research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-{[(E)-(3-cyclo­butyl-1H-1,2,4-triazol-5-yl)imino]­meth­yl}phenol

crossmark logo

aArtvin Coruh University, Science-Technology Research and Application Center, 08000, Artvin, Turkey, bYozgat Bozok University, Sorgun Vocational School, 66100, Yozgat, Turkey, cSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, eDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, and fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey
*Correspondence e-mail: fatih.sen@yobu.edu.tr, eiad.saif@scc.edu.ye

Edited by A. S. Batsanov, University of Durham, England (Received 22 September 2021; accepted 3 November 2021; online 9 November 2021)

The title compound, C13H14N4O, was developed using the reaction of salicyl­aldehyde and 3-amino-5-cyclo­butyl-1,2,4-triazole in ethanol under microwave irradiation. This eco-friendly microwave-promoted method proved to be efficient in the synthesis of 2-{[(E)-(3-cyclo­butyl-1H-1,2,4-triazol-5-yl)imino]­meth­yl}phenol in good yields and purity. The title compound is a Schiff base that exists in the phenol–imine tautomeric form and adopts an E configuration. The three independent mol­ecules in the asymmetric unit (A, B and C) are not planar, the cyclo­butyl and the phenol-imine rings are twisted to each other making a dihedral angle of 67.8 (4)° in mol­ecule A, 69.1 (2)° in mol­ecule B and 89.1 (2)° in mol­ecule C. In each mol­ecule an intra­molecular O—H⋯N hydrogen bond is present, forming an S(6) ring motif. A Hirshfeld surface analysis was performed to investigate the contributions of the different inter­molecular contacts within the supra­molecular structure. The major inter­actions are H⋯H (53%), C⋯H (19%) and N⋯H (17%) for mol­ecule A, H⋯H (50%), N⋯H (20%) and C⋯H (20%) for mol­ecule B and H⋯H (57%), C⋯H (14%) and N⋯H (13%) for mol­ecule C.

1. Chemical context

Imines (Schiff bases) have been extensively used as analytical and medicinal materials (Bülbül et al., 2017[Bülbül, H., Köysal, Y., Macit, M., Yaman, R. & Dege, N. (2017). Z. Kristallogr. New Cryst. Struct. 232, 135-136.]; Singh, 2021[Singh, G. S. (2021). In Green Synthetic Approaches for Biologically Relevant Heterocycles, pp. 655-687. Amsterdam: Elsevier.]). 1,2,4-Triazoles possess a number of medicinal attributes (Aggarwal & Sumran, 2020[Aggarwal, R. & Sumran, G. (2020). Eur. J. Med. Chem. 205, 112652.]). Taking into account the above considerations, it was decided to merge the chemistry of both parts by reacting 3-amino-5-cyclo­butyl-1,2,4-triazole with salicyl­aldehyde to develop an efficient green protocol for the synthesis of 2-[(E)-(5-cyclo­butyl-2H-1,2,4-triazol-3-yl­imino)­meth­yl]phenol. In this work, an eco-friendly protocol for the synthesis of Schiff bases from 3-amino-5-cyclo­butyl-1,2,4-triazole and salicyl­aldehyde in ethanol under microwave irradiation was developed. In addition, 2-[(E)-(5-cyclo­butyl-2H-1,2,4-triazol-3-yl­imino)­meth­yl]phenol was characterized by single crystal X-ray diffraction and investigated using Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], with the atomic numbering scheme is shown in Fig. 1[link]. The asymmetric unit contains three non-planar mol­ecules. The 1,2,4-triazole and phenol-imine rings are twisted with respect to each other, making a dihedral angle of 18.1 (3)° for mol­ecule A. The cyclo­butyl ring is twisted by 73.9 (3) and 67.8 (4)°, with respect to the 1,2,4-triazole, and phenol-imine rings in mol­ecule A. The corresponding angles in mol­ecule B are 18.7 (3), 74.6 (2) and 69.1 (2)° and 3.2 (4), 85.9 (2) and 89.1 (2)° for mol­ecule C. When these angles for the three mol­ecules are compared, it is observed that there is a harmony between them, as well as significant differences, especially in the angles between the phenol-imine and 1,2,4-triazole rings [3.2 (4)° in mol­ecule C but around 18° in A and B] and the phenol-imine cyclo­butyl rings [67.8 (4)° in A, 69.1 (2)° in B and 89.1 (2)° in C]. In the mol­ecules, the C=N group has a strong electron-withdrawing character, as revealed by the double-bond character of the C=N bond [1.276 (6)–1.287 (6) Å] and the single-bond character of C—O [1.349 (5)–1.355 (6) Å] in the phenol–imine tautomer. Furthermore, the azomethine C=N double bond has an E configuration. These values and other bond lengths and angles (Table 1[link]) are in good agreement with those previously reported for C=N and O—C bonds (Bülbül et al., 2019[Bülbül, H., Köysal, Y., Doğan, O. E., Dege, N. & Ağar, E. (2019). Crystallogr. Rep. 64, 403-406.]; Demircioğlu et al., 2019[Demircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129-137.]). The average triazole N—N bond length is 1.353 Å. This length is quite close to the corresponding values reported by Al-Karawi and co-workers [1.343 (4) and 1.353 (6) Å; Al-Karawi et al., 2021a[Al-Karawi, A. J. M., OmarAli, A. B., Mangelsen, S., Dege, N., Kansız, S., Breuninger, P., Baydere, C. & OmarAli, O. B. (2021a). Polyhedron, 198, 115084.],b[Al-Karawi, A. J. M., OmarAli, A. B., Dege, N. & Kansız, S. (2021b). Chem. Pap. 75, 3901-3914.]]. In each mol­ecule, the hydroxyl H atom is involved in a strong intra­molecular O—H⋯N hydrogen bond (O1—H1⋯N1, O2—H2⋯N5 and O3—H3⋯N9; Table 2[link]) forming an S(6) ring motif.

Table 1
Selected bond lengths (Å)

N11—N10 1.361 (5) O1—C1 1.355 (6)
N6—N7 1.349 (5) N3—N2 1.349 (6)
N5—C20 1.287 (5) N1—C7 1.276 (6)
N9—C33 1.287 (6) O3—C27 1.351 (6)
O2—C14 1.349 (5)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7D⋯N2 0.86 1.98 2.836 (5) 174
N11—H11⋯N6 0.86 1.99 2.817 (5) 161
O1—H1⋯N1 0.82 1.89 2.615 (5) 146
O2—H2⋯N5 0.82 1.90 2.619 (4) 146
O3—H3⋯N9 0.82 1.87 2.588 (5) 146
C10—H10⋯O3i 0.98 2.52 3.411 (6) 151
N3—H3D⋯N10ii 0.86 2.07 2.874 (5) 155
Symmetry codes: (i) [x-2, y, z]; (ii) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, inter­molecular hydrogen bonds N3—H3D⋯N10ii, N7—H7D⋯N2, N11—H11⋯N6 and C10—H10⋯O3i (symmetry codes as in Table 2[link]) link the mol­ecules into [100] chains. A view of the crystal packing of the structure is shown in Fig. 2[link].

[Figure 2]
Figure 2
A partial view of the crystal packing of (I)[link] along the a axis.

4. Database survey

There are no direct precedents for the structure of (I)[link] in the crystallographic literature (CSD Version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, several related com­pounds have been reported that include (E)-N-benzyl­idene-1H-1,2,4-triazol-5-amine as the main skeleton, viz. 5-meth­yl-2-[(1H-1,2,4-triazol-3-yl­imino)­meth­yl]phenol (PEVXAS; Brink et al., 2018[Brink, A., Kroon, R. E., Visser, H. G., van Rensburg, C. E. J. & Roodt, A. (2018). New J. Chem. 42, 5193-5203.]), 1-(4-bromo­phen­yl)-N-(1H-1,2,4-triazol-3-yl)meth­animine (TIVDUA; Kołodziej et al., 2019[Kołodziej, B., Morawiak, M., Schilf, W. & Kamieński, B. (2019). J. Mol. Struct. 1184, 207-218.]), 5-bromo-2-{[(1H-1,2,4-triazol-3-yl)imino]­meth­yl}phenol (TIVFAI; Kolodziej et al., 2019[Kołodziej, B., Morawiak, M., Schilf, W. & Kamieński, B. (2019). J. Mol. Struct. 1184, 207-218.]), 4-bromo-2-[(1H-1,2,4-triazol-3-yl­imino)­meth­yl]phenol (UZOKIE; Chohan & Hanif, 2011[Chohan, Z. H. & Hanif, M. (2011). Appl. Organomet. Chem. 25, 753-760.]) and 3,5-bis­(salicyl­idene­amino)-1H-1,2,4-triazole methanol solvate (WEFTUX; Cheng et al., 2006[Cheng, R.-M., Li, Y.-Z., Ou, S.-J. & Chen, X.-T. (2006). Acta Cryst. E62, o1424-o1425.]). In addition, 1-[(1H-1,2,4-triazol-3-yl­imino)­meth­yl]-2-naphthol (GILYUX; Jia et al., 2013[Jia, T.-J., Cao, W., Zheng, X.-J. & Jin, L.-P. (2013). Tetrahedron Lett. 54, 3471-3474.]), which contains a naphthalene fragment instead of benzene, has been reported. In UZOKIE, the hydroxyl-C2 group makes a dihedral angle of 4.48 (3)° with the plane of the 1,2,4-triazole ring system. In addition, there are intra­molecular O—H⋯N contacts in the mol­ecule. Similarly, in WEFTUX, the hydroxyl H atom is involved in an intra­molecular O—H⋯N hydrogen bond, forming an S(6) ring motif as in the title compound. The two benzene rings (1 and 3) and the triazole ring (2) in WEFTUX, are almost in the same plane, the angles between rings 1 and 2, and between rings 2 and 3 being 3.7 (2) and 3.3 (2)°, respectively. This latter angle is 4.58 (8)° in PEVXAS. In the structures mentioned above, the twist angles between triazole and phenyl rings are quite small, as in mol­ecule C of (I)[link] [3.2 (4)°]; however, for mol­ecules A and B of the title compound, these angles are over 18°. All compounds were isolated as the phenol-imine (O—H⋯N) tautomeric form, as in (I)[link]. The bond lengths of the triazole ring in the studied compound are very similar to those in the other 1H-1,2,4-triazole derivatives mentioned above.

5. Hirshfeld surface analysis

We performed a Hirshfeld surface analysis and generated the associated two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surface (HS) analysis is a valuable tool for assessing the strength of inter­molecular inter­actions and for predicting the properties of a crystal and its potential applications (Demir Kanmazalp et al., 2019[Demir Kanmazalp, S., Doĝan, O. E., Dege, N., Aĝar, E., Bulbul, H. & Golenya, I. A. (2019). Acta Cryst. E75, 470-474.]; Al-Resayes et al., 2020[Al-Resayes, S. I., Azam, M., Trzesowska-Kruszynska, A., Kruszynski, R., Soliman, S. M., Mohapatra, R. K. & Khan, Z. (2020). Am. Chem. Soc. Omega, 5, 27227-27234.]). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surface mapped over fixed colour scales of −0.6059 (red) to 1.5176 Å (blue) (mol­ecule A), −0.6084 (red) to 1.2881 Å (blue) (mol­ecule B) and −0.6060 (red) to 1.5351 Å (blue) (mol­ecule C), respectively. In Fig. 3[link], the red circle on the dnorm surface of mol­ecules A, B and C represents the N—H⋯N inter­actions. The major inter­actions of the compound (Fig. 4[link]) are H⋯H (53%), C⋯H (19%) and N⋯H (17%) for mol­ecule A, H⋯H (50%), N⋯H (20%) and C⋯H (20%) for mol­ecule B and H⋯H (57%), C⋯H (14%) and N⋯H (13%) for mol­ecule C. It was found that the structure is stabilized by hydrogen bonds (N—H⋯N, O—H⋯N and C—H⋯O).

[Figure 3]
Figure 3
The Hirshfeld surfaces of mol­ecules A, B and C mapped with dnorm showing the N—H⋯N hydrogen-bonded contacts.
[Figure 4]
Figure 4
The synthesis of 2-{[(E)-(3-cyclo­butyl-1H-1,2,4-triazol-5-yl)imino]­meth­yl}phenol, (I)[link].

6. Synthesis and crystallization

Salicyl­aldehyde (1.0 mmol), 3-amino-5-cyclo­butyl-1,2,4-triazole (1.0 mmol) and absolute EtOH (2.0 ml) were mixed in a microwave process vial (10 ml), then a 4 N solution of HCl in dioxane (one drop) was added. The mixtures were irradiated at 393 K for 30 min. The precipitated solid was filtered, washed with cold ethanol and dried at 353 K. The title compound was obtained in the form of a pale-yellow solid in 92% yield. It was recrystallized from ethanol (m.p. 448–449 K). The reaction scheme is shown in Fig. 4[link]. The microwave experiment was carried out using a monomode Anton Paar Monowave 300 microwave reactor (2.45 GHz) in a G10 sealed microwave process vial (10 ml). The reaction temperatures were monitored by an IR sensor. After completion of the reaction, the vial was cooled to 323 K by air jet cooling.

IR (Shimadzu Prestige–21 Fourier spectrometer, ATR, cm−1): 759, 991, 1030, 1076, 1276, 1562, 1612, 2986, 3040.

1H NMR (Nanalysis Benchtop NMR spectrometer, 60 MHz, DMSO-d6, ppm): 13.73 (s, 1H, NH), 12.60 (s, 1H, OH), 9.34 (s, 1H, CH=N), 7.90–6.80 (m, 4H, aromatic H), 3.70–3.30 (m, 1H, cyc-butyl, CH), 2.55–1.75 (m, 6H, cyc-butyl, CH2).

Elemental analysis (Vario MACRO cube CHNS elemental analyzer): Found, %: C 64.31; H 5.64; N 23.79. C13H14N4O. Calculated, %: C, 64.45; H, 5.82; N, 23.13.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The O-bound H atom was located in a difference-Fourier map and refined with O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(O). The N-bound H atom was located in a difference-Fourier map. Its parameters were adjusted to give N—H = 0.86 Å and it was then refined as riding with Uiso(H) =1.2Ueq(N). The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and other H atoms, and with C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl­ene H atoms. The crystal studied was refined as a two-component inversion twin.

Table 3
Experimental details

Crystal data
Chemical formula C13H14N4O
Mr 242.28
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 5.2717 (3), 24.9066 (14), 14.8628 (7)
β (°) 96.214 (4)
V3) 1940.02 (18)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.76 × 0.52 × 0.30
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.938, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 15228, 8333, 5374
Rint 0.096
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.153, 0.94
No. of reflections 8333
No. of parameters 493
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.19
Absolute structure Refined as an inversion twin
Absolute structure parameter −1 (2)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

2-{[(E)-(3-Cyclobutyl-1H-1,2,4-triazol-5-yl)imino]methyl}phenol top
Crystal data top
C13H14N4OF(000) = 768
Mr = 242.28Dx = 1.244 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.2717 (3) ÅCell parameters from 17085 reflections
b = 24.9066 (14) Åθ = 1.4–27.4°
c = 14.8628 (7) ŵ = 0.08 mm1
β = 96.214 (4)°T = 296 K
V = 1940.02 (18) Å3Stick, yellow
Z = 60.76 × 0.52 × 0.30 mm
Data collection top
Stoe IPDS 2
diffractometer
8333 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5374 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.096
rotation method scansθmax = 26.9°, θmin = 1.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 66
Tmin = 0.938, Tmax = 0.980k = 3131
15228 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.084P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.153(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.16 e Å3
8333 reflectionsΔρmin = 0.19 e Å3
493 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 1 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.7970 (7)0.44524 (14)0.4433 (2)0.0699 (9)
H110.8974060.4725280.4449190.084*
N61.0215 (7)0.54788 (13)0.4431 (2)0.0652 (9)
N50.8325 (6)0.56917 (14)0.5739 (2)0.0616 (8)
N90.3235 (7)0.36402 (14)0.3466 (2)0.0699 (9)
N120.6141 (7)0.37213 (14)0.4855 (2)0.0698 (9)
O20.4440 (6)0.51862 (14)0.6305 (2)0.0792 (8)
H20.5489540.5258210.5954460.119*
N100.6221 (8)0.43214 (14)0.3725 (2)0.0709 (9)
N71.1902 (7)0.57344 (14)0.3961 (2)0.0667 (9)
H7D1.2472160.5609680.3481780.088 (16)*
O10.7626 (7)0.65935 (15)0.2019 (2)0.0900 (10)
H10.8718810.6357990.2045080.135*
N81.1368 (7)0.62721 (14)0.5071 (2)0.0645 (8)
N31.5053 (9)0.49514 (16)0.2114 (2)0.0809 (11)
H3D1.5633590.4703870.2483390.077 (14)*
N11.1418 (7)0.60443 (14)0.1485 (2)0.0673 (9)
C210.9973 (8)0.58229 (16)0.5094 (3)0.0597 (9)
N41.4393 (8)0.54232 (16)0.0881 (2)0.0779 (10)
N21.3418 (8)0.53404 (15)0.2310 (2)0.0756 (10)
C200.8486 (8)0.59720 (17)0.6470 (3)0.0615 (9)
H200.9671470.6249100.6549040.074*
C350.7894 (9)0.40930 (16)0.5098 (3)0.0654 (10)
C340.5166 (9)0.38873 (16)0.4011 (3)0.0630 (10)
O30.0219 (9)0.35762 (17)0.1976 (3)0.1155 (15)
H30.1245530.3718660.2356350.173*
C81.3077 (9)0.56122 (17)0.1547 (3)0.0673 (10)
C71.1444 (9)0.63770 (19)0.0833 (3)0.0709 (11)
H71.2577470.6318690.0405170.085*
C320.0082 (8)0.29555 (16)0.3204 (3)0.0637 (10)
C221.2564 (8)0.62051 (16)0.4337 (3)0.0633 (10)
C330.2150 (9)0.32178 (18)0.3745 (3)0.0674 (11)
H330.2718730.3078260.4310970.081*
C190.6849 (8)0.58627 (17)0.7172 (3)0.0607 (9)
C310.1081 (9)0.2502 (2)0.3523 (3)0.0764 (12)
H310.0486010.2367370.4090580.092*
C231.4205 (9)0.66013 (18)0.3935 (3)0.0721 (12)
H231.5333940.6421120.3547810.087*
C10.7985 (8)0.69374 (19)0.1338 (3)0.0713 (11)
C60.9800 (8)0.68365 (18)0.0732 (3)0.0646 (10)
C91.5652 (11)0.5004 (2)0.1259 (3)0.0799 (13)
C150.3418 (9)0.5393 (2)0.7774 (3)0.0825 (13)
H150.2113090.5139910.7709180.099*
C140.4932 (7)0.54795 (18)0.7067 (3)0.0634 (10)
C160.3863 (11)0.5680 (3)0.8555 (3)0.0887 (15)
H160.2853840.5616980.9019740.106*
C300.3059 (10)0.2248 (2)0.3032 (4)0.0835 (13)
H300.3779530.1941380.3256820.100*
C241.2859 (11)0.7076 (2)0.3438 (4)0.0945 (16)
H24A1.2754980.7049150.2783890.113*
H24B1.1206860.7158510.3633680.113*
C51.0037 (10)0.7208 (2)0.0045 (3)0.0838 (13)
H51.1235040.7149290.0360280.101*
C270.0858 (9)0.3150 (2)0.2347 (3)0.0773 (13)
C360.9562 (9)0.41109 (19)0.5962 (3)0.0741 (11)
H361.0791230.4405530.5953410.089*
C180.7251 (9)0.6154 (2)0.7978 (3)0.0758 (12)
H180.8523860.6413780.8050550.091*
C20.6502 (10)0.7394 (2)0.1235 (4)0.0910 (15)
H2A0.5293950.7457900.1633980.109*
C40.8513 (11)0.7665 (2)0.0046 (4)0.0957 (16)
H40.8670800.7907810.0511200.115*
C261.5682 (9)0.7009 (2)0.4542 (4)0.0835 (14)
H26A1.7496340.6934560.4645290.100*
H26B1.4976450.7068840.5109860.100*
C30.6767 (12)0.7752 (3)0.0564 (4)0.0997 (17)
H3A0.5759380.8059050.0515360.120*
C101.7219 (14)0.4618 (2)0.0811 (4)0.106 (2)
H101.8415070.4432080.1257010.127*
C280.2882 (11)0.2889 (3)0.1857 (4)0.0950 (16)
H280.3501840.3015040.1286710.114*
C170.5736 (11)0.6054 (3)0.8673 (3)0.0888 (15)
H170.6009360.6243420.9214590.107*
C290.3970 (10)0.2450 (2)0.2204 (4)0.0878 (14)
H290.5352930.2285080.1872380.105*
C391.0923 (12)0.3597 (3)0.6292 (4)0.0994 (17)
H39A1.2715790.3588440.6198360.119*
H39B1.0062710.3271580.6066440.119*
C251.5013 (11)0.7440 (2)0.3854 (4)0.0948 (16)
H25A1.4429210.7771090.4105370.114*
H25B1.6328280.7507740.3459290.114*
C370.8362 (12)0.4113 (3)0.6856 (3)0.1036 (18)
H37A0.6670320.3955030.6813790.124*
H37B0.8390050.4460670.7150000.124*
C381.0446 (15)0.3741 (3)0.7240 (4)0.121 (2)
H38A1.1868020.3922240.7581460.145*
H38B0.9848280.3443060.7580750.145*
C111.5830 (19)0.4224 (4)0.0169 (8)0.167 (4)
H11A1.4145230.4343870.0077210.200*
H11B1.5765860.3863550.0411580.200*
C121.776 (2)0.4295 (5)0.0446 (6)0.177 (4)
H12A1.9072060.4019940.0388350.212*
H12B1.7064730.4338750.1073140.212*
C131.8566 (14)0.4810 (4)0.0013 (5)0.125 (2)
H13A2.0398260.4848860.0147260.150*
H13B1.7810360.5126790.0285810.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.097 (2)0.0553 (18)0.0566 (19)0.0203 (18)0.0055 (17)0.0031 (15)
N60.092 (2)0.0555 (18)0.0513 (17)0.0169 (17)0.0211 (16)0.0036 (15)
N50.0716 (18)0.0616 (18)0.0541 (17)0.0049 (16)0.0186 (14)0.0007 (15)
N90.096 (3)0.059 (2)0.0516 (17)0.0067 (19)0.0049 (17)0.0045 (15)
N120.093 (2)0.060 (2)0.0533 (18)0.0144 (18)0.0069 (16)0.0124 (15)
O20.088 (2)0.086 (2)0.0657 (18)0.0154 (17)0.0176 (14)0.0036 (16)
N100.105 (3)0.0541 (19)0.0528 (18)0.0139 (18)0.0040 (18)0.0043 (15)
N70.097 (2)0.0576 (19)0.0495 (17)0.0128 (18)0.0262 (17)0.0061 (15)
O10.097 (2)0.092 (2)0.086 (2)0.0105 (19)0.0338 (18)0.0083 (19)
N80.078 (2)0.0558 (19)0.0634 (19)0.0051 (17)0.0253 (16)0.0067 (15)
N30.133 (3)0.063 (2)0.0467 (18)0.016 (2)0.0101 (19)0.0084 (16)
N10.089 (2)0.063 (2)0.0517 (18)0.0084 (18)0.0155 (16)0.0017 (15)
C210.073 (2)0.055 (2)0.053 (2)0.0082 (19)0.0154 (17)0.0015 (17)
N40.120 (3)0.073 (2)0.0427 (16)0.028 (2)0.0158 (17)0.0011 (16)
N20.121 (3)0.061 (2)0.0473 (18)0.007 (2)0.0200 (18)0.0027 (15)
C200.071 (2)0.058 (2)0.058 (2)0.0010 (19)0.0162 (18)0.0006 (17)
C350.085 (3)0.053 (2)0.057 (2)0.010 (2)0.0011 (19)0.0053 (18)
C340.088 (3)0.052 (2)0.047 (2)0.008 (2)0.0001 (18)0.0050 (16)
O30.158 (4)0.100 (3)0.077 (2)0.045 (3)0.040 (2)0.035 (2)
C80.098 (3)0.062 (2)0.045 (2)0.007 (2)0.0171 (19)0.0001 (17)
C70.087 (3)0.076 (3)0.051 (2)0.008 (2)0.0143 (19)0.004 (2)
C320.078 (2)0.058 (2)0.053 (2)0.000 (2)0.0030 (18)0.0000 (18)
C220.078 (2)0.055 (2)0.060 (2)0.008 (2)0.0214 (19)0.0068 (18)
C330.089 (3)0.060 (2)0.050 (2)0.002 (2)0.0051 (19)0.0058 (18)
C190.066 (2)0.066 (2)0.052 (2)0.0133 (19)0.0129 (17)0.0042 (17)
C310.089 (3)0.071 (3)0.065 (3)0.010 (2)0.008 (2)0.009 (2)
C230.083 (3)0.065 (2)0.075 (3)0.015 (2)0.035 (2)0.010 (2)
C10.069 (2)0.074 (3)0.070 (3)0.000 (2)0.000 (2)0.006 (2)
C60.072 (2)0.064 (2)0.056 (2)0.004 (2)0.0003 (18)0.0023 (18)
C90.121 (4)0.075 (3)0.044 (2)0.019 (3)0.008 (2)0.003 (2)
C150.078 (3)0.098 (3)0.074 (3)0.004 (3)0.025 (2)0.018 (3)
C140.065 (2)0.074 (2)0.052 (2)0.007 (2)0.0095 (17)0.0100 (18)
C160.097 (3)0.113 (4)0.060 (3)0.019 (3)0.028 (2)0.013 (3)
C300.088 (3)0.075 (3)0.085 (3)0.011 (3)0.004 (2)0.004 (2)
C240.097 (3)0.100 (4)0.084 (3)0.030 (3)0.002 (3)0.025 (3)
C50.096 (3)0.089 (3)0.065 (3)0.011 (3)0.001 (2)0.014 (2)
C270.098 (3)0.071 (3)0.059 (3)0.008 (2)0.011 (2)0.008 (2)
C360.084 (3)0.068 (3)0.068 (3)0.017 (2)0.005 (2)0.003 (2)
C180.084 (3)0.086 (3)0.059 (2)0.007 (2)0.017 (2)0.007 (2)
C20.083 (3)0.099 (4)0.091 (4)0.020 (3)0.006 (3)0.001 (3)
C40.114 (4)0.086 (3)0.084 (4)0.013 (3)0.008 (3)0.023 (3)
C260.075 (3)0.084 (3)0.093 (3)0.019 (2)0.013 (2)0.003 (3)
C30.102 (4)0.093 (4)0.100 (4)0.035 (3)0.008 (3)0.000 (3)
C100.161 (5)0.091 (4)0.064 (3)0.059 (4)0.001 (3)0.002 (3)
C280.114 (4)0.099 (4)0.064 (3)0.013 (3)0.027 (3)0.006 (3)
C170.097 (3)0.117 (4)0.055 (2)0.015 (3)0.019 (2)0.004 (3)
C290.089 (3)0.088 (3)0.082 (3)0.016 (3)0.011 (3)0.009 (3)
C390.099 (4)0.100 (4)0.093 (4)0.017 (3)0.016 (3)0.006 (3)
C250.103 (4)0.073 (3)0.110 (4)0.020 (3)0.021 (3)0.009 (3)
C370.113 (4)0.136 (5)0.058 (3)0.020 (4)0.006 (3)0.006 (3)
C380.142 (5)0.139 (6)0.077 (4)0.015 (5)0.010 (3)0.022 (4)
C110.174 (7)0.119 (6)0.216 (10)0.016 (6)0.064 (7)0.104 (7)
C120.224 (10)0.199 (10)0.109 (6)0.031 (9)0.022 (6)0.063 (7)
C130.120 (5)0.137 (6)0.126 (6)0.026 (4)0.043 (4)0.021 (5)
Geometric parameters (Å, º) top
N11—C351.338 (5)C15—C161.361 (8)
N11—N101.361 (5)C15—C141.403 (6)
N11—H110.8600C15—H150.9300
N6—C211.322 (5)C16—C171.356 (8)
N6—N71.349 (5)C16—H160.9300
N5—C201.287 (5)C30—C291.369 (7)
N5—C211.400 (5)C30—H300.9300
N9—C331.287 (6)C24—C251.530 (8)
N9—C341.376 (5)C24—H24A0.9700
N12—C351.330 (5)C24—H24B0.9700
N12—C341.368 (5)C5—C41.391 (8)
O2—C141.349 (5)C5—H50.9300
O2—H20.8200C27—C281.386 (7)
N10—C341.308 (5)C36—C391.523 (7)
N7—C221.330 (5)C36—C371.533 (8)
N7—H7D0.8600C36—H360.9800
O1—C11.355 (6)C18—C171.395 (7)
O1—H10.8200C18—H180.9300
N8—C221.328 (5)C2—C31.355 (9)
N8—C211.341 (5)C2—H2A0.9300
N3—C91.347 (6)C4—C31.377 (8)
N3—N21.349 (6)C4—H40.9300
N3—H3D0.8600C26—C251.498 (8)
N1—C71.276 (6)C26—H26A0.9700
N1—C81.383 (6)C26—H26B0.9700
N4—C91.329 (6)C3—H3A0.9300
N4—C81.353 (5)C10—C111.503 (10)
N2—C81.316 (5)C10—C131.524 (10)
C20—C191.451 (5)C10—H100.9800
C20—H200.9300C28—C291.361 (8)
C35—C361.476 (6)C28—H280.9300
O3—C271.351 (6)C17—H170.9300
O3—H30.8200C29—H290.9300
C7—C61.434 (6)C39—C381.502 (9)
C7—H70.9300C39—H39A0.9700
C32—C311.393 (6)C39—H39B0.9700
C32—C271.402 (6)C25—H25A0.9700
C32—C331.439 (6)C25—H25B0.9700
C22—C231.481 (6)C37—C381.501 (9)
C33—H330.9300C37—H37A0.9700
C19—C141.386 (6)C37—H37B0.9700
C19—C181.396 (6)C38—H38A0.9700
C31—C301.362 (7)C38—H38B0.9700
C31—H310.9300C11—C121.450 (13)
C23—C261.517 (7)C11—H11A0.9700
C23—C241.527 (8)C11—H11B0.9700
C23—H230.9800C12—C131.493 (13)
C1—C21.379 (7)C12—H12A0.9700
C1—C61.406 (6)C12—H12B0.9700
C6—C51.394 (7)C13—H13A0.9700
C9—C101.472 (7)C13—H13B0.9700
C35—N11—N10109.8 (3)C4—C5—C6121.1 (5)
C35—N11—H11125.1C4—C5—H5119.4
N10—N11—H11125.1C6—C5—H5119.4
C21—N6—N7101.7 (3)O3—C27—C28119.2 (4)
C20—N5—C21117.5 (3)O3—C27—C32121.3 (4)
C33—N9—C34120.1 (3)C28—C27—C32119.5 (4)
C35—N12—C34102.7 (3)C35—C36—C39118.1 (4)
C14—O2—H2109.5C35—C36—C37119.4 (4)
C34—N10—N11103.0 (3)C39—C36—C3787.0 (4)
C22—N7—N6110.8 (3)C35—C36—H36110.1
C22—N7—H7D124.6C39—C36—H36110.1
N6—N7—H7D124.6C37—C36—H36110.1
C1—O1—H1109.5C17—C18—C19119.8 (5)
C22—N8—C21103.1 (3)C17—C18—H18120.1
C9—N3—N2110.8 (4)C19—C18—H18120.1
C9—N3—H3D124.6C3—C2—C1121.4 (5)
N2—N3—H3D124.6C3—C2—H2A119.3
C7—N1—C8119.8 (4)C1—C2—H2A119.3
N6—C21—N8115.1 (3)C3—C4—C5119.0 (5)
N6—C21—N5118.4 (3)C3—C4—H4120.5
N8—C21—N5126.5 (3)C5—C4—H4120.5
C9—N4—C8103.7 (4)C25—C26—C2390.3 (4)
C8—N2—N3102.4 (3)C25—C26—H26A113.6
N5—C20—C19121.1 (4)C23—C26—H26A113.6
N5—C20—H20119.5C25—C26—H26B113.6
C19—C20—H20119.5C23—C26—H26B113.6
N12—C35—N11109.9 (3)H26A—C26—H26B110.9
N12—C35—C36126.0 (4)C2—C3—C4120.7 (5)
N11—C35—C36124.1 (4)C2—C3—H3A119.7
N10—C34—N12114.6 (4)C4—C3—H3A119.7
N10—C34—N9119.5 (4)C9—C10—C11117.0 (6)
N12—C34—N9125.9 (4)C9—C10—C13118.6 (5)
C27—O3—H3109.5C11—C10—C1386.9 (6)
N2—C8—N4114.7 (4)C9—C10—H10110.8
N2—C8—N1118.9 (3)C11—C10—H10110.8
N4—C8—N1126.4 (4)C13—C10—H10110.8
N1—C7—C6122.8 (4)C29—C28—C27120.6 (5)
N1—C7—H7118.6C29—C28—H28119.7
C6—C7—H7118.6C27—C28—H28119.7
C31—C32—C27117.6 (4)C16—C17—C18119.6 (5)
C31—C32—C33120.9 (4)C16—C17—H17120.2
C27—C32—C33121.5 (4)C18—C17—H17120.2
N8—C22—N7109.3 (3)C28—C29—C30121.0 (5)
N8—C22—C23126.8 (4)C28—C29—H29119.5
N7—C22—C23123.7 (4)C30—C29—H29119.5
N9—C33—C32121.9 (4)C38—C39—C3688.9 (5)
N9—C33—H33119.1C38—C39—H39A113.8
C32—C33—H33119.1C36—C39—H39A113.8
C14—C19—C18119.7 (4)C38—C39—H39B113.8
C14—C19—C20122.0 (4)C36—C39—H39B113.8
C18—C19—C20118.2 (4)H39A—C39—H39B111.1
C30—C31—C32122.3 (4)C26—C25—C2487.8 (4)
C30—C31—H31118.8C26—C25—H25A114.0
C32—C31—H31118.8C24—C25—H25A114.0
C22—C23—C26119.4 (4)C26—C25—H25B114.0
C22—C23—C24116.7 (4)C24—C25—H25B114.0
C26—C23—C2487.2 (4)H25A—C25—H25B111.2
C22—C23—H23110.5C38—C37—C3688.5 (5)
C26—C23—H23110.5C38—C37—H37A113.9
C24—C23—H23110.5C36—C37—H37A113.9
O1—C1—C2118.8 (5)C38—C37—H37B113.9
O1—C1—C6121.7 (4)C36—C37—H37B113.9
C2—C1—C6119.6 (5)H37A—C37—H37B111.1
C5—C6—C1118.2 (4)C37—C38—C3988.9 (4)
C5—C6—C7120.4 (4)C37—C38—H38A113.8
C1—C6—C7121.4 (4)C39—C38—H38A113.8
N4—C9—N3108.5 (4)C37—C38—H38B113.8
N4—C9—C10126.9 (4)C39—C38—H38B113.8
N3—C9—C10124.3 (4)H38A—C38—H38B111.1
C16—C15—C14119.9 (5)C12—C11—C1089.7 (7)
C16—C15—H15120.1C12—C11—H11A113.7
C14—C15—H15120.1C10—C11—H11A113.7
O2—C14—C19122.7 (4)C12—C11—H11B113.7
O2—C14—C15118.2 (4)C10—C11—H11B113.7
C19—C14—C15119.2 (4)H11A—C11—H11B110.9
C17—C16—C15121.9 (5)C11—C12—C1390.0 (6)
C17—C16—H16119.1C11—C12—H12A113.6
C15—C16—H16119.1C13—C12—H12A113.6
C31—C30—C29119.0 (5)C11—C12—H12B113.6
C31—C30—H30120.5C13—C12—H12B113.6
C29—C30—H30120.5H12A—C12—H12B110.9
C23—C24—C2588.7 (4)C12—C13—C1087.3 (7)
C23—C24—H24A113.9C12—C13—H13A114.1
C25—C24—H24A113.9C10—C13—H13A114.1
C23—C24—H24B113.9C12—C13—H13B114.1
C25—C24—H24B113.9C10—C13—H13B114.1
H24A—C24—H24B111.1H13A—C13—H13B111.3
C35—N11—N10—C340.4 (5)C20—C19—C14—O20.6 (6)
C21—N6—N7—C220.6 (5)C18—C19—C14—C150.3 (6)
N7—N6—C21—N80.2 (5)C20—C19—C14—C15179.9 (4)
N7—N6—C21—N5180.0 (4)C16—C15—C14—O2179.7 (5)
C22—N8—C21—N60.3 (5)C16—C15—C14—C190.7 (7)
C22—N8—C21—N5179.5 (4)C14—C15—C16—C170.4 (8)
C20—N5—C21—N6166.4 (4)C32—C31—C30—C291.2 (8)
C20—N5—C21—N813.8 (6)C22—C23—C24—C25139.8 (4)
C9—N3—N2—C80.6 (5)C26—C23—C24—C2518.1 (4)
C21—N5—C20—C19180.0 (4)C1—C6—C5—C40.4 (7)
C34—N12—C35—N110.7 (5)C7—C6—C5—C4178.0 (5)
C34—N12—C35—C36179.8 (5)C31—C32—C27—O3177.7 (5)
N10—N11—C35—N120.2 (5)C33—C32—C27—O33.1 (8)
N10—N11—C35—C36179.3 (4)C31—C32—C27—C280.3 (7)
N11—N10—C34—N120.9 (5)C33—C32—C27—C28178.9 (5)
N11—N10—C34—N9179.0 (4)N12—C35—C36—C3947.2 (7)
C35—N12—C34—N101.1 (5)N11—C35—C36—C39131.7 (5)
C35—N12—C34—N9178.9 (5)N12—C35—C36—C3756.2 (7)
C33—N9—C34—N10178.8 (4)N11—C35—C36—C37124.8 (5)
C33—N9—C34—N121.1 (7)C14—C19—C18—C170.5 (7)
N3—N2—C8—N40.3 (5)C20—C19—C18—C17179.1 (4)
N3—N2—C8—N1178.3 (4)O1—C1—C2—C3179.8 (5)
C9—N4—C8—N20.2 (6)C6—C1—C2—C30.5 (8)
C9—N4—C8—N1178.6 (5)C6—C5—C4—C30.8 (9)
C7—N1—C8—N2165.7 (4)C22—C23—C26—C25137.8 (5)
C7—N1—C8—N415.9 (7)C24—C23—C26—C2518.5 (4)
C8—N1—C7—C6179.3 (4)C1—C2—C3—C40.9 (9)
C21—N8—C22—N70.6 (5)C5—C4—C3—C21.1 (9)
C21—N8—C22—C23174.3 (4)N4—C9—C10—C1172.4 (9)
N6—N7—C22—N80.8 (5)N3—C9—C10—C11100.3 (8)
N6—N7—C22—C23174.3 (4)N4—C9—C10—C1329.6 (10)
C34—N9—C33—C32178.4 (4)N3—C9—C10—C13157.6 (6)
C31—C32—C33—N9179.4 (4)O3—C27—C28—C29178.4 (6)
C27—C32—C33—N90.2 (7)C32—C27—C28—C290.5 (9)
N5—C20—C19—C144.4 (6)C15—C16—C17—C180.4 (8)
N5—C20—C19—C18175.2 (4)C19—C18—C17—C160.9 (8)
C27—C32—C31—C300.1 (7)C27—C28—C29—C301.6 (9)
C33—C32—C31—C30179.3 (5)C31—C30—C29—C281.9 (9)
N8—C22—C23—C2629.5 (7)C35—C36—C39—C38141.3 (5)
N7—C22—C23—C26156.2 (4)C37—C36—C39—C3819.3 (5)
N8—C22—C23—C2473.2 (6)C23—C26—C25—C2418.5 (4)
N7—C22—C23—C24101.0 (5)C23—C24—C25—C2618.4 (4)
O1—C1—C6—C5179.5 (4)C35—C36—C37—C38140.0 (5)
C2—C1—C6—C50.2 (7)C39—C36—C37—C3819.3 (5)
O1—C1—C6—C73.0 (6)C36—C37—C38—C3919.6 (5)
C2—C1—C6—C7177.8 (4)C36—C39—C38—C3719.7 (5)
N1—C7—C6—C5175.3 (5)C9—C10—C11—C12139.3 (7)
N1—C7—C6—C12.2 (7)C13—C10—C11—C1218.5 (8)
C8—N4—C9—N30.6 (6)C10—C11—C12—C1318.9 (8)
C8—N4—C9—C10174.3 (6)C11—C12—C13—C1018.7 (8)
N2—N3—C9—N40.8 (6)C9—C10—C13—C12137.3 (7)
N2—N3—C9—C10174.7 (5)C11—C10—C13—C1218.0 (7)
C18—C19—C14—O2179.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7D···N20.861.982.836 (5)174
N11—H11···N60.861.992.817 (5)161
O1—H1···N10.821.892.615 (5)146
O2—H2···N50.821.902.619 (4)146
O3—H3···N90.821.872.588 (5)146
C10—H10···O3i0.982.523.411 (6)151
N3—H3D···N10ii0.862.072.874 (5)155
Symmetry codes: (i) x2, y, z; (ii) x1, y, z.
 

Acknowledgements

Author contributions are as follows. Conceptualization, SK, ND and ES; synthesis, MKG; writing (review and editing of the manuscript), MKG, SK and FS; formal analysis, MKG and SK; crystal-structure determination, SK, ND and FS; validation, MKG, FS, SK and ES; project administration, MKG, FS and SK.

Funding information

This study was supported financially by the Project Coordination Application and Research Center in Yozgat Bozok University (project No. 6602a-SMYO/19-273).

References

First citationAggarwal, R. & Sumran, G. (2020). Eur. J. Med. Chem. 205, 112652.  Web of Science CrossRef PubMed Google Scholar
First citationAl-Karawi, A. J. M., OmarAli, A. B., Dege, N. & Kansız, S. (2021b). Chem. Pap. 75, 3901–3914.  CAS Google Scholar
First citationAl-Karawi, A. J. M., OmarAli, A. B., Mangelsen, S., Dege, N., Kansız, S., Breuninger, P., Baydere, C. & OmarAli, O. B. (2021a). Polyhedron, 198, 115084.  Google Scholar
First citationAl-Resayes, S. I., Azam, M., Trzesowska-Kruszynska, A., Kruszynski, R., Soliman, S. M., Mohapatra, R. K. & Khan, Z. (2020). Am. Chem. Soc. Omega, 5, 27227–27234.  CAS Google Scholar
First citationBrink, A., Kroon, R. E., Visser, H. G., van Rensburg, C. E. J. & Roodt, A. (2018). New J. Chem. 42, 5193–5203.  Web of Science CSD CrossRef CAS Google Scholar
First citationBülbül, H., Köysal, Y., Doğan, O. E., Dege, N. & Ağar, E. (2019). Crystallogr. Rep. 64, 403–406.  Google Scholar
First citationBülbül, H., Köysal, Y., Macit, M., Yaman, R. & Dege, N. (2017). Z. Kristallogr. New Cryst. Struct. 232, 135–136.  Google Scholar
First citationCheng, R.-M., Li, Y.-Z., Ou, S.-J. & Chen, X.-T. (2006). Acta Cryst. E62, o1424–o1425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H. & Hanif, M. (2011). Appl. Organomet. Chem. 25, 753–760.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129–137.  Google Scholar
First citationDemir Kanmazalp, S., Doĝan, O. E., Dege, N., Aĝar, E., Bulbul, H. & Golenya, I. A. (2019). Acta Cryst. E75, 470–474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJia, T.-J., Cao, W., Zheng, X.-J. & Jin, L.-P. (2013). Tetrahedron Lett. 54, 3471–3474.  Web of Science CSD CrossRef CAS Google Scholar
First citationKołodziej, B., Morawiak, M., Schilf, W. & Kamieński, B. (2019). J. Mol. Struct. 1184, 207–218.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, G. S. (2021). In Green Synthetic Approaches for Biologically Relevant Heterocycles, pp. 655–687. Amsterdam: Elsevier.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds