research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of (E)-2-benzyl-1,3-di­phenyl­iso­thio­uronium iodide

crossmark logo

aSchool of Chemical Engineering, College of Engineering, Chonnam National, University, Gwangju, 61186, South Korea, and bDepartment of Chemistry Education, Sunchon National University, 255 Jungang-ro, Sunchon, 57922, South Korea
*Correspondence e-mail: chkwak@sunchon.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 November 2021; accepted 9 December 2021; online 1 January 2022)

In the title mol­ecular salt, C20H19N2S+·I, prepared by the reaction of 1,3-di­phenyl­thio­urea and benzyl iodide, the C—S—C thio­ether bond angle is 101.66 (9)° and electrons are delocalized over the N+= C—N skeleton. The dihedral angle between the aromatic rings attached to the N atoms is 40.60 (9)°. In the crystal, N—H⋯I hydrogen bonds link the components into [100] chains.

1. Chemical context

Iso­thio­uronium salts containing an R–S–C–(NHR)2+ moiety have been investigated as their hydrogen–bonding motifs for mol­ecular recognition of anions (Yeo & Hong, 1998[Yeo, W. S. & Hong, J. I. (1998). Tetrahedron Lett. 39, 3769-3772.]; Kubo et al., 2000[Kubo, Y., Tsukahara, M., Ishihara, S. & Tokita, S. (2000). Chem. Commun. pp. 653-654.]; Kato et al., 2004[Kato, R., Cui, Y.-Y., Nishizawa, S., Yokobori, T. & Teramae, N. (2004). Tetrahedron Lett. 45, 4273-4276.]; Nguyen et al., 2009[Nguyen, Q. P. B., Kim, J. N. & Kim, T. H. (2009). Bull. Korean Chem. Soc. 30, 2093-2097.]; Nguyen & Kim, 2010[Nguyen, Q. P. B. & Kim, T. H. (2010). Bull. Korean Chem. Soc. 31, 712-715.]) and as organocatalysts (Nguyen & Kim, 2011[Nguyen, Q. P. B. & Kim, T. H. (2011). Tetrahedron Lett. 52, 5004-5007.], 2012[Nguyen, Q. P. B. & Kim, T. H. (2012). Synthesis, 44, 1977-1982.]; Lee et al., 2018[Lee, H., Kang, S. & Kim, T. H. (2018). Bull. Korean Chem. Soc. 39, 575-578.]; Kang et al., 2019[Kang, S., Lee, H. & Kim, T. H. (2019). Synth. Commun. 49, 2460-2465.]). The iso­thio­uronium group could enhance the acidity of their NH groups compared with thio­urea and therefore be used as prospective alternative for thio­urea. In addition, the chemical modification of the iso­thio­uronium skeleton is readily performed using alkyl­ation reactions of thio­urea. As part of our work in this area, the synthesis and single-crystal structure of the title mol­ecular salt, C20H19N2S+·I are reported herein.

[Scheme 1]

2. Structural commentary

The title compound, C20H19N2S+·I (Fig. 1[link]), is a mol­ecular salt that arose from the reaction of 1,3-di­phenyl­thio­urea and benzyl iodide. There are three benzene rings, C1–C6 (I)[link], C9–C14 (II) and C15–C20 (III) in the cation and the dihedral angles I/II, II/III and I/III are 50.36 (8), 40.60 (9) and 85.45 (9)°, respectively. In the cation, the N-[(phenyl­amino)­methyl­ene]benzenaminium and toluyl units are linked to the sulfur atom as a thio­ether. The C7—S1 and C8—S1 bond lengths are 1.823 (2) and 1.751 (2) Å, respectively, and the C—S—C bond angle is 101.66 (9)°. The conformation of C1 and C8 about the C7—S1 bond is gauche [C1—C7—S1—C8 = 49.53 (16)°]. The C—S—C bond angle in the title compound is somewhat smaller than that for di-p-tolyl sulfide (109°; Blackmore & Abrahams, 1955[Blackmore, W. R. & Abrahams, S. C. (1955). Acta Cryst. 8, 329-335.]) or the angle (107.8°) in oligomeric [ArCOArSArCOAr] (Ar = 1,4-phenyl­ene; Colquhoun et al., 1999[Colquhoun, H. M., Lewis, D. F. & Williams, D. J. (1999). Polymer, 40, 5415-5420.]) in which the aromatic rings are nearly coplanar. Rather, it is closer to that seen in diethyl sulfide [99.05 (4)°; Iijima et al., 1977[Iijima, T., Tsuchiya, S. & Kimura, M. (1977). Bull. Chem. Soc. Jpn, 50, 2564-2567.]]. This result can be explained by the large dihedral angle between the benzene rings in the title compound. In the N-[(phenyl­amino)­methyl­ene]benz­en­aminium moiety of the title cation, the π-electrons of the iminium double bond are delocalized over the N1—C6—N2 skeleton [the C8—N1 and C8—N2 bond distances are 1.319 (2) and 1.332 (2) Å, respectively, and N1—C8—N2 = 124.53 (16)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at at the 30% probability level.

3. Supra­molecular features

In the crystal, the cations and anions are linked by almost linear N—H⋯I hydrogen bonds (Fig. 2[link], Table 1[link]), generating [100] chains of alternating cations and anions, with adjacent species in the chain related by simple translation. No significant aromatic ππ stacking inter­actions occur, the shortest centroid–centroid separation being greater than 4.7 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯I1i 0.80 (3) 2.69 (3) 3.4781 (17) 171 (2)
N2—H2N⋯I1ii 0.80 (3) 2.73 (3) 3.5242 (17) 169 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
A view of a fragment of the [100] chain arising from N—H⋯I hydrogen bonds.

4. Database survey

A search of the Cambridge Structural Database (CSD, via CCDC Access Structures, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 30 structures using iso­thio­uronium as the keyword: 26 of them have a thio­ether skeleton. No results were found for 2-benzyl-1,3-di­phenyl­iso­thio­uronium or N-[(phenyl­amino)­methyl­ene]benzenaminium but the compound most similar to the title compound is S-benzyl­iso­thio­uronium chloride (Barker & Powell, 1998[Barker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019-2021.]). The bond angles of the thio­ether group in the S-benzyl­iso­thio­uronium salts similar to the title compound are the range 102.6 to 104.8°, depending on the counter-anions (Hemalatha & Veeravazhuthi, 2008[Hemalatha, P. & Veeravazhuthi, V. (2008). Acta Cryst. E64, o1805.]; Ishii et al., 2000[Ishii, Y., Matsunaka, K. & Sakaguchi, S. (2000). J. Am. Chem. Soc. 122, 7390-7391.]; Pope & Boeyens, 1975[Pope, L. E. & Boeyens, J. C. A. (1975). J. Cryst. Mol. Struct. 5, 47-58.]).

5. Synthesis and crystallization

1,3-Di­phenyl­thio­urea (4.4 mmol) was added to a solution of benzyl iodide (13.2 mmol) in dry di­chloro­methane at room temperature. The reaction mixture was then stirred for 24 h and concentrated in vacuo. The residue was purified via flash chromatography (hexa­ne:ethyl acetate = 8:2), to give a the title compound as a yellow solid (1.14 g, yield 58%). A solution of iso­thio­uronium iodide in methanol was slowly evap­orated at room temperature to give crystals of the title compound: m.p. 442–443 K; 1H NMR (300 MHz, DMSO): δ 7.21–7.39 (m, 15 H), δ 4.45 (s, 2 H); HR TOF–MS for C20H18N2S: calculated 318.1186 (M+), found 318.1185 (M+).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.94–0.98 Å, N—H = 0.80 Å) and refined using a riding model withUiso(H) = 1.2Ueq(carrier).

Table 2
Experimental details

Crystal data
Chemical formula C20H19N2S+·I
Mr 446.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 8.6382 (3), 9.8182 (3), 12.1922 (4)
α, β, γ (°) 77.2839 (12), 85.1708 (11), 74.7224 (10)
V3) 972.66 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.76
Crystal size (mm) 0.27 × 0.21 × 0.15
 
Data collection
Diffractometer PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.649, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31969, 4853, 4594
Rint 0.023
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.09
No. of reflections 4853
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.43, −1.04
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL ((Sheldrick, 2008)).

N-[(Benzylsulfanyl)(phenylamino)methylidene]anilinium iodide top
Crystal data top
C20H19N2S+·IZ = 2
Mr = 446.33F(000) = 444
Triclinic, P1Dx = 1.524 Mg m3
a = 8.6382 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8182 (3) ÅCell parameters from 9837 reflections
c = 12.1922 (4) Åθ = 2.5–28.3°
α = 77.2839 (12)°µ = 1.76 mm1
β = 85.1708 (11)°T = 223 K
γ = 74.7224 (10)°Block, colourless
V = 972.66 (6) Å30.27 × 0.21 × 0.15 mm
Data collection top
PHOTON 100 CMOS
diffractometer
4594 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 2.2°
Tmin = 0.649, Tmax = 0.746h = 1111
31969 measured reflectionsk = 1313
4853 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.8267P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4853 reflectionsΔρmax = 1.43 e Å3
225 parametersΔρmin = 1.03 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.26986 (2)0.34036 (2)0.87755 (2)0.04395 (6)
C10.3315 (2)0.4161 (2)0.28202 (17)0.0316 (4)
C20.1753 (3)0.4055 (3)0.3116 (2)0.0421 (5)
H20.10200.41810.25520.051*
C30.1274 (4)0.3766 (3)0.4237 (2)0.0581 (7)
H30.02160.36970.44300.070*
C40.2340 (5)0.3578 (3)0.5072 (2)0.0648 (8)
H40.20120.33800.58330.078*
C50.3880 (4)0.3682 (3)0.4786 (2)0.0594 (7)
H50.46090.35500.53550.071*
C60.4373 (3)0.3982 (2)0.3666 (2)0.0434 (5)
H60.54270.40640.34790.052*
C70.3883 (2)0.4451 (2)0.16100 (17)0.0330 (4)
H7A0.40580.35660.13200.040*
H7B0.49170.46960.15740.040*
S10.24895 (6)0.59022 (5)0.07051 (4)0.03231 (10)
C80.2092 (2)0.72734 (19)0.14740 (14)0.0252 (3)
N10.32455 (19)0.75297 (18)0.19789 (14)0.0278 (3)
H1N0.415 (3)0.724 (3)0.177 (2)0.036 (6)*
C90.3042 (2)0.82793 (19)0.28816 (15)0.0267 (3)
C100.2028 (2)0.7956 (2)0.37864 (17)0.0337 (4)
H100.14740.72430.38140.040*
C110.1841 (3)0.8703 (3)0.46533 (18)0.0426 (5)
H110.11470.85020.52700.051*
C120.2668 (3)0.9740 (3)0.46136 (19)0.0444 (5)
H120.25261.02500.51980.053*
C130.3700 (3)1.0030 (2)0.3723 (2)0.0421 (5)
H130.42721.07270.37080.051*
C140.3903 (2)0.9300 (2)0.28442 (18)0.0343 (4)
H140.46120.94930.22360.041*
N20.05644 (19)0.80281 (17)0.14673 (14)0.0276 (3)
H2N0.010 (3)0.765 (3)0.134 (2)0.034 (6)*
C150.0057 (2)0.94592 (19)0.16504 (15)0.0259 (3)
C160.0742 (2)1.0527 (2)0.12339 (16)0.0310 (4)
H160.17231.03160.08320.037*
C170.0078 (3)1.1909 (2)0.14165 (18)0.0380 (4)
H170.06221.26360.11480.046*
C180.1379 (3)1.2225 (2)0.19912 (19)0.0422 (5)
H180.18161.31610.21220.051*
C190.2187 (3)1.1169 (2)0.2371 (2)0.0427 (5)
H190.31921.13960.27430.051*
C200.1536 (2)0.9773 (2)0.22119 (18)0.0349 (4)
H200.20860.90510.24790.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02782 (7)0.04822 (9)0.06798 (11)0.01720 (6)0.01189 (6)0.03314 (7)
C10.0347 (10)0.0226 (8)0.0376 (10)0.0046 (7)0.0028 (8)0.0091 (7)
C20.0428 (12)0.0421 (11)0.0462 (12)0.0177 (9)0.0024 (9)0.0122 (9)
C30.0661 (17)0.0529 (15)0.0582 (16)0.0274 (13)0.0190 (13)0.0102 (12)
C40.099 (2)0.0473 (15)0.0396 (13)0.0139 (15)0.0082 (14)0.0006 (11)
C50.079 (2)0.0483 (14)0.0424 (13)0.0001 (13)0.0211 (13)0.0048 (11)
C60.0419 (12)0.0377 (11)0.0474 (12)0.0001 (9)0.0127 (10)0.0102 (9)
C70.0294 (9)0.0298 (9)0.0393 (10)0.0018 (7)0.0002 (8)0.0136 (8)
S10.0365 (2)0.0321 (2)0.0301 (2)0.00373 (18)0.00340 (18)0.01509 (18)
C80.0254 (8)0.0257 (8)0.0253 (8)0.0059 (6)0.0010 (6)0.0083 (6)
N10.0199 (7)0.0326 (8)0.0330 (8)0.0045 (6)0.0014 (6)0.0146 (6)
C90.0231 (8)0.0283 (8)0.0294 (8)0.0030 (6)0.0050 (6)0.0104 (7)
C100.0331 (9)0.0385 (10)0.0329 (9)0.0115 (8)0.0011 (7)0.0117 (8)
C110.0459 (12)0.0521 (13)0.0331 (10)0.0119 (10)0.0023 (9)0.0172 (9)
C120.0509 (13)0.0452 (12)0.0415 (11)0.0055 (10)0.0079 (10)0.0237 (10)
C130.0450 (12)0.0372 (11)0.0514 (13)0.0139 (9)0.0106 (10)0.0167 (9)
C140.0322 (9)0.0348 (10)0.0393 (10)0.0110 (8)0.0029 (8)0.0106 (8)
N20.0229 (7)0.0292 (8)0.0338 (8)0.0063 (6)0.0039 (6)0.0122 (6)
C150.0253 (8)0.0262 (8)0.0257 (8)0.0028 (6)0.0054 (6)0.0070 (6)
C160.0321 (9)0.0324 (9)0.0274 (8)0.0074 (7)0.0021 (7)0.0043 (7)
C170.0489 (12)0.0300 (9)0.0353 (10)0.0118 (9)0.0066 (9)0.0025 (8)
C180.0523 (13)0.0287 (10)0.0416 (11)0.0008 (9)0.0057 (9)0.0108 (8)
C190.0368 (11)0.0405 (11)0.0460 (12)0.0010 (9)0.0052 (9)0.0143 (9)
C200.0300 (9)0.0342 (10)0.0406 (10)0.0071 (8)0.0024 (8)0.0105 (8)
Geometric parameters (Å, º) top
C1—C61.386 (3)C10—C111.390 (3)
C1—C21.392 (3)C10—H100.9400
C1—C71.505 (3)C11—C121.381 (3)
C2—C31.383 (4)C11—H110.9400
C2—H20.9400C12—C131.374 (4)
C3—C41.381 (5)C12—H120.9400
C3—H30.9400C13—C141.391 (3)
C4—C51.371 (5)C13—H130.9400
C4—H40.9400C14—H140.9400
C5—C61.388 (4)N2—C151.426 (2)
C5—H50.9400N2—H2N0.81 (3)
C6—H60.9400C15—C161.386 (3)
C7—S11.823 (2)C15—C201.391 (3)
C7—H7A0.9800C16—C171.386 (3)
C7—H7B0.9800C16—H160.9400
S1—C81.7513 (18)C17—C181.383 (3)
C8—N11.319 (2)C17—H170.9400
C8—N21.332 (2)C18—C191.376 (4)
N1—C91.428 (2)C18—H180.9400
N1—H1N0.80 (3)C19—C201.388 (3)
C9—C101.384 (3)C19—H190.9400
C9—C141.388 (3)C20—H200.9400
C6—C1—C2118.9 (2)C9—C10—H10120.5
C6—C1—C7119.46 (19)C11—C10—H10120.5
C2—C1—C7121.67 (19)C12—C11—C10120.3 (2)
C3—C2—C1120.3 (2)C12—C11—H11119.9
C3—C2—H2119.8C10—C11—H11119.9
C1—C2—H2119.8C13—C12—C11120.3 (2)
C4—C3—C2120.4 (3)C13—C12—H12119.9
C4—C3—H3119.8C11—C12—H12119.9
C2—C3—H3119.8C12—C13—C14120.5 (2)
C5—C4—C3119.6 (3)C12—C13—H13119.8
C5—C4—H4120.2C14—C13—H13119.8
C3—C4—H4120.2C9—C14—C13118.8 (2)
C4—C5—C6120.6 (3)C9—C14—H14120.6
C4—C5—H5119.7C13—C14—H14120.6
C6—C5—H5119.7C8—N2—C15127.80 (16)
C1—C6—C5120.2 (2)C8—N2—H2N117.4 (18)
C1—C6—H6119.9C15—N2—H2N114.8 (18)
C5—C6—H6119.9C16—C15—C20120.73 (17)
C1—C7—S1113.83 (13)C16—C15—N2121.30 (17)
C1—C7—H7A108.8C20—C15—N2117.89 (17)
S1—C7—H7A108.8C17—C16—C15119.28 (19)
C1—C7—H7B108.8C17—C16—H16120.4
S1—C7—H7B108.8C15—C16—H16120.4
H7A—C7—H7B107.7C18—C17—C16120.3 (2)
C8—S1—C7101.66 (9)C18—C17—H17119.8
N1—C8—N2124.53 (16)C16—C17—H17119.8
N1—C8—S1121.30 (14)C19—C18—C17120.0 (2)
N2—C8—S1114.14 (13)C19—C18—H18120.0
C8—N1—C9126.22 (16)C17—C18—H18120.0
C8—N1—H1N118.0 (19)C18—C19—C20120.7 (2)
C9—N1—H1N115.7 (19)C18—C19—H19119.7
C10—C9—C14121.18 (18)C20—C19—H19119.7
C10—C9—N1119.87 (17)C19—C20—C15118.9 (2)
C14—C9—N1118.93 (17)C19—C20—H20120.5
C9—C10—C11119.0 (2)C15—C20—H20120.5
C6—C1—C2—C30.5 (3)C9—C10—C11—C120.6 (3)
C7—C1—C2—C3179.0 (2)C10—C11—C12—C130.8 (4)
C1—C2—C3—C40.0 (4)C11—C12—C13—C141.0 (4)
C2—C3—C4—C50.1 (4)C10—C9—C14—C131.7 (3)
C3—C4—C5—C60.3 (4)N1—C9—C14—C13179.86 (18)
C2—C1—C6—C50.9 (3)C12—C13—C14—C90.3 (3)
C7—C1—C6—C5178.6 (2)N1—C8—N2—C1521.8 (3)
C4—C5—C6—C10.8 (4)S1—C8—N2—C15156.34 (15)
C6—C1—C7—S1134.43 (17)C8—N2—C15—C1638.5 (3)
C2—C1—C7—S146.1 (2)C8—N2—C15—C20144.78 (19)
C1—C7—S1—C849.53 (16)C20—C15—C16—C172.2 (3)
C7—S1—C8—N141.74 (18)N2—C15—C16—C17178.92 (17)
C7—S1—C8—N2140.01 (15)C15—C16—C17—C181.1 (3)
N2—C8—N1—C922.1 (3)C16—C17—C18—C190.9 (3)
S1—C8—N1—C9159.85 (15)C17—C18—C19—C201.8 (4)
C8—N1—C9—C1046.0 (3)C18—C19—C20—C150.7 (3)
C8—N1—C9—C14135.6 (2)C16—C15—C20—C191.4 (3)
C14—C9—C10—C111.9 (3)N2—C15—C20—C19178.16 (18)
N1—C9—C10—C11179.70 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···I1i0.80 (3)2.69 (3)3.4781 (17)171 (2)
N2—H2N···I1ii0.80 (3)2.73 (3)3.5242 (17)169 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, email: thkim@jnu.ac.kr.

Acknowledgements

The X-ray data were obtained from the Western Seoul Center of Korea Basic Science Institute.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A3B07040876 and 2021R1I1A3A04037235).

References

First citationBarker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019–2021.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlackmore, W. R. & Abrahams, S. C. (1955). Acta Cryst. 8, 329–335.  CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColquhoun, H. M., Lewis, D. F. & Williams, D. J. (1999). Polymer, 40, 5415–5420.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHemalatha, P. & Veeravazhuthi, V. (2008). Acta Cryst. E64, o1805.  CrossRef IUCr Journals Google Scholar
First citationIijima, T., Tsuchiya, S. & Kimura, M. (1977). Bull. Chem. Soc. Jpn, 50, 2564–2567.  CrossRef CAS Google Scholar
First citationIshii, Y., Matsunaka, K. & Sakaguchi, S. (2000). J. Am. Chem. Soc. 122, 7390–7391.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, S., Lee, H. & Kim, T. H. (2019). Synth. Commun. 49, 2460–2465.  CrossRef CAS Google Scholar
First citationKato, R., Cui, Y.-Y., Nishizawa, S., Yokobori, T. & Teramae, N. (2004). Tetrahedron Lett. 45, 4273–4276.  CrossRef CAS Google Scholar
First citationKubo, Y., Tsukahara, M., Ishihara, S. & Tokita, S. (2000). Chem. Commun. pp. 653–654.  CrossRef Google Scholar
First citationLee, H., Kang, S. & Kim, T. H. (2018). Bull. Korean Chem. Soc. 39, 575–578.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, Q. P. B., Kim, J. N. & Kim, T. H. (2009). Bull. Korean Chem. Soc. 30, 2093–2097.  CrossRef CAS Google Scholar
First citationNguyen, Q. P. B. & Kim, T. H. (2010). Bull. Korean Chem. Soc. 31, 712–715.  CrossRef CAS Google Scholar
First citationNguyen, Q. P. B. & Kim, T. H. (2011). Tetrahedron Lett. 52, 5004–5007.  CrossRef CAS Google Scholar
First citationNguyen, Q. P. B. & Kim, T. H. (2012). Synthesis, 44, 1977–1982.  CAS Google Scholar
First citationPope, L. E. & Boeyens, J. C. A. (1975). J. Cryst. Mol. Struct. 5, 47–58.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYeo, W. S. & Hong, J. I. (1998). Tetrahedron Lett. 39, 3769–3772.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds