlishchuk, V. V. (2020). Theor. Exp. Chem. 56, 1-25.]; Zheng et al., 2014[Zheng, Y.-Z., Zhou, G.-J., Zheng Z., & Winpenny, R. E. P. (2014). Chem. Soc. Rev. 43, 1462-1475.]). The 15-metallacrown-5 complexes are 3d–4f metallamacrocyclic assemblies, which can be easily obtained from one-step reactions between an α-substituted hydroxamic acid and the corresponding salts of transition metals and lanthanides (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.], 2019[Pavlishchuk, A., Naumova, D., Zeller, M., Calderon Cazorla, S. & Addison, A. W. (2019). Acta Cryst. E75, 1215-1223.]). Compounds bearing 15-metallacrown-5 {LnCu5}3+ units have demonstrated the ability to serve as sensors (Zabrodina et al., 2018[Zabrodina, G. S., Katkova, M. A., Samsonov, M. A. & Ketkov, S. Y. (2018). Z. Anorg. Allg. Chem. 644, 907-911.]), can absorb and adsorb various small mol­ecules (Lim et al., 2010[Lim, C., Jankolovits, J., Kampf, J. & Pecoraro, V. (2010). Chem. Asian J. 5, 46-49.]; Pavlishchuk et al., 2014[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320-1330.]; Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]) and display SMM behaviour (Wang et al., 2019[Wang, J., Ruan, Z.-Y., Li, Q.-W., Chen, Y.-C., Huang, G.-Z., Liu, J.-L., Reta, D., Chilton, N. F., Wang, Z.-X. & Tong, M.-L. (2019). Dalton Trans. 48, 1686-1692.], 2021[Wang, J., Li, Q.-W., Wu, S.-G., Chen, Y.-C., Wan, R.-C., Huang, G.-Z., Liu, Y., Liu, J.-L., Reta, D., Giansiracusa, M. J., Wang, Z.-X., Chilton, N. F. & Tong, M.-L. (2021). Angew. Chem. Int. Ed. 60, 5299-5306.]; Zaleski et al., 2006[Zaleski, C. M., Depperman, E. C., Kampf, J. W., Kirk, M. L. & Pecoraro, V. L. (2006). Inorg. Chem. 45, 10022-10024.]; Wu et al., 2021[Wu, S.-G., Ruan, Z.-Y., Huang, G.-Z., Zheng, J.-Y., Vieru, V., Taran, G., Wang, J., Chen, Y.-C., Liu, J.-L., Ho, L. T. A., Chibotaru, L. F., Wernsdorfer, W., Chen, X.-M. & Tong, M.-L. (2021). Chem, 7, 982-992.]). Taking into account the fact that 15-metallacrowns-5 are also suitable building blocks for the generation of porous coordination polymers and discrete assemblies (Pavlishchuk et al., 2017a[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152-13165.],b[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017b). Eur. J. Inorg. Chem. pp. 4866-4878.], 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.]), the synthesis of new examples of this class of metallamacrocyclic assemblies and studies of their structural features are of particular inter­est. Herein we report the crystal structure of the new 15-metallacrown-5 complex [TbCu5(GlyHA)5(H2O)6.5(SO4)]2 (SO4)·13(H2O) (1), which complements the previously reported series of isomorphous metallamacrocycles with Pr, Nd, Sm, Eu, Gd, Dy and Ho ions at their centres.

[Scheme 1]

2. Structural commentary

Complex 1 crystallizes in the space group P[\overline{1}] and is isostructural with the previously reported complexes [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where GlyHA2− is the dianion of glycine­hydroxamic acid and LnIII = Pr, Nd, Sm, Eu, Gd, Dy and Ho (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]). Each unit cell in 1 contains two [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ 15-metallacrown-5 cations related by an inversion center, one non-coordinated sulfate anion for charge-balance and non-coord­inated water mol­ecules (Figs. 1[link] and 2[link]).

[Figure 1]
Figure 1
The unit cell of complex 1 containing two [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ metallacrown cations and non-coordinated sulfate anions (located on a inversion center with O atoms 1:1 disordered). Non-coordinated water mol­ecules are omitted for clarity of presentation.
[Figure 2]
Figure 2
Structure of the [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ metallacrown cations in 1. The dashed lines indicate the disorder of the non-coordinated sulfate anion. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) x, y, z + 1.]

The core of the [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ complex cation in 1 is constructed from five copper(II) ions linked by five bridging glycine­hydroxamate dianions (GlyHA2−) and a terbium(III) ion bound at the centre of the metallocycle (Fig. 1[link]). The copper(II) equatorial coordination environment in 1 is formed by two oxygen atoms (from a carboxyl­ate and a deprotonated hydroxamate group) and two nitro­gen atoms (from an amine and a deprotonated hydroxamate). The equatorial Cu—Oeq and Cu—Neq distances range from 1.928 (3) to 1.969 (3) Å and 1.890 (4) to 2.018 (4) Å (Table 1[link]), respectively, which is typical of amino­hydroxamate 15-metallacrown-5 complexes (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]; Katkova et al., 2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.]; Meng et al., 2016[Meng, Y., Yang, H., Li, D., Zeng, S., Chen, G., Li, S. & Dou, J. (2016). RSC Adv. 6, 47196-47202.]). As a result of the apical coordination of water mol­ecules to copper(II) ions, Cu1 has distorted square-bipyramidal coordination [Cu1—O20 = 2.601 (4) Å and Cu1—O21 = 2.736 (4) Å], while Cu3, Cu4 and Cu5 are in square-pyramidal environments [Cu3—O16 = 2.508 (4) Å, Cu4—O17 = 2.481 (4) Å and Cu5—O18 = 2.379 (4) with τ-values (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) ranging from 0.07 to 0.13]. As a result of the disorder of the O19 water mol­ecule between two symmetry-equivalent positions with occupancy factors of 0.5, 50% of the Cu2 atoms in 1 have square-planar coordination environments, while the other 50% possess a square-pyramidal coordination [Cu2—O19 = 2.409 (10), τ = 0.022 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.])]. The terbium(III) ions at the centres of the [Cu5(GlyHA)5] metallamacrocyclic cores in 1 are bound by five hydroxamate oxygen atoms. The Tb—Oeq bond lengths are typical for 15-metallacrown-5 complexes and range from 2.370 (3) to 2.430 (3) Å (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]; Katkova et al., 2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.]; Meng et al., 2016[Meng, Y., Yang, H., Li, D., Zeng, S., Chen, G., Li, S. & Dou, J. (2016). RSC Adv. 6, 47196-47202.]).

Table 1
Selected bond lengths (Å)

Cu1—N3 1.915 (4) Cu4—O8 1.940 (3)
Cu1—O1 1.928 (3) Cu4—O7 1.947 (3)
Cu1—O2 1.969 (3) Cu4—N10 2.012 (4)
Cu1—N4 1.991 (4) Cu4—O17 2.481 (4)
Cu1—O20 2.601 (4) Cu5—N1 1.890 (4)
Cu1—O21 2.736 (4) Cu5—O9 1.943 (3)
Cu2—N5 1.900 (4) Cu5—O10 1.946 (3)
Cu2—O3 1.928 (3) Cu5—N2 2.003 (4)
Cu2—O4 1.936 (3) Cu5—O18 2.379 (4)
Cu2—N6 2.018 (4) Tb1—O9 2.370 (3)
Cu2—O19 2.409 (10) Tb1—O1 2.372 (3)
Cu3—N7 1.904 (4) Tb1—O15 2.383 (3)
Cu3—O6 1.944 (3) Tb1—O3 2.386 (3)
Cu3—O5 1.949 (3) Tb1—O7 2.411 (3)
Cu3—N8 2.014 (4) Tb1—O5 2.430 (3)
Cu3—O16 2.508 (4) Tb1—O12 2.436 (3)
Cu4—N9 1.894 (4) Tb1—O11 2.451 (3)

The coordination environment of the Tb3+ ion is completed to an octa­coordination level via the two oxygen atoms O11 [Tb1—O11 = 2.451 (3) Å] and O12 [Tb1—O12 = 2.436 (3) Å] from the bidentate sulfate anions and O15 [Tb1—O15 = 2.383 (3) Å] from a water mol­ecule coordinated in the trans-position opposite to the SO42− ion. An analysis of selected structural parameters for complex 1 and those of isomorphous compounds with other LnIII ions (Table 2[link]) reveals the influence of the lanthanide contraction. Similar behaviour was found in other series of lanthanide(III) containing metallamacrocycles (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]; Zaleski et al., 2011[Zaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707-7717.]). According to Shape 2.1 (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]) calculations (Fig. 3[link], Table 3[link]), the coordination geometry of the TbIII ion in 1 is a square anti­prism (D4d), which is of particular inter­est with respect to potential generation of lanthanide(III)-containing SMMs (Liu et al., 2018[Liu, J.-L., Chen, Y.-C. & Tong, M.-L. (2018). Chem. Soc. Rev. 47, 2431-2453.]). The deviations from an idealized square-anti­prismatic geometry in the [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4) complexes decrease with reduction of the deviation of the LnIII ion from the mean plane of the metallacrown core, which parallels the ionic radii of the LnIII ions (Table 3[link]). It may be noted that, in the case of a series of related 15-metallacrown-5 complexes with octa­coordinate LnIII ions containing bidentate carbonates or acetates instead of sulfates, the coordination of the lanthanide ions is triangular dodeca­hedral (D2d) (Table 3[link]).

Table 2
Comparison of the structural characteristics (Å, °) of {LnCu5}3+ 15-metallacrown-5 complexes with octa­coordinate LnIII ions and various bidentate anions

Complexa Cu—O/Neq Ln—Oeq Ln—Oaq Ln⋯Cu Cu⋯Cu Deviation of LnIII from Cu5 plane LnO8 geometryb
Pr—SO4 1.898 (2)–2.013 (2) 2.4247 (18)–2.4716 (18) 2.495 (2)–2.528 (2) 3.862 (3)–3.923 (2) 4.530 (2)–4.604 (2) 0.459 SAPR-8
Nd—SO4 1.898 (2)–2.0156 (19) 2.4145 (16)–2.4642 (16) 2.4787 (18)–2.5108 (17) 3.862 (3)–3.915 (4) 4.524 (4)–4.598 (5) 0.452 SAPR-8
Sm—SO4 1.900 (4)–2.015 (4) 2.398 (3) −2.450 (3) 2.441 (4)–2.484 (4) 3.8539 (9)–3.9083 (8) 4.518 (1)–4.592 (1) 0.439 SAPR-8
Eu—SO4 1.896 (3)–2.013 (3) 2.389 (3)–2.437 (3) 2.431 (3)–2.467 (3) 3.844 (7)–3.899 (8) 4.504 (8)–4.585 (9) 0.439 SAPR-8
Eu—CO3 1.886 (14)–2.022 (13) 2.406 (11)–2.493 (11) 2.369 (13)–2.392 (15) 3.890 (2)–3.911 (3) 4.575 (3)–4.589 (3) 0.351 TDD-8
Eu-OAc 1.902 (3)–2.041 (2) 2.440 (4)–2.515 (2) 2.4057 (18)–2.443 (2) 3.8517 (4)–3.9049 (4) 4.5664 (5)–4.6074 (4) 0.469 TDD-8
Gd—SO4 1.892 (3)–2.014 (3) 2.378 (3)–2.434 (3) 2.398 (3)–2.452 (3) 3.838 (7)–3.897 (9) 4.501 (8)–4.578 (11) 0.430 SAPR-8
Gd—CO3 1.898 (2)–2.022 (2) 2.381 (2)–2.484 (2) 2.288 (17)–2.396 (10) 3.8699 (5)–3.9097 (5) 4.5677 (7)–4.5846 (7) 0.337 TDD-8
Gd-OAc 1.890 (12)–2.041 (11) 2.393 (3)–2.438 (9) 2.426 (10)–2.512 (10) 3.845 (2)–3.897 (2) 4.562 (2)–4.602 (2) 0.458 TDD-8
Tb—SO4 1.890 (4)–2.018 (4) 2.370 (3)–2.430 (3) 2.383 (3)–2.451 (3) 3.8398 (8)–3.8944 (8) 4.501 (1)–4.577 (1) 0.427 SAPR-8
Tb-OAc 1.889 (11)–2.036 (11) 2.383 (9)–2.431 (9) 2.409 (10)–2.488 (10) 3.840 (2)–3.896 (2) 4.562 (2)–4.598 (2) 0.445 TDD-8
Dy—SO4 1.8908 (18)–2.0206 (19) 2.3640 (15) −2.4234 (15) 2.3665 (17)–2.4334 (17) 3.834 (2)–3.889 (2) 4.493 (2)–4.573 (2) 0.424 SAPR-8
Dy—CO3 1.898 (3)–2.022 (3) 2.382 (3)–2.469 (3) 2.27 (2)–2.380 (8) 3.8715 (5)–3.9016 (6) 4.5645 (7)–4.5797 (8) 0.354 TDD-8
Ho—SO4 1.887 (3)–2.016 (3) 2.356 (2)–2.416 (2) 2.357 (2)–2.417 (2) 3.827 (2)–3.884 (2) 4.485 (2)–4.565 (2) 0.422 SAPR-8
Ho—CO3 1.898 (2)–2.022 (2) 2.374 (2)–2.475 (2) 2.30 (3)–2.374 (12) 3.8670 (5)–3.9021 (5) 4.5583 (7)–4.5808 (7) 0.330 TDD-8
Notes: (a) Complex Tb—SO4 is 1; Ln-SO4 correspond to the [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4) series with Ln = Pr, Nd, Sm, Eu, Gd, Dy and Ho described in (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]); Ln-CO3 are [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] with Ln = Eu, Gd, Dy and Ho described in Pavlishchuk et al. (2019[Pavlishchuk, A., Naumova, D., Zeller, M., Calderon Cazorla, S. & Addison, A. W. (2019). Acta Cryst. E75, 1215-1223.]) and Stemmler et al. (1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]); Ln-OAc are [LnCu5(GlyHA)5(OAc)(H2O)5](NO3)2 Ln = Eu, Gd and Tb described in Katkova et al. (2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.]) and Meng et al. (2016[Meng, Y., Yang, H., Li, D., Zeng, S., Chen, G., Li, S. & Dou, J. (2016). RSC Adv. 6, 47196-47202.]). (b) LnO8 geometries: SAPR-8 = square anti­prism (D4d) and TDD-8 = triangular dodeca­hedron (D2d).

Table 3
Continuous shape calculations for octa­coordinated Ln3+ ions in 1 obtained with Shape 2.1 software (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.])

  OP-8 HPY-8 HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8
Pr–SO4 30.846 22.755 15.952 11.561 2.215 2.397 13.029 25.482
Nd–SO4 30.677 22.888 15.968 11.587 2.141 2.364 13.033 25.516
Sm–SO4 30.387 22.903 15.951 11.562 2.020 2.311 13.013 25.752
Eu–SO4 30.516 23.164 16.270 11.783 1.952 2.363 13.190 25.864
Gd–SO4 30.465 23.110 16.032 11.570 1.907 2.269 13.151 26.121
Tb–SO4 30.381 23.117 16.159 11.666 1.854 2.322 13.140 26.276
Dy–SO4 30.357 23.195 16.112 11.603 1.799 2.254 13.168 26.433
Ho–SO4 30.272 23.212 16.095 11.588 1.761 2.247 13.186 26.496
Octa­coordinated ions: OP-8 = octa­gon (D8h); HPY-8 = hepta­gonal pyramid (C7v); HBPY-8 = hexa­gonal bipyramid (D6h); CU-8 = cube (Oh); SAPR-8 = square anti­prism (D4d); TDD-8 = triangular dodeca­hedron (D2d); JGBF-8 = Johnson gyrobifastigium J26 (D2d); JETBPY-8 = Johnson elongated triangular bipyramid J14 (D3h).
[Figure 3]
Figure 3
The TbIII coordination sphere geometry in 1.

The Cu⋯Cu and Ln⋯Cu separations for complex 1 range from 4.501 (1) to 4.577 (1) Å and 3.8398 (8) to 3.8944 (8) Å, respectively, and are typical for {LnCu5}3+ metallacrowns (Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]; Katkova et al., 2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.]; Meng et al., 2016[Meng, Y., Yang, H., Li, D., Zeng, S., Chen, G., Li, S. & Dou, J. (2016). RSC Adv. 6, 47196-47202.]). The Cu—O, Cu—N and Cu⋯Cu distances do not vary significantly amongst metallamacrocycles with different bidentate counter-anions (Table 2[link]). The metallacrown moiety in 1 is close to planar, the deviation of TbIII ions from the mean plane Cu1–Cu5 being 0.4270 (4) Å. The Ln—O distances, Ln—Cu separations and deviations of the LnIII ions from the Cu5 planes of the metallamacrocycles trend with the lanthanide contraction in all members of the isomorphous [LnCu5(GlyHA)5]3+ series. However, there are some minor differences in the observed values for a given LnIII ion, depending on the coordinated bidentate counter-anion, which is likely associated with the different planarities of the {LnCu5}3+ cores (Table 2[link]).

3. Supra­molecular features

The [LnCu5(GlyHA)5]3+ cations in complex 1 are non-oligomerized, which is typical for 15-metallacrown-5 complexes. The water apical to TbIII in 1 (O15) is involved in the formation of intra­molecular hydrogen bonds (O15—H15A⋯O21 and O15—H15B⋯O16) with apically coordinated water mol­ecules O16 and O21 on copper(II) ions Cu3 and Cu1, respectively. Intra­molecular hydrogen bonds in 1 are also formed between the bidentate sulfate and apically coord­inated water mol­ecules O17, O18 and O20 (O17—H17A⋯O12, O18—H18B⋯O14 and O20—H20B⋯O11) on copper(II) ions Cu4, Cu5 and Cu1. An extended system of inter­molecular hydrogen bonds [N2—H2A⋯O15iii, N8—H8B⋯O12vi (SO4), N10—H10A⋯O20i, O10iiii⋯H21B—O21, O6vi⋯H17B—O17, O21—H21A⋯O18iv, O16—H16A⋯O17iv] links adjacent [TbCu5(GlyHA)5(H2O)6.5(SO4)]+ cations and non-coordinated sulfate anions [N4—H4A⋯O27iv(SO4), O18—H18A⋯O27(SO4), N4—H4A⋯O25x(SO4) and O20—H20A⋯O25(SO4)]. Non-coordinated water mol­ecules in 1 are linked by hydrogen bonds with carbonyl oxygen and amine nitro­gen atoms in the glycine­hydroxamate unit from the metallacrown core (O4i⋯H23A—O23, O8⋯H24B—O24, N6—H6B⋯O24vi, N8—H8A⋯O23, N10—H10B⋯O22viii), apically coordinated water mol­ecules (O16—H16B⋯O22, O19—H19A⋯O24vii, O19–-H19B⋯O24vi) or bidentate sulfate (O11i⋯H24A-–O24 and O13ii⋯H23B—O23). Hydrogen-bond parameters and symmetry codes are given in Table 4[link].

Table 4
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O24—H24B⋯O8 0.84 (2) 2.01 (3) 2.807 (5) 159 (7)
O24—H24A⋯O11i 0.84 (2) 2.21 (3) 3.015 (5) 162 (7)
O23—H23B⋯O13ii 0.85 (2) 2.02 (3) 2.853 (5) 166 (6)
O23—H23A⋯O4i 0.84 (2) 1.89 (2) 2.734 (5) 176 (7)
O22—H22B⋯O23 0.84 (2) 1.89 (3) 2.701 (6) 162 (8)
O22—H22A⋯O26iii 0.84 (2) 2.18 (4) 2.968 (9) 155 (8)
O22—H22A⋯O28ii 0.84 (2) 1.92 (3) 2.733 (9) 161 (8)
O21—H21B⋯O10iii 0.83 (2) 1.91 (3) 2.728 (5) 165 (8)
O21—H21A⋯O18iv 0.84 (2) 1.94 (3) 2.765 (5) 167 (7)
O20—H20B⋯O11 0.83 (2) 2.14 (3) 2.960 (5) 168 (7)
O20—H20A⋯O26v 0.83 (2) 2.09 (3) 2.916 (9) 170 (7)
O20—H20A⋯O25 0.83 (2) 2.02 (5) 2.719 (9) 142 (7)
O19—H19B⋯O24vi 0.84 (2) 2.07 (9) 2.866 (11) 157 (22)
O19—H19A⋯O24vii 0.84 (2) 1.72 (7) 2.535 (12) 162 (21)
O18—H18B⋯O14 0.83 (2) 1.90 (2) 2.732 (5) 173 (7)
O18—H18A⋯O26v 0.84 (2) 2.04 (3) 2.857 (9) 163 (7)
O18—H18A⋯O27 0.84 (2) 1.91 (4) 2.648 (9) 146 (6)
O17—H17B⋯O6vi 0.83 (2) 1.90 (2) 2.730 (5) 176 (7)
O17—H17A⋯O12 0.83 (2) 2.10 (3) 2.905 (5) 163 (6)
O16—H16B⋯O22 0.84 (2) 1.89 (2) 2.721 (6) 173 (7)
O16—H16A⋯O17iv 0.84 (2) 1.95 (2) 2.784 (5) 172 (7)
O15—H15B⋯O16 0.84 (2) 1.86 (2) 2.692 (5) 170 (6)
O15—H15A⋯O21 0.84 (2) 1.85 (3) 2.668 (5) 166 (6)
N10—H10B⋯O22viii 0.91 2.13 2.920 (6) 145
N10—H10A⋯O20i 0.91 2.24 2.987 (5) 139
N8—H8B⋯O12vi 0.91 2.04 2.937 (5) 168
N8—H8A⋯O23 0.91 2.20 3.031 (5) 152
N6—H6B⋯O13ix 0.91 2.64 3.363 (5) 137
N6—H6B⋯O24vi 0.91 2.24 2.984 (6) 139
N6—H6A⋯O13iv 0.91 2.25 3.158 (5) 175
N4—H4B⋯O2x 0.91 2.33 3.182 (5) 156
N4—H4A⋯O27iv 0.91 2.18 3.037 (9) 156
N4—H4A⋯O25x 0.91 2.01 2.789 (9) 143
N2—H2B⋯O27 0.91 2.55 3.418 (9) 159
N2—H2B⋯O28v 0.91 2.08 2.868 (9) 144
N2—H2A⋯O15iii 0.91 2.07 2.946 (5) 162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) [-x+1, -y+1, -z+1]; (iv) x+1, y, z; (v) [-x, -y, -z+1]; (vi) [-x+1, -y+1, -z]; (vii) [x, y-1, z]; (viii) [x-1, y, z]; (ix) [-x+1, -y, -z]; (x) [-x+1, -y, -z+1].

4. Database survey

Compounds most closely related to 1 are its isomorphous counterparts [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where GlyHA2− is the dianion of glycine­hydroxamic acid and LnIII = Pr, Nd, Sm, Eu, Gd, Dy and Ho (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]). A search of the Cambridge Structural Database (Version 5.41, 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals other compounds that also feature an LnCu5(GlyHA)5 core, with counter-anions such as nitrate, acetate, chloride, lactate, carbonate, sulfate, isophthalate, terephthalate and all lanthanide ions other than radioactive Pm (Katkova et al., 2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.],b[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202-5208.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.], 2017a[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152-13165.], Pavlishchuk et al., 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.], 2019[Pavlishchuk, A., Naumova, D., Zeller, M., Calderon Cazorla, S. & Addison, A. W. (2019). Acta Cryst. E75, 1215-1223.]; Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Muravyeva et al., 2016[Muravyeva, M. S., Zabrodina, G. S., Samsonov, M. A., Kluev, E. A., Khrapichev, A. A., Katkova, M. A. & Mukhina, I. V. (2016). Polyhedron, 114, 165-171.]; Kremlev et al., 2016[Kremlev, K. V., Samsonov, M. A., Zabrodina, G. S., Arapova, A. V., Yunin, P. A., Tatarsky, D. A., Plyusnin, P. E., Katkova, M. A. & Ketkov, S. Y. (2016). Polyhedron, 114, 96-100.]). Most of these complexes feature, similar to 1, individual mol­ecular complex cations (Katkova et al., 2015a[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31-33.],b[Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202-5208.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.], 2017a[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152-13165.], 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.], 2019[Pavlishchuk, A., Naumova, D., Zeller, M., Calderon Cazorla, S. & Addison, A. W. (2019). Acta Cryst. E75, 1215-1223.]; Stemmler et al., 1999[Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.]; Muravyeva et al., 2016[Muravyeva, M. S., Zabrodina, G. S., Samsonov, M. A., Kluev, E. A., Khrapichev, A. A., Katkova, M. A. & Mukhina, I. V. (2016). Polyhedron, 114, 165-171.]; Kremlev et al., 2016[Kremlev, K. V., Samsonov, M. A., Zabrodina, G. S., Arapova, A. V., Yunin, P. A., Tatarsky, D. A., Plyusnin, P. E., Katkova, M. A. & Ketkov, S. Y. (2016). Polyhedron, 114, 96-100.]), but a small number of oligomerized examples have also been reported (Pavlishchuk et al., 2017a[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152-13165.], 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.]).

5. Synthesis and crystallization

Complex 1 was synthesized and crystallized according a general procedure described previously (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]). Single crystals were obtained by slow evaporation from an aqueous solution of 1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The structure is isomorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255-m265.]) and was solved by isomorphous replacement. The O19 water mol­ecule is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied. The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy.

Table 5
Experimental details

Crystal data
Chemical formula [TbCu5(C2H4N2O2)5(SO4)(H2O)6.5]2(SO4)·6H2O
Mr 2464.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.6370 (4), 11.5888 (5), 16.2367 (6)
α, β, γ (°) 99.6716 (13), 91.3031 (12), 105.3123 (12)
V3) 1719.80 (12)
Z 1
Radiation type Cu Kα
μ (mm−1) 15.11
Crystal size (mm) 0.20 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]
Tmin, Tmax 0.454, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 16278, 7029, 6786
Rint 0.050
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.10
No. of reflections 7029
No. of parameters 562
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.59, −1.34
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

C—H bond distances were constrained to 0.99 for aliphatic CH2 moieties. N—H bond distances were constrained to 0.91 Å for pyramidal (sp3-hybridized) ammonium NH2+ groups. Water H-atom positions were refined, and O—H distances were restrained to 0.84 (2) Å. The H⋯H distances within the O23 and O24 water mol­ecules were further restrained to 1.35 (2) Å. Uiso(H) values were set to kUeq(C/N/O) with k =1.5 for OH, and 1.2 for CH2 and NH2+ units, respectively.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[hexaaquahemiaquapentakis(µ3-glycinehydroxamato)sulfatopentacopper(II)terbium(III)] sulfate hexahydrate top
Crystal data top
[TbCu5(C2H4N2O2)5(SO4)(H2O)6.5]2(SO4)·6H2OZ = 1
Mr = 2464.44F(000) = 1214
Triclinic, P1Dx = 2.380 Mg m3
a = 9.6370 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.5888 (5) ÅCell parameters from 9965 reflections
c = 16.2367 (6) Åθ = 4.0–79.9°
α = 99.6716 (13)°µ = 15.11 mm1
β = 91.3031 (12)°T = 150 K
γ = 105.3123 (12)°Plate, blue
V = 1719.80 (12) Å30.20 × 0.20 × 0.08 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
7029 independent reflections
Radiation source: I-mu-S microsource X-ray tube6786 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.050
Detector resolution: 7.4074 pixels mm-1θmax = 80.3°, θmin = 2.8°
ω and phi scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015
k = 1414
Tmin = 0.454, Tmax = 0.754l = 1915
16278 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0656P)2 + 1.8351P]
where P = (Fo2 + 2Fc2)/3
7029 reflections(Δ/σ)max < 0.001
562 parametersΔρmax = 1.59 e Å3
22 restraintsΔρmin = 1.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure is ismorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (AVP85_10mz121, AVP355_10mz172, AVP621_09mz411 and AVP629_10mz194, AVP65_10mz125 and AVP651_10mz191, AVP70_10mz147, AVP75_10mz148 and AVP754_10mz650), and was solved by isomorphous replacement.

The water molecule of O19 is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied. The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy.

Water H atom positions were refined and O-H distances were restrained to 0.84 (2) Angstrom, respectively. Some H···H distances were further restrained to 1.35 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4433 (5)0.2625 (4)0.5042 (3)0.0167 (8)
C20.3610 (5)0.2938 (4)0.5788 (3)0.0195 (9)
H2C0.3202200.2200820.6028930.023*
H2D0.4270840.3549190.6222920.023*
C30.6783 (5)0.0423 (4)0.2493 (3)0.0158 (8)
C40.6931 (6)0.0360 (5)0.3110 (3)0.0235 (10)
H4C0.7947200.0384330.3166480.028*
H4D0.6327400.1199640.2903990.028*
C50.7890 (5)0.3483 (4)0.0317 (3)0.0175 (9)
C60.8858 (5)0.2707 (4)0.0019 (3)0.0221 (10)
H6C0.8744720.2534240.0638950.027*
H6D0.9877120.3154240.0152130.027*
C70.5254 (5)0.6985 (4)0.1304 (3)0.0159 (8)
C80.6022 (5)0.7507 (4)0.0594 (3)0.0179 (9)
H8C0.5326730.7367050.0105610.022*
H8D0.6439780.8394910.0769350.022*
C90.2149 (5)0.5808 (4)0.3895 (3)0.0163 (9)
C100.1644 (5)0.6898 (4)0.3802 (3)0.0222 (10)
H10C0.0589030.6644280.3664930.027*
H10D0.1843360.7480220.4340140.027*
Cu10.57451 (7)0.15475 (6)0.38923 (4)0.01792 (16)
Cu20.71639 (7)0.16393 (6)0.12404 (4)0.01884 (16)
Cu30.68477 (7)0.53540 (6)0.08031 (4)0.01553 (15)
Cu40.34975 (7)0.64627 (6)0.24858 (4)0.01548 (15)
Cu50.28203 (7)0.39948 (6)0.44370 (4)0.01615 (15)
Tb10.48345 (2)0.35681 (2)0.24306 (2)0.01322 (9)
N10.4245 (4)0.3141 (3)0.4416 (2)0.0171 (7)
N20.2431 (4)0.3430 (4)0.5530 (2)0.0195 (8)
H2A0.2365480.4062660.5928890.023*
H2B0.1577310.2843010.5476280.023*
N30.6105 (4)0.1242 (3)0.2732 (2)0.0178 (7)
N40.6482 (5)0.0108 (4)0.3943 (3)0.0215 (8)
H4A0.7247500.0319480.4328370.026*
H4B0.5779600.0487800.4106970.026*
N50.7027 (4)0.3075 (3)0.0865 (2)0.0166 (7)
N60.8492 (4)0.1541 (3)0.0304 (2)0.0171 (7)
H6A0.9312990.1394900.0495860.021*
H6B0.8054010.0916460.0116920.021*
N70.5575 (4)0.6039 (3)0.1480 (2)0.0172 (7)
N80.7190 (4)0.6918 (3)0.0356 (2)0.0159 (7)
H8A0.8059120.7427210.0570770.019*
H8B0.7203950.6761140.0211090.019*
N90.2929 (4)0.5471 (3)0.3302 (2)0.0173 (7)
N100.2378 (4)0.7509 (4)0.3133 (3)0.0226 (8)
H10A0.2986990.8242000.3365230.027*
H10B0.1710920.7639540.2780100.027*
O10.5000 (3)0.2882 (3)0.37163 (19)0.0166 (6)
O20.5244 (4)0.1896 (3)0.5060 (2)0.0196 (6)
O30.6029 (4)0.1998 (3)0.2163 (2)0.0199 (7)
O40.7336 (4)0.0300 (3)0.1769 (2)0.0196 (7)
O50.6158 (3)0.3809 (3)0.11866 (19)0.0157 (6)
O60.7979 (4)0.4510 (3)0.0074 (2)0.0189 (6)
O70.4861 (3)0.5537 (3)0.2123 (2)0.0166 (6)
O80.4330 (3)0.7478 (3)0.1689 (2)0.0193 (6)
O90.3463 (3)0.4493 (3)0.3393 (2)0.0170 (6)
O100.1827 (4)0.5265 (3)0.4519 (2)0.0195 (7)
O110.2853 (4)0.1696 (3)0.2229 (2)0.0238 (7)
O120.2734 (4)0.3216 (3)0.1464 (2)0.0205 (7)
O130.1448 (4)0.1123 (3)0.0876 (2)0.0253 (7)
O140.0575 (4)0.2189 (4)0.2058 (2)0.0311 (8)
O150.7222 (3)0.4609 (3)0.3006 (2)0.0184 (6)
H15A0.767 (6)0.430 (5)0.331 (3)0.028*
H15B0.782 (5)0.495 (5)0.269 (3)0.028*
O160.8851 (4)0.5789 (3)0.1920 (2)0.0254 (7)
H16A0.960 (5)0.557 (6)0.184 (4)0.038*
H16B0.917 (7)0.653 (2)0.213 (4)0.038*
O170.1408 (4)0.5205 (3)0.1525 (2)0.0220 (7)
H17A0.163 (7)0.457 (4)0.156 (4)0.033*
H17B0.155 (7)0.528 (6)0.1031 (18)0.033*
O180.0716 (4)0.2521 (3)0.3767 (2)0.0241 (7)
H18A0.043 (7)0.185 (3)0.393 (4)0.036*
H18B0.070 (7)0.236 (6)0.3246 (13)0.036*
O190.5200 (11)0.0381 (11)0.0275 (6)0.047 (2)0.5
H19A0.472 (19)0.003 (15)0.060 (9)0.071*0.5
H19B0.55 (2)0.02 (2)0.021 (6)0.071*0.5
O200.3102 (4)0.0221 (3)0.3519 (3)0.0283 (8)
H20A0.236 (5)0.022 (7)0.377 (4)0.043*
H20B0.291 (8)0.063 (6)0.318 (4)0.043*
O210.8274 (4)0.3337 (4)0.3966 (2)0.0308 (8)
H21A0.909 (4)0.320 (7)0.392 (5)0.046*
H21B0.841 (8)0.380 (6)0.443 (3)0.046*
O220.9749 (5)0.8150 (4)0.2711 (3)0.0361 (9)
H22A0.972 (9)0.855 (7)0.319 (2)0.054*
H22B0.980 (9)0.857 (6)0.234 (4)0.054*
O230.9394 (4)0.9116 (3)0.1345 (2)0.0243 (7)
H23A0.876 (4)0.947 (5)0.150 (4)0.036*
H23B1.011 (4)0.968 (4)0.126 (4)0.036*
O240.3431 (7)0.9430 (4)0.1264 (3)0.0523 (14)
H24A0.328 (11)0.998 (6)0.163 (4)0.079*
H24B0.368 (10)0.893 (6)0.152 (4)0.079*
O250.1618 (8)0.0365 (9)0.4920 (5)0.0357 (19)0.5
O260.0300 (9)0.0158 (7)0.5820 (5)0.0339 (17)0.5
O270.0484 (9)0.1032 (7)0.4781 (5)0.0333 (17)0.5
O280.0592 (9)0.1078 (7)0.4360 (5)0.0346 (17)0.5
S10.18461 (12)0.20240 (10)0.16476 (7)0.0195 (2)
S20.0000000.0000000.5000000.0199 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (19)0.0162 (19)0.019 (2)0.0070 (16)0.0042 (17)0.0016 (17)
C20.024 (2)0.025 (2)0.016 (2)0.0143 (18)0.0049 (17)0.0080 (18)
C30.0152 (19)0.0150 (19)0.019 (2)0.0092 (16)0.0030 (16)0.0011 (17)
C40.034 (3)0.024 (2)0.019 (2)0.020 (2)0.0063 (19)0.0025 (19)
C50.018 (2)0.019 (2)0.016 (2)0.0074 (17)0.0045 (17)0.0023 (17)
C60.025 (2)0.018 (2)0.025 (2)0.0068 (18)0.0113 (19)0.0018 (18)
C70.0150 (19)0.0126 (19)0.019 (2)0.0023 (15)0.0009 (16)0.0027 (17)
C80.018 (2)0.017 (2)0.021 (2)0.0078 (16)0.0038 (17)0.0055 (17)
C90.018 (2)0.0165 (19)0.017 (2)0.0114 (16)0.0011 (16)0.0027 (17)
C100.029 (2)0.024 (2)0.022 (2)0.0194 (19)0.0081 (19)0.0066 (19)
Cu10.0252 (3)0.0179 (3)0.0165 (3)0.0146 (3)0.0054 (3)0.0048 (3)
Cu20.0252 (3)0.0152 (3)0.0212 (4)0.0122 (3)0.0111 (3)0.0051 (3)
Cu30.0188 (3)0.0136 (3)0.0167 (3)0.0074 (2)0.0067 (2)0.0039 (2)
Cu40.0173 (3)0.0138 (3)0.0189 (3)0.0090 (2)0.0052 (2)0.0045 (2)
Cu50.0188 (3)0.0174 (3)0.0169 (3)0.0111 (3)0.0069 (2)0.0053 (3)
Tb10.01436 (14)0.01192 (14)0.01535 (15)0.00683 (10)0.00396 (10)0.00235 (10)
N10.0233 (18)0.0181 (17)0.0138 (18)0.0112 (15)0.0065 (14)0.0044 (14)
N20.0220 (19)0.0194 (18)0.020 (2)0.0106 (15)0.0073 (15)0.0036 (15)
N30.0234 (19)0.0150 (17)0.0201 (19)0.0111 (15)0.0070 (15)0.0071 (15)
N40.029 (2)0.0223 (19)0.020 (2)0.0157 (16)0.0087 (16)0.0072 (16)
N50.0159 (17)0.0179 (17)0.0169 (18)0.0087 (14)0.0056 (14)0.0016 (15)
N60.0171 (17)0.0183 (18)0.0193 (19)0.0092 (14)0.0060 (14)0.0053 (15)
N70.0192 (18)0.0170 (17)0.0174 (18)0.0075 (14)0.0036 (15)0.0043 (15)
N80.0212 (18)0.0104 (15)0.0183 (18)0.0060 (14)0.0061 (14)0.0057 (14)
N90.0202 (18)0.0166 (17)0.0185 (19)0.0108 (14)0.0029 (15)0.0032 (15)
N100.0212 (19)0.0169 (18)0.034 (2)0.0125 (15)0.0102 (17)0.0039 (17)
O10.0207 (15)0.0205 (15)0.0148 (15)0.0141 (12)0.0090 (12)0.0057 (12)
O20.0277 (17)0.0195 (15)0.0172 (16)0.0146 (13)0.0065 (13)0.0050 (13)
O30.0307 (17)0.0187 (15)0.0182 (16)0.0155 (13)0.0121 (13)0.0095 (13)
O40.0251 (16)0.0183 (15)0.0197 (16)0.0123 (13)0.0084 (13)0.0041 (13)
O50.0193 (14)0.0119 (13)0.0197 (16)0.0103 (11)0.0064 (12)0.0031 (12)
O60.0271 (17)0.0166 (14)0.0172 (16)0.0107 (13)0.0104 (13)0.0053 (12)
O70.0180 (14)0.0154 (14)0.0205 (16)0.0086 (12)0.0114 (12)0.0067 (12)
O80.0201 (15)0.0193 (15)0.0238 (17)0.0120 (12)0.0072 (13)0.0070 (13)
O90.0204 (15)0.0178 (15)0.0210 (16)0.0168 (12)0.0109 (12)0.0065 (13)
O100.0280 (17)0.0209 (15)0.0172 (16)0.0160 (13)0.0094 (13)0.0081 (13)
O110.0247 (17)0.0219 (16)0.0246 (18)0.0061 (13)0.0008 (14)0.0042 (14)
O120.0253 (16)0.0174 (15)0.0180 (16)0.0028 (13)0.0002 (13)0.0058 (13)
O130.0280 (17)0.0206 (16)0.0241 (18)0.0028 (14)0.0013 (14)0.0010 (14)
O140.0210 (17)0.043 (2)0.0267 (19)0.0086 (16)0.0047 (14)0.0019 (16)
O150.0178 (15)0.0222 (16)0.0167 (16)0.0076 (12)0.0016 (12)0.0041 (13)
O160.0190 (16)0.0268 (17)0.0287 (19)0.0047 (14)0.0044 (14)0.0029 (15)
O170.0281 (17)0.0224 (16)0.0183 (16)0.0111 (14)0.0040 (14)0.0043 (14)
O180.0261 (17)0.0227 (17)0.0236 (18)0.0066 (14)0.0045 (14)0.0040 (14)
O190.038 (5)0.064 (6)0.026 (4)0.007 (4)0.001 (4)0.005 (4)
O200.0309 (19)0.0200 (17)0.035 (2)0.0066 (15)0.0100 (16)0.0063 (15)
O210.0287 (19)0.044 (2)0.0241 (19)0.0232 (17)0.0003 (15)0.0036 (16)
O220.047 (2)0.036 (2)0.032 (2)0.0236 (19)0.0020 (19)0.0038 (17)
O230.0215 (16)0.0173 (15)0.035 (2)0.0072 (13)0.0068 (15)0.0026 (14)
O240.090 (4)0.039 (2)0.037 (2)0.043 (3)0.015 (2)0.008 (2)
O250.023 (4)0.058 (5)0.034 (4)0.014 (4)0.007 (3)0.022 (4)
O260.042 (4)0.034 (4)0.025 (4)0.011 (3)0.007 (3)0.002 (3)
O270.038 (4)0.030 (4)0.041 (5)0.018 (3)0.007 (3)0.018 (3)
O280.044 (5)0.026 (4)0.033 (4)0.009 (3)0.004 (3)0.003 (3)
S10.0186 (5)0.0195 (5)0.0200 (5)0.0044 (4)0.0019 (4)0.0037 (4)
S20.0189 (7)0.0180 (7)0.0235 (8)0.0071 (6)0.0005 (6)0.0026 (6)
Geometric parameters (Å, º) top
C1—N11.294 (6)Cu5—N22.003 (4)
C1—O21.298 (5)Cu5—O182.379 (4)
C1—C21.509 (6)Tb1—O92.370 (3)
C2—N21.480 (6)Tb1—O12.372 (3)
C2—H2C0.9900Tb1—O152.383 (3)
C2—H2D0.9900Tb1—O32.386 (3)
C3—N31.301 (5)Tb1—O72.411 (3)
C3—O41.304 (6)Tb1—O52.430 (3)
C3—C41.488 (7)Tb1—O122.436 (3)
C4—N41.488 (6)Tb1—O112.451 (3)
C4—H4C0.9900Tb1—S13.0756 (11)
C4—H4D0.9900N1—O11.396 (5)
C5—N51.295 (6)N2—H2A0.9100
C5—O61.298 (6)N2—H2B0.9100
C5—C61.509 (6)N3—O31.389 (5)
C6—N61.491 (6)N4—H4A0.9100
C6—H6C0.9900N4—H4B0.9100
C6—H6D0.9900N5—O51.395 (4)
C7—N71.288 (6)N6—H6A0.9100
C7—O81.298 (5)N6—H6B0.9100
C7—C81.509 (6)N7—O71.388 (5)
C8—N81.489 (5)N8—H8A0.9100
C8—H8C0.9900N8—H8B0.9100
C8—H8D0.9900N9—O91.391 (5)
C9—O101.282 (6)N10—H10A0.9100
C9—N91.306 (6)N10—H10B0.9100
C9—C101.498 (6)O11—S11.500 (4)
C10—N101.487 (7)O12—S11.502 (3)
C10—H10C0.9900O13—S11.461 (3)
C10—H10D0.9900O14—S11.448 (4)
Cu1—N31.915 (4)O15—H15A0.84 (2)
Cu1—O11.928 (3)O15—H15B0.84 (2)
Cu1—O21.969 (3)O16—H16A0.84 (2)
Cu1—N41.991 (4)O16—H16B0.84 (2)
Cu1—O202.601 (4)O17—H17A0.83 (2)
Cu1—O212.736 (4)O17—H17B0.83 (2)
Cu2—N51.900 (4)O18—H18A0.84 (2)
Cu2—O31.928 (3)O18—H18B0.83 (2)
Cu2—O41.936 (3)O19—H19A0.84 (2)
Cu2—N62.018 (4)O19—H19B0.84 (2)
Cu2—O192.409 (10)O20—H20A0.83 (2)
Cu3—N71.904 (4)O20—H20B0.83 (2)
Cu3—O61.944 (3)O21—H21A0.84 (2)
Cu3—O51.949 (3)O21—H21B0.83 (2)
Cu3—N82.014 (4)O22—H22A0.84 (2)
Cu3—O162.508 (4)O22—H22B0.84 (2)
Cu4—N91.894 (4)O23—H23A0.84 (2)
Cu4—O81.940 (3)O23—H23B0.85 (2)
Cu4—O71.947 (3)O24—H24A0.84 (2)
Cu4—N102.012 (4)O24—H24B0.84 (2)
Cu4—O172.481 (4)O25—S21.519 (7)
Cu5—N11.890 (4)O26—S21.401 (8)
Cu5—O91.943 (3)O27—S21.485 (7)
Cu5—O101.946 (3)O28—S21.458 (8)
N1—C1—O2125.3 (4)O5—Tb1—O11112.83 (11)
N1—C1—C2114.2 (4)O12—Tb1—O1157.34 (11)
O2—C1—C2120.5 (4)O9—Tb1—S183.26 (8)
N2—C2—C1110.0 (4)O1—Tb1—S1102.84 (8)
N2—C2—H2C109.7O15—Tb1—S1174.96 (8)
C1—C2—H2C109.7O3—Tb1—S196.74 (9)
N2—C2—H2D109.7O7—Tb1—S1101.43 (8)
C1—C2—H2D109.7O5—Tb1—S1101.06 (8)
H2C—C2—H2D108.2O12—Tb1—S128.74 (8)
N3—C3—O4123.0 (4)O11—Tb1—S128.77 (8)
N3—C3—C4115.9 (4)C1—N1—O1115.9 (3)
O4—C3—C4121.1 (4)C1—N1—Cu5119.5 (3)
C3—C4—N4111.1 (4)O1—N1—Cu5124.1 (3)
C3—C4—H4C109.4C2—N2—Cu5109.8 (3)
N4—C4—H4C109.4C2—N2—H2A109.7
C3—C4—H4D109.4Cu5—N2—H2A109.7
N4—C4—H4D109.4C2—N2—H2B109.7
H4C—C4—H4D108.0Cu5—N2—H2B109.7
N5—C5—O6123.7 (4)H2A—N2—H2B108.2
N5—C5—C6116.0 (4)C3—N3—O3115.1 (4)
O6—C5—C6120.3 (4)C3—N3—Cu1117.5 (3)
N6—C6—C5110.5 (4)O3—N3—Cu1125.5 (3)
N6—C6—H6C109.5C4—N4—Cu1110.6 (3)
C5—C6—H6C109.5C4—N4—H4A109.5
N6—C6—H6D109.5Cu1—N4—H4A109.5
C5—C6—H6D109.5C4—N4—H4B109.5
H6C—C6—H6D108.1Cu1—N4—H4B109.5
N7—C7—O8124.1 (4)H4A—N4—H4B108.1
N7—C7—C8115.5 (4)C5—N5—O5115.7 (4)
O8—C7—C8120.4 (4)C5—N5—Cu2118.6 (3)
N8—C8—C7109.8 (4)O5—N5—Cu2125.5 (3)
N8—C8—H8C109.7C6—N6—Cu2109.6 (3)
C7—C8—H8C109.7C6—N6—H6A109.7
N8—C8—H8D109.7Cu2—N6—H6A109.7
C7—C8—H8D109.7C6—N6—H6B109.7
H8C—C8—H8D108.2Cu2—N6—H6B109.7
O10—C9—N9123.8 (4)H6A—N6—H6B108.2
O10—C9—C10121.2 (4)C7—N7—O7116.2 (4)
N9—C9—C10115.0 (4)C7—N7—Cu3119.0 (3)
N10—C10—C9111.3 (4)O7—N7—Cu3124.6 (3)
N10—C10—H10C109.4C8—N8—Cu3109.7 (3)
C9—C10—H10C109.4C8—N8—H8A109.7
N10—C10—H10D109.4Cu3—N8—H8A109.7
C9—C10—H10D109.4C8—N8—H8B109.7
H10C—C10—H10D108.0Cu3—N8—H8B109.7
N3—Cu1—O190.36 (14)H8A—N8—H8B108.2
N3—Cu1—O2175.68 (15)C9—N9—O9116.1 (4)
O1—Cu1—O286.12 (13)C9—N9—Cu4119.1 (3)
N3—Cu1—N483.85 (16)O9—N9—Cu4124.1 (3)
O1—Cu1—N4173.91 (15)C10—N10—Cu4109.9 (3)
O2—Cu1—N499.57 (15)C10—N10—H10A109.7
N3—Cu1—O2089.10 (15)Cu4—N10—H10A109.7
O1—Cu1—O2085.07 (13)C10—N10—H10B109.7
O2—Cu1—O2088.10 (14)Cu4—N10—H10B109.7
N4—Cu1—O2092.89 (15)H10A—N10—H10B108.2
N3—Cu1—O2182.42 (14)N1—O1—Cu1106.2 (2)
O1—Cu1—O2180.09 (13)N1—O1—Tb1125.6 (2)
O2—Cu1—O2199.41 (13)Cu1—O1—Tb1126.24 (14)
N4—Cu1—O21100.98 (15)C1—O2—Cu1104.0 (3)
O20—Cu1—O21162.82 (12)N3—O3—Cu2108.6 (2)
N5—Cu2—O389.51 (15)N3—O3—Tb1122.4 (2)
N5—Cu2—O4172.53 (15)Cu2—O3—Tb1128.77 (15)
O3—Cu2—O484.79 (13)C3—O4—Cu2107.7 (3)
N5—Cu2—N683.61 (16)N5—O5—Cu3107.1 (2)
O3—Cu2—N6171.24 (15)N5—O5—Tb1124.1 (2)
O4—Cu2—N6101.58 (15)Cu3—O5—Tb1123.88 (13)
N5—Cu2—O1992.3 (3)C5—O6—Cu3107.0 (3)
O3—Cu2—O1997.4 (3)N7—O7—Cu4107.2 (2)
O4—Cu2—O1993.2 (3)N7—O7—Tb1124.7 (2)
N6—Cu2—O1988.3 (3)Cu4—O7—Tb1125.89 (14)
N7—Cu3—O6174.11 (15)C7—O8—Cu4106.9 (3)
N7—Cu3—O591.24 (15)N9—O9—Cu5107.2 (2)
O6—Cu3—O584.79 (13)N9—O9—Tb1126.2 (2)
N7—Cu3—N882.67 (16)Cu5—O9—Tb1126.55 (14)
O6—Cu3—N8100.63 (14)C9—O10—Cu5107.4 (3)
O5—Cu3—N8169.87 (14)S1—O11—Tb199.41 (17)
N7—Cu3—O1696.61 (14)S1—O12—Tb1100.02 (16)
O6—Cu3—O1687.37 (13)Tb1—O15—H15A121 (4)
O5—Cu3—O1684.87 (13)Tb1—O15—H15B118 (4)
N8—Cu3—O16103.81 (14)H15A—O15—H15B107 (6)
N9—Cu4—O8172.67 (15)Cu3—O16—H16A122 (5)
N9—Cu4—O789.19 (15)Cu3—O16—H16B114 (5)
O8—Cu4—O785.34 (13)H16A—O16—H16B102 (7)
N9—Cu4—N1083.73 (17)Cu4—O17—H17A92 (5)
O8—Cu4—N10100.54 (16)Cu4—O17—H17B111 (5)
O7—Cu4—N10165.82 (17)H17A—O17—H17B103 (6)
N9—Cu4—O1790.56 (14)Cu5—O18—H18A120 (5)
O8—Cu4—O1794.98 (13)Cu5—O18—H18B115 (5)
O7—Cu4—O1797.53 (13)H18A—O18—H18B107 (7)
N10—Cu4—O1794.81 (15)Cu2—O19—H19A99 (10)
N1—Cu5—O988.98 (14)Cu2—O19—H19B113 (10)
N1—Cu5—O10163.89 (16)H19A—O19—H19B135 (10)
O9—Cu5—O1085.41 (13)Cu1—O20—H20A131 (5)
N1—Cu5—N283.21 (16)Cu1—O20—H20B95 (5)
O9—Cu5—N2171.78 (14)H20A—O20—H20B93 (7)
O10—Cu5—N2101.44 (14)Cu1—O21—H21A124 (5)
N1—Cu5—O18104.51 (15)Cu1—O21—H21B110 (5)
O9—Cu5—O1893.14 (13)H21A—O21—H21B101 (7)
O10—Cu5—O1890.88 (14)H22A—O22—H22B113 (8)
N2—Cu5—O1891.31 (15)H23A—O23—H23B105 (3)
O9—Tb1—O171.67 (10)H24A—O24—H24B108 (3)
O9—Tb1—O15100.80 (11)O14—S1—O13110.9 (2)
O1—Tb1—O1575.87 (11)O14—S1—O11111.0 (2)
O9—Tb1—O3144.63 (11)O13—S1—O11111.6 (2)
O1—Tb1—O373.91 (10)O14—S1—O12110.1 (2)
O15—Tb1—O378.22 (11)O13—S1—O12110.3 (2)
O9—Tb1—O770.65 (10)O11—S1—O12102.68 (19)
O1—Tb1—O7131.81 (10)O14—S1—Tb1118.92 (16)
O15—Tb1—O782.82 (11)O13—S1—Tb1130.15 (15)
O3—Tb1—O7142.47 (10)O11—S1—Tb151.82 (13)
O9—Tb1—O5143.39 (10)O12—S1—Tb151.24 (13)
O1—Tb1—O5139.79 (10)O26i—S2—O26180.0
O15—Tb1—O577.50 (11)O26i—S2—O28i114.8 (5)
O3—Tb1—O571.55 (10)O26—S2—O28i65.2 (5)
O7—Tb1—O572.88 (10)O26i—S2—O2865.2 (5)
O9—Tb1—O1283.74 (11)O26—S2—O28114.8 (5)
O1—Tb1—O12129.16 (11)O28i—S2—O28180.0 (5)
O15—Tb1—O12153.99 (11)O26i—S2—O2768.7 (5)
O3—Tb1—O12112.70 (11)O26—S2—O27111.3 (5)
O7—Tb1—O1274.50 (11)O28i—S2—O2770.8 (5)
O5—Tb1—O1283.70 (11)O28—S2—O27109.2 (5)
O9—Tb1—O1188.43 (11)O26i—S2—O2569.6 (5)
O1—Tb1—O1177.71 (11)O26—S2—O25110.4 (5)
O15—Tb1—O11147.49 (12)O28i—S2—O2573.6 (5)
O3—Tb1—O1176.51 (12)O28—S2—O25106.4 (5)
O7—Tb1—O11129.39 (11)O27—S2—O25104.2 (5)
N1—C1—C2—N218.5 (6)O10—C9—N9—Cu4173.1 (3)
O2—C1—C2—N2161.5 (4)C10—C9—N9—Cu46.7 (5)
N3—C3—C4—N49.9 (6)O7—Cu4—N9—C9167.0 (4)
O4—C3—C4—N4168.5 (4)N10—Cu4—N9—C90.7 (4)
N5—C5—C6—N65.8 (6)O17—Cu4—N9—C995.5 (3)
O6—C5—C6—N6176.2 (4)O7—Cu4—N9—O92.8 (3)
N7—C7—C8—N810.1 (5)N10—Cu4—N9—O9170.5 (3)
O8—C7—C8—N8170.5 (4)O17—Cu4—N9—O994.8 (3)
O10—C9—C10—N10168.9 (4)C9—C10—N10—Cu49.8 (5)
N9—C9—C10—N1010.9 (6)C1—N1—O1—Cu111.7 (4)
O2—C1—N1—O10.6 (6)Cu5—N1—O1—Cu1159.6 (2)
C2—C1—N1—O1179.4 (4)C1—N1—O1—Tb1176.5 (3)
O2—C1—N1—Cu5171.2 (3)Cu5—N1—O1—Tb15.2 (5)
C2—C1—N1—Cu58.8 (5)N1—C1—O2—Cu110.6 (5)
O9—Cu5—N1—C1175.3 (4)C2—C1—O2—Cu1169.4 (3)
O10—Cu5—N1—C1105.8 (6)C3—N3—O3—Cu25.7 (4)
N2—Cu5—N1—C12.1 (4)Cu1—N3—O3—Cu2158.1 (2)
O18—Cu5—N1—C191.7 (4)C3—N3—O3—Tb1179.5 (3)
O9—Cu5—N1—O113.6 (3)Cu1—N3—O3—Tb116.7 (5)
O10—Cu5—N1—O183.1 (6)N3—C3—O4—Cu27.1 (5)
N2—Cu5—N1—O1169.0 (3)C4—C3—O4—Cu2171.2 (4)
O18—Cu5—N1—O179.4 (3)C5—N5—O5—Cu39.7 (4)
C1—C2—N2—Cu519.1 (5)Cu2—N5—O5—Cu3164.1 (2)
O4—C3—N3—O31.0 (6)C5—N5—O5—Tb1165.6 (3)
C4—C3—N3—O3177.4 (4)Cu2—N5—O5—Tb18.2 (4)
O4—C3—N3—Cu1166.2 (3)N5—C5—O6—Cu38.8 (5)
C4—C3—N3—Cu112.2 (5)C6—C5—O6—Cu3169.1 (3)
C3—C4—N4—Cu13.3 (5)C7—N7—O7—Cu43.2 (4)
O6—C5—N5—O50.7 (6)Cu3—N7—O7—Cu4171.6 (2)
C6—C5—N5—O5178.6 (4)C7—N7—O7—Tb1167.2 (3)
O6—C5—N5—Cu2173.6 (3)Cu3—N7—O7—Tb17.7 (5)
C6—C5—N5—Cu24.4 (5)N7—C7—O8—Cu43.7 (5)
O3—Cu2—N5—C5165.2 (4)C8—C7—O8—Cu4175.7 (3)
N6—Cu2—N5—C59.4 (3)C9—N9—O9—Cu50.7 (4)
O19—Cu2—N5—C597.4 (4)Cu4—N9—O9—Cu5169.3 (2)
O3—Cu2—N5—O58.4 (3)C9—N9—O9—Tb1177.4 (3)
N6—Cu2—N5—O5177.0 (3)Cu4—N9—O9—Tb112.5 (5)
O19—Cu2—N5—O588.9 (4)N9—C9—O10—Cu54.2 (5)
C5—C6—N6—Cu212.1 (5)C10—C9—O10—Cu5175.6 (4)
O8—C7—N7—O70.3 (6)Tb1—O11—S1—O14110.9 (2)
C8—C7—N7—O7179.1 (4)Tb1—O11—S1—O13124.81 (18)
O8—C7—N7—Cu3175.5 (3)Tb1—O11—S1—O126.7 (2)
C8—C7—N7—Cu33.9 (5)Tb1—O12—S1—O14111.5 (2)
C7—C8—N8—Cu318.0 (4)Tb1—O12—S1—O13125.78 (18)
O10—C9—N9—O92.5 (6)Tb1—O12—S1—O116.7 (2)
C10—C9—N9—O9177.3 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O24—H24B···O80.84 (2)2.01 (3)2.807 (5)159 (7)
O24—H24A···O11ii0.84 (2)2.21 (3)3.015 (5)162 (7)
O23—H23B···O13iii0.85 (2)2.02 (3)2.853 (5)166 (6)
O23—H23A···O4ii0.84 (2)1.89 (2)2.734 (5)176 (7)
O22—H22B···O230.84 (2)1.89 (3)2.701 (6)162 (8)
O22—H22A···O26iv0.84 (2)2.18 (4)2.968 (9)155 (8)
O22—H22A···O28iii0.84 (2)1.92 (3)2.733 (9)161 (8)
O21—H21B···O10iv0.83 (2)1.91 (3)2.728 (5)165 (8)
O21—H21A···O18v0.84 (2)1.94 (3)2.765 (5)167 (7)
O20—H20B···O110.83 (2)2.14 (3)2.960 (5)168 (7)
O20—H20A···O26i0.83 (2)2.09 (3)2.916 (9)170 (7)
O20—H20A···O250.83 (2)2.02 (5)2.719 (9)142 (7)
O19—H19B···O24vi0.84 (2)2.07 (9)2.866 (11)157 (22)
O19—H19A···O24vii0.84 (2)1.72 (7)2.535 (12)162 (21)
O18—H18B···O140.83 (2)1.90 (2)2.732 (5)173 (7)
O18—H18A···O26i0.84 (2)2.04 (3)2.857 (9)163 (7)
O18—H18A···O270.84 (2)1.91 (4)2.648 (9)146 (6)
O17—H17B···O6vi0.83 (2)1.90 (2)2.730 (5)176 (7)
O17—H17A···O120.83 (2)2.10 (3)2.905 (5)163 (6)
O16—H16B···O220.84 (2)1.89 (2)2.721 (6)173 (7)
O16—H16A···O17v0.84 (2)1.95 (2)2.784 (5)172 (7)
O15—H15B···O160.84 (2)1.86 (2)2.692 (5)170 (6)
O15—H15A···O210.84 (2)1.85 (3)2.668 (5)166 (6)
N10—H10B···O22viii0.912.132.920 (6)145
N10—H10A···O20ii0.912.242.987 (5)139
N8—H8B···O12vi0.912.042.937 (5)168
N8—H8A···O230.912.203.031 (5)152
N6—H6B···O13ix0.912.643.363 (5)137
N6—H6B···O24vi0.912.242.984 (6)139
N6—H6A···O13v0.912.253.158 (5)175
N4—H4B···O2x0.912.333.182 (5)156
N4—H4A···O27v0.912.183.037 (9)156
N4—H4A···O25x0.912.012.789 (9)143
N2—H2B···O270.912.553.418 (9)159
N2—H2B···O28i0.912.082.868 (9)144
N2—H2A···O15iv0.912.072.946 (5)162
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x, y1, z; (viii) x1, y, z; (ix) x+1, y, z; (x) x+1, y, z+1.
Comparison of the structural characteristics (Å, °) of {LnCu5}3+ 15-metallacrown-5 complexes with octacoordinate LnIII ions and various bidentate anions top
ComplexaCu—O/NeqLn—OeqLn—OaqLn···CuCu···CuDeviation of LnIII from Cu5 planeLnO8 geometryb
Pr-SO41.898 (2)–2.013 (2)2.4247 (18) -2.4716 (18)2.495 (2)–2.528 (2)3.862 (3)–3.923 (2)4.530 (2)–4.604 (2)0.459SAPR-8
Nd-SO41.898 (2)–2.0156 (19)2.4145 (16)–2.4642 (16)2.4787 (18)–2.5108 (17)3.862 (3)–3.915 (4)4.524 (4)–4.598 (5)0.452SAPR-8
Sm-SO41.900 (4)–2.015 (4)2.398 (3) -2.450 (3)2.441 (4)–2.484 (4)3.8539 (9)–3.9083 (8)4.518 (1)–4.592 (1)0.439SAPR-8
Eu-SO41.896 (3)–2.013 (3)2.389 (3)–2.437 (3)2.431 (3)–2.467 (3)3.844 (7)–3.899 (8)4.504 (8)–4.585 (9)0.439SAPR-8
Eu-CO31.886 (14)–2.022 (13)2.406 (11)–2.493 (11)2.369 (13)–2.392 (15)3.890 (2)–3.911 (3)4.575 (3)–4.589 (3)0.351TDD-8
Eu-OAc1.902 (3)–2.041 (2)2.440 (4)–2.515 (2)2.4057 (18)–2.443 (2)3.8517 (4)–3.9049 (4)4.5664 (5)–4.6074 (4)0.469TDD-8
Gd-SO41.892 (3)–2.014 (3)2.378 (3)–2.434 (3)2.398 (3)–2.452 (3)3.838 (7)–3.897 (9)4.501 (8)–4.578 (11)0.430SAPR-8
Gd-CO31.898 (2)–2.022 (2)2.381 (2)–2.484 (2)2.288 (17)–2.396 (10)3.8699 (5)–3.9097 (5)4.5677 (7)–4.5846 (7)0.337TDD-8
Gd-OAc1.890 (12)–2.041 (11)2.393 (3)–2.438 (9)2.426 (10)–2.512 (10)3.845 (2)–3.897 (2)4.562 (2)–4.602 (2)0.458TDD-8
Tb-SO41.890 (4)–2.018 (4)2.370 (3)–2.430 (3)2.383 (3)–2.451 (3)3.8398 (8)–3.8944 (8)4.501 (1)–4.577 (1)0.427SAPR-8
Tb-OAc1.889 (11)–2.036 (11)2.383 (9)–2.431 (9)2.409 (10)–2.488 (10)3.840 (2)–3.896 (2)4.562 (2)–4.598 (2)0.445TDD-8
Dy-SO41.8908 (18)–2.0206 (19)2.3640 (15) -2.4234 (15)2.3665 (17)–2.4334 (17)3.834 (2)–3.889 (2)4.493 (2)–4.573 (2)0.424SAPR-8
Dy-CO31.898 (3)–2.022 (3)2.382 (3)–2.469 (3)2.27 (2)–2.380 (8)3.8715 (5)–3.9016 (6)4.5645 (7)–4.5797 (8)0.354TDD-8
Ho-SO41.887 (3)–2.016 (3)2.356 (2)–2.416 (2)2.357 (2)–2.417 (2)3.827 (2)–3.884 (2)4.485 (2)–4.565 (2)0.422SAPR-8
Ho-CO31.898 (2)–2.022 (2)2.374 (2)–2.475 (2)2.30 (3)–2.374 (12)3.8670 (5)–3.9021 (5)4.5583 (7)–4.5808 (7)0.330TDD-8
Notes: (a) Complex Tb-SO4 is 1; Ln-SO4 correspond to the [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4) series with Ln = Pr, Nd, Sm, Eu, Gd, Dy and Ho described in (Pavlishchuk et al., 2011); Ln-CO3 are [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] with Ln = Eu, Gd, Dy and Ho described in Pavlishchuk et al. (2019) and Stemmler et al. (1999); Ln-OAc are [LnCu5(GlyHA)5(OAc)(H2O)5](NO3)2 Ln = Eu, Gd and Tb described in Katkova et al. (2015a) and Meng et al. (2016). (b) LnO8 geometries: SAPR-8 = square antiprism (D4d) and TDD-8 = triangular dodecahedron (D2d).
Continuous shape calculations for octacoordinated Ln3+ ions in 1 obtained with Shape 2.1 software (Casanova et al., 2005) top
OP-8HPY-8HBPY-8CU-8SAPR-8TDD-8JGBF-8JETBPY-8
Pr–SO430.84622.75515.95211.5612.2152.39713.02925.482
Nd–SO430.67722.88815.96811.5872.1412.36413.03325.516
Sm–SO430.38722.90315.95111.5622.0202.31113.01325.752
Eu–SO430.51623.16416.27011.7831.9522.36313.19025.864
Gd–SO430.46523.11016.03211.5701.9072.26913.15126.121
Tb–SO430.38123.11716.15911.6661.8542.32213.14026.276
Dy–SO430.35723.19516.11211.6031.7992.25413.16826.433
Ho–SO430.27223.21216.09511.5881.7612.24713.18626.496
Octacoordinated ions: OP-8 = octagon (D8h); HPY-8 = heptagonal pyramid (C7v); HBPY-8 = hexagonal bipyramid (D6h); CU-8 = cube (Oh); SAPR-8 = square antiprism (D4d); TDD-8 = triangular dodecahedron (D2d); JGBF-8 = Johnson gyrobifastigium J26 (D2d); JETBPY-8 = Johnson elongated triangular bipyramid J14 (D3h).
 

Acknowledgements

This work was supported partly by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction `Mathematical sciences and natural sciences' at Taras Shevchenko National University of Kyiv. This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under Grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). AWA thanks Drexel University for support.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Materials Research (grant No. CHE 1625543 to M. Zeller); National Research Foundation of Ukraine (grant No. 2020.02/0202 to A. V. Pavlishchuk).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDhers, S., Feltham, H. L. C., Rouzières, M., Clérac, R. & Brooker, S. (2016). Dalton Trans. 45, 18089–18093.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. 123, 9834–9838.  CrossRef Google Scholar
First citationKatkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202–5208.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKremlev, K. V., Samsonov, M. A., Zabrodina, G. S., Arapova, A. V., Yunin, P. A., Tatarsky, D. A., Plyusnin, P. E., Katkova, M. A. & Ketkov, S. Y. (2016). Polyhedron, 114, 96–100.  CSD CrossRef CAS Google Scholar
First citationLim, C., Jankolovits, J., Kampf, J. & Pecoraro, V. (2010). Chem. Asian J. 5, 46–49.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, J.-L., Chen, Y.-C. & Tong, M.-L. (2018). Chem. Soc. Rev. 47, 2431–2453.  CrossRef CAS PubMed Google Scholar
First citationMaity, M., Majee, M. C., Kundu, S., Samanta, S. K., Sañudo, E. C., Ghosh, S. & Chaudhury, M. (2015). Inorg. Chem. 54, 9715–9726.  CrossRef CAS PubMed Google Scholar
First citationMeng, Y., Yang, H., Li, D., Zeng, S., Chen, G., Li, S. & Dou, J. (2016). RSC Adv. 6, 47196–47202.  CSD CrossRef CAS Google Scholar
First citationMuravyeva, M. S., Zabrodina, G. S., Samsonov, M. A., Kluev, E. A., Khrapichev, A. A., Katkova, M. A. & Mukhina, I. V. (2016). Polyhedron, 114, 165–171.  CSD CrossRef CAS Google Scholar
First citationOstrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.  Web of Science CrossRef CAS Google Scholar
First citationPavlishchuk, A., Naumova, D., Zeller, M., Calderon Cazorla, S. & Addison, A. W. (2019). Acta Cryst. E75, 1215–1223.  CSD CrossRef IUCr Journals Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255–m265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504–3511.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017b). Eur. J. Inorg. Chem. pp. 4866–4878.  Web of Science CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152–13165.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320–1330.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPavlishchuk, A. V. & Pavlishchuk, V. V. (2020). Theor. Exp. Chem. 56, 1–25.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, J., Li, Q.-W., Wu, S.-G., Chen, Y.-C., Wan, R.-C., Huang, G.-Z., Liu, Y., Liu, J.-L., Reta, D., Giansiracusa, M. J., Wang, Z.-X., Chilton, N. F. & Tong, M.-L. (2021). Angew. Chem. Int. Ed. 60, 5299–5306.  CSD CrossRef CAS Google Scholar
First citationWang, J., Ruan, Z.-Y., Li, Q.-W., Chen, Y.-C., Huang, G.-Z., Liu, J.-L., Reta, D., Chilton, N. F., Wang, Z.-X. & Tong, M.-L. (2019). Dalton Trans. 48, 1686–1692.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, S.-G., Ruan, Z.-Y., Huang, G.-Z., Zheng, J.-Y., Vieru, V., Taran, G., Wang, J., Chen, Y.-C., Liu, J.-L., Ho, L. T. A., Chibotaru, L. F., Wernsdorfer, W., Chen, X.-M. & Tong, M.-L. (2021). Chem, 7, 982–992.  CSD CrossRef CAS Google Scholar
First citationZabrodina, G. S., Katkova, M. A., Samsonov, M. A. & Ketkov, S. Y. (2018). Z. Anorg. Allg. Chem. 644, 907–911.  CSD CrossRef CAS Google Scholar
First citationZaleski, C. M., Depperman, E. C., Kampf, J. W., Kirk, M. L. & Pecoraro, V. L. (2006). Inorg. Chem. 45, 10022–10024.  CSD CrossRef PubMed CAS Google Scholar
First citationZaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707–7717.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZangana, K. H., Pineda, E. M., Vitorica-Yrezabal, I. J., McInnes, E. J. L. & Winpenny, R. E. P. (2014). Dalton Trans. 43, 13242–13249.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZheng, Y.-Z., Zhou, G.-J., Zheng Z., & Winpenny, R. E. P. (2014). Chem. Soc. Rev. 43, 1462–1475.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds