research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld analysis of 4,6-di­bromo­indole­nine and its quaternized salt

crossmark logo

aState Scientific Institution Institute for Single Crystals of the National Academy of Sciences of Ukraine, 61001, Kharkov, Ukraine, and bDepartment of Chemical Sciences, Ariel University, Ariel, 40700, Israel
*Correspondence e-mail: ikonovalova0210@gmail.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 5 October 2021; accepted 28 October 2021; online 2 November 2021)

4,6-Di­bromo-2,3,3-trimethyl-3H-indole, C11H11Br2N, exists as a neutral mol­ecule in the asymmetric unit. The asymmetric unit of 4,6-di­bromo-2,3,3-trimethyl-3H-indol-1-ium iodide, C12H14Br2N+·I, contains one organic cation and one iodine anion. The positive charge is localized on the quaternized nitro­gen atom. In the crystal, mol­ecules of 4,6-di­bromo­indole­nine are linked by C—Br⋯π halogen bonds, forming zigzag chains propagating in the [001] direction. The mol­ecules of the salt form layers parallel to the (010) plane where they are linked by C—H⋯Br hydrogen bonds, C—Br⋯Br and C—Br⋯I halogen bonds. The Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the inter­molecular contacts present in both crystals.

1. Chemical context

The structural analysis of 2,3,3-trimethyl-3H-indole (2,3,3-tri­methyl­indole­nine) and its quaternized salts (Lynch et al., 2012[Lynch, D. E., Kirkham, A. N., Chowdhury, M. Z. H., Wane, E. S. & Heptinstall, J. (2012). Dyes Pigments, 94, 393-402.]; Connell et al., 2014[Connell, A., Holliman, P. J., Davies, M. L., Gwenin, Ch. D., Weiss, S., Pitak, M. B., Horton, P. N., Coles, S. J. & Cooke, G. (2014). J. Mater. Chem. A, 2, 4055-4066.]) plays a crucial role in understanding the mechanisms of the chemical reactions resulting in various functional products. These inter­mediates are promising scaffolds for the synthesis of indole­nine-containing fluorescent dyes, including highly versatile cyanine (Sun et al., 2016[Sun, W., Guo, Sh., Hu, Ch., Fan, J. & Peng, X. (2016). Chem. Rev. 116, 7768-7817.]; Feng et al., 2020[Feng, L., Chen, W., Ma, X., Liu, S. H. & Yin, J. (2020). Org. Biomol. Chem. 18, 9385-9397.]) and squaraine dyes (Beverina & Salice, 2010[Beverina, L. & Salice, P. (2010). Eur. J. Org. Chem. pp. 1207-1225.]). The incorporation of heavy atoms in the mol­ecule, such as bromine and iodine, increases the generation of reactive species during photosensitization (Szaciłowski et al., 2005[Szaciłowski, K., Macyk, W., Drzewiecka-Matuszek, A., Brindell, M. & Stochel, G. (2005). Chem. Rev. 105, 2647-2694.]; Semenova et al., 2021[Semenova, O., Kobzev, D., Yazbak, F., Nakonechny, F., Kolosova, O., Tatarets, A., Gellerman, G. & Patsenker, L. (2021). Dyes Pigments, 195, 109745-109746.]). In particular, fluorescent dyes with bromine atoms are utilized for photodynamic therapy applications (Atchison et al., 2017[Atchison, J., Kamila, S., Nesbitt, H., Logan, K. A., Nicholas, D. M., Fowley, C., Davis, J., Callan, B., McHale, A. P. & Callan, J. F. (2017). Chem. Commun. 53, 2009-2012.]; Liu et al., 2021[Liu, H., Yin, J., Xing, E., Du, Y., Su, Y., Feng, Y. & Meng, S. (2021). Dyes Pigments, 190, 109327.]). Moreover, cyanine with the 4,6-di­bromo­indole­nine moiety indicates excellent properties for optical tumor imaging by its fluorescence (Guerrero et al., 2017[Guerrero, Y., Singh, S. P., Mai, T., Murali, R. K., Tanikella, L., Zahedi, A., Kundra, V. & Anvari, B. (2017). Appl. Mater. Interfaces, 9, 19601-19611.]).

[Scheme 1]

In this work, we carried out an X-ray diffraction and Hirshfeld surface analysis of 4,6-di­bromo­indole­nine (1) and its quaternized salt (2), crystals of which were obtained by sequential synthesis starting from 3,5-di­bromo­aniline (3) by its diazo­tization with nitro­sylsulfuric acid in sulfuric acid followed by reduction of the diazo­nium salt 4 with tin(II) chloride. The resulting 3,5-di­bromo­phenyl­hydrazine was refluxed with 3-methyl-2-butanone in acetic acid to give 4,6-di­bromo­indole­nine, 1, which after N-alkyl­ation with the excess of iodo­methane in benzene solution forms crystals of the quaternized indolium salt 2 (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of the title compounds 1 and 2.

2. Structural commentary

In the crystal, 4,6-di­bromo-2,3,3-trimethyl-3H-indole, 1, exists as one neutral mol­ecule in the asymmetric unit (Fig. 2[link]). The quaternized mol­ecule 2 exists as a salt with an iodine anion in the crystal phase (Fig. 2[link]). All atoms of the quaternized cation, with exception of the C9 atom and the hydrogen atoms of the C10H3 and C11H3 methyl groups are located in a special position relative to the symmetry plane. In compound 2, the positive charge is localized on the nitro­gen atom, which is caused by its quaternization. The N1—C11 bond is shortened to 1.460 (10) Å in comparison with the mean value of 1.485 Å for an N—Csp3 bond (Burgi & Dunitz, 1994[Burgi, H.-B. & Dunitz, J. D. (1994). Structure correlation, vol. 2, pp. 741-784. Weinheim: VCH.]). An analysis of the bond lengths in both structures showed that they are typical of those in similar compounds (Seiler et al., 2018[Seiler, V. K., Callebaut, K., Robeyns, K., Tumanov, N., Wouters, J., Champagne, B. & Leyssens, T. (2018). CrystEngComm, 20, 3318-3327.]; Connell et al., 2014[Connell, A., Holliman, P. J., Davies, M. L., Gwenin, Ch. D., Weiss, S., Pitak, M. B., Horton, P. N., Coles, S. J. & Cooke, G. (2014). J. Mater. Chem. A, 2, 4055-4066.]; Holliman et al., 2009[Holliman, P. J., Tizzard, G. J., Hursthouse, M. B. & Lamond, S. J. (2009). University of Southampton, Crystal Structure Report Archive, 1229.]; Bellêtete et al., 1993[Belletête, M., Brisse, F., Durocher, G., Gravel, D., Héroux, A. & Popowycz, A. (1993). J. Mol. Struct. 297, 63-80.]).

[Figure 2]
Figure 2
Mol­ecular structure of compounds 1 and 2 with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of 1 form zigzag chains in the [001] direction as a result of the formation of inter­molecular C3—Br1⋯N1(π) and C3—Br1⋯C8(π) halogen bonds (Table 1[link], Fig. 3[link]). Neighbouring chains are linked by weak C11—H11C⋯N1 hydrogen bonds (Table 1[link]). It should be noted that only one of the bromine atoms participates in these inter­actions. The presence of the iodide anion in compound 2 leads to the complete involvement of both bromine atoms in the formation of inter­molecular inter­actions. As a result, mol­ecules of 2 form chains in the [100] direction as a result of the C2—H2⋯Br2 hydrogen bond and C5—Br2⋯Br1 halogen bond (Table 2[link], Fig. 4[link]). Neighbouring chains are connected through the bridged iodide anion by the strong C3—Br1⋯I1 halogen bond and C11—H⋯I1 hydrogen bond. Layers parallel to the (010) plane can be recognized as a structural motif in the structure of 2 (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—Br1⋯N1i 1.89 (1) 3.19 5.283 (1) 166
C3—Br1⋯C8i 1.89 (1) 3.53 5.046 (1) 153
C11—H11C⋯N1ii 0.96 2.69 3.621 (1) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br2i 0.93 3.05 3.872 (1) 149
C5—Br2⋯Br1ii 1.88 (1) 3.58 5.397 (1) 162
C3—Br1⋯I1iii 1.90 (1) 3.62 5.514 (1) 176
C11—H11A⋯I1iv 0.96 3.14 3.881 (1) 135
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y+1, -z].
[Figure 3]
Figure 3
Zigzag chains in the crystal of compound 1.
[Figure 4]
Figure 4
The chains (left) and layers (right) in the crystal of compound 2.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]) was used to analyse the inter­actions in the structures and fingerprint plots mapped over dnorm (Figs. 5[link]–7[link][link]) were generated. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.1256 (red) to 1.401 (blue). The areas in red on the dnorm-mapped Hirshfeld surfaces (Fig. 5[link]) correspond to contacts that are shorter than van der Waals radii sum of the closest atoms. As can be seen in Fig. 5[link], short contacts in 1 are present at the nitro­gen and Br1 atoms. In 2, the areas of short contacts are located at both the bromine atoms, the iodine atom and the hydrogen atoms of the methyl groups (Fig. 5[link]). All of the inter­molecular inter­actions of the title compounds are shown in the two-dimensional fingerprint plot presented in Figs. 6[link] and 7[link]. The contribution of the Br⋯H/H⋯Br contacts, corresponding to the C—H⋯Br inter­action, is represented by a pair of sharp spikes. The inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plot with a contribution to the overall Hirshfeld surface of 30.3% (Fig. 6[link]c) and 18.0% (Fig. 7[link]c). The fingerprint plots indicate that the principal contributions are from H⋯H (38.3% (Fig. 6[link]b) in 1; 41.8% (Fig. 7[link]b) in 2), C⋯H/H⋯C (13.3%; Fig. 6[link]d in structure 1) and I⋯H/H⋯I (17.1%; Fig. 7[link]d in structure 2) contacts. The fingerprint plots also indicate that all inter­molecular inter­actions in the title compounds are rather weak.

[Figure 5]
Figure 5
The Hirshfeld surface of compounds 1 and 2 mapped over dnorm.
[Figure 6]
Figure 6
(a) The two-dimensional fingerprint plot for compound 1, and those delineated into (b) H⋯H (38.3%), (c) Br⋯H/H⋯Br (30.3%), (d) C⋯H/H⋯C (13.3%), (e) Br⋯C/C⋯Br (7.4%) and (f) N⋯H/H⋯N (5.8%) contacts.
[Figure 7]
Figure 7
(a) The two-dimensional fingerprint plot for compound 2, and those delineated into (b) H⋯H (41.8%), (c) Br⋯H/H⋯Br (18.0%), (d) I⋯H/H⋯I (17.1%), (e) Br⋯C/C⋯Br (9.8%) (f) Br⋯I/I⋯Br (4.3%) and Br⋯Br (3.3%) contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,3,3-trimethyl-3H-indole skeleton yielded 306 hits. The most similar to the title compounds are 5,7-di­bromo-2,3,3-trimethyl-3H-indole (CSD refcode KOFRII; Holliman et al., 2009[Holliman, P. J., Tizzard, G. J., Hursthouse, M. B. & Lamond, S. J. (2009). University of Southampton, Crystal Structure Report Archive, 1229.]) and 1,2,3,3-tetra­methyl-3H-indolium iodide (NENZAJ01; Connell et al., 2014[Connell, A., Holliman, P. J., Davies, M. L., Gwenin, Ch. D., Weiss, S., Pitak, M. B., Horton, P. N., Coles, S. J. & Cooke, G. (2014). J. Mater. Chem. A, 2, 4055-4066.]). These compounds have a very similar molecular structure and differ only in the position of the substituents.

6. Synthesis and crystallization

Synthesis of 4,6-di­bromo-2,3,3-trimethyl-3H-indole (1)

3,5-Di­bromo­phen­yl)hydrazine hydro­chloride (5) (3.3 g, 11 mmol) and 3-methyl-2-butanone (1.8 mL, 16.8 mmol) were refluxed in 15 mL of acetic acid for 5 h. The acetic acid was evaporated and the residue was washed with a 5% aqueous solution Na2CO3 (20 mL) and then with water. Indole 1 was extracted using 3 × 25 mL of diethyl ether. The combined organic layers were dried over Na2SO4 and the ether was removed under reduced pressure by a rotary evaporator. After recrystallization from aceto­nitrile, light-brown crystals were obtained. Yield: 1.95 g (57%), 1H NMR (400 MHz, DMSO-d6), δ, ppm: 7.66 (1H, s, CH), 7.58 (1H, s, CH), 2.24 (3H, s, CH3), 1.36 [6H, s, (CH3)2]. Analysis, %: found C, 41.69; H, 3.49; N, 4.45, C11H11Br2N requires C, 41.67; H, 3.50; N, 4.42, ESI–MS m/z found: [M + H]+ 317.9; C11H12Br2N+ requires 317.9.

Synthesis of 4,6-di­bromo-1,2,3,3-tetra­methyl-3H-indol-1-ium iodide (2)

4,6-Di­bromo-2,3,3-trimethyl-3H-indole (1) (0.3 g, 0.95 mmol) was dissolved in benzene (5 mL), iodo­methane was added (0.5 mL, 8.03 mmol) and the mixture was left at room temperature for 24 h in a sealed tube. The beige crystals that formed were filtered off, washed with diethyl ether, dried, and were used without further purification. Yield: 300 mg (69%), 1H NMR (400 MHz, DMSO-d6), δ, ppm: 8.34 (1H, s, CH), 8.11 (1H, s, CH), 3.94 (3H, s, CH3), 2.81 (3H, s, CH3), 1.63 [6H, s, (CH3)2]. Analysis, %: found C, 31.34; H, 3.01; N, 3.08, C12H14Br2IN requires C, 31.40; H, 3.07; N, 3.05, ESI–MS m/z found: [M − I]+ 331.9; C12H14Br2N+ requires 332.0.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) or 1.2Ueq(C) for all other H atoms.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C11H11Br2N C12H14Br2N+·I
Mr 317.03 458.96
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/m
Temperature (K) 293 293
a, b, c (Å) 8.7761 (5), 11.3876 (7), 11.8654 (4) 8.3507 (6), 7.3719 (5), 11.7180 (8)
α, β, γ (°) 90, 90, 90 90, 92.755 (6), 90
V3) 1185.81 (11) 720.53 (9)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 6.80 7.74
Crystal size (mm) 0.4 × 0.3 × 0.3 0.4 × 0.2 × 0.1
 
Data collection
Diffractometer Xcalibur, Sapphire3 Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.682, 1.000 0.355, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8516, 2086, 1789 4499, 1374, 1242
Rint 0.081 0.083
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.07 0.046, 0.121, 1.05
No. of reflections 2086 1374
No. of parameters 130 97
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.55 0.86, −0.91
Absolute structure Flack x determined using 613 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018). Cell refinement: CrysAlis PRO (Rigaku OD, 2018) for (1). For both structures, data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4,6-Dibromo-2,3,3-trimethyl-3H-indole (1) top
Crystal data top
C11H11Br2NDx = 1.776 Mg m3
Mr = 317.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2796 reflections
a = 8.7761 (5) Åθ = 3.6–24.9°
b = 11.3876 (7) ŵ = 6.80 mm1
c = 11.8654 (4) ÅT = 293 K
V = 1185.81 (11) Å3Prism, red
Z = 40.4 × 0.3 × 0.3 mm
F(000) = 616
Data collection top
Xcalibur, Sapphire3
diffractometer
2086 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1313
Tmin = 0.682, Tmax = 1.000l = 1414
8516 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.295P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.44 e Å3
2086 reflectionsΔρmin = 0.55 e Å3
130 parametersAbsolute structure: Flack x determined using 613 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.05 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24163 (11)0.35819 (9)0.83683 (7)0.0630 (4)
Br20.73559 (14)0.21032 (9)0.56768 (8)0.0769 (4)
N10.5082 (8)0.6304 (7)0.5315 (6)0.0518 (18)
C10.4908 (9)0.5231 (8)0.5910 (6)0.0432 (19)
C20.3837 (10)0.5003 (7)0.6734 (6)0.047 (2)
H20.3127000.5567290.6947520.056*
C30.3861 (9)0.3912 (8)0.7227 (6)0.046 (2)
C40.4903 (9)0.3063 (8)0.6936 (7)0.052 (2)
H40.4898720.2336920.7294630.062*
C50.5979 (10)0.3311 (8)0.6085 (7)0.049 (2)
C60.5999 (9)0.4389 (8)0.5579 (6)0.046 (2)
C70.6962 (9)0.4972 (8)0.4670 (6)0.050 (2)
C80.6202 (9)0.6146 (8)0.4635 (7)0.051 (2)
C90.6811 (15)0.4323 (11)0.3518 (7)0.077 (3)
H9A0.7192840.3536840.3590710.116*
H9B0.7387950.4734340.2955150.116*
H9C0.5758310.4298480.3298320.116*
C100.8638 (11)0.5078 (11)0.5014 (10)0.079 (3)
H10A0.8704420.5421730.5750930.119*
H10B0.9164730.5566600.4481930.119*
H10C0.9094730.4312280.5023930.119*
C110.6680 (12)0.7123 (9)0.3846 (8)0.072 (3)
H11A0.5976670.7765450.3909640.107*
H11B0.6682190.6837670.3084750.107*
H11C0.7684330.7386290.4043380.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0625 (6)0.0687 (6)0.0578 (5)0.0033 (6)0.0196 (5)0.0087 (4)
Br20.0836 (7)0.0721 (7)0.0750 (6)0.0279 (7)0.0213 (6)0.0029 (5)
N10.054 (4)0.052 (4)0.050 (4)0.005 (4)0.004 (3)0.000 (4)
C10.042 (4)0.048 (5)0.040 (4)0.006 (4)0.002 (3)0.005 (4)
C20.045 (5)0.048 (5)0.047 (4)0.002 (4)0.003 (4)0.004 (4)
C30.039 (4)0.052 (5)0.045 (4)0.007 (4)0.004 (4)0.004 (4)
C40.055 (5)0.054 (6)0.046 (4)0.000 (5)0.000 (4)0.008 (4)
C50.043 (4)0.063 (6)0.041 (4)0.001 (4)0.003 (4)0.001 (4)
C60.043 (5)0.058 (5)0.038 (4)0.003 (4)0.005 (4)0.001 (4)
C70.044 (5)0.065 (6)0.040 (4)0.004 (4)0.009 (3)0.004 (4)
C80.045 (5)0.063 (6)0.047 (5)0.014 (4)0.000 (4)0.002 (4)
C90.095 (8)0.092 (8)0.046 (5)0.002 (7)0.020 (5)0.016 (5)
C100.042 (6)0.105 (10)0.090 (7)0.003 (6)0.008 (5)0.013 (7)
C110.080 (7)0.071 (7)0.063 (5)0.019 (6)0.023 (5)0.020 (5)
Geometric parameters (Å, º) top
Br1—C31.893 (8)C7—C81.494 (13)
Br2—C51.894 (9)C7—C91.560 (12)
N1—C11.419 (11)C7—C101.531 (13)
N1—C81.284 (10)C8—C111.514 (12)
C1—C21.381 (11)C9—H9A0.9600
C1—C61.411 (11)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C2—C31.374 (11)C10—H10A0.9600
C3—C41.375 (11)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C4—C51.412 (11)C11—H11A0.9600
C5—C61.367 (12)C11—H11B0.9600
C6—C71.522 (11)C11—H11C0.9600
C8—N1—C1105.9 (8)C8—C7—C10111.5 (8)
C2—C1—N1126.0 (8)C10—C7—C9110.6 (7)
C2—C1—C6122.1 (8)N1—C8—C7116.7 (8)
C6—C1—N1111.9 (7)N1—C8—C11119.8 (9)
C1—C2—H2121.3C7—C8—C11123.4 (8)
C3—C2—C1117.5 (8)C7—C9—H9A109.5
C3—C2—H2121.3C7—C9—H9B109.5
C2—C3—Br1118.3 (6)C7—C9—H9C109.5
C2—C3—C4122.6 (7)H9A—C9—H9B109.5
C4—C3—Br1119.1 (6)H9A—C9—H9C109.5
C3—C4—H4120.5H9B—C9—H9C109.5
C3—C4—C5119.0 (8)C7—C10—H10A109.5
C5—C4—H4120.5C7—C10—H10B109.5
C4—C5—Br2117.7 (7)C7—C10—H10C109.5
C6—C5—Br2122.2 (6)H10A—C10—H10B109.5
C6—C5—C4120.2 (8)H10A—C10—H10C109.5
C1—C6—C7106.1 (7)H10B—C10—H10C109.5
C5—C6—C1118.7 (7)C8—C11—H11A109.5
C5—C6—C7135.2 (8)C8—C11—H11B109.5
C6—C7—C9111.5 (8)C8—C11—H11C109.5
C6—C7—C10112.3 (8)H11A—C11—H11B109.5
C8—C7—C699.3 (7)H11A—C11—H11C109.5
C8—C7—C9111.2 (8)H11B—C11—H11C109.5
Br1—C3—C4—C5180.0 (6)C3—C4—C5—Br2178.1 (6)
Br2—C5—C6—C1178.3 (6)C3—C4—C5—C61.4 (13)
Br2—C5—C6—C71.3 (14)C4—C5—C6—C11.2 (12)
N1—C1—C2—C3179.1 (7)C4—C5—C6—C7179.2 (9)
N1—C1—C6—C5179.6 (7)C5—C6—C7—C8179.9 (9)
N1—C1—C6—C70.6 (9)C5—C6—C7—C962.6 (13)
C1—N1—C8—C70.7 (10)C5—C6—C7—C1062.2 (13)
C1—N1—C8—C11178.8 (8)C6—C1—C2—C30.3 (12)
C1—C2—C3—Br1179.5 (6)C6—C7—C8—N10.3 (9)
C1—C2—C3—C40.5 (12)C6—C7—C8—C11179.2 (8)
C1—C6—C7—C80.2 (8)C8—N1—C1—C2179.8 (8)
C1—C6—C7—C9117.1 (8)C8—N1—C1—C60.8 (9)
C1—C6—C7—C10118.1 (9)C9—C7—C8—N1117.9 (8)
C2—C1—C6—C50.7 (12)C9—C7—C8—C1161.7 (11)
C2—C1—C6—C7179.6 (7)C10—C7—C8—N1118.2 (9)
C2—C3—C4—C51.0 (13)C10—C7—C8—C1162.3 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—Br1···N1i1.893.195.283 (1)166
C3—Br1···C8i1.893.535.046 (1)153
C11—H11C···N1ii0.962.693.621 (1)164
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1.
4,6-Dibromo-2,3,3-trimethyl-3H-indol-1-ium iodide (2) top
Crystal data top
C12H14Br2N+·IF(000) = 432
Mr = 458.96Dx = 2.115 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 8.3507 (6) ÅCell parameters from 1781 reflections
b = 7.3719 (5) Åθ = 3.8–28.6°
c = 11.7180 (8) ŵ = 7.74 mm1
β = 92.755 (6)°T = 293 K
V = 720.53 (9) Å3Needle, red
Z = 20.4 × 0.2 × 0.1 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
1374 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 88
Tmin = 0.355, Tmax = 1.000l = 1213
4499 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1443P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1374 reflectionsΔρmax = 0.86 e Å3
97 parametersΔρmin = 0.91 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.70649 (6)0.7500000.12215 (4)0.0481 (3)
Br10.57546 (9)0.2500000.65282 (7)0.0477 (3)
Br21.19756 (8)0.2500000.49523 (7)0.0455 (3)
N10.7083 (7)0.2500000.2129 (5)0.0333 (13)
C10.7464 (7)0.2500000.3305 (5)0.0310 (15)
C20.6429 (8)0.2500000.4171 (6)0.0339 (15)
H20.5323930.2500000.4029390.041*
C30.7113 (9)0.2500000.5275 (6)0.0361 (16)
C40.8733 (8)0.2500000.5472 (6)0.0334 (15)
H40.9154910.2500000.6220860.040*
C50.9763 (8)0.2500000.4585 (6)0.0321 (14)
C60.9130 (8)0.2500000.3468 (6)0.0317 (15)
C70.9823 (9)0.2500000.2291 (6)0.0328 (15)
C80.8337 (9)0.2500000.1513 (6)0.0347 (16)
C91.0830 (6)0.4194 (8)0.2084 (5)0.0446 (12)
H9A1.0178800.5256890.2158970.067*
H9B1.1224630.4149220.1328760.067*
H9C1.1717530.4238370.2635440.067*
C100.8300 (11)0.2500000.0265 (7)0.0483 (19)
H10A0.9296290.2036130.0010730.073*0.5
H10B0.8144570.3716400.0011400.073*0.5
H10C0.7434630.1747470.0025040.073*0.5
C110.5431 (10)0.2500000.1659 (8)0.051 (2)
H11A0.5414640.2843500.0868560.077*0.5
H11B0.4809060.3349060.2073720.077*0.5
H11C0.4983490.1307440.1726590.077*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0529 (4)0.0457 (4)0.0464 (4)0.0000.0092 (3)0.000
Br10.0410 (5)0.0658 (6)0.0376 (5)0.0000.0156 (4)0.000
Br20.0282 (5)0.0547 (5)0.0532 (5)0.0000.0025 (4)0.000
N10.034 (3)0.038 (3)0.028 (3)0.0000.006 (2)0.000
C10.024 (4)0.042 (4)0.027 (3)0.0000.001 (3)0.000
C20.028 (3)0.041 (4)0.033 (4)0.0000.004 (3)0.000
C30.036 (4)0.041 (4)0.033 (4)0.0000.009 (3)0.000
C40.038 (4)0.038 (4)0.024 (3)0.0000.004 (3)0.000
C50.031 (4)0.034 (3)0.032 (3)0.0000.001 (3)0.000
C60.029 (4)0.033 (4)0.033 (4)0.0000.005 (3)0.000
C70.038 (4)0.031 (3)0.030 (4)0.0000.014 (3)0.000
C80.040 (4)0.035 (4)0.030 (4)0.0000.007 (3)0.000
C90.046 (3)0.047 (3)0.042 (3)0.002 (2)0.012 (2)0.007 (2)
C100.058 (5)0.052 (5)0.036 (4)0.0000.006 (4)0.000
C110.038 (5)0.070 (6)0.045 (5)0.0000.000 (4)0.000
Geometric parameters (Å, º) top
Br1—C31.899 (7)C7—C81.504 (10)
Br2—C51.877 (7)C7—C91.532 (7)
N1—C11.399 (8)C7—C9i1.532 (7)
N1—C81.301 (9)C8—C101.461 (10)
N1—C111.460 (10)C9—H9A0.9600
C1—C21.364 (10)C9—H9B0.9600
C1—C61.395 (9)C9—H9C0.9600
C2—H20.9300C10—H10A0.9600
C2—C31.389 (10)C10—H10B0.9600
C3—C41.361 (10)C10—H10C0.9600
C4—H40.9300C11—H11A0.9600
C4—C51.381 (10)C11—H11B0.9600
C5—C61.387 (10)C11—H11C0.9600
C6—C71.522 (9)
C1—N1—C11122.5 (6)C8—C7—C9110.3 (4)
C8—N1—C1113.3 (6)C8—C7—C9i110.3 (4)
C8—N1—C11124.2 (7)C9—C7—C9i109.3 (6)
C2—C1—N1127.6 (6)N1—C8—C7109.0 (6)
C2—C1—C6124.1 (6)N1—C8—C10125.2 (7)
C6—C1—N1108.3 (6)C10—C8—C7125.7 (6)
C1—C2—H2121.7C7—C9—H9A109.5
C1—C2—C3116.5 (6)C7—C9—H9B109.5
C3—C2—H2121.7C7—C9—H9C109.5
C2—C3—Br1119.1 (5)H9A—C9—H9B109.5
C4—C3—Br1119.6 (5)H9A—C9—H9C109.5
C4—C3—C2121.3 (6)H9B—C9—H9C109.5
C3—C4—H4119.3C8—C10—H10A109.5
C3—C4—C5121.5 (6)C8—C10—H10B109.5
C5—C4—H4119.3C8—C10—H10C109.5
C4—C5—Br2118.0 (5)H10A—C10—H10B109.5
C4—C5—C6119.1 (6)H10A—C10—H10C109.5
C6—C5—Br2122.9 (5)H10B—C10—H10C109.5
C1—C6—C7107.2 (6)N1—C11—H11A109.5
C5—C6—C1117.5 (6)N1—C11—H11B109.5
C5—C6—C7135.3 (6)N1—C11—H11C109.5
C6—C7—C9i112.3 (4)H11A—C11—H11B109.5
C6—C7—C9112.3 (4)H11A—C11—H11C109.5
C8—C7—C6102.2 (5)H11B—C11—H11C109.5
Br1—C3—C4—C5180.000 (2)C4—C5—C6—C10.000 (1)
Br2—C5—C6—C1180.000 (1)C4—C5—C6—C7180.000 (1)
Br2—C5—C6—C70.000 (2)C5—C6—C7—C8180.000 (1)
N1—C1—C2—C3180.000 (1)C5—C6—C7—C961.8 (4)
N1—C1—C6—C5180.000 (1)C5—C6—C7—C9i61.8 (4)
N1—C1—C6—C70.000 (1)C6—C1—C2—C30.000 (1)
C1—N1—C8—C70.000 (1)C6—C7—C8—N10.000 (1)
C1—N1—C8—C10180.000 (1)C6—C7—C8—C10180.000 (1)
C1—C2—C3—Br1180.000 (1)C8—N1—C1—C2180.000 (1)
C1—C2—C3—C40.000 (2)C8—N1—C1—C60.000 (1)
C1—C6—C7—C80.000 (1)C9i—C7—C8—N1119.6 (4)
C1—C6—C7—C9i118.2 (4)C9—C7—C8—N1119.6 (4)
C1—C6—C7—C9118.2 (4)C9i—C7—C8—C1060.4 (4)
C2—C1—C6—C50.000 (1)C9—C7—C8—C1060.4 (4)
C2—C1—C6—C7180.000 (1)C11—N1—C1—C20.000 (1)
C2—C3—C4—C50.000 (2)C11—N1—C1—C6180.000 (1)
C3—C4—C5—Br2180.000 (1)C11—N1—C8—C7180.000 (1)
C3—C4—C5—C60.000 (2)C11—N1—C8—C100.000 (1)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br2ii0.933.053.872 (1)149
C5—Br2···Br1iii1.88 (1)3.585.397 (1)162
C3—Br1···I1iv1.90 (1)3.625.514 (1)176
C11—H11A···I1v0.963.143.881 (1)135
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).

References

First citationAtchison, J., Kamila, S., Nesbitt, H., Logan, K. A., Nicholas, D. M., Fowley, C., Davis, J., Callan, B., McHale, A. P. & Callan, J. F. (2017). Chem. Commun. 53, 2009–2012.  Web of Science CrossRef CAS Google Scholar
First citationBelletête, M., Brisse, F., Durocher, G., Gravel, D., Héroux, A. & Popowycz, A. (1993). J. Mol. Struct. 297, 63–80.  Google Scholar
First citationBeverina, L. & Salice, P. (2010). Eur. J. Org. Chem. pp. 1207–1225.  Web of Science CrossRef Google Scholar
First citationBurgi, H.-B. & Dunitz, J. D. (1994). Structure correlation, vol. 2, pp. 741–784. Weinheim: VCH.  Google Scholar
First citationConnell, A., Holliman, P. J., Davies, M. L., Gwenin, Ch. D., Weiss, S., Pitak, M. B., Horton, P. N., Coles, S. J. & Cooke, G. (2014). J. Mater. Chem. A, 2, 4055–4066.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, L., Chen, W., Ma, X., Liu, S. H. & Yin, J. (2020). Org. Biomol. Chem. 18, 9385–9397.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrero, Y., Singh, S. P., Mai, T., Murali, R. K., Tanikella, L., Zahedi, A., Kundra, V. & Anvari, B. (2017). Appl. Mater. Interfaces, 9, 19601–19611.  Web of Science CrossRef CAS Google Scholar
First citationHolliman, P. J., Tizzard, G. J., Hursthouse, M. B. & Lamond, S. J. (2009). University of Southampton, Crystal Structure Report Archive, 1229.  Google Scholar
First citationLiu, H., Yin, J., Xing, E., Du, Y., Su, Y., Feng, Y. & Meng, S. (2021). Dyes Pigments, 190, 109327.  Web of Science CrossRef Google Scholar
First citationLynch, D. E., Kirkham, A. N., Chowdhury, M. Z. H., Wane, E. S. & Heptinstall, J. (2012). Dyes Pigments, 94, 393–402.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeiler, V. K., Callebaut, K., Robeyns, K., Tumanov, N., Wouters, J., Champagne, B. & Leyssens, T. (2018). CrystEngComm, 20, 3318–3327.  Web of Science CSD CrossRef CAS Google Scholar
First citationSemenova, O., Kobzev, D., Yazbak, F., Nakonechny, F., Kolosova, O., Tatarets, A., Gellerman, G. & Patsenker, L. (2021). Dyes Pigments, 195, 109745–109746.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, W., Guo, Sh., Hu, Ch., Fan, J. & Peng, X. (2016). Chem. Rev. 116, 7768–7817.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSzaciłowski, K., Macyk, W., Drzewiecka-Matuszek, A., Brindell, M. & Stochel, G. (2005). Chem. Rev. 105, 2647–2694.  Web of Science PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds