research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the gold NHC complex bis­­(4-bromo-1,3-di­ethyl­imidazol-2-yl­­idene)gold(I) iodide and its 1:1 adduct with trans-bis­­(4-bromo-1,3-di­ethyl-imidazol-2-yl­­idene)di­iodido­gold(III) iodide

crossmark logo

aInstitut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 12 October 2021; accepted 30 October 2021; online 9 November 2021)

The first title compound, [Au(C7H11BrN2)2]I, crystallizes in the space group P[\overline{1}] without imposed symmetry. The cations and anions are linked to form chains by Br⋯I⋯Br halogen-bond linkages. The second title compound, [Au(C7H11BrN2)2][AuI2(C7H11BrN2)2]I2, is an adduct of the first and its formally I2-oxidized AuIII analogue. It also crystallizes in space group P[\overline{1}], whereby both gold atoms occupy inversion centres. The extended structure is a reticular layer involving Br⋯I⋯Br and I⋯I⋯Au linkages.

1. Chemical context

Gold complexes have been used in medicine since ancient times and have been applied as drugs for the treatment of rheumatoid arthritis since the 1930s. Currently, gold species are being actively investigated in inorganic medicinal chemistry as possible anti­cancer agents or anti-infectives (Mora et al., 2019[Mora, M., Gimeno, M. C. & Visbal, R. (2019). Chem. Soc. Rev. 48, 447-462.]). Some of the existing therapeutics have reached the clinical trial stage as a result of drug repurposing efforts. Metal N-heterocyclic carbene (NHC) complexes in general have also proved to be biologically and medicinally active compounds (Ott, 2020[Ott, I. (2020). Adv. Inorg. Chem. 75, 121-148.]); in particular, gold complexes with NHC ligands are often synthesized and investigated because of the high stability of the gold–carbon bonds and the convenient synthetic access to a broad variety of structurally diverse NHC structures (Nahra et al., 2021[Nahra, F., Tzouras, N. V., Collado, A. & Nolan, S. P. (2021). Nat. Protoc. 16, 1476-1493.]). We have reported on the synthesis, characterization and biological effects of [bis­(4-bromo-1,3-diethyl-imidazol-2-yl­idene)gold(I)] iodide (3) (Schmidt et al., 2017a[Schmidt, C., Karge, B., Misgeld, R., Prokop, A., Franke, R. & Ott, I. (2017a). MedChemComm, 8, 1681-1689.]) (Fig. 1[link]). Notably, this complex and related derivatives triggered cytotoxicity against cancer cells, showed a low serum protein binding, and inhibited growth of some pathogenic bacteria. Furthermore, we have recently investigated various gold NHC complexes as anti­bacterial agents and inhibitors of bacterial thio­redoxin reductase (Büssing et al., 2021[Büssing, R., Karge, B., Lippmann, P., Jones, P. G., Brönstrup, M. & Ott, I. (2021). ChemMedChem. In the press (https://doi.org/10.1002/cmdc.202100381).]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of compound 3, recrystallization of which also afforded a small amount of separable crystals of compound 4.

Here we report the structure of 3, together with that of its 1:1 complex (4) with trans-[bis­(4-bromo-1,3-diethyl-imidazol-2-yl­idene)di­iodido­gold(III)] iodide, formally its I2-oxidized AuIII analogue; the latter was formed in small qu­anti­ties when 3 was recrystallized. Further studies on the bioinorganic and medicinal chemistry of 3 and related derivatives are the subject of ongoing projects.

2. Structural commentary

The structure of the asymmetric unit of 3 is shown in Fig. 2[link]. All atoms lie on general positions in space group P[\overline{1}]. Selected intra- and inter­molecular dimensions (including contact distances) are presented in Table 1[link]. The gold atom is, as expected, linearly coordinated. The NHC planes subtend an inter­planar angle of 78.74 (10)°. The short contact Br2⋯I1 seen in Fig. 2[link] is one of two such contacts that determine the crystal packing (see next section).

Table 1
Selected geometric parameters (Å, °) for 3[link]

Au1—C1 2.020 (2) I1⋯Br2 3.6072 (3)
Au1—C8 2.022 (2) Au1⋯Br2ii 3.8033 (3)
I1⋯Br1i 3.5294 (3)    
       
C1—Au1—C8 174.97 (9) C2—Br1⋯I1iii 172.43 (7)
Br1i⋯I1⋯Br2 101.436 (8) C9—Br2⋯I1 162.21 (8)
Symmetry codes: (i) [x-1, y-1, z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+1, y+1, z-1].
[Figure 2]
Figure 2
Structure of the asymmetric unit of compound 3; ellipsoids represent 50% probability levels. The dashed line indicates a halogen bond.

The structure of compound 4 is shown in Fig. 3[link]. Selected metrical parameters for intra- and inter­molecular inter­actions (including contact distances) are presented in Table 2[link]. Both gold atoms lie on inversion centres; the C—Au—C and I—Au—I angles are thus exactly linear, and the NHC planes of both cations are exactly coplanar. The gold(III) centre displays the expected square planar geometry. The Au—C bond is slightly longer than in 3. For further discussion, see Database survey below.

Table 2
Selected geometric parameters (Å, °) for 4[link]

Au1—C1 2.033 (7) Au2—C1′ 2.018 (7)
Au1—I1 2.6564 (5) I2⋯Br2 3.5575 (8)
I1⋯I2i 3.5136 (7) I2⋯Au1i 4.1539 (5)
Br1⋯I2 3.4347 (8)    
       
C1ii—Au1—C1 180.0 Br1⋯I2⋯Br2 169.87 (2)
C1ii—Au1—I1 89.05 (18) I1i⋯I2⋯Br2 72.852 (17)
C1—Au1—I1 90.95 (18) Br1⋯I2⋯Au2iv 74.604 (16)
Au1—I1⋯I2i 176.29 (2) I1i⋯I2⋯Au2iv 168.488 (16)
C2—Br1⋯I2 179.5 (2) Br2⋯I2⋯Au2iv 114.871 (16)
C1′—Au2—C1′iii 180.0 C2′—Br2⋯I2 177.0 (2)
Br1⋯I2⋯I1i 97.240 (19)    
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x-1, -y-1, -z]; (iii) [-x+2, -y+2, -z+1]; (iv) [x-1, y-1, z].
[Figure 3]
Figure 3
Structure of compound 4; the asymmetric unit has been extended by symmetry to show complete cations. Ellipsoids represent 50% probability levels. The dashed lines indicate halogen bonds.

3. Supra­molecular features

The packing of compound 3 is shown in Fig. 4[link]. It is dominated by short Br⋯I contacts (Table 1[link]) that may be considered as halogen bonds (for reviews, see Metrangelo, 2008[Metrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.] and Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). The C—Br⋯I angles are approximately linear, whereas Br⋯I⋯Br is approximately a right angle. The anions and cations are connected to form chains with overall direction parallel to [11[\overline{1}]]. The chains are in turn connected in pairs by the contact Au⋯Br2 [3.8033 (3) Å, operator 1 − x, 1 − y, 1 − z]. Within the double chains, the inter­centroid distance between the carbene rings based on N1 and N2 is 3.5265 (14) Å, and between the double chains the inter­centroid distance between the rings based on N3 and N4 (operator 1 − x, 2 − y, −z) is 3.6187 (14) Å; these offset contacts may represent ππ inter­actions.

[Figure 4]
Figure 4
Packing diagram of compound 3 viewed perpendicular to (011). Hydrogen atoms are omitted. Dashed lines indicate halogen bonds or Au⋯Br inter­actions. Atom labels correspond to the asymmetric unit

The packing of compound 4 (Fig. 5[link]) also involves halogen bonds. The cations are connected to form chains parallel to [331] (horizontal in Fig. 5[link]) by contacts between each bromine atom and the iodide I2. As in 3, the C—Br⋯I angles are approximately linear. The AuIII cations are further connected in the [11[\overline{1}]] direction (vertical in Fig. 4[link]) by a very short I1⋯I2 contact and a long I2⋯Au2 contact. The result is a reticular layer structure parallel to (1[\overline{1}]0), in which the iodide anion I2 is four-coordinate. The angle between the two chain directions is 76.4°. There are no short contacts between ring centroids.

[Figure 5]
Figure 5
Packing diagram of compound 4 viewed perpendicular to ([\overline{1}]03). Hydrogen atoms are omitted. Dashed lines indicate halogen bonds or Au⋯I contacts. Atom labels correspond to the asymmetric unit.

Contact distances and angles involving the heavy atoms are included in Tables 1[link] and 2[link]. Some C—H⋯Br and C—H⋯I contacts are listed in the supporting information; these might be considered as borderline hydrogen bonds.

4. Database survey

Using version 2.0.5 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), a ConQuest search (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for bis­(carbene)gold(I) cations gave 355 hits, with an average Au—C bond length of 2.023 Å. For AuIII cations of the form [(carbene)2AuX2]+ (X = halogen), only 38 hits were recorded, and only six of these involved iodine as the halogen [refcodes: ANUJIE (Baron et al., 2016[Baron, M., Tubaro, C., Basato, M., Isse, A. A., Gennaro, A., Cavallo, L., Graiff, C., Dolmella, A., Falivene, L. & Caporaso, L. (2016). Chem. Eur. J. 22, 10211-10224.]), CIVMOK (Jothibasu et al., 2008[Jothibasu, R., Huynh, H. V. & Koh, L. L. (2008). J. Organomet. Chem. 693, 374-380.]), MEZZOI (Gil-Rubio et al., 2013[Gil-Rubio, J., Cámara, V., Bautista, D. & Vicente, J. (2013). Inorg. Chem. 52, 4071-4083.]), POYHOB (Ghosh & Catalano, 2009[Ghosh, A. K. & Catalano, V. J. (2009). Eur. J. Inorg. Chem. pp. 1832-1843.]), XOMFIR and XONCAH (Holthoff et al., 2019[Holthoff, J. M., Engelage, E., Kowsari, A. B., Huber, S. M. & Weiss, R. (2019). Chem. Eur. J. 25, 7480-7484.])]. XOMFIR presents a rare example of a non-cyclic carbene ligand. The average Au—C and Au—I bond lengths are 2.034 and 2.614 Å, respectively. The Au—C bond lengths of 3 and 4 may thus be considered normal, whereas the Au—I bond of 4 is longer than all those previously reported. It is tempting to suggest that this is associated with the halogen bonding, but MEZZOI and POYHOB also display short I⋯I contacts (3.680 and 3.478 Å, respectively), while XONCAH has a short Au⋯I contact of 3.438 Å. Short halogen⋯halogen contacts between AuIII species are relatively frequent; we recently drew attention to such contacts in AuCl4 and AuBr4 salts with protonated amine cations (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]) but we did not include AuI4 salts because these are far more difficult to access.

5. Synthesis and crystallization

We have described the syntheses of compounds 1, 2 (Schmidt et al., 2017b[Schmidt, C., Karge, B., Misgeld, R., Prokop, A., Franke, R., Brönstrup, M. & Ott, I. (2017b). Chem. Eur. J. 23, 1869-1880.]) and 3 (Schmidt et al., 2017a[Schmidt, C., Karge, B., Misgeld, R., Prokop, A., Franke, R. & Ott, I. (2017a). MedChemComm, 8, 1681-1689.]) elsewhere, but give a brief summary here. The reagents were purchased from Sigma—Aldrich, Alfa Aesar or TCI and used without additional purification steps. All reactions were performed without precautions to exclude air or moisture. In the first step, 4-bromo­imidazole was reacted with ethyl iodide in the presence of potassium carbonate to yield the bis­alkyl­ated imidazolium iodide (1) (Fig. 1[link]). Compound 1 was then transformed in a two-step procedure by reaction with Ag2O and chlorido­(di­methyl­sulfide)­gold(I) to the gold(I) NHC complex 2. The bis­carbene complex [(NHC)2Au]+ I (3) was obtained by further reaction of 2 with 1.

Single crystals of complex 3 were obtained by diffusion of n-hexane into a solution of 3 in chloro­form/deutero­chloro­form. A few crystals of the mixed-valence complex 4 also formed, for reasons that are not clear, and the compound was identified by X-ray analysis as reported here.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both structures, the methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137; C—H 0.98 Å, H—C—H 109.5°). The methyl­ene and NHC ring hydrogens were included using a riding model starting from calculated positions (C—H = 0.99 or 0.95 Å respectively). The Uiso(H) values were fixed at 1.2 (for methyl­ene groups) or 1.5 (for methyl groups) times the Ueq value of the parent carbon atoms.

Table 3
Experimental details

  3 4
Crystal data
Chemical formula [Au(C7H11BrN2)2]I [Au(C7H11BrN2)2][AuI2(C7H11BrN2)2]I2
Mr 730.04 1713.88
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 8.4676 (2), 8.8248 (3), 14.0119 (5) 8.0245 (4), 8.5782 (3), 15.9814 (6)
α, β, γ (°) 76.374 (3), 85.320 (2), 85.251 (2) 91.228 (3), 96.517 (4), 92.255 (4)
V3) 1011.99 (6) 1091.77 (8)
Z 2 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 12.74 13.23
Crystal size (mm) 0.09 × 0.06 × 0.05 0.08 × 0.03 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy, HyPix XtaLAB Synergy, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.751, 1.000 0.703, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 84327, 9374, 8185 61886, 6378, 5409
Rint 0.043 0.048
(sin θ/λ)max−1) 0.840 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.02 0.039, 0.105, 1.06
No. of reflections 9374 6378
No. of parameters 203 215
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.53, −2.02 3.97, −2.66
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

The asymmetric unit of 3 was chosen to include the short Br2⋯I1 contact. This means that the iodide lies outside the reference unit cell. Similarly, the asymmetric unit of 4 was chosen as a central I2 anion coordinated by two cations (Fig. 2[link]). The long and narrow shape of this unit means that the centroid of the AuIII cation does not lie within the reference cell. In both cases, this leads to a CheckCIF Alert G.

The large difference peaks close to Au2 and I2 of structure 4 may be a consequence of its moderate crystal quality (somewhat irregular and diffuse reflection shapes) and/or residual absorption errors. The peaks can of course be made smaller by cutting the data to a lower 2θmax value, but we prefer not to do this because the mean I/σ(I) value at highest resolution (0.74–0.71 Å) is still quite high at 8.4.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: Siemens XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

Bis(4-bromo-1,3-diethylimidazol-2-ylidene)gold(I) iodide (3) top
Crystal data top
[Au(C7H11BrN2)2]IZ = 2
Mr = 730.04F(000) = 672
Triclinic, P1Dx = 2.396 Mg m3
a = 8.4676 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8248 (3) ÅCell parameters from 47541 reflections
c = 14.0119 (5) Åθ = 2.7–36.4°
α = 76.374 (3)°µ = 12.74 mm1
β = 85.320 (2)°T = 100 K
γ = 85.251 (2)°Block, colourless
V = 1011.99 (6) Å30.09 × 0.06 × 0.05 mm
Data collection top
XtaLAB Synergy, HyPix
diffractometer
9374 independent reflections
Radiation source: micro-focus sealed X-ray tube8185 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.043
ω scansθmax = 36.7°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1414
Tmin = 0.751, Tmax = 1.000k = 1414
84327 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0219P)2 + 1.6441P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
9374 reflectionsΔρmax = 1.53 e Å3
203 parametersΔρmin = 2.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.46224 (2)0.71713 (2)0.23616 (2)0.01505 (2)
I10.25568 (2)0.12579 (2)0.72649 (2)0.01947 (3)
Br10.90742 (3)0.85910 (3)0.11585 (2)0.01837 (4)
Br20.22321 (3)0.27369 (3)0.58678 (2)0.02294 (5)
N10.7026 (2)0.8013 (2)0.06168 (14)0.0144 (3)
N20.4687 (2)0.7981 (2)0.01341 (14)0.0151 (3)
N30.3414 (2)0.4840 (2)0.41402 (14)0.0158 (3)
N40.3267 (2)0.7110 (2)0.44721 (14)0.0168 (3)
C10.5490 (3)0.7807 (3)0.09487 (17)0.0152 (4)
C20.7156 (3)0.8303 (3)0.03991 (16)0.0150 (4)
C30.5681 (3)0.8289 (3)0.07101 (17)0.0159 (4)
H30.5394320.8456250.1370050.019*
C40.8329 (3)0.7876 (3)0.12682 (17)0.0190 (4)
H4A0.7963280.8356650.1825300.023*
H4B0.9223920.8457730.0900370.023*
C50.8904 (3)0.6186 (3)0.1667 (2)0.0268 (5)
H5A0.8022770.5606580.2033770.040*
H5B0.9759850.6145180.2104550.040*
H5C0.9302490.5716160.1118320.040*
C60.3003 (3)0.7693 (3)0.01381 (19)0.0190 (4)
H6A0.2510330.8457110.0410040.023*
H6B0.2446480.7839810.0762500.023*
C70.2815 (3)0.6044 (3)0.0029 (2)0.0253 (5)
H7A0.3358130.5901230.0591520.038*
H7B0.1684250.5880030.0029060.038*
H7C0.3281320.5286990.0579820.038*
C80.3723 (3)0.6350 (3)0.37528 (17)0.0164 (4)
C90.2739 (3)0.4672 (3)0.50878 (17)0.0175 (4)
C100.2644 (3)0.6105 (3)0.53014 (17)0.0190 (4)
H100.2232330.6361190.5899020.023*
C110.3707 (3)0.3610 (3)0.35936 (19)0.0208 (4)
H11A0.3801370.2580810.4063760.025*
H11B0.4724520.3760790.3192890.025*
C120.2385 (4)0.3624 (3)0.2928 (2)0.0292 (6)
H12A0.1375550.3482280.3322230.044*
H12B0.2604130.2771900.2586000.044*
H12C0.2319930.4625110.2443250.044*
C130.3265 (3)0.8808 (3)0.43601 (19)0.0204 (4)
H13A0.4075230.9237640.3838010.024*
H13B0.3543810.9031980.4983250.024*
C140.1657 (4)0.9582 (3)0.4096 (3)0.0367 (7)
H14A0.1408980.9409890.3460400.055*
H14B0.1663271.0706070.4052800.055*
H14C0.0851560.9133490.4603900.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01531 (4)0.01589 (4)0.01371 (4)0.00177 (3)0.00196 (3)0.00363 (3)
I10.02119 (7)0.02104 (7)0.01555 (6)0.00120 (5)0.00096 (5)0.00454 (5)
Br10.01523 (10)0.02506 (11)0.01603 (9)0.00645 (8)0.00254 (7)0.00658 (8)
Br20.03080 (13)0.02037 (11)0.01701 (10)0.00987 (9)0.00213 (9)0.00004 (8)
N10.0136 (8)0.0164 (8)0.0137 (8)0.0021 (6)0.0003 (6)0.0045 (6)
N20.0129 (8)0.0163 (8)0.0155 (8)0.0007 (6)0.0000 (6)0.0031 (7)
N30.0170 (8)0.0159 (8)0.0149 (8)0.0017 (7)0.0007 (6)0.0040 (7)
N40.0204 (9)0.0153 (8)0.0148 (8)0.0032 (7)0.0003 (7)0.0035 (7)
C10.0139 (9)0.0155 (9)0.0165 (9)0.0023 (7)0.0017 (7)0.0046 (7)
C20.0152 (9)0.0172 (9)0.0128 (8)0.0035 (7)0.0011 (7)0.0038 (7)
C30.0149 (9)0.0178 (10)0.0153 (9)0.0021 (7)0.0001 (7)0.0045 (8)
C40.0176 (10)0.0256 (11)0.0157 (9)0.0056 (8)0.0020 (8)0.0070 (8)
C50.0241 (12)0.0309 (14)0.0253 (12)0.0050 (10)0.0074 (10)0.0065 (10)
C60.0119 (9)0.0231 (11)0.0217 (10)0.0001 (8)0.0017 (8)0.0049 (9)
C70.0201 (11)0.0243 (12)0.0330 (13)0.0066 (9)0.0003 (10)0.0081 (10)
C80.0153 (9)0.0167 (9)0.0169 (9)0.0016 (7)0.0004 (7)0.0036 (8)
C90.0211 (10)0.0171 (10)0.0136 (9)0.0045 (8)0.0012 (8)0.0011 (8)
C100.0218 (11)0.0199 (10)0.0151 (9)0.0047 (8)0.0014 (8)0.0037 (8)
C110.0251 (12)0.0174 (10)0.0212 (11)0.0008 (9)0.0005 (9)0.0075 (9)
C120.0391 (16)0.0252 (13)0.0264 (13)0.0052 (11)0.0088 (11)0.0085 (10)
C130.0271 (12)0.0143 (10)0.0200 (10)0.0054 (8)0.0024 (9)0.0042 (8)
C140.0328 (16)0.0179 (12)0.056 (2)0.0019 (11)0.0004 (14)0.0034 (13)
Geometric parameters (Å, º) top
Au1—C12.020 (2)C13—C141.506 (4)
Au1—C82.022 (2)C3—H30.9500
I1—Br1i3.5294 (3)C4—H4A0.9900
I1—Br23.6072 (3)C4—H4B0.9900
Au1—Br2ii3.8033 (3)C5—H5A0.9800
Br1—C21.869 (2)C5—H5B0.9800
Br2—C91.861 (2)C5—H5C0.9800
N1—C11.357 (3)C6—H6A0.9900
N1—C21.382 (3)C6—H6B0.9900
N1—C41.468 (3)C7—H7A0.9800
N2—C11.348 (3)C7—H7B0.9800
N2—C31.381 (3)C7—H7C0.9800
N2—C61.468 (3)C10—H100.9500
N3—C81.354 (3)C11—H11A0.9900
N3—C91.382 (3)C11—H11B0.9900
N3—C111.464 (3)C12—H12A0.9800
N4—C81.351 (3)C12—H12B0.9800
N4—C101.381 (3)C12—H12C0.9800
N4—C131.469 (3)C13—H13A0.9900
C2—C31.357 (3)C13—H13B0.9900
C4—C51.518 (4)C14—H14A0.9800
C6—C71.521 (4)C14—H14B0.9800
C9—C101.361 (3)C14—H14C0.9800
C11—C121.512 (4)
C1—Au1—C8174.97 (9)C4—C5—H5A109.5
Br1i—I1—Br2101.436 (8)C4—C5—H5B109.5
C2—Br1—I1iii172.43 (7)H5A—C5—H5B109.5
C9—Br2—I1162.21 (8)C4—C5—H5C109.5
C1—N1—C2109.82 (19)H5A—C5—H5C109.5
C1—N1—C4123.48 (19)H5B—C5—H5C109.5
C2—N1—C4126.65 (19)N2—C6—H6A109.5
C1—N2—C3111.61 (19)C7—C6—H6A109.5
C1—N2—C6124.54 (19)N2—C6—H6B109.5
C3—N2—C6123.46 (19)C7—C6—H6B109.5
C8—N3—C9110.15 (19)H6A—C6—H6B108.1
C8—N3—C11123.4 (2)C6—C7—H7A109.5
C9—N3—C11126.4 (2)C6—C7—H7B109.5
C8—N4—C10111.1 (2)H7A—C7—H7B109.5
C8—N4—C13124.9 (2)C6—C7—H7C109.5
C10—N4—C13123.7 (2)H7A—C7—H7C109.5
N2—C1—N1105.25 (19)H7B—C7—H7C109.5
N2—C1—Au1127.11 (16)C9—C10—H10127.0
N1—C1—Au1127.41 (17)N4—C10—H10127.0
C3—C2—N1107.77 (19)N3—C11—H11A109.3
C3—C2—Br1128.16 (17)C12—C11—H11A109.3
N1—C2—Br1124.05 (17)N3—C11—H11B109.3
C2—C3—N2105.6 (2)C12—C11—H11B109.3
N1—C4—C5112.1 (2)H11A—C11—H11B108.0
N2—C6—C7110.9 (2)C11—C12—H12A109.5
N4—C8—N3105.41 (19)C11—C12—H12B109.5
N4—C8—Au1130.27 (17)H12A—C12—H12B109.5
N3—C8—Au1124.30 (17)C11—C12—H12C109.5
C10—C9—N3107.3 (2)H12A—C12—H12C109.5
C10—C9—Br2130.48 (18)H12B—C12—H12C109.5
N3—C9—Br2122.09 (17)N4—C13—H13A109.5
C9—C10—N4106.0 (2)C14—C13—H13A109.5
N3—C11—C12111.5 (2)N4—C13—H13B109.5
N4—C13—C14110.6 (2)C14—C13—H13B109.5
C2—C3—H3127.2H13A—C13—H13B108.1
N2—C3—H3127.2C13—C14—H14A109.5
N1—C4—H4A109.2C13—C14—H14B109.5
C5—C4—H4A109.2H14A—C14—H14B109.5
N1—C4—H4B109.2C13—C14—H14C109.5
C5—C4—H4B109.2H14A—C14—H14C109.5
H4A—C4—H4B107.9H14B—C14—H14C109.5
C3—N2—C1—N10.2 (3)C13—N4—C8—N3175.0 (2)
C6—N2—C1—N1173.2 (2)C10—N4—C8—Au1177.04 (18)
C3—N2—C1—Au1174.55 (17)C13—N4—C8—Au13.3 (4)
C6—N2—C1—Au11.5 (3)C9—N3—C8—N41.3 (3)
C2—N1—C1—N20.3 (2)C11—N3—C8—N4178.8 (2)
C4—N1—C1—N2178.1 (2)C9—N3—C8—Au1177.17 (17)
C2—N1—C1—Au1174.36 (16)C11—N3—C8—Au10.4 (3)
C4—N1—C1—Au13.4 (3)C8—N3—C9—C100.8 (3)
C1—N1—C2—C30.4 (3)C11—N3—C9—C10178.3 (2)
C4—N1—C2—C3178.1 (2)C8—N3—C9—Br2177.42 (17)
C1—N1—C2—Br1177.92 (17)C11—N3—C9—Br25.1 (3)
C4—N1—C2—Br10.2 (3)I1—Br2—C9—C10114.8 (3)
N1—C2—C3—N20.3 (3)I1—Br2—C9—N361.0 (4)
Br1—C2—C3—N2177.95 (17)N3—C9—C10—N40.0 (3)
C1—N2—C3—C20.1 (3)Br2—C9—C10—N4176.24 (19)
C6—N2—C3—C2173.1 (2)C8—N4—C10—C90.8 (3)
C1—N1—C4—C581.0 (3)C13—N4—C10—C9174.6 (2)
C2—N1—C4—C596.4 (3)C8—N3—C11—C1280.8 (3)
C1—N2—C6—C794.9 (3)C9—N3—C11—C1296.4 (3)
C3—N2—C6—C777.4 (3)C8—N4—C13—C1494.0 (3)
C10—N4—C8—N31.3 (3)C10—N4—C13—C1479.0 (3)
Symmetry codes: (i) x1, y1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I1iv0.953.153.966 (2)145
C4—H4A···I1ii0.993.103.995 (3)151
C6—H6A···I1iv0.993.213.955 (3)134
C10—H10···I1v0.953.203.993 (2)142
C11—H11A···Br20.992.793.265 (3)110
C11—H11B···I1vi0.993.193.903 (3)130
C12—H12B···Br1vii0.983.063.831 (3)137
C13—H13B···I1v0.993.194.053 (3)146
Symmetry codes: (ii) x+1, y+1, z+1; (iv) x, y+1, z1; (v) x, y+1, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z.
Bis(4-bromo-1,3-diethylimidazol-2-ylidene)gold(I) trans-bis(4-bromo-1,3-diethyl-imidazol-2-ylidene)diiodidogold(III) diiodide (4) top
Crystal data top
[Au(C7H11BrN2)2][AuI2(C7H11BrN2)2]I2Z = 1
Mr = 1713.88F(000) = 778
Triclinic, P1Dx = 2.607 Mg m3
a = 8.0245 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5782 (3) ÅCell parameters from 24546 reflections
c = 15.9814 (6) Åθ = 2.6–34.1°
α = 91.228 (3)°µ = 13.23 mm1
β = 96.517 (4)°T = 100 K
γ = 92.255 (4)°Plate, brown
V = 1091.77 (8) Å30.08 × 0.03 × 0.01 mm
Data collection top
XtaLAB Synergy, HyPix
diffractometer
6378 independent reflections
Radiation source: micro-focus sealed X-ray tube5409 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.048
ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1111
Tmin = 0.703, Tmax = 1.000k = 1212
61886 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0494P)2 + 12.4607P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6378 reflectionsΔρmax = 3.97 e Å3
215 parametersΔρmin = 2.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.5000000.0000000.01890 (8)
I10.36292 (6)0.37952 (6)0.12916 (3)0.02666 (11)
Br10.00401 (10)0.09434 (9)0.21316 (5)0.02965 (16)
N10.2548 (7)0.2807 (7)0.1082 (4)0.0227 (11)
N20.1732 (7)0.5172 (7)0.1164 (4)0.0218 (11)
C10.2957 (9)0.4283 (8)0.0806 (4)0.0199 (12)
C20.1053 (9)0.2781 (8)0.1624 (4)0.0236 (13)
C30.0556 (9)0.4261 (8)0.1680 (4)0.0242 (13)
H30.0411940.4612330.2008900.029*
C40.3602 (10)0.1472 (8)0.0908 (5)0.0282 (15)
H4A0.4260980.1633770.0348720.034*
H4B0.2873890.0517850.0887760.034*
C50.4806 (13)0.1229 (11)0.1572 (6)0.042 (2)
H5A0.5480690.2193050.1621280.064*
H5B0.5548160.0382870.1403290.064*
H5C0.4159910.0955970.2116600.064*
C60.1643 (9)0.6878 (8)0.1038 (4)0.0243 (13)
H6A0.2762040.7380500.1077830.029*
H6B0.0845600.7287860.1490170.029*
C70.1087 (11)0.7291 (10)0.0196 (5)0.0343 (17)
H7A0.1942480.6998220.0254030.051*
H7B0.0934450.8417520.0157930.051*
H7C0.0023210.6728100.0135350.051*
Au21.0000001.0000000.5000000.02101 (9)
I20.18002 (6)0.24488 (5)0.30519 (3)0.02377 (10)
Br20.40896 (9)0.59948 (8)0.36840 (4)0.02459 (14)
N1'0.7026 (7)0.7839 (6)0.4369 (3)0.0198 (11)
N2'0.6387 (8)1.0226 (6)0.4186 (4)0.0219 (11)
C1'0.7658 (9)0.9331 (7)0.4491 (4)0.0203 (12)
C2'0.5388 (9)0.7821 (8)0.3989 (4)0.0216 (12)
C3'0.4977 (9)0.9322 (8)0.3871 (4)0.0215 (12)
H3'0.3934970.9681820.3622030.026*
C4'0.8021 (9)0.6466 (8)0.4567 (4)0.0224 (13)
H4'10.7256340.5553490.4632110.027*
H4'20.8736720.6658330.5109050.027*
C5'0.9122 (10)0.6105 (8)0.3881 (5)0.0290 (15)
H5'10.8418010.5936540.3341520.044*
H5'20.9735150.5161800.4020160.044*
H5'30.9923380.6983540.3837580.044*
C6'0.6523 (10)1.1916 (8)0.4105 (5)0.0259 (14)
H6'10.7467731.2351490.4505020.031*
H6'20.5479691.2380370.4250630.031*
C7'0.6810 (9)1.2344 (8)0.3214 (5)0.0281 (15)
H7'10.7852741.1899450.3072540.042*
H7'20.6896631.3482790.3174760.042*
H7'30.5867041.1927420.2818330.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02247 (17)0.01893 (16)0.01489 (15)0.00122 (12)0.00110 (12)0.00024 (12)
I10.0288 (2)0.0301 (2)0.0214 (2)0.00043 (18)0.00418 (16)0.00327 (17)
Br10.0348 (4)0.0248 (3)0.0272 (3)0.0053 (3)0.0026 (3)0.0047 (3)
N10.025 (3)0.023 (3)0.020 (3)0.000 (2)0.004 (2)0.002 (2)
N20.022 (3)0.021 (3)0.021 (3)0.002 (2)0.001 (2)0.003 (2)
C10.028 (3)0.018 (3)0.013 (3)0.002 (2)0.002 (2)0.001 (2)
C20.028 (3)0.024 (3)0.018 (3)0.004 (3)0.001 (2)0.003 (2)
C30.028 (3)0.027 (3)0.017 (3)0.000 (3)0.000 (2)0.004 (2)
C40.039 (4)0.019 (3)0.025 (3)0.001 (3)0.000 (3)0.002 (3)
C50.051 (5)0.035 (4)0.042 (5)0.004 (4)0.014 (4)0.008 (4)
C60.028 (3)0.021 (3)0.024 (3)0.001 (3)0.002 (3)0.000 (3)
C70.042 (5)0.031 (4)0.031 (4)0.005 (3)0.005 (3)0.007 (3)
Au20.02690 (18)0.01581 (16)0.01892 (16)0.00103 (12)0.00311 (13)0.00180 (12)
I20.0231 (2)0.0219 (2)0.0252 (2)0.00092 (15)0.00093 (16)0.00113 (16)
Br20.0266 (3)0.0199 (3)0.0267 (3)0.0050 (2)0.0032 (3)0.0015 (2)
N1'0.028 (3)0.014 (2)0.017 (2)0.001 (2)0.001 (2)0.0007 (19)
N2'0.028 (3)0.015 (2)0.022 (3)0.001 (2)0.001 (2)0.002 (2)
C1'0.031 (3)0.014 (3)0.015 (3)0.004 (2)0.000 (2)0.000 (2)
C2'0.024 (3)0.020 (3)0.022 (3)0.000 (2)0.005 (2)0.000 (2)
C3'0.025 (3)0.017 (3)0.021 (3)0.000 (2)0.002 (2)0.002 (2)
C4'0.026 (3)0.016 (3)0.026 (3)0.007 (2)0.008 (3)0.002 (2)
C5'0.031 (4)0.019 (3)0.039 (4)0.008 (3)0.010 (3)0.001 (3)
C6'0.031 (4)0.015 (3)0.029 (3)0.002 (3)0.005 (3)0.001 (3)
C7'0.025 (3)0.022 (3)0.038 (4)0.000 (3)0.008 (3)0.008 (3)
Geometric parameters (Å, º) top
Au1—C1i2.033 (7)N2'—C6'1.459 (9)
Au1—C12.033 (7)C2'—C3'1.353 (9)
Au1—I1i2.6564 (5)C4'—C5'1.519 (10)
Au1—I12.6564 (5)C6'—C7'1.519 (11)
I1—I2ii3.5136 (7)C3—H30.9500
Br1—C21.870 (7)C4—H4A0.9900
Br1—I23.4347 (8)C4—H4B0.9900
N1—C11.347 (8)C5—H5A0.9800
N1—C21.397 (9)C5—H5B0.9800
N1—C41.464 (10)C5—H5C0.9800
N2—C11.351 (9)C6—H6A0.9900
N2—C31.385 (8)C6—H6B0.9900
N2—C61.479 (9)C7—H7A0.9800
C2—C31.348 (10)C7—H7B0.9800
C4—C51.530 (12)C7—H7C0.9800
C6—C71.504 (11)C3'—H3'0.9500
Au2—C1'2.018 (7)C4'—H4'10.9900
Au2—C1'iii2.018 (7)C4'—H4'20.9900
I2—Br23.5575 (8)C5'—H5'10.9800
I2—Au1ii4.1539 (5)C5'—H5'20.9800
Br2—C2'1.871 (7)C5'—H5'30.9800
N1'—C1'1.360 (8)C6'—H6'10.9900
N1'—C2'1.383 (9)C6'—H6'20.9900
N1'—C4'1.469 (8)C7'—H7'10.9800
N2'—C1'1.354 (9)C7'—H7'20.9800
N2'—C3'1.386 (9)C7'—H7'30.9800
C1i—Au1—C1180.0N2—C3—H3126.7
C1i—Au1—I1i90.95 (18)N1—C4—H4A109.1
C1—Au1—I1i89.05 (18)C5—C4—H4A109.1
C1i—Au1—I189.05 (18)N1—C4—H4B109.1
C1—Au1—I190.95 (18)C5—C4—H4B109.1
I1i—Au1—I1180.0H4A—C4—H4B107.8
Au1—I1—I2ii176.29 (2)C4—C5—H5A109.5
C2—Br1—I2179.5 (2)C4—C5—H5B109.5
C1—N1—C2109.5 (6)H5A—C5—H5B109.5
C1—N1—C4124.8 (6)C4—C5—H5C109.5
C2—N1—C4125.3 (6)H5A—C5—H5C109.5
C1—N2—C3110.4 (6)H5B—C5—H5C109.5
C1—N2—C6125.6 (6)N2—C6—H6A109.3
C3—N2—C6124.0 (6)C7—C6—H6A109.3
N1—C1—N2106.2 (6)N2—C6—H6B109.3
N1—C1—Au1126.4 (5)C7—C6—H6B109.3
N2—C1—Au1127.4 (5)H6A—C6—H6B107.9
C3—C2—N1107.2 (6)C6—C7—H7A109.5
C3—C2—Br1129.9 (6)C6—C7—H7B109.5
N1—C2—Br1122.9 (5)H7A—C7—H7B109.5
C2—C3—N2106.6 (6)C6—C7—H7C109.5
N1—C4—C5112.6 (7)H7A—C7—H7C109.5
N2—C6—C7111.8 (6)H7B—C7—H7C109.5
C1'—Au2—C1'iii180.0C2'—C3'—H3'127.0
Br1—I2—I1ii97.240 (19)N2'—C3'—H3'127.0
Br1—I2—Br2169.87 (2)N1'—C4'—H4'1109.3
I1ii—I2—Br272.852 (17)C5'—C4'—H4'1109.3
Br1—I2—Au2iv74.604 (16)N1'—C4'—H4'2109.3
I1ii—I2—Au2iv168.488 (16)C5'—C4'—H4'2109.3
Br2—I2—Au2iv114.871 (16)H4'1—C4'—H4'2108.0
C2'—Br2—I2177.0 (2)C4'—C5'—H5'1109.5
C1'—N1'—C2'110.4 (6)C4'—C5'—H5'2109.5
C1'—N1'—C4'123.3 (6)H5'1—C5'—H5'2109.5
C2'—N1'—C4'126.1 (6)C4'—C5'—H5'3109.5
C1'—N2'—C3'111.4 (6)H5'1—C5'—H5'3109.5
C1'—N2'—C6'124.9 (6)H5'2—C5'—H5'3109.5
C3'—N2'—C6'123.3 (6)N2'—C6'—H6'1109.4
N2'—C1'—N1'104.7 (6)C7'—C6'—H6'1109.4
N2'—C1'—Au2128.9 (5)N2'—C6'—H6'2109.4
N1'—C1'—Au2126.4 (5)C7'—C6'—H6'2109.4
C3'—C2'—N1'107.4 (6)H6'1—C6'—H6'2108.0
C3'—C2'—Br2128.7 (5)C6'—C7'—H7'1109.5
N1'—C2'—Br2123.9 (5)C6'—C7'—H7'2109.5
C2'—C3'—N2'105.9 (6)H7'1—C7'—H7'2109.5
N1'—C4'—C5'111.4 (6)C6'—C7'—H7'3109.5
N2'—C6'—C7'111.0 (6)H7'1—C7'—H7'3109.5
C2—C3—H3126.7H7'2—C7'—H7'3109.5
C2—N1—C1—N20.4 (7)C3'—N2'—C1'—N1'0.4 (8)
C4—N1—C1—N2174.5 (6)C6'—N2'—C1'—N1'173.8 (6)
C2—N1—C1—Au1179.8 (5)C3'—N2'—C1'—Au2178.6 (5)
C4—N1—C1—Au16.2 (10)C6'—N2'—C1'—Au25.3 (10)
C3—N2—C1—N11.0 (8)C2'—N1'—C1'—N2'0.4 (7)
C6—N2—C1—N1179.5 (6)C4'—N1'—C1'—N2'176.4 (6)
C3—N2—C1—Au1179.7 (5)C2'—N1'—C1'—Au2178.8 (5)
C6—N2—C1—Au10.2 (10)C4'—N1'—C1'—Au22.7 (9)
C1—N1—C2—C30.3 (8)C1'—N1'—C2'—C3'0.1 (8)
C4—N1—C2—C3173.8 (7)C4'—N1'—C2'—C3'176.1 (6)
C1—N1—C2—Br1179.1 (5)C1'—N1'—C2'—Br2178.1 (5)
C4—N1—C2—Br16.8 (10)C4'—N1'—C2'—Br22.2 (9)
N1—C2—C3—N20.9 (8)N1'—C2'—C3'—N2'0.1 (8)
Br1—C2—C3—N2178.5 (5)Br2—C2'—C3'—N2'178.3 (5)
C1—N2—C3—C21.2 (8)C1'—N2'—C3'—C2'0.4 (8)
C6—N2—C3—C2179.3 (6)C6'—N2'—C3'—C2'173.8 (6)
C1—N1—C4—C589.5 (8)C1'—N1'—C4'—C5'79.6 (8)
C2—N1—C4—C583.7 (9)C2'—N1'—C4'—C5'95.8 (8)
C1—N2—C6—C776.1 (9)C1'—N2'—C6'—C7'97.4 (8)
C3—N2—C6—C7104.5 (8)C3'—N2'—C6'—C7'75.2 (9)
Symmetry codes: (i) x1, y1, z; (ii) x, y, z; (iii) x+2, y+2, z+1; (iv) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I1v0.953.283.913 (7)126
C3—H3···I2vi0.953.224.011 (7)142
C4—H4A···I10.993.284.002 (7)132
C6—H6A···I1i0.993.163.925 (7)136
C6—H6B···I2vi0.993.114.064 (7)163
C7—H7C···I1v0.983.294.051 (9)136
C3—H3···I2vii0.953.083.916 (7)148
C4—H42···I2viii0.993.103.883 (7)137
C7—H71···I2ix0.983.194.039 (7)146
Symmetry codes: (i) x1, y1, z; (v) x, y1, z; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y+1, z+1; (ix) x+1, y+1, z.
 

Acknowledgements

We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationBaron, M., Tubaro, C., Basato, M., Isse, A. A., Gennaro, A., Cavallo, L., Graiff, C., Dolmella, A., Falivene, L. & Caporaso, L. (2016). Chem. Eur. J. 22, 10211–10224.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBüssing, R., Karge, B., Lippmann, P., Jones, P. G., Brönstrup, M. & Ott, I. (2021). ChemMedChem. In the press (https://doi.org/10.1002/cmdc.202100381).  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationGhosh, A. K. & Catalano, V. J. (2009). Eur. J. Inorg. Chem. pp. 1832–1843.  Web of Science CSD CrossRef Google Scholar
First citationGil-Rubio, J., Cámara, V., Bautista, D. & Vicente, J. (2013). Inorg. Chem. 52, 4071–4083.  Web of Science CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolthoff, J. M., Engelage, E., Kowsari, A. B., Huber, S. M. & Weiss, R. (2019). Chem. Eur. J. 25, 7480–7484.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJothibasu, R., Huynh, H. V. & Koh, L. L. (2008). J. Organomet. Chem. 693, 374–380.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Google Scholar
First citationMora, M., Gimeno, M. C. & Visbal, R. (2019). Chem. Soc. Rev. 48, 447–462.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNahra, F., Tzouras, N. V., Collado, A. & Nolan, S. P. (2021). Nat. Protoc. 16, 1476–1493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtt, I. (2020). Adv. Inorg. Chem. 75, 121–148.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchmidt, C., Karge, B., Misgeld, R., Prokop, A., Franke, R., Brönstrup, M. & Ott, I. (2017b). Chem. Eur. J. 23, 1869–1880.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidt, C., Karge, B., Misgeld, R., Prokop, A., Franke, R. & Ott, I. (2017a). MedChemComm, 8, 1681–1689.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds