research communications
Crystal structures and Hirshfeld analysis of 4,6-dibromoindolenine and its quaternized salt
aState Scientific Institution Institute for Single Crystals of the National Academy of Sciences of Ukraine, 61001, Kharkov, Ukraine, and bDepartment of Chemical Sciences, Ariel University, Ariel, 40700, Israel
*Correspondence e-mail: ikonovalova0210@gmail.com
4,6-Dibromo-2,3,3-trimethyl-3H-indole, C11H11Br2N, exists as a neutral molecule in the The of 4,6-dibromo-2,3,3-trimethyl-3H-indol-1-ium iodide, C12H14Br2N+·I−, contains one organic cation and one iodine anion. The positive charge is localized on the quaternized nitrogen atom. In the crystal, molecules of 4,6-dibromoindolenine are linked by C—Br⋯π halogen bonds, forming zigzag chains propagating in the [001] direction. The molecules of the salt form layers parallel to the (010) plane where they are linked by C—H⋯Br hydrogen bonds, C—Br⋯Br and C—Br⋯I halogen bonds. The Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the intermolecular contacts present in both crystals.
1. Chemical context
The structural analysis of 2,3,3-trimethyl-3H-indole (2,3,3-trimethylindolenine) and its quaternized salts (Lynch et al., 2012; Connell et al., 2014) plays a crucial role in understanding the mechanisms of the chemical reactions resulting in various functional products. These intermediates are promising scaffolds for the synthesis of indolenine-containing fluorescent dyes, including highly versatile cyanine (Sun et al., 2016; Feng et al., 2020) and squaraine dyes (Beverina & Salice, 2010). The incorporation of heavy atoms in the molecule, such as bromine and iodine, increases the generation of reactive species during photosensitization (Szaciłowski et al., 2005; Semenova et al., 2021). In particular, fluorescent dyes with bromine atoms are utilized for photodynamic therapy applications (Atchison et al., 2017; Liu et al., 2021). Moreover, cyanine with the 4,6-dibromoindolenine moiety indicates excellent properties for optical tumor imaging by its fluorescence (Guerrero et al., 2017).
In this work, we carried out an X-ray diffraction and Hirshfeld surface analysis of 4,6-dibromoindolenine (1) and its quaternized salt (2), crystals of which were obtained by sequential synthesis starting from 3,5-dibromoaniline (3) by its diazotization with nitrosylsulfuric acid in sulfuric acid followed by reduction of the diazonium salt 4 with tin(II) chloride. The resulting 3,5-dibromophenylhydrazine was refluxed with 3-methyl-2-butanone in acetic acid to give 4,6-dibromoindolenine, 1, which after N-alkylation with the excess of iodomethane in benzene solution forms crystals of the quaternized indolium salt 2 (Fig. 1).
2. Structural commentary
In the crystal, 4,6-dibromo-2,3,3-trimethyl-3H-indole, 1, exists as one neutral molecule in the (Fig. 2). The quaternized molecule 2 exists as a salt with an iodine anion in the crystal phase (Fig. 2). All atoms of the quaternized cation, with exception of the C9 atom and the hydrogen atoms of the C10H3 and C11H3 methyl groups are located in a special position relative to the symmetry plane. In compound 2, the positive charge is localized on the nitrogen atom, which is caused by its quaternization. The N1—C11 bond is shortened to 1.460 (10) Å in comparison with the mean value of 1.485 Å for an N—Csp3 bond (Burgi & Dunitz, 1994). An analysis of the bond lengths in both structures showed that they are typical of those in similar compounds (Seiler et al., 2018; Connell et al., 2014; Holliman et al., 2009; Bellêtete et al., 1993).
3. Supramolecular features
In the crystal, molecules of 1 form zigzag chains in the [001] direction as a result of the formation of intermolecular C3—Br1⋯N1(π) and C3—Br1⋯C8(π) halogen bonds (Table 1, Fig. 3). Neighbouring chains are linked by weak C11—H11C⋯N1 hydrogen bonds (Table 1). It should be noted that only one of the bromine atoms participates in these interactions. The presence of the iodide anion in compound 2 leads to the complete involvement of both bromine atoms in the formation of intermolecular interactions. As a result, molecules of 2 form chains in the [100] direction as a result of the C2—H2⋯Br2 hydrogen bond and C5—Br2⋯Br1 halogen bond (Table 2, Fig. 4). Neighbouring chains are connected through the bridged iodide anion by the strong C3—Br1⋯I1 halogen bond and C11—H⋯I1 hydrogen bond. Layers parallel to the (010) plane can be recognized as a structural motif in the structure of 2 (Table 2).
|
4. Hirshfeld surface analysis
Crystal Explorer 17.5 (Turner et al., 2017) was used to analyse the interactions in the structures and fingerprint plots mapped over dnorm (Figs. 5–7) were generated. The molecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.1256 (red) to 1.401 (blue). The areas in red on the dnorm-mapped Hirshfeld surfaces (Fig. 5) correspond to contacts that are shorter than van der Waals radii sum of the closest atoms. As can be seen in Fig. 5, short contacts in 1 are present at the nitrogen and Br1 atoms. In 2, the areas of short contacts are located at both the bromine atoms, the iodine atom and the hydrogen atoms of the methyl groups (Fig. 5). All of the intermolecular interactions of the title compounds are shown in the two-dimensional fingerprint plot presented in Figs. 6 and 7. The contribution of the Br⋯H/H⋯Br contacts, corresponding to the C—H⋯Br interaction, is represented by a pair of sharp spikes. The interactions appear in the middle of the scattered points in the two-dimensional fingerprint plot with a contribution to the overall Hirshfeld surface of 30.3% (Fig. 6c) and 18.0% (Fig. 7c). The fingerprint plots indicate that the principal contributions are from H⋯H (38.3% (Fig. 6b) in 1; 41.8% (Fig. 7b) in 2), C⋯H/H⋯C (13.3%; Fig. 6d in structure 1) and I⋯H/H⋯I (17.1%; Fig. 7d in structure 2) contacts. The fingerprint plots also indicate that all intermolecular interactions in the title compounds are rather weak.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016) for the 2,3,3-trimethyl-3H-indole skeleton yielded 306 hits. The most similar to the title compounds are 5,7-dibromo-2,3,3-trimethyl-3H-indole (CSD refcode KOFRII; Holliman et al., 2009) and 1,2,3,3-tetramethyl-3H-indolium iodide (NENZAJ01; Connell et al., 2014). These compounds have a very similar molecular structure and differ only in the position of the substituents.
6. Synthesis and crystallization
Synthesis of 4,6-dibromo-2,3,3-trimethyl-3H-indole (1)
3,5-Dibromophenyl)hydrazine hydrochloride (5) (3.3 g, 11 mmol) and 3-methyl-2-butanone (1.8 mL, 16.8 mmol) were refluxed in 15 mL of acetic acid for 5 h. The acetic acid was evaporated and the residue was washed with a 5% aqueous solution Na2CO3 (20 mL) and then with water. Indole 1 was extracted using 3 × 25 mL of diethyl ether. The combined organic layers were dried over Na2SO4 and the ether was removed under reduced pressure by a rotary evaporator. After recrystallization from acetonitrile, light-brown crystals were obtained. Yield: 1.95 g (57%), 1H NMR (400 MHz, DMSO-d6), δ, ppm: 7.66 (1H, s, CH), 7.58 (1H, s, CH), 2.24 (3H, s, CH3), 1.36 [6H, s, (CH3)2]. Analysis, %: found C, 41.69; H, 3.49; N, 4.45, C11H11Br2N requires C, 41.67; H, 3.50; N, 4.42, ESI–MS m/z found: [M + H]+ 317.9; C11H12Br2N+ requires 317.9.
Synthesis of 4,6-dibromo-1,2,3,3-tetramethyl-3H-indol-1-ium iodide (2)
4,6-Dibromo-2,3,3-trimethyl-3H-indole (1) (0.3 g, 0.95 mmol) was dissolved in benzene (5 mL), iodomethane was added (0.5 mL, 8.03 mmol) and the mixture was left at room temperature for 24 h in a sealed tube. The beige crystals that formed were filtered off, washed with diethyl ether, dried, and were used without further purification. Yield: 300 mg (69%), 1H NMR (400 MHz, DMSO-d6), δ, ppm: 8.34 (1H, s, CH), 8.11 (1H, s, CH), 3.94 (3H, s, CH3), 2.81 (3H, s, CH3), 1.63 [6H, s, (CH3)2]. Analysis, %: found C, 31.34; H, 3.01; N, 3.08, C12H14Br2IN requires C, 31.40; H, 3.07; N, 3.05, ESI–MS m/z found: [M − I]+ 331.9; C12H14Br2N+ requires 332.0.
7. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) or 1.2Ueq(C) for all other H atoms.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989021011385/zn2011sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989021011385/zn20111sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021011385/zn20111sup4.cml
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989021011385/zn20112sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021011385/zn20112sup5.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018). Cell
CrysAlis PRO (Rigaku OD, 2018) for (1). For both structures, data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H11Br2N | Dx = 1.776 Mg m−3 |
Mr = 317.03 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2796 reflections |
a = 8.7761 (5) Å | θ = 3.6–24.9° |
b = 11.3876 (7) Å | µ = 6.80 mm−1 |
c = 11.8654 (4) Å | T = 293 K |
V = 1185.81 (11) Å3 | Prism, red |
Z = 4 | 0.4 × 0.3 × 0.3 mm |
F(000) = 616 |
Xcalibur, Sapphire3 diffractometer | 2086 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1789 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.081 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −13→13 |
Tmin = 0.682, Tmax = 1.000 | l = −14→14 |
8516 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0554P)2 + 0.295P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.121 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.44 e Å−3 |
2086 reflections | Δρmin = −0.55 e Å−3 |
130 parameters | Absolute structure: Flack x determined using 613 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.05 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.24163 (11) | 0.35819 (9) | 0.83683 (7) | 0.0630 (4) | |
Br2 | 0.73559 (14) | 0.21032 (9) | 0.56768 (8) | 0.0769 (4) | |
N1 | 0.5082 (8) | 0.6304 (7) | 0.5315 (6) | 0.0518 (18) | |
C1 | 0.4908 (9) | 0.5231 (8) | 0.5910 (6) | 0.0432 (19) | |
C2 | 0.3837 (10) | 0.5003 (7) | 0.6734 (6) | 0.047 (2) | |
H2 | 0.312700 | 0.556729 | 0.694752 | 0.056* | |
C3 | 0.3861 (9) | 0.3912 (8) | 0.7227 (6) | 0.046 (2) | |
C4 | 0.4903 (9) | 0.3063 (8) | 0.6936 (7) | 0.052 (2) | |
H4 | 0.489872 | 0.233692 | 0.729463 | 0.062* | |
C5 | 0.5979 (10) | 0.3311 (8) | 0.6085 (7) | 0.049 (2) | |
C6 | 0.5999 (9) | 0.4389 (8) | 0.5579 (6) | 0.046 (2) | |
C7 | 0.6962 (9) | 0.4972 (8) | 0.4670 (6) | 0.050 (2) | |
C8 | 0.6202 (9) | 0.6146 (8) | 0.4635 (7) | 0.051 (2) | |
C9 | 0.6811 (15) | 0.4323 (11) | 0.3518 (7) | 0.077 (3) | |
H9A | 0.719284 | 0.353684 | 0.359071 | 0.116* | |
H9B | 0.738795 | 0.473434 | 0.295515 | 0.116* | |
H9C | 0.575831 | 0.429848 | 0.329832 | 0.116* | |
C10 | 0.8638 (11) | 0.5078 (11) | 0.5014 (10) | 0.079 (3) | |
H10A | 0.870442 | 0.542173 | 0.575093 | 0.119* | |
H10B | 0.916473 | 0.556660 | 0.448193 | 0.119* | |
H10C | 0.909473 | 0.431228 | 0.502393 | 0.119* | |
C11 | 0.6680 (12) | 0.7123 (9) | 0.3846 (8) | 0.072 (3) | |
H11A | 0.597667 | 0.776545 | 0.390964 | 0.107* | |
H11B | 0.668219 | 0.683767 | 0.308475 | 0.107* | |
H11C | 0.768433 | 0.738629 | 0.404338 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0625 (6) | 0.0687 (6) | 0.0578 (5) | −0.0033 (6) | 0.0196 (5) | 0.0087 (4) |
Br2 | 0.0836 (7) | 0.0721 (7) | 0.0750 (6) | 0.0279 (7) | 0.0213 (6) | 0.0029 (5) |
N1 | 0.054 (4) | 0.052 (4) | 0.050 (4) | −0.005 (4) | 0.004 (3) | 0.000 (4) |
C1 | 0.042 (4) | 0.048 (5) | 0.040 (4) | −0.006 (4) | −0.002 (3) | −0.005 (4) |
C2 | 0.045 (5) | 0.048 (5) | 0.047 (4) | 0.002 (4) | 0.003 (4) | −0.004 (4) |
C3 | 0.039 (4) | 0.052 (5) | 0.045 (4) | −0.007 (4) | 0.004 (4) | −0.004 (4) |
C4 | 0.055 (5) | 0.054 (6) | 0.046 (4) | 0.000 (5) | 0.000 (4) | 0.008 (4) |
C5 | 0.043 (4) | 0.063 (6) | 0.041 (4) | −0.001 (4) | 0.003 (4) | −0.001 (4) |
C6 | 0.043 (5) | 0.058 (5) | 0.038 (4) | −0.003 (4) | 0.005 (4) | 0.001 (4) |
C7 | 0.044 (5) | 0.065 (6) | 0.040 (4) | 0.004 (4) | 0.009 (3) | 0.004 (4) |
C8 | 0.045 (5) | 0.063 (6) | 0.047 (5) | −0.014 (4) | 0.000 (4) | 0.002 (4) |
C9 | 0.095 (8) | 0.092 (8) | 0.046 (5) | −0.002 (7) | 0.020 (5) | −0.016 (5) |
C10 | 0.042 (6) | 0.105 (10) | 0.090 (7) | −0.003 (6) | 0.008 (5) | 0.013 (7) |
C11 | 0.080 (7) | 0.071 (7) | 0.063 (5) | −0.019 (6) | 0.023 (5) | 0.020 (5) |
Br1—C3 | 1.893 (8) | C7—C8 | 1.494 (13) |
Br2—C5 | 1.894 (9) | C7—C9 | 1.560 (12) |
N1—C1 | 1.419 (11) | C7—C10 | 1.531 (13) |
N1—C8 | 1.284 (10) | C8—C11 | 1.514 (12) |
C1—C2 | 1.381 (11) | C9—H9A | 0.9600 |
C1—C6 | 1.411 (11) | C9—H9B | 0.9600 |
C2—H2 | 0.9300 | C9—H9C | 0.9600 |
C2—C3 | 1.374 (11) | C10—H10A | 0.9600 |
C3—C4 | 1.375 (11) | C10—H10B | 0.9600 |
C4—H4 | 0.9300 | C10—H10C | 0.9600 |
C4—C5 | 1.412 (11) | C11—H11A | 0.9600 |
C5—C6 | 1.367 (12) | C11—H11B | 0.9600 |
C6—C7 | 1.522 (11) | C11—H11C | 0.9600 |
C8—N1—C1 | 105.9 (8) | C8—C7—C10 | 111.5 (8) |
C2—C1—N1 | 126.0 (8) | C10—C7—C9 | 110.6 (7) |
C2—C1—C6 | 122.1 (8) | N1—C8—C7 | 116.7 (8) |
C6—C1—N1 | 111.9 (7) | N1—C8—C11 | 119.8 (9) |
C1—C2—H2 | 121.3 | C7—C8—C11 | 123.4 (8) |
C3—C2—C1 | 117.5 (8) | C7—C9—H9A | 109.5 |
C3—C2—H2 | 121.3 | C7—C9—H9B | 109.5 |
C2—C3—Br1 | 118.3 (6) | C7—C9—H9C | 109.5 |
C2—C3—C4 | 122.6 (7) | H9A—C9—H9B | 109.5 |
C4—C3—Br1 | 119.1 (6) | H9A—C9—H9C | 109.5 |
C3—C4—H4 | 120.5 | H9B—C9—H9C | 109.5 |
C3—C4—C5 | 119.0 (8) | C7—C10—H10A | 109.5 |
C5—C4—H4 | 120.5 | C7—C10—H10B | 109.5 |
C4—C5—Br2 | 117.7 (7) | C7—C10—H10C | 109.5 |
C6—C5—Br2 | 122.2 (6) | H10A—C10—H10B | 109.5 |
C6—C5—C4 | 120.2 (8) | H10A—C10—H10C | 109.5 |
C1—C6—C7 | 106.1 (7) | H10B—C10—H10C | 109.5 |
C5—C6—C1 | 118.7 (7) | C8—C11—H11A | 109.5 |
C5—C6—C7 | 135.2 (8) | C8—C11—H11B | 109.5 |
C6—C7—C9 | 111.5 (8) | C8—C11—H11C | 109.5 |
C6—C7—C10 | 112.3 (8) | H11A—C11—H11B | 109.5 |
C8—C7—C6 | 99.3 (7) | H11A—C11—H11C | 109.5 |
C8—C7—C9 | 111.2 (8) | H11B—C11—H11C | 109.5 |
Br1—C3—C4—C5 | −180.0 (6) | C3—C4—C5—Br2 | −178.1 (6) |
Br2—C5—C6—C1 | 178.3 (6) | C3—C4—C5—C6 | 1.4 (13) |
Br2—C5—C6—C7 | −1.3 (14) | C4—C5—C6—C1 | −1.2 (12) |
N1—C1—C2—C3 | −179.1 (7) | C4—C5—C6—C7 | 179.2 (9) |
N1—C1—C6—C5 | 179.6 (7) | C5—C6—C7—C8 | 179.9 (9) |
N1—C1—C6—C7 | −0.6 (9) | C5—C6—C7—C9 | 62.6 (13) |
C1—N1—C8—C7 | −0.7 (10) | C5—C6—C7—C10 | −62.2 (13) |
C1—N1—C8—C11 | 178.8 (8) | C6—C1—C2—C3 | −0.3 (12) |
C1—C2—C3—Br1 | 179.5 (6) | C6—C7—C8—N1 | 0.3 (9) |
C1—C2—C3—C4 | 0.5 (12) | C6—C7—C8—C11 | −179.2 (8) |
C1—C6—C7—C8 | 0.2 (8) | C8—N1—C1—C2 | 179.8 (8) |
C1—C6—C7—C9 | −117.1 (8) | C8—N1—C1—C6 | 0.8 (9) |
C1—C6—C7—C10 | 118.1 (9) | C9—C7—C8—N1 | 117.9 (8) |
C2—C1—C6—C5 | 0.7 (12) | C9—C7—C8—C11 | −61.7 (11) |
C2—C1—C6—C7 | −179.6 (7) | C10—C7—C8—N1 | −118.2 (9) |
C2—C3—C4—C5 | −1.0 (13) | C10—C7—C8—C11 | 62.3 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—Br1···N1i | 1.89 | 3.19 | 5.283 (1) | 166 |
C3—Br1···C8i | 1.89 | 3.53 | 5.046 (1) | 153 |
C11—H11C···N1ii | 0.96 | 2.69 | 3.621 (1) | 164 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x+1/2, −y+3/2, −z+1. |
C12H14Br2N+·I− | F(000) = 432 |
Mr = 458.96 | Dx = 2.115 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3507 (6) Å | Cell parameters from 1781 reflections |
b = 7.3719 (5) Å | θ = 3.8–28.6° |
c = 11.7180 (8) Å | µ = 7.74 mm−1 |
β = 92.755 (6)° | T = 293 K |
V = 720.53 (9) Å3 | Needle, red |
Z = 2 | 0.4 × 0.2 × 0.1 mm |
Xcalibur, Sapphire3 diffractometer | 1374 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1242 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.083 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −8→8 |
Tmin = 0.355, Tmax = 1.000 | l = −12→13 |
4499 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1443P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1374 reflections | Δρmax = 0.86 e Å−3 |
97 parameters | Δρmin = −0.91 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 0.70649 (6) | 0.750000 | 0.12215 (4) | 0.0481 (3) | |
Br1 | 0.57546 (9) | 0.250000 | 0.65282 (7) | 0.0477 (3) | |
Br2 | 1.19756 (8) | 0.250000 | 0.49523 (7) | 0.0455 (3) | |
N1 | 0.7083 (7) | 0.250000 | 0.2129 (5) | 0.0333 (13) | |
C1 | 0.7464 (7) | 0.250000 | 0.3305 (5) | 0.0310 (15) | |
C2 | 0.6429 (8) | 0.250000 | 0.4171 (6) | 0.0339 (15) | |
H2 | 0.532393 | 0.250000 | 0.402939 | 0.041* | |
C3 | 0.7113 (9) | 0.250000 | 0.5275 (6) | 0.0361 (16) | |
C4 | 0.8733 (8) | 0.250000 | 0.5472 (6) | 0.0334 (15) | |
H4 | 0.915491 | 0.250000 | 0.622086 | 0.040* | |
C5 | 0.9763 (8) | 0.250000 | 0.4585 (6) | 0.0321 (14) | |
C6 | 0.9130 (8) | 0.250000 | 0.3468 (6) | 0.0317 (15) | |
C7 | 0.9823 (9) | 0.250000 | 0.2291 (6) | 0.0328 (15) | |
C8 | 0.8337 (9) | 0.250000 | 0.1513 (6) | 0.0347 (16) | |
C9 | 1.0830 (6) | 0.4194 (8) | 0.2084 (5) | 0.0446 (12) | |
H9A | 1.017880 | 0.525689 | 0.215897 | 0.067* | |
H9B | 1.122463 | 0.414922 | 0.132876 | 0.067* | |
H9C | 1.171753 | 0.423837 | 0.263544 | 0.067* | |
C10 | 0.8300 (11) | 0.250000 | 0.0265 (7) | 0.0483 (19) | |
H10A | 0.929629 | 0.203613 | 0.001073 | 0.073* | 0.5 |
H10B | 0.814457 | 0.371640 | −0.001140 | 0.073* | 0.5 |
H10C | 0.743463 | 0.174747 | −0.002504 | 0.073* | 0.5 |
C11 | 0.5431 (10) | 0.250000 | 0.1659 (8) | 0.051 (2) | |
H11A | 0.541464 | 0.284350 | 0.086856 | 0.077* | 0.5 |
H11B | 0.480906 | 0.334906 | 0.207372 | 0.077* | 0.5 |
H11C | 0.498349 | 0.130744 | 0.172659 | 0.077* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0529 (4) | 0.0457 (4) | 0.0464 (4) | 0.000 | 0.0092 (3) | 0.000 |
Br1 | 0.0410 (5) | 0.0658 (6) | 0.0376 (5) | 0.000 | 0.0156 (4) | 0.000 |
Br2 | 0.0282 (5) | 0.0547 (5) | 0.0532 (5) | 0.000 | −0.0025 (4) | 0.000 |
N1 | 0.034 (3) | 0.038 (3) | 0.028 (3) | 0.000 | −0.006 (2) | 0.000 |
C1 | 0.024 (4) | 0.042 (4) | 0.027 (3) | 0.000 | −0.001 (3) | 0.000 |
C2 | 0.028 (3) | 0.041 (4) | 0.033 (4) | 0.000 | 0.004 (3) | 0.000 |
C3 | 0.036 (4) | 0.041 (4) | 0.033 (4) | 0.000 | 0.009 (3) | 0.000 |
C4 | 0.038 (4) | 0.038 (4) | 0.024 (3) | 0.000 | −0.004 (3) | 0.000 |
C5 | 0.031 (4) | 0.034 (3) | 0.032 (3) | 0.000 | 0.001 (3) | 0.000 |
C6 | 0.029 (4) | 0.033 (4) | 0.033 (4) | 0.000 | 0.005 (3) | 0.000 |
C7 | 0.038 (4) | 0.031 (3) | 0.030 (4) | 0.000 | 0.014 (3) | 0.000 |
C8 | 0.040 (4) | 0.035 (4) | 0.030 (4) | 0.000 | 0.007 (3) | 0.000 |
C9 | 0.046 (3) | 0.047 (3) | 0.042 (3) | −0.002 (2) | 0.012 (2) | 0.007 (2) |
C10 | 0.058 (5) | 0.052 (5) | 0.036 (4) | 0.000 | 0.006 (4) | 0.000 |
C11 | 0.038 (5) | 0.070 (6) | 0.045 (5) | 0.000 | 0.000 (4) | 0.000 |
Br1—C3 | 1.899 (7) | C7—C8 | 1.504 (10) |
Br2—C5 | 1.877 (7) | C7—C9 | 1.532 (7) |
N1—C1 | 1.399 (8) | C7—C9i | 1.532 (7) |
N1—C8 | 1.301 (9) | C8—C10 | 1.461 (10) |
N1—C11 | 1.460 (10) | C9—H9A | 0.9600 |
C1—C2 | 1.364 (10) | C9—H9B | 0.9600 |
C1—C6 | 1.395 (9) | C9—H9C | 0.9600 |
C2—H2 | 0.9300 | C10—H10A | 0.9600 |
C2—C3 | 1.389 (10) | C10—H10B | 0.9600 |
C3—C4 | 1.361 (10) | C10—H10C | 0.9600 |
C4—H4 | 0.9300 | C11—H11A | 0.9600 |
C4—C5 | 1.381 (10) | C11—H11B | 0.9600 |
C5—C6 | 1.387 (10) | C11—H11C | 0.9600 |
C6—C7 | 1.522 (9) | ||
C1—N1—C11 | 122.5 (6) | C8—C7—C9 | 110.3 (4) |
C8—N1—C1 | 113.3 (6) | C8—C7—C9i | 110.3 (4) |
C8—N1—C11 | 124.2 (7) | C9—C7—C9i | 109.3 (6) |
C2—C1—N1 | 127.6 (6) | N1—C8—C7 | 109.0 (6) |
C2—C1—C6 | 124.1 (6) | N1—C8—C10 | 125.2 (7) |
C6—C1—N1 | 108.3 (6) | C10—C8—C7 | 125.7 (6) |
C1—C2—H2 | 121.7 | C7—C9—H9A | 109.5 |
C1—C2—C3 | 116.5 (6) | C7—C9—H9B | 109.5 |
C3—C2—H2 | 121.7 | C7—C9—H9C | 109.5 |
C2—C3—Br1 | 119.1 (5) | H9A—C9—H9B | 109.5 |
C4—C3—Br1 | 119.6 (5) | H9A—C9—H9C | 109.5 |
C4—C3—C2 | 121.3 (6) | H9B—C9—H9C | 109.5 |
C3—C4—H4 | 119.3 | C8—C10—H10A | 109.5 |
C3—C4—C5 | 121.5 (6) | C8—C10—H10B | 109.5 |
C5—C4—H4 | 119.3 | C8—C10—H10C | 109.5 |
C4—C5—Br2 | 118.0 (5) | H10A—C10—H10B | 109.5 |
C4—C5—C6 | 119.1 (6) | H10A—C10—H10C | 109.5 |
C6—C5—Br2 | 122.9 (5) | H10B—C10—H10C | 109.5 |
C1—C6—C7 | 107.2 (6) | N1—C11—H11A | 109.5 |
C5—C6—C1 | 117.5 (6) | N1—C11—H11B | 109.5 |
C5—C6—C7 | 135.3 (6) | N1—C11—H11C | 109.5 |
C6—C7—C9i | 112.3 (4) | H11A—C11—H11B | 109.5 |
C6—C7—C9 | 112.3 (4) | H11A—C11—H11C | 109.5 |
C8—C7—C6 | 102.2 (5) | H11B—C11—H11C | 109.5 |
Br1—C3—C4—C5 | 180.000 (2) | C4—C5—C6—C1 | 0.000 (1) |
Br2—C5—C6—C1 | 180.000 (1) | C4—C5—C6—C7 | 180.000 (1) |
Br2—C5—C6—C7 | 0.000 (2) | C5—C6—C7—C8 | 180.000 (1) |
N1—C1—C2—C3 | 180.000 (1) | C5—C6—C7—C9 | −61.8 (4) |
N1—C1—C6—C5 | 180.000 (1) | C5—C6—C7—C9i | 61.8 (4) |
N1—C1—C6—C7 | 0.000 (1) | C6—C1—C2—C3 | 0.000 (1) |
C1—N1—C8—C7 | 0.000 (1) | C6—C7—C8—N1 | 0.000 (1) |
C1—N1—C8—C10 | 180.000 (1) | C6—C7—C8—C10 | 180.000 (1) |
C1—C2—C3—Br1 | 180.000 (1) | C8—N1—C1—C2 | 180.000 (1) |
C1—C2—C3—C4 | 0.000 (2) | C8—N1—C1—C6 | 0.000 (1) |
C1—C6—C7—C8 | 0.000 (1) | C9i—C7—C8—N1 | 119.6 (4) |
C1—C6—C7—C9i | −118.2 (4) | C9—C7—C8—N1 | −119.6 (4) |
C1—C6—C7—C9 | 118.2 (4) | C9i—C7—C8—C10 | −60.4 (4) |
C2—C1—C6—C5 | 0.000 (1) | C9—C7—C8—C10 | 60.4 (4) |
C2—C1—C6—C7 | 180.000 (1) | C11—N1—C1—C2 | 0.000 (1) |
C2—C3—C4—C5 | 0.000 (2) | C11—N1—C1—C6 | 180.000 (1) |
C3—C4—C5—Br2 | 180.000 (1) | C11—N1—C8—C7 | 180.000 (1) |
C3—C4—C5—C6 | 0.000 (2) | C11—N1—C8—C10 | 0.000 (1) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Br2ii | 0.93 | 3.05 | 3.872 (1) | 149 |
C5—Br2···Br1iii | 1.88 (1) | 3.58 | 5.397 (1) | 162 |
C3—Br1···I1iv | 1.90 (1) | 3.62 | 5.514 (1) | 176 |
C11—H11A···I1v | 0.96 | 3.14 | 3.881 (1) | 135 |
Symmetry codes: (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z. |
Funding information
Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).
References
Atchison, J., Kamila, S., Nesbitt, H., Logan, K. A., Nicholas, D. M., Fowley, C., Davis, J., Callan, B., McHale, A. P. & Callan, J. F. (2017). Chem. Commun. 53, 2009–2012. Web of Science CrossRef CAS Google Scholar
Belletête, M., Brisse, F., Durocher, G., Gravel, D., Héroux, A. & Popowycz, A. (1993). J. Mol. Struct. 297, 63–80. Google Scholar
Beverina, L. & Salice, P. (2010). Eur. J. Org. Chem. pp. 1207–1225. Web of Science CrossRef Google Scholar
Burgi, H.-B. & Dunitz, J. D. (1994). Structure correlation, vol. 2, pp. 741–784. Weinheim: VCH. Google Scholar
Connell, A., Holliman, P. J., Davies, M. L., Gwenin, Ch. D., Weiss, S., Pitak, M. B., Horton, P. N., Coles, S. J. & Cooke, G. (2014). J. Mater. Chem. A, 2, 4055–4066. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, L., Chen, W., Ma, X., Liu, S. H. & Yin, J. (2020). Org. Biomol. Chem. 18, 9385–9397. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerrero, Y., Singh, S. P., Mai, T., Murali, R. K., Tanikella, L., Zahedi, A., Kundra, V. & Anvari, B. (2017). Appl. Mater. Interfaces, 9, 19601–19611. Web of Science CrossRef CAS Google Scholar
Holliman, P. J., Tizzard, G. J., Hursthouse, M. B. & Lamond, S. J. (2009). University of Southampton, Crystal Structure Report Archive, 1229. Google Scholar
Liu, H., Yin, J., Xing, E., Du, Y., Su, Y., Feng, Y. & Meng, S. (2021). Dyes Pigments, 190, 109327. Web of Science CrossRef Google Scholar
Lynch, D. E., Kirkham, A. N., Chowdhury, M. Z. H., Wane, E. S. & Heptinstall, J. (2012). Dyes Pigments, 94, 393–402. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seiler, V. K., Callebaut, K., Robeyns, K., Tumanov, N., Wouters, J., Champagne, B. & Leyssens, T. (2018). CrystEngComm, 20, 3318–3327. Web of Science CSD CrossRef CAS Google Scholar
Semenova, O., Kobzev, D., Yazbak, F., Nakonechny, F., Kolosova, O., Tatarets, A., Gellerman, G. & Patsenker, L. (2021). Dyes Pigments, 195, 109745–109746. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, W., Guo, Sh., Hu, Ch., Fan, J. & Peng, X. (2016). Chem. Rev. 116, 7768–7817. Web of Science CrossRef CAS PubMed Google Scholar
Szaciłowski, K., Macyk, W., Drzewiecka-Matuszek, A., Brindell, M. & Stochel, G. (2005). Chem. Rev. 105, 2647–2694. Web of Science PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.